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Abstract— Cognitive Radio (CR) has been considered as a  Although the CR paradigm started with the idea of an
potential candidate for addressing the spectrum scarcity prob- SDR [1], it may comprise a wide variety of techniques and
lem of future wireless networks. Since its conception, several architectures in order to allow the spectral coexistencthef

researchers, academic institutions, industries, regulatory and i d and unli d wirel t It h id
standardization bodies have put their significant efforts towards Icensed and uniicensed wireless systems. as a wideerang

the realization of CR technology. However, as this technology Of application areas ranging from Television WhiteSpaces
adapts its transmission based on the surrounding radio envi- (TVWSSs) [2] to satellite communications [3], [4] and several

ronment, several practical issues may need to be considered.industry players are putting significant efforts towardg th
In practlce, several |mperfectlons such as noise uncertalnty, realisation of CR technology [5] In CR termin0|0gy, Primar

channel/interference uncertainty, transceiver hardware imper i d) U PU I led i bent b
fections, signal uncertainty, synchronization issues, etc. ma (licensed) Users (PUs), also called incumbent users, can be

severely deteriorate the performance of a CR system. To this defined as the users who have higher priority or legacy rights
end, the investigation of realistic solutions towards combating on the use of a specific part of the spectrum. On the other hand,
various practical imperfections is very important for successful Secondary (unlicensed) Users (SUs), also called cognitive
implementation of the cognitive technology. In this direction, ;sers exploit this spectrum in such a way that they do not
first, this survey paper provides an overview of the enabling . ) .
techniques for CR communications. Subsequently, it discussesprovlde harmful interference to the normal operallt.lon_of the
the main imperfections that may occur in the most widely licensed PUs. The SU needs to have CR capabilities in order
used CR paradigms and then reviews the existing approachesto acquire information about its operating environmentd an
towards addressing these imperfections. Finally, it provides some to adapt its radio parameters autonomously in order to @xplo
interesting open research issues. the underutilized part of the spectrum.
Index Terms— Cognitive radio, channel uncertainty, noise un- Since the conception of the term “CR” by J. Mi-
certainty, spectrum sensing, transceiver imperfections, und&y tglg in the late 1990's [1], several researchers and indus-
trial/academic/regulatory bodies have attempted to pievi
different definitions of the CR as well as different forms of
. INTRODUCTION cognitive cycles [1], [6], [7]. In this context, there aredw
The demand for broadband wireless spectrum is rapidlidely used approaches for enhancing the spectral effigienc
increasing while its supply is limited due to spectrum segmeof current wireless systems: (i) by utilizing opporturgsti
tation and the dedicated frequency allocation of standacdi spectrum access, called Dynamic Spectrum Access (DSA), and
wireless systems. This scarcity has led to the concept ohicog(ii) by allowing the sharing of the available spectrum betwe
tive Radio (CR) communication which comprises a variety qfrimary and secondary systems, called spectrum sharimg. Fu
techniques enabling the coexistence of licensed and mskzk ther, the most common and basic functions available in all
systems over the same spectrum. Recent technical advanbesproposed cognitive cycles are: (i) Spectrum awareness,
in Software Defined Radio (SDR), wideband transceivergi) Analysis and decision, and (iii) Spectrum exploitatio
digital signal processors, etc., have made it possible fd@&m (adaptation). These functions need to be carried out replat
intelligent transceivers, hence leading to the possybitift until full adaptation to the changed environmental conditis
utilizing the available spectrum in a very dynamic and aigapt achieved. Any other CR functionalities can be considered to
manner. be just the variants of these basic tasks.
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However, permission to use this material for any other puposest be cycle, the first task for a CR is to be aware of its surrounding

obtained from the IEEE by sending a request to pubs-permis@ieee.org. radio environment, i.e., spectrum awareness. The nextistep
This work was partially supported by the National Researahdf Lux-

embourg under the CORE projects “SeMIGod” and “SATSENT", Kaural to a_n._alyze the acquired informatiqn and to take an inteilli_ge
Sciences and Engineering Research Council of Canada (NSERf@r the decision on how to use the available resources effectively.

project CRDPJ 461894 -13, and Nutaq Inc. . Subsequently, the CR autonomously adapts its operational
S. K. Sharma, S. Chatzinotas and B. Ottersten are with the SnT

(http://www.securityandtrust.lu), University of Luxemirg, L-2721, Luxem- pa.rameters SLI.Ch as transmit power, opera}tlng frequenccy,lmo
bourg, Email:{shree.sharma, symeon.chatzinotas, bjorn.otter@&emi.lu. lation and coding scheme, etc. to any environmental canditi

T. E. Bogale and Long B. Le are with the INRS, Univegsiu Qebec, jn order to exploit the available spectral opportunitieieef
Montréal, QC, Canada, and X. Wang is with the University of Wester

Ontario, London, ON, Canada. Emaftadilo.bogale, long.lp@emt.inrs.ca fively, called spectrum _?Xplonation- More speqificgllyaes- _
and {xianbin.wang @uwo.ca. trum awareness capability helps a CR to acquire information



— 1. Spectrum Sensing

— I. Introduction

— 2. Database
A. Spectrum Awareness 3. Environmental
Techniques Parameter Estimation

4. Waveform Parameter
Estimation

Il. Enabling Techniques
for CR Communications

— 1. Interweave

B. Spectrum Exploitation
Techniques 2. Underlay

11l. Imperfections in a CR
System

— 3. Overlay
A. Cyclostationary based

Detector

— 4. Hybrid

IV. Noise Variance B. Autocorrelation based

— . — Detect
Uncertainty etector

C. Covariance based
Detector

V. Noise/Channel
Correlation

D. Eigenvalue based
Detector

Organization [—
E. Moment based

Detector

—— VI. Signal Uncertainty

1. Max-min SNR Detector
in Time Domain

F. Max-min SNR based

Detector
2. Max-min SNR Detector
G. Generalized Energy in Frequency Domain
VII. Channel/Interference Detector (GED)

Uncertainty

A. Power Amplifier
Nonlinearity

VIIl. CR Transceiver
Imperfections

B. Multicarrier Distortion

IX. Future
Recommendations

C. Synchronization Errors

— X. Conclusions

Fig. 1. Structure of the paper

about the spectral opportunities dynamically while speutr nificant volume of available literature under ideal coruatis,
exploitation capability assists a CR to exploit the avdéabinvestigation of realistic solutions towards combatingivas
spectral opportunities efficiently. practical imperfections has become critical towards itsiac
deployment. Existing contributions have either negledtesl
Several survey papers exist in the literature in the copractical constraints or are applicable to a specific sienar
text of CR communications covering a wide range of areggder a single practical imperfection. In practice, a numbe
such as spectrum occupancy measurement campaigns ¢8lpractical imperfections should be considered by a design
Spectrum Sensing (SS) [9]-[13], spectrum management [1¢hile implementing a CR system.
emerging applications [15], spectrum decision [16], speut
assignment [17], spectrum access strategies [18], resourc The main imperfections that may occur in practical scenar-
allocation [19], [20], machine-learning techniques [2X]da ios are noise uncertainty, channel/interference unceytaCR
CR networks [22]. However, to the best of authors’ knowltransceiver imperfections, noise/channel correlati@mad un-
edge, no contributions have been reported in the directioartainty, etc. as detailed later in Section Ill. In this @, it
of providing a comprehensive review of the existing CR apemains an open challenge to study the effect of differeat{pr
proaches considering practical imperfections. Despiesif- tical imperfections on the performance of a CR transceiver.



TABLE |
DEFINITIONS OFACRONYMS AND NOTATIONS

Acronyms/Notations  Definitions Acronyms/Notations  Definitions

ACIT Adjacent Channel Interference PU Primary User

ADC Analog to Digital Converter QAM Quadrature Amplitude Modulation
AGC Automatic Gain Controller QoS Quality of Service

AWGN Additive White Gaussian Noise QPSK Quadrature Phase-Shift Keying
BEP Bit Error Probability REM Radio Environment Map

BER Bit Error Rate RF Radio Frequency

BPSK Binary Phase Shift Keying ROC Receiver Operating Characteristic
CAC Cyclic Autocorrelation RMT Random Matrix Theory

CDR Constant Detection Rate SCN Signal Condition Number

CDMA Code Division Multiple Access SDR Software Defined Radio

CED Conventional Energy Detection SISO Single Input Single Output
CFAR Constant False Alarm Rate SIMO Single Input Multiple Output

CP Cyclic Prefix SLE Scaled Largest Eigenvalue

CPC Cognitive Pilot Channel SS Spectrum Sensing

CR Cognitive Radio ST Secondary Transmitter

CS Compressive Sensing SR Secondar?/ Receiver

CSl Channel State Information SINR Signal to Interference plus Noise Ratio
DoA Direction of Arrival SNR Signal to Noise Ratio

DSA Dynamic Spectrum Access SRRCF Square Root Raised Cosine Filter
DA Data-Aided TDD Time Division Duplex

DVB Digital Video Broadcasting TVWS Television WhiteSpace

ED Energy Detection SU Secondary User

EIRP Effective Isotropic Radiated Power WRAN Wireless Regional Area Network
EME Energy to Minimum Eigenvalue USRP Universal Software Radio Peripheral
EVD Eigenvalue Decomposition diag(-) Diagonalization

EZ Exclusion Zone E[] Expectation

FCC Federal Communications Commission Hy Noise only hypothesis

FDD Frequency Division Duplex H, Signal plus noise hypothesis

FC Fusion Centre p Correlation coefficient

GED Generalized Ener%y Detector erfc(+) Complementary error function
GLRT Generalized Likelihood Ratio Test Py Probability of detection

HNP Hidden Node Problem P{ Probability of false alarm

HPA Hié;h Power Amplifier o Noise variance

i.i.d. independent and identically distributed ¥ SNR

JD John's Detector a Cyclic frequency

LO Local Oscillator T Time la

MIMO Multiple Input Multiple Output B Bandwidth

ModCod Modulation and Coding B8 Excess bandwidth

MCS Modulation and Coding Scheme N Number of samples

ME Maximum Eigenvalue M Number of receilve dimensions
MME Maximum to Minimum Eigenvalue L Oversampling factor

NDA Non-Data-Aided > Summation

NC-OFDM Non-Contiguous OFDM Rx Sample covariance aX

OFDM Orthogonal Frequency Division Multiplexing I Interference threshold

oSl Open System Interconnection h Channel fading coefficient

PA Power Amplifier T Test statistic

PAPR Peak to Average Power Ratio A Sensing threshold

PT Primary Transmitter C Complex numbers

PR Primary Receiver ()t Conjugate transpose

In this direction, the main focus of this survey paper imay result from hardware components of an RF chain. Finally,
to provide a comprehensive review of CR techniques und8ection IX provides open research issues and Section X
practical imperfections. First, we provide a brief ovewief concludes this paper. In order to improve the flow of this
the existing CR approaches considering spectrum awarengaper, we provide the structure of the paper in Fig. 1 and
and exploitation techniques. Subsequently, we highlilet tthe definitions of acronyms/notations in Table I.
major imperfections that may occur in practice considetirey
main CR paradigms widely considered in the literature. Thenll. ENABLING TECHNIQUES FORCR COMMUNICATIONS
we review the related existing techniques which take these pg highlighted in Section I, the main capabilities required
imperfections into account. Finally, we provide intemegti for a CR are spectrum awareness, spectrum decision and spec-
open research issues. trum exploitation. These functionalities can be impleneerin
The remainder of this paper is structured as followstifferent layers of a widely used Open System Interconoecti
Section 1l provides an overview of the existing enablingOSI) protocol stack. While relating a CR architecture with t
techniques for CR communications. Section Il highlights t OSI model, the following mapping can be made between OSI
main practical imperfections that may arise in a practicBl Clayers and cognitive capabilities [23]: (i) context awazes for
system. Then Section IV focuses on noise uncertainty pnobléigher layer (application), (ii) inter-operability fortermediate
including its modeling and possible solutions, and dessriblayers (transport and network), and (iii) link adaptatiar f
all the existing approaches under noise variance uncgrtainower layers (physical and data link). The focus of this syrv
Section V reviews the existing works under noise/channgper will be on the lower layers of this protocol stack, riyost
correlation while Section VI discusses the signal uncetyai from physical layer perspective.
problem and reviews related works. Section VIl identifies The two main functions of a CR are to acquire information
the causes and the effects of channel/interference uimgrtaabout spectral opportunities by monitoring the surrougdin
referring to the current state of the art. Subsequentlyti@ec radio environments and to exploit those opportunities in an
VIII discusses various imperfections in a CR transceiveictvh intelligent way while guaranteeing the normal operationhef
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spectrum awareness techniques can be broadly categorized
into: (i) blind and (ii) non-blind. Blind spectrum awareness
techniques do not require information about the parameters
of the primary system whereas, non-blind spectrum awasenes
techniques require specific information about the paramete
of the primary system. As noted in Fig. 3, blind spectrum
awareness methods can be categorized into: (i) blind SS,
and (ii) environmental parameter estimation. Similarlgnn
blind spectrum awareness methods can be categorized into:
(i) non-blind SS, (ii) database, and (iii) waveform paraenet

Hybrid

SNR approach
DoA SNR estimation /
Channel/DoA estimati Underlay

Channel

estimation methods. These approaches are briefly discussed
below.

1. Spectrum Sensing (SS): SS is an important mechanism

in order to acquire the spectrum occupancy information ef th
primary spectrum. In other words, it exploits the spectrmiéh

in several domains such as time, frequency, space, pdiarza

and angular domains. The ST is assumed to be equipped with
a Radio Frequency (RF) chain having sensing capability and
senses the presence or absence of the PUs with the help of the
Fig. 2. Mapping of spectrum awareness techniques with spectr@ployed signal processing technigBased on the employed
exploitation techniques signal processing technique, the main SS techniques disdus

in the literature are Energy Detection (ER)feature detection,

matched filter based detection, autocorrelation based adete

licensed PUs. In this context, we broadly categorize a wi?e . . . )
. . . . . ion, covariance based detection, eigenvalue based detect
range of CR enabling techniques available in the Ilteratu(re?C

into: (i) spectrum awareness techniques, and (i) spectrum
exploitation techniques. In Fig. 2, we provide the mappin
of spectrum awareness mechanisms with different spectrl%i
exploitation methods [24]. Subsequently, we provide tlas-cl
sification of the existing approaches and a brief descripbio
these approaches in the following subsections.

Database

ModCod detection/
classification,
Frame header/pilot/
cyclic frequency
estimation,
Database

Waveform
Characteristics

Overlay

As depicted in Fig. 3, some of these techniqueshdiral in
ms of the requirement of the primary system’s parameters
whereas, others amgon-blind Further, many of these tech-
nigues require the knowledge of noise covariance at the CR
receiver. Mostly eigenvalue based approaches [35], [36] an
some of the recently proposed feature detectors [37]-[B9] a
. blind in terms of primary system’s parameters, channel ds we
A. Spectrum Awareness Techniques as the noise variance. In Fig. 4, we present the classifitafio
Depending on the employed techniques at the CR no&s techniques on different bases [24]. Interested readays m
different levels of awareness can be achieved as illustriate refer to [9]-[12] for the detailed explanation and the retht
Fig. 2. The acquired information can be spectrum occupan@ferences for various SS techniques.
over the available bands, Signal to Noise Ratio (SNR) of In practical wireless fading channels, the SS efficiency
the PU signal, channel towards the PUs, modulation aafl the aforementioned techniques may be degraded due to
coding used by the PUs, pilot/header information in the PHidden Node Problem (HNPpath loss, shadowing, multipath
transmit frame, etc. From the spectrum utilization point Ghding and receiver noise/interference uncertainty ssilibe
view, the greater the awareness level at the CR node, therbetiNP arises when a cognitive user experiences a deep fade
becomes the spectrum utilization. For acquiring inforovati or shadowing from the Primary Transmitter (PT) and cannot
about the spectrum occupancy, SS [9]-[12], database [2%]etect the presence of the primary signal, leading to the
[31] and beacon transmission-based [32] methods can fagsed detection, and hence the harmful interference to the
applied. Further, for acquiring information about PU SNRI anPrimary Receiver (PR). In this contextpoperative SSin
channels, suitable SNR and channel estimation algoritiEms gvhich several nodes cooperate with each other in order to
be exploited. In addition, the waveform characteristicthef enhance the overall sensing performance, has been caider
PU signals can be useful for realizing overlay communicas a promising approach [12], [40], [41]. The main concept
tion. The waveform characteristics are the specific featurgehind cooperative SS is to enhance the sensing performance
of the PU signals and may include information about thgy exploiting the observations captured by spatially ledat
Modulation and Coding (ModCod) scheme used by the PUR users as depicted in Fig. 5.
[33], [34], cyclic frequencies, pilot/header informatiarsed The cooperation can be among the CR nodes or external
in PU transmission, etc. For acquiring these featuresalslait
ModCod detection/classification, frame header/pilotneation 11t should be noted that the definition of blindness here isprethdently
approaches can be utilized. of the noise covariance knowledge at the CR and is entirependent on
In Fig. 3, we present various spectrum awareness te%ﬁ{ether the knowledge about the primary system’s parameteesjisred or

niques. I_Based on Whet.her the primary system's parametersrpjs is also referred as Conventional Energy Detection (CEier in
are required or not during the spectrum awareness processtion IV.
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Fig. 5. Schematic of the cooperative SS scenario

sensors can be deployed to build a cooperative sensing

part of the spectrum they can use. Distributed sensing i& mor
advantageous than the centralized sensing since it does not
require a backbone infrastructure and it has reduced aost. |
the relay-assisted approach, a CR user with a strong sensing
channel and a weak report channel can cooperate with a CR
user observing a weak sensing channel and a strong report
channel in order to improve the overall sensing performance
Despite several advantages of cooperative approach such as
cooperative gain, relaxed sensitivity [12], the cooperati
burden, which arises due to additional operations devaied t
cooperative sensing, can be a critical issue from a prdctica
perspective. The detailed survey on existing cooperatiBe S
approaches can be found in [12], [40].

Moreover, based on the bandwidth of the channel to be
sensed, SS techniques canmagrowbandandwideband Most
of the aforementioned techniques are narrowband and can be
extended for wideband context using complex hardware cir-
cuitry. Existing wideband sensing techniques include blma
filter method [42], Wavelet transform method [43], Multilpea
joint detection [44], Spatial-spectral joint detectiorbJ4and
Compressive Sensing (CS)-based detection [42], [46]heurt
collaborative wideband sensing has been discussed in the
several literature for enhancing the detection perforraanc
the presence of fading [45], [47]. The collaboration among
multiple spatially distributed CRs can relax the sengiticon-
straint on the RF front-end by enhancing the signal detectio
at the fusion center and may even broaden the frequency range
of SS.

The CS technique performs sampling at a rate less than

the Nyquist rate and reconstructs the original signal beat f
reggmificantly lower number of compressive measurements. In

work. In the former case, the cooperation can be implementaddition, different signal processing operations such @&s d

in the following ways [40]: (i)centralized (ii) distributed and

tection, estimation and filtering can be carried out disectl

(iii) relay-assistedIn the centralized approach, a central unifrom compressive measurements without the requirement of

collects sensing information from cognitive devices, iifexs

full signal recovery, hence reducing the sensing hardware

the available spectrum, and broadcasts this information d¢ost significantly [48]. Several hardware architectureseha
other CRs or directly controls the CR traffic whilst in thébeen proposed and implemented in the literature enabliag th

distributed approach, cognitive nodes share informatioarey

compressive samples to be acquired in practical settirggaeS

each other but they make their own decisions regarding whioh the examples are [11]: (i) Random Filtering, (i) Com-



pressive multiplexer, (iii) Random convolution, (iv) Ramd SUs who want to reuse the primary spectrum have to make a
demodulator, and (v) Modulated wideband converter. request to the database system and based on the availability
As noted in Fig. 3, one of the non-blind spectrunthe unoccupied channels in that location and for the reqdest
awareness approacheshsacon-based SS methad which period, the database system can grant access to those Ishanne
the beacon signals are broadcasted in appropriate sigmalli A CR can also use the database approach including history
channels by the primary systems and CR users detect thgdermation and prediction methods to make the operation
signals in order to obtain information about the spectrumore efficient. This approach is based on maintaining a fre-
occupancy. The beacon signals may carry information abaptently updated and centrally located database with irderm
the spectrum usage of the primary system, traffic trends, digh about the regional spectrum usage, locations of PTs/PR
future frequency usage, etc. [32] and also the informatimeverage areas, frequencies of operation, transmissioargp
from the database in database-assisted systems. Thisaghpreadio technologies, etc. This scheme is quite static and the
requires an agreement between secondary and primary systimamicity of this scheme depends on how fast the primary
operators in order to share the real time spectrum usage infepectrum usage information is updated in the databasetgbeve
mation of the primary network with the secondary networkeontributions in the literature have exploited this appfoa
The above interaction may require additional modificatins using the concept of a Radio Environment Map (REM) [25]-
the primary legacy radio systems, which might be difficult tf31].
implement in practice. In this context, Cognitive Pilot @hal 3. Environmental Parameter Estimation: In addition to
(CPC) has received important attention as a signallingmblanspectrum occupancy information captured by the SS mech-
in the scenarios of primary-secondary coexistence [49]. [5 anism in a CR, several other parameters can be useful in
The SS problem is basically to distinguish the cases of tAesigning the best transmission strategy for a CR. In other
PU presence and the PU absence. Denoting the hypothesegds, this is the additional level of awareness that a CR
of the PU absence and the PU presencelpy(noise only needs to have for controlling its power/radiation in order
hypothesis) andi, (signal plus noise hypothesis) respectivelyto protect the cochannel PUSy environmental parameter
this problem can be formulated in terms of a well knowgstimation, we mean the estimation of the parameters cellate
binary hypothesis testing problem in the following way [51]the RF environment and not to the primary sigred.reflected
in Fig. 3, the following parameters can be estimated from
yln] = z[n], Hy the surrounding environment blindly using blind estimatio
yln] = hsn]+zn], H (1) approaches: (i) channel, (iv) SNR, (ii) DoA and (iii) spaysi
order. If the CR node can acquire information about SNR and
wheres[n] denotes the transmitted signal at thi& sampling channel of the primary signals, different underlay techeg)
instant, » indicates the channel coefficientn| denotes the such asExclusion Zone (EZ)and power control[53] can be
Additive White Gaussian Noise (AWGN) angln| denotes employed. Based on the estimated SNR, the CR can control its
the received signal at the CR at théh sampling instant.  power in order to enhance its throughput while protectirgy th
In order to test the above hypothesis, we need to findPUs at the same time. An accurate estimation of SNR further
decision statistic whose distribution sufficiently difeunder helps in link adaptation and iterative decoding.
the Hy, and the H; hypotheses. For example, the decision The existingSNR estimation algorithmean be broadly
statistics for the ED approach is the received energy and ttetegorized into [54]: (i) Data-Aided (DA), and (ii) Non-E2a
maximum eigenvalue for maximum eigenvalue based detefided (NDA). The NDA estimators fall under this spectrum
tion. The sensing threshold is usually calculated from thevareness category and they derive the SNR estimateslylirect
distribution of the decision statistics, i.e., receiveemy for from the unknown, information-bearing portion of the reegi
the ED, under theH, hypothesis. If the hypothesi#, is signal. For SNR estimation problem in wireless communi-
satisfied, then it can be decided that the PU signal overcations literature, several techniques have been rep(stazl
certain band is absent and then the SU can utilize this b&ad], [55] and references there in). However, in the cont#xt
on the secondary basis. Whereas, if the hypothésisis CR networks, there exist only a few SNR estimation related
satisfied, the decision is the presence of the PU signal andrks [36], [56]-[58]. Moreover, if the CR node has infor-
secondary transmission should be switched to another banthtion on the DoA of the primary terminals either through
In addition, if other bands in the available bandwidth raage database or through some DoA estimation algorithms, it can
not available or their quality is not satisfactory, the setary employ suitable beamforming based underlay approaches in
transmission should be moved to the exclusive band. Theseler to mitigate interference towards/from the PRs/PB, [5
decisions are to be taken centrally by the network managemggo].
system based on the feedback it receives by the secondarySparsity ordeiis another useful parameter in the context of
terminals [52]. a wideband CR and can be defined as the ratio of the occupied
2. Database: Geolocation database is an alternative specarriers to the total carriers over the band of interestsThi
trum awareness approach to obtain the knowledge of tharameter actually provides information about what peegsn
radio environment and can be used to query various levelsthe licensed band is available for the secondary usags. Th
of information required by the CRs. In this scheme, spectruawareness is helpful in implementing compressive sensing-
usage parameters of the primary system such as the pldmesed wideband sensing. Since the sparsity order is a time
time, frequency, etc. are stored in a centralized datalfds®. varying parameter and is not known to the CR receiver before-
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technique does not impose any restrictions on the transmit
power of the SUs but is limited by the range of available spec-
tral holes. Although space, time and frequency are common
dimensions used for interweave communication, polaopati
[73], [74] and angular [75] domains can also be considered as
additional dimensions for spectrum exploitation purposs.
depicted in Fig. 2, spectrum awareness techniques such,as SS
database and sparsity order estimation facilitate thevieteve
communication.

2. Underlay: Underlay communication is characterized by
strict constraints on the interference that may be causeteyy

b) Underla R ) - _

o /y\ ~ strong secondary STs to the PRs. In this paradigm, the coexistence of primary
) / \ interference and secondary systems is allowed, only if the interference
e / \ o Weak secondary caused by STs to the PRs can be controlled and managed

interference

properly [76]. The maximum allowable interference level at

the PR can be modeled by the concept of interference temper-
ature, as defined by the Federal Communications Commission
(FCC) spectrum policy task force in [77]. This metric is
Fig. 6. lllustrations of interweave, underlay and overlay techniqueslso termed as interference threshold which guarantees the
reliable operation of the PUs regardless of the SU’s spetctru

. . . : . - utilization [78].
hand, it n im in practice. If the infornmati
and, it needs to be estimated in practice. If the infornmatio The STs utilizing the shared band must guarantee that

about the sparsity order is available to the wideband Ctﬁeirtransmiss:ions added to the existing interferencet mots

transceiver, it can dynamically adapt its sampling raterdeo . o
to fully exploit the gdvantaggs ofrihe cs tepchgique. In th§xceed the interference threshold at the PR. As depicteijin F

context, estimating the sparsity order is crucial and han benéls‘s'd%gng”;g'?g;ﬁ ?l#ct,rpgﬁ?fnsyfﬁimuiggﬂ:s tzl:r?r{i CS:Q'
studied in some existing contributions [61], [63]. Furthermore underla communica?ion can be re;llized \hsht
4. Waveform Parameter Estimation: This awareness cate- ’ y

: o .~ _help of one or many of the following methods: (i) cognitive
gory includes parameter estimation methods that requite s . : .
knowledge about the waveform used by the primarje beamformlng with the help of multiple antennas [59], [60],

following awareness methods may fall under this categorg!') cogmgve refource aIIocann écarrler/pgyver)thaletiST, d
(i) pilot-based/data-aided SNR/channel estimation [484], () Splrgal Spt‘;c rum aﬁ.’lproac gsth y ‘Zprea '”%. N Stetflonc";‘;y
[65], (ii) Cyclic frequency/prefix estimation [66]-[69], ral signal below he naise floor and then de-spreading at the '

(iii) ModCod detection and classification based on Modulal(z-'gzgogmtlve interference alignment [79], and (v) excrs
tion and Coding Scheme (MCS) [33], [34The data-aided ' ] S .
SNR/channel estimators predict the SNR/channel valuegjusi . 3. Overlay: Overlay communication is characterized by the

. . tigation of interference with the help of advanced coding
the known data, for example, pilot sequences provided oy . . . .
synchronization and equalization [54]. and transmission strategies at the STs. In this paradigngth

can transmit simultaneously with the PU and the interfezenc
o ) caused by the ST to the PR can be offset by using a part of the
B. Spectrum Exploitation Techniques SU’s power to relay the primary message [7]. In this scheme,
Based on the access technology of the SUs, the existthg SU transmits the PU signal along with its own signal. A
spectrum exploitation techniques can be broadly categdriztwo user interference channel where the ST has knowledge of
into interweave, underlay, and overlay techniques. [A]- the PU’'s message can be considered as a simplistic example of
though different researchers have diverse opinions on ¢ke @an overlay CR network. The cognitive transmitter shouldehav
of terminologies “interweave”, “underlay” and “overlay7], knowledge of the PU’s channel gains, codebooks and possibly
[70], we follow the classification provided b&. Goldsmith, its messages as well. Different precoding techniques sach a
et al. in [7] and provide their illustrations in Fig. 6. Further-Gel'fand-Pinsker binning and dirty paper coding in Gaussia
more, we use the term “Hybrid” as in [71], [72] in orderchannels can be applied to overlay networks [80] [81].
to denote the method which combines both interweave and In practice, this paradigm is difficult to implement due
underlay approaches. These methods are briefly discussetbira high level of cognition required between primary and
the following paragraphs and interested readers may refersecondary systems. In this context, one possible approach
[7] for the detailed explanation of interweave, underlay anis to acquire the waveform characteristics of the PU signal
overlay approaches and to [71], [72] for the hybrid approachy using estimation approaches such as ModCod classifica-
1. Interweave: This paradigm encompasses interference avoitlen/detection, frame header/pilot/cyclic frequenciedirea-
ance or opportunistic techniques which require SUs to conien, etc. as depicted in Fig. 2 and use these waveform char-
municate opportunistically using spectral holes in spé®e, acteristics in order to design advanced transmissionegjies
guency, and time which are not occupied by the PUs. Them-the ST.
fore, there occurs no interference in the ideal case [7]s Thi 4. Hybrid: The SS approach ignores the interference toler-

Signal Dimension
(c) Overlay



ance capability of the PUs focusing only on bursty PU traffic « Channel/interference uncertaintyrhe channel informa-
whereas, the possibility of having secondary transmisgidm tion towards the PRs is critical for a CR in order to control
full power is neglected in the underlay based approach [72]. the interference caused by it. In any case, the operation
More specifically, the underlay approach is not able to detec of the licensed primary system should not be degraded
the activity or inactivity of the PUs in a particular band and  below an acceptable limit and an underlay CR has to
hence does not utilize the idle bands efficiently. On therothe operate under this constraint. In practice, channel infor-
hand, the SS approach does not allow the SUs to transmit in a mation can be acquired using different channel estimation
particular frequency band when the PU is active in that band. methods and this estimation may not be perfect due to
To address this, a hybrid approach which can overcome the channel uncertainty caused by time varying nature of the
aforementioned drawbacks of both approaches has received wireless channel as well as several other factors stated
important attention in the recent literature [71], [72]2]8 later in Section VII. Furthermore, the primary received
In this approach, a CR can access the PU channel with the power is never known accurately due to the presence of
full power in case of an idle channel and also can access the channel uncertainty, and thus needs to be estimated at
channel with the controlled power in case of the occupied the CR [86]. This received power estimation may not
channel. Some aspects of this approach which are recently be perfect in practice, leading to the violation of the
dealt in the literature are: (i) transmit mode selectioritsving interference threshold constraints at the PRs. Further-
[72], [82] and (ii) sensing-throughput tradeoff [71]. more, the interference may exist anywhere and anytime
in the environment and its properties such as power level,
HI. TMPERFECTIONS IN ACR SYSTEM waveform and distribution are usually unknown, leading
The spectrum awareness problem for a CR is different from  to the problem of interference uncertainty in a practical
the legacy wireless communication systems in the following CR system.
ways [83]: (i) no prior knowledge of the PU signal structure, « Signal uncertainty The inability of a CR user to per-
channel and noise variance, (ii) the information such as-spe  fectly know the primary signals beforehand that might
trum occupancy, SNR, etc. should be acquired at the shortest be present in the band of interest and their properties can
possible time, (iii) primary SNR may be very low due to  be referred as signal uncertainty [87]. The performance

fading and multi-path phenomenon, and (iv) noise/interiee of a spectrum awareness technique may depend on the
power varies with time in practical scenarios giving rise to  employed standard by the primary system. For example,
noise/interference power uncertainty. The main impeidest in an interweave approach, if this information is not

which may degrade the performance of a CR system are listed known beforehand, the sensing performance may be de-
below. graded since a worst case approach is generally followed

o Noise uncertaintyNoise is an unwanted random process by the CR in order to guarantee the target minimum
which may arise from several sources in the external detection performance regardless of the sensed primary
environment as well as from every components of a signal. Further, signal uncertainty may cause a significant
receiver chain. In the real-world scenarios, like other impact on the selection of correct decision threshold in a
parameters, noise distribution is not known to infinite  Constant Detection Rate (CDR) based detector similar to
precision and the noise is neither perfectly Gaussian, the effect of noise uncertainty in a Constant False Alarm
perfectly white, nor perfectly stationary [84]. Therefpre Rate (CFAR) detector [87].
the noise variance in practice has to be estimated by using Noise/Channel correlatianin practical scenarios, the
a proper noise calibration method. The noise calibration noise may be correlated due to imperfections in filtering,
can be done either during the manufacturing process or by pulse shaping and oversampling in the receiver. Further,
carrying out on-site Out of Bands (OoB) measurements. the channel may also be correlated due to insufficient
Another option for noise calibration is to use in-band  scattering in the propagation environment [88] and mutual
measurements at the frequencies where the pilot is absent coupling between antennas [89]. Most of the state of art
so that the noise statistics can be calibrated at the pilot spectrum awareness methods studied under the assump-
frequencies [85]. tion of uncorrelated channel and white noise may fail in
The noise estimation can be perfect in the ideal case, the presence of noise/channel correlation and there is a
however, in practice, accurate estimation of the noise need of investigating suitable techniques under practical
variance is not possible, thus limiting the performance of correlated scenarios [58].
the noise statistics based sensing techniques e.g., the EBR, CR transceiver imperfectionsThese imperfections are
at low SNRs. In the ED, the noise variance uncertainty caused by different devices present in the RF chain of
may lead to the SNR wall phenomenon due to which a CR. The main transceiver imperfections are discussed
it is not possible to achieve the robust detection perfor- below.
mance beyond a certain SNR value even by increasing
the sensing duration [84]. The noise uncertainty can be 1) Amplifier nonlinearlity Power Amplifier (PA) is a

categorized into the following two types [83]: (a) receiver vital component of a CR transceiver and it consumes
device noise uncertainty caused by components in the RF a large portion of energy in RF circuits during trans-
chain, and (b) environmental noise uncertainty caused by mission. When operating the PA in the saturation

the surrounding environment. region to achieve the higher efficiency, the nonlin-



2)

3)

4)

5)

ear distortion increases significantly. This nonlinear
behavior of the PA leads to the spectral regrowth of
its output signal, resulting in the Adjacent Channel
Interference (ACI) [90].

Multicarrier distortion: In multicarrier based CR
systems such as in Non-Contiguous Orthogonal
Frequency Division Multiplexing (NC-OFDM) sys-
tems, high Peak to Average Power Ratio (PAPR)
caused by the limited range of the PA and the

hence maximizing the throughput of the secondary
system. However, the main problem in realizing a
full duplex transceiver is self interference. It gener-
ally employs two RF chains [71] and the signal from
its own transmitter may act as an interferer while
performing sensing with the help of another RF
chain. This self interference needs to be mitigated in
practice with the help of suitable RF and digital can-
cellation methods [96], [97] to a sufficient degree.

large spectral sidelobes can be problematic for a
CR system. The high PAPR issue results in serious good in currently available commercial receivers.

degradation of Bit Error Rate (BER) performance |n Table I, we list the main imperfections that may
[91] of the secondary system and the larger sidgffect the performance of three widely used CR paradigms.
lobes may cause serious performance degradati®lhough some of these imperfections such as transceiver
of the adjacent PUs [92]. imperfections, and channel uncertainty also exist in lggac
Quantization errors Quantization is an important wireless systems, the effect is more serious in CR systems
procedure needed to convert the analog RF signdlle to the absence of a prior knowledge about the PU system
to the digital form with the help of Analog to Digital parameters and the channel. Furthermore, since primary and
Converters (ADCs). Quantization may result in th@econdary systems may belong to different entities, thestse
following two kinds of errors: (i) quantization error,very low probability of coordination among them in order
and (ii) clipping error. The actual detection perfortp acquire these parameters. Among the listed imperfesition
mance depends on the quantized samples and mg@yjse uncertainty has been widely investigated in thealitee
deviate significantly from the performance which isind its consequences in CR systems have been known while
achieved considering ideal samples with infinite prezonsidering the implementation of a simple energy detector
cision. Further, clipping error is more problematiq=yrther, the existing literature studies the effect of ¢hes
for OFDM-like signals having a high PAPR. More-imperfections individually following different approaes and
over, in the low SNR regime, the clipping error mayho common approach/framework is available in the litegatur
cause a critical problem to detect the weak primawy identify which imperfection is more serious over others.
signals. The above quantization errors may caus this context, the investigation of a common framework in
serious degradation in the detection performance gfder to evaluate the effect of these imperfections joiistlsin

a CR [93]. open research problem as highlighted later in Section IX.
Synchronization errors (Frequency/time/phase off- |n the following sections, we review the contributions
sets and drifts)For the performance of a secondaryarried out in the context of various imperfections from the
system, the secondary receiver needs to be perfegiyrspectives of CR systems. Out of these, Sections IV, V, VI
synchronized with the secondary transmitter in ordefre mostly related to the uncertainties that may arise ic-spe
to carry out demodulation of the transmitted sigtrum awareness phase, Section VII refers to the uncertainty
nal. Further, in some detection and estimation agyhich mostly arise during the spectrum exploitation phask a
proaches which depend on the signal structure of tigction VIII discusses the uncertainties that may occurtdue
PU, the ST (CR) has to be perfectly synchronizelardware imperfections in a CR transceiver.

for the optimum performance. However, in practice,
there may occur several types of synchronization

IV. NOISEVARIANCE UNCERTAINTY
errors such as frequeny/time/phase drifts and offsets. , i , ) i
In feature based awareness methods, the mismatch In this section, first, we briefly explain why we need to con-
in the acquired feature from that of thé true featu ider SS under noise variance uncertainty. Then, we provide

may cause serious degradation in the awarenessr} g exist?ng SS a!gorithms under noise variance unceytaint
formance. For example, cyclostationary feature d@s explained prew_ously, the _p_erformance of any SS approach
tector is very sensitive to cyclic frequency mismatcf €valuated from its probability of false alarn?) and the
caused by the clock/oscillator or other errors [94]. IO'Zrobablhty of detection £;). For a given number of samples

the presence of this mismatch, the detector is har gy), the P; depends on the statistical characteristics:(of]
able to know the exact cyclic frequency wheréWith reference to (1)) and its variane€. On the other hand,

the signal has the cyclostationary feature Furthépe P, expression depends on the statisti2cal characteristics of
. . . . ; _ Els[n]| i
I/Q imbalance and nonlinear distortion effects ofl?l: s[n] and h, and the SNRy = =Z5"-. In a practical

the receiver components can severely degrade $EUP; usuallys? is estimated from the received signal (or
demodulation performance at weak signal band&om the specification of the receiver) and can be bounded as

L . T 2 2 2 2 FAri
and also affect the reliability of detection reliabilityZmin < ¢~ < Tmax, Whereoy,;, ando,, are known a priori

of a CR [95]. almost surely. For example, practical receivers have aenois
Self interference in full duplex transceives full ~ uncertainty level in between 1 to 2 dB [98], [99]. Under such

Els[n] E\sz[n]\2

. 2
duplex CR can sense and transmit at the same ting&ttings, we can havgy, = =5 = andyinax = -

max

However, this cancellation may not be sufficiently

min



TABLE I
MAIN IMPERFECTIONS IN DIFFERENTCR PARADIGMS

Cognitive Radio
Paradigms

Imperfections

Interweave

Noise uncertainty
Noise correlation
Signal uncertainty
Feature mismatch
CR transceiver imperfections

Underlay .

Noise uncertainty

Signal uncertainty
Interference/channel uncertainty
DoA uncertainty

CR transceiver imperfections

Overlay .

Channel uncertainty
Feedback errors
CR transceiver imperfections

problem (1) by assuming thafr] is an OFDM signal with the
known Cyclic Prefix (CP) factor, and each elements|ef, Vn

are independent and identically distributed (i.i.d) Zereavi
Circularly Symmetric Complex Gaussian (ZMCSCG) random
variables. In particular, the authors in these papers ftatau
their detection test statistics as the ratio of two quadi@AC
functions [102], [103] where the ratio test is motivated to
remove the effect of noise variance uncertainty (i.e., the
expression will be independent of the noise variance). Also
in [106], a ratio of two autocorrelation functions are used
to detect the presence of an OFDM signal. For these test
statistics, analytical expressions are provided to compuir
threshold A for ensuring a prescribed;, and it is shown
that \'s do not depend on2. And for the given), the P,

of these detectors are examined by employing Monte Carlo
simulations.

In [107], a sign CAC-based SS approach is used to detect
modulated, and OFDM signals with the known CP factor. The
main idea of this approach is that each of the received sample
is normalized by its modulus. By doing so, the effect of the

In general, the goal of the SS function of a CR networKgjse variance is removed effectively under ffighypothesis.

is to ensure sufficient protection level for the PUs. Thigyrthermore, the latter paper shows that such a scaling stil
protection can be maintained if the SS algorithm can detggkintains the CAC property of modulated (or OFDM) signal
very low SNR values (for example, SNR=-20 dB is adopteghenever there is a primary transmitted signal, and each of
in Wireless Regional Area Network (WRAN) standard [98}ihe elements of[n] is i.i.d ZMCSCG random variable. For
[99]). Conventional Energy Detector (CED) is computatibna this approach, the®; is derived analytically whereas, the,
simple, very easy to implement and does not require any i8-evaluated numerically using computer simulations.
formation about the characteristics of the primary trat®@di  The cyclostationary based SS approach requires the perfect
signal. Unfortunately, the authors in [101] revealed th&DC ynopledge of the cyclic frequency and delay lag. And when
is sensitive to noise variance uncertainty and also sholed tis ot known perfectly, all possibles may need to be verified
for a given noise uncertainty level, there exists an SNR W4flyich becomes computationally expensive. However, froen th
below which no desired detection pe_rformance is guaraﬁieeéiyclostationary property, for a fixed, it is known that most
As an example, for a 1 dB uncertainty, the SNR wall of Fhﬁractical signals have non-zero cyclic autocorrelatiolues
CEDis a_round -3.3 dB (which is much larger than the requirgd, 5 few values ofas. The authors of [108] exploit this
SNR region of WRAN). Due to this fact, a number of researctjya ity characteristics to detect the presence of thertriied
works have been performed to come up with SS algorithragyna|. 1n particular, this work proposes to divide the ieeg
that are robust age_unst noise variance uncertainty whitheis samples into two groups. And for these groups it determines
focus of the following subsections. the most likely cyclic frequency (i.e., corresponding te th
largest CAC), denoted bw; and as. Subsequently, it sets
A. Cyclostationary Based Detector A=1A =0)if |ag — a1] < X (Jag — az| > N), with A
One of the most distinct behavior of practical communicaeing the threshold usually selected based on the desired
tion signals is cyclostationarity [102], [103]. For the eded and utilizes the following test statistics
samplegy[n], the Cyclic Autocorrelation (CAC) function with

L.
cyclic frequencya and time lagr is defined as T — Z A, 3)
N,—1 i=1 7
Do _ * —j2man
Ry(r) N, Z:O yinlyln +7Je ’ 2) whereA; is the A computed when the time lag is set#Q L.,

is the number of lagsy, 72, ..., where the CAC is different

where N, = N — 7. Under the H, hypothesis,R%(7) = from 0.
0Va, 7 # 0. However, R(7) # 0 for somea, T # 0 when Additionally, a Receiver Operating Characteristics (ROC)
there is a transmitted signa[n], and the exactv and 7 for  curve has been presented in [108] by employing this stegisti
which the CAC is non-zero depending on different parametesgain in [109], the symmetric properties of the CAC functon
like modulation scheme, symbol period and so on. are exploited to come up with a blind cyclostationary detect

In [104] and [105], single cycle and multicycle cyclostaThe key advantage of these contributions is that they at#iz
tionary based detectors are proposed for the hypothesisgesfew number of samples and do not need a prior information
about the PUs’ cyclic frequencies and lags. The latter aapro
has already been implemented in Universal Software Radio

Peripheral (USRP) platform in [110] and has shown promising

3An SNR wall means that a desireR; versus P; target can not be
maintained below the SNR wall even if unlimited number of samples
used for sensing.



results. the number of fractional sampled branches, multiple argenn

In [111], a blind feature detection approach for wideer the cooperating nodes. A single CR node can implement
band spectrum that incorporates energy and cyclostationan eigenvalue-based technique independently if it employs
is employed. This study uses a combination of the smooth&dctional sampling on the received signal and/or is eqeipp
version of energy detector and the autocoherence funation with multiple antennas. After collectingv samples using
feature detection. The energy detector is utilized to ident different receive dimensions, thd x N received signal matrix
the presence of carrier frequencies in a given sub-band. Alwdcan be written as

the autocoherence function is employed to extrapt 'the rfegtu @) w@) ... w(N)
of each sub-band such as the number of distinct signals y2(1)  y2(2) ... y2(N)
in each carrier frequency. In this regard, first a smoothed Y = : : . : : (4)

version of energy detec’For |s.appl|ed to |dgnt|fy whefcher th ui(D) yar(@) o y(N)
carrier frequency contains signal plus noise or noise only
signal. Then, when the energy detector declares a giveiecark-et us define the sample covariance matrices of the received
frequency as noise only signal, this information is exjidit Signal and the noise aty(N) = - YY' and Rz(N) =
to determine the appropriate threshold for the autocolteremy;ZZ'. Under the H, hypothesis, the sample covariance
function of the feature detector to maintain a prescribésefa matrix of the received signal becomes equal to the sample
alarm rate for fixed lag- and cyclic frequencyr. To compute covariance matrix of the noise, .y (N) = Rz(N).
this threshold, a simple learning approach that minimibes t  Different eigenvalue properties &+ (V) such as Maxi-
Kullback-Leibler distance between the actual and desimésf mum Eigenvalue (ME) [117], Maximum to Minimum Eigen-
alarm rates has been employed. value (MME) or Signal Condition Number (SCN) [36], [99],
Energy to Minimum Eigenvalue (EME) [98], Scaled Largest
Eigenvalue (SLE) [118], etc. can be utilized in order to
perform sensing. Based on these various decision statistic
AutOCOl‘relation ba.sed deteCtOI’S exploit the diﬁerence b§evera| eigenva|ue based a|gorithms have been proposbd in t
tween the signal and noise spectrums over the sensing bagdrature [98], [119]-[125] exploiting Random Matrix Towey
width. This difference arises due to the higher autocoti®a (RMT) methods These techniques can be broadly categorized
of the signal which may result from the use of practicghtg SCN-based [36], [98], [120], [123], ME-based [117],
modulation schemes as well as the presence of RF chaqq@lll, [126] and SLE-based [118], [127], [128]In addition
guard bands [112]. In this context, authors in [112] proposg the aforementioned methods, spherical test based ietect
a simpleCorrelation Sum (CorrSumgetector exploiting both [125], [129]-[131] andJohn’s Detection (JD) [125have also
energy and correlation parameters for the improved senswen considered in the literature. Furthermore, it shoed b
performance assuming that correlation is real and extendrgted that out of a wide range of available eigenvalue based
the scenario with the knowledge abrrelation distribution techniques, the techniques such as SCN, SLE, John's detecto
informationin [113]. Further, a CFAR detection algorithm hagpherical test, and EME, which are based on the ratio of the

been studied in [114] using the estimated autocorrelatiohed parameters, are robust against noise variance uncertainty
received signal and its performance is shown to be better tha

the covariance detector and the cyclic autocorrelatioaatet.

B. Autocorrelation based Detector

E. Moment based Detector

In a digital communication system, the transmitted signal
i ) i _ samples are taken from a particular constellation. Thistn

This approach is based on the sample covariance matrixQion may be Binary (Quadrature) Phase-Shift Keying BPSK
the received signal at the CR node and exploits the differe PSK) or M-ary Quadrature Amplitude Modulation (QAM).
in the statistical covariances of the received signal ared t all constellations, each component (either real or imaxyi)
noise. It does not require any a priori information of thensilg of a sample takes a value in betwelerb, b],b > 0, whereb
_channel, and noise power an<_j further no SynChron'Zat'ﬂ'épends on the SNR of the received signal. For these reasons,
is needed [115]. The authors in [115] proposevariance he contribution in [132] assumes that the transmitted align
absolute valueand generalized covariance based deteCt'OEampleSs[n],vn are taken from BPSK, QPSK, M-ary QAM or

algorithms for a CR. Further, authors in [116] study the digsinyous uniformly distributed random varialeand also
tribution of the test-statistic for the covariance base@ckon assumes that/[n], Vn are i.i.d ZMCSCG random variables.

and propose analytical_ _e_xpressions for calculating derect Under these assumptions, it is shown in [132] that the ratio
and false alarm probabilities. of the fourth absolute moment to the square of second alesolut
moment result and < 2, under Hy and H; hypotheses,
D. Eigenvalue based Detector respectively [133]. For this reason,2aminus the ratio of the
This method is based on the Eigenvalue Decompositiéptth absolute moment and the square of second absolute
(EVD) of the received signal’s covariance matrix. For imMOment is proposed as a test statistics in [132], [133]. Fier t
plementing this technique, the CR node has to collect the, _ _ , , 3
Note that in the case of OFDM signals, the scenario mentionethis

received_ sam.ples ir.] the/ X N m"furix Torm With M being- paragraph can be exhibited by examining the Fourier tramstdithe received
the receive dimension. This receive dimension can be eitlamples.

C. Covariance based Detector



test statistics, analyticaP; and P; expressions are provided.
The P; expression does not require the knowledgergfand
the P; expressions differ from one constellation to another.

F. Max-Min SNR based Detector

1) Max-Min SNR Detector in Time DomainSome of
the characteristics of the primary transmitted signal can
obtained from the regulatory bodies such as FCC. For examg
a raised cosine pulse shaping filter has been adopted iraDig
Video Broadcasting (DVB) standard [134] with roll off facto
0.2, 0.25 and 0.35. This motivates [135] to come up with
Max-Min SNR based signal detection approach by exploitir )
the PT's pulse shaping filter. The main idea of [135] i Frequency ()
first to oversample the received signal and introduce aiinea
combining vectola with size L, whereL is the oversampling
factor. Thena is optimized such that the combined signal will ) ) )
have two components with different SNRs. Finally, the ratio 2) Max-Min SNR Detector in Frequency DomaifThe
of the signal energy corresponding to the maximum (whicffork of [135] (i.e., Max-Min SNR Detector in Time Domain)
utilizes a,nq,) and minimum (which utilizegv,.;,) SNRs are 1S Performed by employing the time domain samples and it
used as a test statistics. THg and P, of this test statistics is M€dUIres oversampling of the received signal witlr 8 which-
derived by applying a simple numerical method which can 5 N0t desirable in practice as such operation requiresfzehig
computed offline. It is shown that the, expression dependsrate ADC at the cognitive receiver. _Furthermore, the spectr
solely on the receiver's pulse shaping filter, whereas fthe ©f Cmin @ndcpq, do not necessarily ga‘g%i%?ﬁa”t spectral
depends both on the transmitter and receivers’ pulse spap#fin méheljrgreglons of interest (i.e., i8[5 === for cnin,
filters. On the other hand, for a giveRy, the best detection @nd [=3, 3] for €uq;). However, from the work of [135],

Normalized PSD
o
n
T

Fig. 7. The spectrum 0Otmax and cmin-

performance is achieved when the receivers pulse shap@ie can notice that the frequency bastf 2] contains
filter is the same as that of the PT. almost noise information. And the barjd- 2, Z] contains

Interpretations of cum,;» and aunq.: The linearly combined the transmitted signal unddi; hypothesis. For this reason,
oversampled signal bgk,,q. and au,:, will achieve different one can modifyc,,,. andc,;, such that their spectral gains
SNRs under theH; hypothesis. The interesting question igreé constant in the region of interest. This motivates [136]
why? When we introduce the linear combination tesmwe 10 employ the test statistics utilizing the ratio of the gyer
naturally modify the overall filter at the receiver. By goimgo  Of the frequency band—Z, Z] and that of+[Z 20,

the details of the Max-Min SNR algorithm, one can notice tha fact, the detection approach of [136] can be considered

the modified filter will have the following coefficients as the frequency domain version of [135]. Hence, despite the
test statistics of [135], the test statistics used in [1&@juires
A =diag(a)f the excess bandwidtfi only (i.e., the test statistics used in
e :Zdiag(A,i) [136] does not require oversampling of the received signal

and knowledge of the pulse shaping filter coefficients).
c=lc_py1,¢ 42, ,cLp-1], (5)

wheref € CLs*! is the nonzero values of(7) sampled at a G. Generalized Energy Detector (GED)

rate 7., with 1, being the symbol period of the transmitted To get more insight about the work of [136], we consider

o A S e 2, s General scraio hre e have o s g
9 ' N g B,, whereB; (for example the frequency regiai| £ M]

2:22222 and < 0 (i > 0) denotes the left (right) dlagonalm Fig. 7) contains noise information only, aity (for example

When.we emolovar... and we will have the (-2, Z] in Fig. 7) may contain noise only and signal
corresponding: .p aﬁ‘;’g”‘ rescgzg'fi\,/ely Figure 7 showsplus noise information under thH, and theH; hypotheses,
the SpECtrum Of.., ande... when f(r) is a Square Root respectively. The two sub-bandB; and B, can also be
Raised Cosine Filter (SRRCF) with bandwidthand excess

illustrated as shown in Fig. 8.
bandwidths. As we can see from this figure, the spectrum %eLet N be the number of samples obtained by employing
Cmaz amplifies the received signal in the bandwidith? , 2]

B Nyquist rate on the received signal of Fig. 8 (i.e., sémgpl
2’ 2 rate of By = By + Bs). For this setting, the following test

?:gei\?g;n;ijgft'\ﬁ iahih;efég?sg?gwh—g{gﬁ%'f airgp;:tfiug:gs statistics is proposed in [136] to detect sub-band 1

the rest. This observation is reasonable as the maximum SNR Ni B AE([0: By))

is achieved iN—2Z, Z] (i.e., the energy of the pulse shaped T =)+ ( i VA 1), (6)
signal is concentrated in this frequency range). B+ 1 \AE([B: : Br])
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exposition of the test statistics (6), let us examihdor the 920---_18'"'_‘1’;"'1' e
fixed B; and 8 — oo as SNRin B
AE(0 : By))
R ] ™ @
where AE([B; : Br]) = 0% when By — co. Indeed, this is ) N
a shifted and scaled version of the CED. From this, we can - -~ Max-Min SNR (TD) [134]

09r —&—Eigenvalue based [136]

understand that the terdvE([B; : Br]) in (6) is introduced o o|| Cyetostatonary 108
just to estimate the noise variance. Hence, the test @tatist || Gy clonttionary 108
(6) can be regarded as a Generalized Energy Detector (GED) O T Moment a3t
[99]. From (7), one can understand that perfect noise vegian |
has the same significance as having “infinite” bandwidth to
estimate the noise variance.

From the above explanation we can see thaBdf— oo,
the performance of the GED is the same as that of the CED.
So the interesting question will be how much the performance

loss of the GED is compared to that of the CED whgp

Probability of detection (P‘1

-20 -18 -16 -14 -12 -10 -8 -6

is finite (i.e., 8 is finite) which is the case in practice. The SNRin 0B
detection performance loss is provided in [99] as

(b)

Ay B,
erfc(ﬁ“>
V2(147) . . . . . .
n=1- , (8) Fig. o. _Comparlson of different algorithms under noise variance
A* —/Niy uncertainty £y = 0.1, N = 2'%, A¢? = 2 dB, QPSK). The FD (TD)
erfc(m) stands for frequency (time) domain. Here, Max-Min SNR (FD) [136],
Max-Min SNR (TD) [135], Eigenvalue based [137], Cyclostationary
whereerfc(.) is the complementary error function. From thig107], Cyclostationary [105], Cyclostationary [106], Moment based
expression, one can notice that— 0 (i.e., almost no loss) [132], (a) AWGN channel, (b) Rayleigh fading channel.
when 3 ~ 10. Therefore, if there is a sufficient bandwidth to
estimate the noise variance (i.e:,10B;), perfect noise vari- based SS algorithms, we assume a QPSK transmitted signal
ance information is not a limiting factor for energy detectowhich is pulse shaped by a root raised cosine filter with roll
Furthermore, this sufficient bandwidth is relative to theidsd off factor of 0.2. The number of received samples is set to
sub-band (i.e.5;). N, = 215 = 32768 (i.e., with Nyquist sampling). And for the
The GED can be implemented when there is a sub-baoykclostationary based detectors, we consider an OFDM kigna
that contains noise only like in the considered example with the settings as in Table | of [105] bWWorpym = 57.
this subsection. However, how can we implement the GEBy doing so, the cyclostationary detectors will utili2é, =
when the sub-band that contains noise only information ts né2832 ~ N; samples when Nyquist sampling is applied. As
known a priori? For such a scenario, the work of [99] firsive can see from this figure, the frequency domain version of
applies an edge detector to identify the edges of all sulbidhanthe Max-Min SNR based SS algorithm (i.e., GED for pulse
Then, a reference white sub-band detection is used to hgliabhaped signals) achieves the best performance among @ll, an
detect the sub-band that contains noise only informatiois (i as expected the worst performance is obtained with the CED.
termed as a reference sub-band [99]). Finally, the GED of (6) In Fig. 9, we have compared different SS techniques for a
is employed to detect each of the sub-bands other than tteenmon setting in which all the considered detectors employ
reference sub-band. The detailed implementation of [98] c&; = 0.1, Ac? = 2dB and almost the same sensing durations.
be found in [100]. However, different techniques generally take differeistuasp-
Figure 9 shows the comparison of cyclostationary, EVDions/parameters into account and their corresponding per
Moment and Max-Min SNR based SS algorithms with noisermance depends on the employed assumptions/parameters.
variance uncertainty. For EVD, Moment and Max-Min SNRDue to this reason, comparing different SS techniques jst b



enforcing the same’;, Ac? and the sensing time may not
be a general comparison strategy. Consequently, the Max-Mi
SNR (FD) approach achieves the best performance only for the  osr
setting of this paper, and the extensive comparison ofreiffie

SS approaches for various scenarios is still an open rdsearc
topic.
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V. NOISE/CHANNEL CORRELATION

Probability of correct decision
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—#— Sensing with MP based threshold, uncorrelated
—+— Sensing with MP based threshold, correlated
55| —©— Sensing with new threshold, correlated

Most of the existing SS and SNR estimation techniques ool
assume the presence of an uncorrelated channel and the
noise [56], [98], [138]. However, in practical scenariose t
channel may be correlated dueitsufficient scattering in the 05701 02z 03 04 05 06 07 o8 o0 3
propagation environment [88] and mutual coupling between Conelaton coefcient (2
antennas [89] Similarly, the noise may also be correlated dugig. 10. Sensing performance versus correlation coefficipnt
to imperfections in filtering, pulse shaping and oversamplingNR = —6 dB, Number of samplesN)= 60, Number of receive
in the receiver The main causes behind noise and channéimensions {/)= 10) [36]. The performance metric “Probability of
correlation are listed in Table 1l The correlation may arise CO'rect decision” depicts how many correct decisions are made out

. . . . . . of the total considered realizations under both hypotheses.
across the receive dimensions, i.e., spatial correlatod/or

across the samples acquired by a single receive dimension, 1 ; ; ottt
i.e., temporal correlation. Further, as stated earlier,Ri€ —Fosen . 7/
. . . 0.95 # — SCN-correlated noise
not aware of the PU signal, channel and the noise variance. T s
. . . . . . | - —noise correlates
Therefore, one important research issue is to investigatd b 0| i se

| | = & — SLE-noise correlated

o
<]
o

SS and SNR estimation techniques which can effectively work
in practical correlated scenarios. In this context, awghaor
[36] have recently analyzed the effect of noise correlatian
eigenvalue based SS and have shown that the existing decisio
thresholds fail in the presence of noise correlation.

To address the aforementioned issue, new sensing thresh- & oesf
olds for SCN and ME based techniques have been proposed s}
in [139], [140] using recent results from RMT in order to
achieve the improved sensing in correlated noise scenarios e -6 0 ©-6 -0 0= -0 -O- ¢
The analysis has been carried out by considering a one-sided ~ °% ~ & 6 s a2 _d0 o w4 = o
exponential correlation model to include noise correfatio
across the receive dimensions and the similar analysisFig. 11. Sensing performance versus SNR for different eigenvalue
applicable for temporally correlated case assuming th@-expased blind techniques in the presence of correlated ndife<(
nential correlation model still holds. As reflected in Fig, 1 102V =100, p = 0.45) [35]. The SCN stands for Signal Condition
the sensing with the conventional Marchenko Pasteur (M?Xén?gr’f ST for :Spherlcal Test, SLE for Scaled Largest Eigenvalue,

g . . or John's Detector.
based decision threshold [119] decreases drastically thih
increased amount of noise correlation while the proposed
sensing bounds in [139] provide better performance up torrelation. Some contributions in the literature havelyzeal
some value of noise correlation. Moreover, it has been notgw performance of the ED technique with multiple antennas
that new sensing bounds also do not provide better sensguhsidering spatial correlation across these antennag-{14
performance at the high correlation region due to the largi43]. The authors in [141] analyzed the sensing performanc
overlapping of the the distributions of test statistics emthe of an energy detector with correlated multiple antennas and
H, and H, hypotheses at this region. it was verified thatthe sensing performance of the energy

As noted in Section IV-D, several blind eigenvalue basetktector is degraded when the channels are spatially cor-
techniques such as SCN-based detector, SLE-based deteattsited and the performance degradation is proportional to
John’s Detector (JD), and spherical test detector exishén tthe level of correlation Furthermore, the authors in [142]
literature.Most of these detectors fail to provide better sensirgnalyzed the detection performance of an ED based SS in a
performance in the presence of noise correlatj8B]. Figure CR with multi-antenna correlated channels in the Nakagami-
11 shows the effect of noise correlation on different blinch fading channel. Additionally, a weighted ED technique
eigenvalue based techniques and it can be notedhdetec- and a correlated Generalized Likelihood Ratio Test (GLRT)
tor has the worst performance among all the techniques anétector have been proposed in [143] for SS with multi-
the SLE detector is the best in terms of sensing performaragenna correlated channels. In the context of eigenvzdised
in the presence of correlated noise SS, the effect of spatial correlation in the performance of

Moreover, most of the multi-dimensional SS techniqugzredicted eigenvalue threshold based SS is analyzed if [122
proposed in the literature do not consider the effect of nbhn and it is shown that theetection performance improves in

—e—JD
= © — JD-noise correlated

14
©
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TABLE Il
CAUSES OF CHANNEI/NOISE CORRELATION IN MULTI-DIMENSIONAL SCENARIOS[58]

Cases Channel Correlation Noise Correlation
Type Cause Type Cause
Spatial Correlation Multipath
propagation Filtering Autocorrelation
Multi-antenna function of the
Ss Antenna mutual Transmit/receive filter
coupling Antenna
separation
Oversampled SS | Oversampling Oversampling Filtering Autocorrelation
operation function of the
filter
Filtering Autocorrelation Oversampling Oversampling
function of filter operation
Cooperative SS Spatial correlation Collocated nodes in | Filtering Autocorrelation
CR network function of the
filter

the presence of spatial correlation at the multi-antenna S\grobability distribution. For example, the received sigmaay
Similar trend has been recently obtained in [58] for the casghibit different distributions depending on whether ther a
of SCN and EME based detectors. Line of Sight (LoS) channel between primary and secondary
As noted earlier in Section II-A, various data-aided anslystems or a scattering channel. Further, the mobility of
non-data-aided SNR estimators have been investigated fareless nodes also affects the signal distributions fianitly.
traditional legacy based systems. SNR estimation for kegam this context, authors in [145] study lower and upper baund
based systems is helpful for implementing adaptive tectesq of sensing performance of an energy detector based on dif-
such as adaptive bit loading, handoff algorithms and opferent signal uncertainty models. Various uncertainty aied
mal soft value calculation for improving the performance afonsidered in [145] are: (lhoment uncertaintiethat are based
channel decoders. In addition to these benefits, estimafionon moment statistics, e.g., sample mean and variance éstma
primary SNR is important for CR-based systems in order tif the received signals, (ii) distribution information eedded
design their underlay transmission strategies [58]. Ircizal in the historical data, from which eeference distributiorcan
CR scenarios, there is a need of blind SNR estimation tedie extracted using thgoodness of fit tesand (iii) uncertainty
nigues which can effectively work under practical corretat model in which the actual signal distribution is allowed to
scenarios. fluctuate around a reference distribution and the disci®pan
In the above context, a novel eigenvalue based SN&characterized in terms of @robabilistic distance measure
estimation technique has been recently studied in [58] unde Although noise uncertainty aspect has been analyzed and
noise/channel correlated scenarios using the RMT toomFrastudied in various literature, the aspect of signal unassta
the presented results in [58], it can be noted ttat effect has received limited attention. The recent contributiof8if]
of channel correlation dominates at higher SNR values whitamalyzes the impact of signal uncertainty on the detection
the effect of noise correlation dominates at low SNR valugserformance of the ED approach considering a signal un-
Additionally, the SNR estimation problem for a widebandertainty model. From the results, authors have shown that
cognitive receiver has been studied in [144] under comedlatthe signal uncertainty phenomenon may result in significant
noise and correlated multiple measurement vector scenariperformance degradations, particularly in the presenc®ise
A tradeoff between sensing hardware cost (especially tise cancertainty even for very small noise power calibratioroesr
of the ADC) and the estimation error has been observed whi@rrthermore, authors in [87] define signal uncertainty a&s th
using compressive measuremerfsirthermore, it has beeninability of a CR user to perfectly know the information
concluded thatorrelation knowledge significantly helps whileabout primary signals beforehanthis uncertainty may lead

estimating the SNR under correlated scenarios to the degradation in the sensing performance since the non-
interference requirement for the secondary network insplie
VI. SIGNAL UNCERTAINTY a worst-case design where SUs must guarantee a minimum

It can be noted that most of the SS contributions in the litef€tection performance regardiess of the sensed primanasig
ature assume the known signal distributions while derivirey
analytical expressions fd?; and P;. However, in practice, due VII. CHANNEL/INTERFERENCEUNCERTAINTY
to time varying nature of wireless channels, it is usuallgyve  Channel/interference uncertainty is of significant impor-
challenging to know precise information regarding PU sigiha tance in the context of an underlay CR. Figure 12 presents
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Fig. 12. A typical underlay coexistence scenario with data transmis-
sion and interfering links

a typical underlay coexistence scenario with transmisaruh
interfering links. Under this scenario, the main challerige

a CR is to control its transmission power in order to optimize
its Quality of Service (QoS) while limiting the interferemto

the PUs below the tolerable interference limit. While studyi

the considered coexistence scenario, the channel unugrtai
may arise either in the interfering link between the ST/CR
and the PR or in its desired transmission link towards the
SR, From the regulatory point of view, the interfering link 3)
between the ST/CR and the PR is of more importance than
the interfering link between the PT and the CR since a CR
system can be assumed to be intelligent enough to mitigate
the interference from the primary system. On the other hand,
from the secondary system’s perspective, the channel batwe
the ST and the SR is of importance in order to guarantee the
desired QoS of the link. In practice, this underlay coexiste

can be realized using several approaches such as power
control, EZ, and dynamic resource allocation.

One widely used approach of controlling the SUs’ trans-
mission is to control the transmit power at the CR by esti-
mating the channeh, in (1), towards the PU based on the
estimation of the received primary signal In most of the 4
cases, SS is performed by carrying out analysis undefhe
hypothesis as discussed in Section IV whereas the recdiyed s
nal power estimation is carried out under the hypothesisin
this received power estimation based power control apgrpac
the main problem is that the PR may be a passive entity and
the channel reciprocity may not be applicable in Frequency
Division Duplex (FDD) based systemidowever, there exist
several practical scenarios in which secondary transomssi

and interference threshold of the PU, the SU can adjust
its transmit power in order to protect nearby primary
receivers.

Duplex transmission This case assumes duplex trans-
mission mode for the PUs, i.e., each user interchange-
ably transmits and receives over time under the Time
Division Duplex (TDD) mode. In this scenario, the CR
estimates the received PU power when it is operating
in the receive mode and controls its transmitted power
during its transmission based on the estimated received
power utilizing channel reciprocity principle [71], [148]

If there exist multiple PUs in the system, we need to
consider the worst case condition. For a number of PUs
under a given power class, if a PU with the minimum
path loss, i.e., strongest estimated power is protected, al
other PUs under the considered class can be protected at
the same time assuming the same interference threshold.
The main problem with the above worst case approach
is that it may not be possible to estimate the received
SNR of all the PUs. In this context, another solution
to address the problem of multiple PUs protection can
be the design of a power control algorithm based on
the aggregate received power instead of the strongest
received power.

Short-range simplex transmission This scenario con-
siders the simplex mode of transmission for the PUs and
a short range wireless communication for both primary
and secondary systems provided that interference levels
from one system to another are at a similar level. In
practice, this case arises when a spectrum resource is left
completely unused within a sufficiently large network
coverage area [147]. Another scenario could be the
operation of primary and secondary systems in indoor
and outdoor environments [148]. In this case, fixing
secondary transmit power based on the received signal
from the PT is a reasonable strategy for protecting the
PR as well.

) Detection margin based secondary coveragén this

scenario, the protection of the PRs can be provided by
including a detection margin in defining the coverage
region of a CR [146]. For example, lej andr, denote

the maximum communication range of the primary
system and the interference range of the CR. In this
case, the CR should be capable of detecting any active
PT within a radius of-, + r in order to guarantee that
no active PRs exist within its interference range.

can be controlled based on the estimated primary power at \We presentan example for the uncertainty in the interfering
the CR [24]. These scenarios are briefly described below. channel between the CR and the PR considering the power

1) Beacon-based transmissionThis scenario considers
the beacon-based sensing, in which a PR is assume
to send a beacon signal on a control channel [14'65
In this context, the SUs can detect the presence o
PR as well as estimate the power of the beacon signgqe.
Subsequently, based on the strength of the beacon sigg

SHerein, the assumption is that the uncertainty in the trarsiatischannel
of the primary system is already taken into account while giesg the
primary system.

control based approach below. Léf be the interference
threshold of the PR, which can be obtained from the regulator
quirements, i.e., based on the interference protectiteria
gecified in the regulations for a particular primary system
In an ideal case, the transmit power for a $J; can be
tiermined based on the following interference protection
eria

It
Py < —
st Olphp’

9)

where I7 denotes the interference threshold for the PR,



corresponds to the distance dependent path losg addnotes of the channel estimation uncertainty while designing powe
the fading coefficient due to the time-varying channel. Inontrol/resource allocation strategies at the receivee. xist-
practice, the value ofv,h, in (9) can be calculated with theing approaches for analyzing the effect of channel unadstai
help of the estimated PU SNR and the Effective Isotropere described below.

Radiated Power (EIRP) of the primary system which can be
obtained based on the specifications of wireless standactis s
as LTE, GSM/GPRS, EDGE etc [71]. From (9), it can be
deduced that the value of, is fixed but the variation in the
value off, may lead to the violation of the interference criteria
at the PR.Therefore, it is significantly important to capture
the effect of channel uncertainty while estimating the ikt
primary power at the CR

In most of the underlay CR techniques, the SUs need
Channel State Information (CSI) towards PRs in order to
avoid harmful interference to the PRs. This information ban
static or dynamic depending on the propagation environment
However, in practice, there is no coordination between anjm
and secondary systems in exchanging the CSI. Due to this
reason, the secondary system may not be able to obtain the
CSI information towards the primary system accurately and
the channel estimation techniques have to rely on poweidbase
estimation. Further, atmospheric imperfections such aslsm
scale fading, shadowing may create great uncertainty in the
CSl. Therefore, interference awareness based approaches m 2)
not be reliable in practice. The channel estimation in CR
systems is challenging due to the following aspects

1)

« CRs can access to the shared band only intermittently

o PU system often does not explicitly support channel
estimation for CR systems

o CRs might not have prior knowledge of PU signal char-
acteristics

o PU transmissions must be strictly protected from the
interference due to CRs, thus leading to the need of
accurate channel estimation.

To perform the accurate channel estimation, physical oblann
conditions should remain stable for a sufficient period. How
ever, in practice, such a stable condition may be very short
due to user mobility and the SUs may not be able to detect
the channel reliably [149]. Therefore, channel estimatian

be never perfect in practice and estimation errors need to be
taken into account while designing underlay strategiesafor
CR. Besides, channel uncertainty may also originate froen th
lack of regular information exchange between primary and
secondary systems. As a result, the interference infoomati
at the PRs can not be fed back to the STs on time. Further,
due to the time-varying nature of the wireless fading channe
as well as possible hidden nodes in the wireless network,3
it is generally challenging for a single CR to accurately
obtain the instantaneous system parameters in order tealevi
the best transmission strategy. In the above context, alever
contributions in the literature have studied the perforoean

of cognitive resource allocation problems taking account o
channel estimation errors.

Based on the perfect and imperfect channel knowledge,
the available approaches in the literature can be broadly
categorized into (iyobustand (ii) non-robustmethods. The
robust (non-robust) methods take (do not take) into account

Theoretical Model based Estimation Some existing
works assume a prior knowledge of PUs’ locations or
spatial distribution, based on which SUs can estimate
the interference at the PRs using a predefined propa-
gation model. In this context, the contribution in [150]
characterizes the impacts of SUs’ transmission power
on the occurrence of spectrum opportunities and the
reliability of opportunity detection. Based on a Poisson
model of the primary network, authors in [150] have
studied these impacts by showing the exponential decay
rate of the probability of opportunity with respect to the
transmission power and asymptotic behavior of the ROC
curve for the spectrum opportunity detection. However,
the methods based on the predefined propagation model
may not be practical as they usually require a site
survey before the deployment of a secondary network.
Besides, the interference estimation based on theoretical
propagation models is generally oversimplified and may
significantly differ from reality.

Channel Reciprocity: Another method for dealing with
the channel uncertainty is to estimate the reciprocal
channel by overhearing feedback from the PRs [151].
Authors in [151] propose a framework that incorporates
the inherent feedback information in typical two-way PU
communication links such as power control feedback
in Code Division Multiple Access (CDMA) cellular,
channel quality indicator feedback in HSDPA systems,
ACK/NAK feedback in cellular or WiFi networks etc.
Such feedback information from the PR can provide a
good indicator of the actual impact of the SUs’ interfer-
ence on the reception quality of the PU communication
link. Due to the limited observations of fedback from the
PRs, this method may be unreliable for real-time power
control. More specifically, PRs may send feedback in
the form of ACK packets sporadically after receiving
a bulk of data streaming and channel estimation as
this approach may not capture the variations of channel
characteristics accurately. If power control is based on
outdated channel estimates, SUs cannot know the actual
interference at the PU receivers, thus leading to viola-
tions of PUs’ interference constraints in time varying
channel conditions.

) Channel Uncertainty Modeling: The third approach

is based on excessive interference avoidance caused by
channel uncertainty. One of the widely used methods
is to model the channel gain as a combination of
deterministic and random components. The available
related literature in this paradigm can be categorized into
the following three categories

« Stochastic Approach This approach assumes the
random component to follow a certain distribution
function, which usually leads to chance constraints
in the power control problem [152], [153]. The main



drawback of this approach lies on the assumption
of a known distribution function, which is either
unavailable or is very complex to obtain in practice.

« Worst Case Approach This approach allows to
restrict the randomness of the random component
within a bounded and convex set [154], [155]. This
approach can provide the highest PU protection
level but may result in conservative performance for
the secondary link. Further, another difficulty lies
in finding an appropriate bounding set to model the
uncertainty of the random component.

« Reference Distribution based Approach To ad-
dress the above drawbacks of the worst-case and
stochastic based approaches, authors in [149] re-
cently proposed a reference distribution based chan-
nel uncertainty model in which the reference dis-
tribution is extracted from historical channel mea-
surements. The actual distributions of aggregate
interference power and SINR are allowed to deviate
from their reference distributions by a probabilis-
tic distance measure considering various uncertain
factors. Subsequently, a power control problem has
been formulated as a chance constrained robust op-
timization which takes distribution functions as the
uncertain variables, and an iterative algorithm has
been developed in order to search for the optimal
transmit power.

The investigation of suitable methods in order to pro-
vide robustness against channel/interference uncerthias
recently received a lot of attention, especially in thedaiing
two contexts: (i) robust power control for Single Input Sing
Output (SISO) CR networks [149], [153], [156], [157], and
(i) robust beamforming for MIMO or Multiple Input Single
Output (MISO) CR networks [152], [154], [155], [162]. We
describe important design issues for these scenarios below

bands in an uncertain manner. All these occurrences can
be considered as discrete events compared to the real-
time evolution of each user’s power vector, which can
be generally considered as evolving in continuous time.
Therefore, the CR design problem can be considered as
a mixture of continuous dynamics and discrete events
[157]. In this context, several issues such as statistical
behavior of the PUs, channel transition probabilities,
model uncertainty etc. need to be considered while de-
signing robust power control methods for CR networks.
In practice, the statistical behavior of the PU as well
as the channel transition probabilities are difficult to
characterize accurately. Moreover, due to time-varying
nature of the wireless channel and the required sensing
overhead, only the delayed SS results may be available
for the decision process. In addition, due to the mobility
and the limited battery capacity of the CRs, power
control should take into account the time-varying nature
of the wireless channel in order to efficiently utilize the
available transmission power [156].

In fast fading wireless environments, a CR should be
able to perform channel sensing in much shorter time
intervals to catch up with the fast variations. In this case,
the CR is not able to make a reliable decision about
the PU activity only from a single test statistic over the
sensing result because of the short sensing duration. To
improve the decision process in such environments, Par-
tially Observable Markov Decision Process (POMDP)
framework [158], which helps to automate the decision
making process by using the channel state dependent
policy or function, has been investigated in several lit-
erature [159]-[161]. The statistical-based sensing model
used in this framework employs a probabilistic approach
rather than the deterministic approach while designing
optimal decision-making algorithms [160].

2) Robust Cognitive Beamforming for MIMO/MISO

1) Robust Power Control for SISO CR Networks An
important aspect to be considered in the implementation
of an underlay CR network is how to dynamically allo-
cate the secondary transmit power in order to maximize
the secondary throughput while providing sufficient
protection to the PRs. This problem has been widely
studied in the literature in various settings [149], [153],
[156], [157]. This can be basically formulated as the
maximization of the SUs’ social utility subject to three
constraints, namely, a given PU interference threshold,
the SUs’ minimum requested SINR, and the SUs’ upper
bound on their transmit power levels. In this problem,
the main uncertain parameters to be considered are :
(i) uncertainty in the channel gains between SUs and
PRs, and (ii) uncertainty in the interference from PUs
to the SRs. Besides, several practical issues need to be
considered while designing a power control mechanism
for a CR as described below.

In a CR network, new users may join the network, or ex-
isting users may leave the network at any instant of time.
Furthermore, the PUs may start or stop communication,
and hence they may occupy or release some spectrum

CR Networks: The main difference between a conven-
tional beamforming problem and the cognitive beam-
forming problem is the introduction of interference
constraints imposed by the primary network while de-
signing the beamformer. These constraints may greatly
increase the complexity of the corresponding beam-
forming and resource allocation techniques. Recently,
cognitive beamforming has been widely studied with dif-
ferent secondary network optimization objectives such
as sum rate maximization, SINR/rate balancing, and
power minimization with QoS constraints (See [154] and
references therein). Similar to conventional beamform-
ers, a cognitive beamformer should be robust against the
desired user's DoA mismatch, array steering vector and
channel uncertainties.

The non-robust cognitive beamforming approaches pro-
posed in the literature are based on the assumption
of the perfect CSI/DoAs in the directions of PRs and
SRs at the SU transmitter, which are usually difficult to
achieve due to limited training, less cooperation between
SU and PU, and quantization issues. Furthermore, in
practice, the estimates of steering vectors are prone to



errors either due to incorrect estimates of the DoA, aontribution in [166] studies the effects of nonlinear PA on
due to antenna-array imperfections. In this context, tt@FDM-based CR system from both in-band and out-of-band
worst-case [154] and stochastic [152] methods have begerspectives. Subsequently, a closed-form expressiothéor
proposed to tackle the robust cognitive beamformirigakage power at adjacent channels has been derived. Eurthe
problem. However, these studies only consider stationaam optimum power scaling factor for the input signal that
SUs and a general robust design study applicable ritaximizes the secondary rate has been derived by congiderin
both stationary and mobile SRs in practical scenaria®nlinear effects on SINR under the constraints of the pswer
is limited [163]. In this context, the recent contributiorin the adjacent channels.

in [163] has proposed a transmit beamforming scheme

that is robust against errors in steering vector estimatiog  Multicarrier Distortion

for the under!ay CR Sy.Ste"? with mOb'IE.’ or staponary For CR systems, NC-OFDM has been considered as an
SR and multiple PUs in different locations using an

stochastic optimization method, attractive physical layer technology due to its considerab

) i ) higher spectral efficiency, immunity to the frequency stec
Besides the effect of channel uncertainty in underlay basﬁing channels, multipath delay spread tolerance, antl hig

CR systems, channel uncertainty in the sensing channel of&yer efficiency [167]. In the conventional NC-OFDM based
CR operating under the interweave mode may also providggsiems, the constituent subcarriers have to be turned off
significant effect. As mentioned earlier in Section Ill, ohal 4t the PUs channel to create spectrum notches in order to
uncertainty may affect in the choice of a correct decisigfyit the interference perceived by the PUs [168]. Further,
threshold in a CDR-based detector. Furthermore, in the-cogRe guard band is required to be as narrow as possible in
erative_SS scenario presgnted in Fig. 5, practical linotegtiof . 4er to maximize the throughput of the NC-OFDM based CR
the fusion rule at the Fusion Center (FC) need to be consldet§siem. Despite several advantages of the NC-OFDM based
carefully. One of the main issues in this scenario is immeérfes, siem, it mainly suffers from the following two drawbacks:
reporting channels between the secondary nodes and the f igh PAPR of the transmitted NC-OFDM signals: Due to
Most of the literature assumes the error-free reportingslin|imited range of the High Power Amplifier (HPA), the NC-
but this is nqt the case in practice. Similar to the c_once@FDM signals with high PAPR become seriously clipped
of SNR wall in case of an energy detector, there exists they nonlinear distortion is introduced, resulting in sesio

concept of Bit Error Prot_)ability (_BEP) wall which limits thedegradation of BER performance [91]. (ii) Large spectrum
performance of cooperative sensing system [164], [188e  gjgelobes: the larger spectrum sidelobes introduce vente

BEP of the reporting channel is higher the BEP wall value, {f; the adjacent PUs, resulting in the serious performance
is impossible to satisfy the imposed performance Conﬁra"aegradation of the adjacent PUs [92].

on the detection error probabilities at the FC irrespectiok Several methods such as clipping, partial transmit se-
the sensing time at the SUs or the SNR on the sensing changgbnce active constellation extension, and tone resemnvat

have been proposed in the literature in order to reduce the

VIIl. CR TRANSCEIVERIMPERFECTIONS PAPR for the NC-OFDM based CR system (See references in

A. Power Amplifier Nonlinearity [167]). However, these methods do not take into account of

the side lobe suppression which is also a critical aspect for

the NC-OFDM based system. For sidelobe suppression, many

&chemes such as extended active interference cancellation
nonlinearity of the Power Amplifier (PA). The PA consumes gLﬁse _shaplng, constellgtmn qdjustment, spectrum pnagod

and sidelobe suppression with orthogonal projection have

large portion of energy in RF circuits during transmissiow a been proposed. Further, a novel signal cancellation scheme
when operated in the saturation region to achieve the higi%er ) .

g : . o o . as been proposed in [167] for joint PAPR reduction and
efficiency, the nonlinear distortion increases signifiarthis . o
. . . sidelobe suppression in the NC-OFDM based system. In the
nonlinear behavior of the PA may result in the ACI. It can be L i .
roposed joint scheme, a part of the outer constellationtpoi

noted that the ACI power is a nonlinear increasing functibn (?)n SU subcarriers have been dynamically extended while
the PA input power [90].

. . several signal cancellation symbols have been added to the
In the above context, authors in [90] recently studied t Lo . ,

o o ) U subcarriers in order to generate the appropriate catiogll
power allocation in CR networks by considering the nonlme%ignal for joint PAPR reduction and sidelobe suppression
effects of the PA on the received SNR at the cognitive receive '
and on the adjacent channel interference to the PRs. More o
specifically, the nonlinear effects of the power amplifier ofy- Synchronization Errors
the maximum achievable average SNR and also the secondaryFrequency and phase offsets usually occur during the up
throughput have been studied by taking into account thetsffeconversion of the baseband signal to the passband and vice
of the resulting nonlinear ACls to the PRs as constraintsast versa. In a practical CR transceiver, frequency offset may
been concluded that the power allocation scenario witheayer occur due to the result of carrier frequency mismatches of
ACI constraints has less throughput degradation than tlee dhe Local Oscillators (LOs) in the transmitter and receiver
with peak ACI constraints, and also attains higher maximugides, and the phase offset may occur due to phase jitter of
achievable average SNR. In the similar context, the recaht LOs and the phase mismatch between them [169]. Only a

As noted earlier, interference characterization and mpitig
tion are critical for a CR while dealing with resource alltoa
problems. One of the important issues to be considered is



few works have been reported in the literature for analyzingsearch topi€. Along this side, it is also interesting to come

the effect of frequency offset and phase noise on the detectup with a spectrum awareness mechanism/algorithm that do

performance of a CR [169]-[171]. Furthermore, 1Q-mismatamot assume an priori knowledge on the distribution of thesaoi

error is usually generated when an amplitude imbalance osa@mples, and is robust against undesired spikes and receive

guadrature error (phase difference is not exagtly) occurs calibration error.

between the | and Q branches. The IQ-mismatch generally 2. Quantization Errors

causes an interference between the | and Q branches. Quantization is an important aspect of a CR transceiver and
this process may result in two kinds of sources: (i) Quan-
tization error, and (ii) Clipping error. An Automatic Gain

IX. FUTURE RECOMMENDATIONS Controller (AGC) is generally used to control the level oé th
input signal to the ADC. If the performance of the AGC is not
As discussed above, there are several imperfections gptimized properly, it may result in the above errors, résgl

practical CR such as noise uncertainty, channel/intent&re in the detection performance degradation [93]. In this erijt

uncertainty, noise/channel correlation, cyclic frequenais- the contribution in [93] has analyzed the effect of quartiira

match, unknown (or imperfectly known) adjacent channekrors on the performance of the ED approach and serious

interferences, SNR/channel/DoA estimation errors, eabld degradation in the detection performance has been notes.

IV provides the main available references that addresethesailable literature related to this analysis is quite Il and

imperfections. Although the existing approaches attenopt it is crucial to investigate suitable measures in order tontxat

examine some uncertainty issues, these approaches brestilthe effect of quantization errors while designing a praaiticR

robust against adjacent channel interferences, and cyelic transceiver

guency mismatch which may occur due to oscillator frequency 3. Noise/Channe Correlation

offsets, Doppler shifts, or imperfect knowledge of the @ycl Although recent works [36], [140] have proposed new sensing
frequencies. Moreover, all these imperfections existtjgin hounds for SCN and ME based sensing under noise correlated
and hence practical spectrum awareness algorithms may ngggharios, analyzing the effect of noise correlation on the
to consider all of these aspectBhus, further research may performance of other detectors as well as investigation of
need to be performed to come up with a spectrum awareneggy sensing bounds which provide improved detection per-
mechanism by taking into account all these issues. One Bermance under correlated scenarios is still an open relsear
tential approach of addressing these uncertainties cowd Bhallenge Future research should focus on investigating suit-

to examine the existing sensing methods while consideriggle approaches while considering these imperfections int
multiple antenna and cooperative sensing nodes. We highlighccount

some of the open research issues related to CR practical 4, SNR/Channel/DoA Estimation Errors

imperfections below In the existing power control based underlay technique§ [71
1. Calibration Error the effect of SNR/channel estimation errors have not been
When there is no transmitted signal, the spectrum of pragien into account. In practice, there may occur SNR/cHanne
tical received samples does not have a flat spectrum afiglimation errors due to inaccuracy of the estimation E®ce
incorporates several undesired spikes [172], [173]. This dnd this may affect the performance of the power controbtias
mainly due to the non-flat transfer functions of the filter, |Q|nder|ay scheme. Furthermore, in most of the existing DoA-
imbalance, spurious signal and phase noise which ariseocdug#sed cognitive beamforming literature, the effect of DoA
imperfections of oscillators, amplifiers, and limited dgmia estimation errors have been neglected [174], [175]. Intjwagc
ranges of the ADCs. Furthermore, when there is a primappA estimation errors may cause the perturbations in the
(or other secondary) transmitted signal, such imperfestiogrray response vector, leading to the need of robust cegniti
also arise at the transmitter side. Consequently, undetfthe peamforming techniquedn this context, it's an open research
hypothesis, the effect of imperfections due to the trartemit challenge to take the aforementioned errors into accourilewh
and receiver further worsen the detection process. designing a practical underlay CR system

To address the above issues, different calibration ap- 5. Limitations of Device Level and Cooperative SS
proaches can be applied. Calibration is an important stgpe operation of the most of the current CRs rely on device
to be carried out at both the transmitter and receiver sidésvel SS and decision-making. Such a process could be easily
However, in a CR network, the PTs and SRs are operated jhfluenced by the environment, the capability and intentibn
different entities and performing calibration at both engls the cognitive device. To this end, one important point ig tha
not practical. For this reason, calibration is performedyonsuch device level decision making about spectrum access is
at the cognitive receiver side. However, such a calibratiefiso problematic for the network operators, who may want to
is mainly device dependent. And in fact, if no calibration igxert complete control over the spectrum. This might be one
performed, the existing algorithms discussed above may rgtthe reasons why operators have been reluctant from using
ensure the desired awareness performance especially at a GRs.
low SNR region (i.e.< —10dB) which is the desired region  Although cooperative SS has been investigated in various

for CR application (see for example [99], [100Hence, the settings in order to address the aforementioned issuepthe ¢
design of a general (and perhaps device independent) receiv

calibration approach particularly for a CR is still an open ©Note that calibration can not eliminate the noise varianceettainty.



TABLE IV
EXISTING REFERENCES AND TECHNIQUES MAPPED TO DIFFERENCR IMPERFECTIONS

Imperfection Type Existing Methods (if any) References
Noise variance uncertainty Cyclostationary based detector [102]-[108], [110], [111]
Autocorrelation based detector [112]-[114]
Covariance based detector [115], [116]
Eigenvalue based detector [98], [120], [123], [125], [127]-[130]
Moment based detector [132]
Max-Min SNR based detector [135], [136]
Generalized energy detector (GED) | [99]
Noise/channel correlation Eigenvalue based approach [36], [58], [139], [140]
Signal uncertainty Uncertainty models [87], [145]
Channel/interference uncertainty Theoretical model based estimation | [150]
Channel reciprocity [151]
Stochastic modeling [152], [153]
Worst case modeling [154], [155]
Reference distribution based approaclil49]
CR transceiver imperfections
Power amplifier nonlinearity [90], [166]
Multicarrier distortion [92], [167], [168]
Synchronization errors [94], [95], [169]-[171]
Quantization errors [93]

erative burden (i.e., the requirement of the signallingd)jrand concluded that although several researchers have attdrgte
the induced delay are hindering its actual realization.g@oa address the problems of practical imperfections, the avl
tive SS techniques, even with cyclostationary featuredtiet®, solutions are either applicable for specific scenarios dy on
require a large number of cooperating devices in order toitigate the effect of one specific type of impairment. There
reduce the probability of false alarms to acceptable levels fore, it remains an open challenge to explore one common
large number of cooperating devices induces excessivecigte approach/framework which can combat the identified issues
which could reduce the usefulness of SS. For example, by ted is applicable for a wide range of scenarios.
time a decision is made, the spectrum availability and ngtwo
conditions might already have changed. In this contexyréut
research should focus on investigating suitable decidata/ [1] J. Mitola and G;,Q' Maguire, “Cognitive radio: making seétre radios
. . . more personal,”IEEE Personal Communvol. 6, no. 4, pp. 13 -18,
fusion schemes which can reduce the cooperation burden as ayg. 1999.

well as the delay and at the same time can achieve the desirgde] C.-S. Sum and et al, “Cognitive communication in TV whiteeps: An
performance targets. overview of regulations, standards, and technolodgiZEE Commun.
. . . Mag, vol. 51, no. 7, pp. 138-145, July 2013.
_ Furthermore, existing coopera_uve _SS _“tera_ture mOSt_W‘CO [3] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Saetlignitive
siders homogeneous nodes considering identical nodeitapab  communications: Interference modeling and techniques saettin

it i ; ; Proc. 6th Advanced Satellite Multimedia Systems Conf. @)S&hd
ities, equal number of antennas, identical received SNRE, an 12t Signal Processing for Space Commun, Workshop (SPSHp).

equal sampling rate. However, in practice, the cooperating 012, pp. 111-118.
nodes are much likely to be heterogeneous in terms of thé4] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Cognitiadio

aforementioned aspects [176}.this context, it's an important techniques for satellite communication systems,’Pioc. |IEEE Veh.
P [176] P Technol. Conf. (VTC Fall)Sept. 2013, pp. 1-5.

re;earch Cha”eng_e to inveStiQ?-te SUita.ble cooperatiVlB®S (5] M. Nekovee, “Cognitive radio access to TV white spacesedrum
which can combine sensed information from heterogeneous opportunities, commercial applications and remaining teftigyochal-

nodes to make reliable decision with less cooperation over- |e€nges.” inProc. IEEE Symp. on New Frontiers in Dynamic Spectrum
Access NetworksApr. 2010, pp. 1-10.

head [6] S. Haykin, “Cognitive radio: brain-empowered wirelessmonunica-
tions,” IEEE J. Sel. Areas Commuyrvol. 23, no. 2, pp. 201-220, Feb.
X. CONCLUSIONS 2005.
. ) ) o [7] A. Goldsmith, S. A. Jafar, . Maric, and S. Srinivasa, “Bking
This paper has provided an overview of the existing CR ap-  spectrum gridlock with cognitive radios: An information drnetic
proaches under practical imperfections. Several imptofes perspective,"Proc. IEEF, vol. 97, no. 5, pp. 894 914, May 2009.

. . 8] K. Patil, R. Prasad, and K. Skouby, “A survey of worldwidpectrum
of a CR based system have been discussed and existing me[a' occupancy measurement campaigns for cognitive radioPrac. Int.

sures to counteract these imperfections have been reviewed Conf. Devices and Commun. (ICDeCorfigh. 2011, pp. 1-5.

Although there has been a significant effort in proposingl[®l E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, *Spectraemsing
bust detecto inst noise d ch el uncertairtter ot for cognitive radio: State-of-the-art and recent advajficeEE Signal
robust aetectors agains IS€ and channel uncertairmngy Process. Mag.vol. 29, no. 3, pp. 101-116, May 2012.

imperfections have still received less attention. Thet@gs [10] T. Yucek and H. Arslan, “A survey of spectrum sensingoainms

robust SS approaches against noise variance uncertam ha for cognitive radio applications [EEE Commun. Surveys & Tutorials
. .. vol. 11, no. 1, pp. 116-130, 2009.
been detailed. Furthermore, existing approaches on chafy . 'sun, A. Nallanathan, C-X. Wang, and Y. Chen, “Wideba

nel/interference uncertainty, signal uncertainty, niisannel spectrum sensing for cognitive radio networks: a surveyEEE
correlation, CR transceiver imperfections have been dwestr Wireless Communvol. 20, no. 2, pp. 74-81, Apr. 2013.

Finall . hich dto b id d I[12] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Coopeiat spectrum
Inally, some open Issues which need to be consideread care- sensing in cognitive radio networks: A surveyPhysical Commun.

fully in the future research have been identified. It can be vol. 4, no. 2011, pp. 40-62, 2011.
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