
FlowMon: Detecting Malicious Switches in
Software-Defined Networks

Andrzej Kamisiński
Department of Telecommunications

AGH University of Science and Technology
Kraków, Poland

kamisinski@kt.agh.edu.pl

Carol Fung
Department of Computer Science
Virginia Commonwealth University

Richmond, Virginia, USA
cfung@vcu.edu

ABSTRACT
Software-Defined Networking (SDN) introduces a new com-
munication network management paradigm and has gained
much attention recently. In SDN, a network controller over-
looks and manages the entire network by configuring rout-
ing mechanisms for underlying switches. The switches re-
port their status to the controller periodically, such as port
statistics and flow statistics, according to their communica-
tion protocol. However, switches may contain vulnerabilities
that can be exploited by attackers. A compromised switch
may not only lose its normal functionality, but it may also
maliciously paralyze the network by creating network con-
gestions or packet loss. Therefore, it is important for the
system to be able to detect and isolate malicious switches.
In this work, we investigate a methodology for an SDN con-
troller to detect compromised switches through real-time
analysis of the periodically collected reports. Two types
of malicious behavior of compromised switches are investi-
gated: packet dropping and packet swapping. We proposed
two anomaly detection algorithms to detect packet drop-
pers and packet swappers. Our simulation results show that
our proposed methods can effectively detect packet droppers
and swappers. To the best of our knowledge, our work is the
first to address malicious switches detection using statistics
reports in SDN.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.3 [Computer-
Communication Networks]: Network Operations—Network
monitoring

General Terms
Algorithms, Performance, Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SafeConfig’15, October 12, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3821-9/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809826.2809833.

Keywords
Anomaly Detection; Malicious Behavior; Network Security;
Software-Defined Networking; SDN; OpenFlow

1. INTRODUCTION
Software-Defined Networking (SDN) introduces a new com-

munication network management paradigm and has gained
much attention from academia and industry due to its fast
growing potential in the market. One primary goal of SDN is
to allow a network controller, representing the control plane,
to overlook and manage the entire network by configuring
routing mechanisms for underlying switches. The switches,
also called the data plane, are solely responsible for data
forwarding according to their forwarding tables. Routing
computation and network management are handled by the
controller. The forwarding table entries on switches are
determined and managed by the controller through a se-
cured communication protocol between switches and the
controller.

More specifically, most enterprises adopt OpenFlow [11]
as communication protocol for secure and efficient commu-
nication between switches and the controller. As specified in
the OpenFlow protocol [15], switches must forward a request
to the controller upon receiving a packet of a new flow. The
controller receives the request and computes a routing path
for the new flow and notifies the corresponding switches to
update their forwarding tables, which is an indication of the
establishment of a new flow path. In order to compute the
optimal routing paths, the controller needs to know the net-
work topology and its status, such as the present workload
on all switches and links. To help the controller with op-
timal routing computation, switches periodically report the
network status to the controller, including the status of the
switches and flows. For example, the port statistics spec-
ify the volume of traffic going through each switch port, and
flow statistics report the volume of each flow passing through
each switch. The controller can specify the frequency of the
reports from a switch.

However, switches may contain vulnerabilities that can be
exploited by attackers. Vulnerabilities can be manufactured
on purpose or may result from programmers’ errors and bad
coding practices. Once a vulnerability is exploited by an
adversary, the switch is said to be compromised. A com-
promised switch may not only lose its normal functionality,
but it may also be manipulated to be malicious. For ex-
ample, the switch can drop packets passing through it, or
direct packets to a wrong port. If the majority of switches
in a network are compromised, they may be able to collude

to bring down the entire network and make it difficult to
diagnose by providing false information to the controller.

In order to lower down the risk of entire network failure,
an SDN network may include switches from multiple dif-
ferent manufacturers. This way the probability of having
a large number of switches compromised is decreased. How-
ever, the probability of having a few switches compromised
is increased. Therefore, it is important for the system to be
able to detect and isolate the compromised switches. How
to detect compromised switches utilizing the current Open-
Flow protocol is the focus of this paper.

To address the above problem, we propose FlowMon1,
a malicious switches monitoring and detection system us-
ing the OpenFlow protocol. In this solution, the controller
analyzes the collected port statistics and the actual forward-
ing paths to detect malicious switches in a network. More
specifically, two types of abnormal behavior are investigated.
One is called packet dropper, where the switch purposefully
drops packets passing through it. The other is called packet
swapper, where packets are forwarded to a different port
than it was intended. We propose the algorithms for con-
trollers to detect the two malicious behaviors of switches
based on the collected reports and the observed forwarding
paths. We evaluate our proposed methods in a simulated
SDN environment implemented in ns-3.

Several study cases on simulation have shown that con-
trollers equipped with FlowMon can effectively detect packet
droppers and packet swappers in almost all cases. To the
best of our knowledge, this paper is the first proposed so-
lution to utilize the OpenFlow protocol to detect malicious
switches in SDN.

2. RELATED WORK
SDN is currently attracting significant attention from both

academia and industry. A group of network operators, ser-
vice providers, and vendors have recently created the Open
Networking Foundation [1], an industrial-driven organiza-
tion, to promote SDN and standardize the OpenFlow pro-
tocol [11]. There have also been standardization efforts on
SDN at the IETF, IRTF, and other standards producing
organizations.

Security issues of SDN have also been a popular topic in
recent years. [10] indicates that there are many attack vec-
tors to an SDN network, involving all layers of the SDN
architecture. Switches in adversary mode [13, 16] can not
only launch DoS2 attacks against the controller, they can
also be uncooperative in routing flow packets. It is there-
fore critical for the controller to be able to monitor and
diagnose uncooperative or malicious switches. Many SDN
performance monitoring solutions have been proposed in the
past few years [3, 4]. However, none of them has provided
a mechanism to monitor uncooperative switches.

The compromised switches can be a highly likely-to-happen
event in SDN networks. Several papers [6, 12] have men-
tioned that diversity of a network is a desired strategy to
increase the robustness of the network. It is recommended
that an SDN network employ switches from multiple man-
ufacturers and companies. However, it also increases the
probability that one or few switches in the network are com-
promised and attack the rest of the network infrastructure.

1FlowMon — Flow Monitor
2Denial of Service

Figure 1: The proposed SDN architecture including
additional detection and prevention mechanisms.

The fault diagnosis problems in the engineering domain
are commonly solved by machine learning or inference meth-
ods [8]. The machine learning approach [2,7] relies on suffi-
cient training data that the system is operated under normal
condition. However, their solution is not designed for SDN
network and their required input for analysis cannot be eas-
ily obtained in SDN context. Several proposals regarding
fault detection and localization for communication networks
have been presented [9, 14]. However, those solutions are
based on distributed networks where their assumption that
sensors are deployed to detect abnormality is not applicable
to SDN networks.

The work that is the closest to ours is from Du et. al [5]. In
their paper, they use a simple threshold to decide if a switch
is malicious or not based on the flow volume through the
switch. However, they are not able to detect other types
of malicious switches such as packet droppers and packet
swappers specified in this paper.

In our work, we focus on SDN-specific environment, where
the controller is able to collect and analyze periodic statis-
tics reports from switches regarding the current status of
traffic through the OpenFlow protocol. Our work utilizes
the existing information from statistics reports and detects
anomalous switches based on the collected data.

3. THE PROPOSED ARCHITECTURE OF
AN SDN

In Software-Defined Networks, particular network devices
are managed by a central entity and cooperate within a hier-
archical structure, according to their roles. While the con-
cept of SDN offers high flexibility in terms of the overall
management tasks, it also raises new challenges related to
the security of network infrastructure. Therefore, additional
protection measures should be introduced that will improve
the ability of an SDN to defend itself against different kinds
of attacks carried out by compromised internal devices.

Figure 1 shows the general network architecture that we
propose in our solution. The considered model of an SDN
consists of three main groups of network devices. The first
group contains all SDN switches, the second group repre-

sents the logically centralized controller which consists of
one or more interconnected controller units, and finally, the
third group contains all management devices. The standard
functionality of controller units is extended to provide a pro-
tection layer against malicious switches. In the following
sections, we discuss the roles of each device and functional
block.

3.1 SDN switches
Switches in SDN networks forward user traffic from the

source nodes to the corresponding destination nodes. When-
ever a new traffic flow is detected at a switch, the switch re-
ceives routing instructions from the SDN controller and then
redirects packets of this flow to the appropriate network in-
terface. Communication with the controller occurs on a sep-
arate management interface with the aid of the OpenFlow
protocol. The switch maintains certain statistics related to
the handled traffic and may provide the selected information
to the controller on its request. As switches are directly ex-
posed to attacks launched either by users or external adver-
saries, it is possible that some switches in the network may
be compromised following a successful attack. In such a sce-
nario, the compromised devices might be used to destabilize
the network, or even take control of a controller if its imple-
mentation contains known vulnerabilities. Thus, protection
of switches is crucial with regard to the security of the core
SDN infrastructure.

3.2 Logically centralized controller
Logically centralized controller is either one or a set of

independent, interconnected controller units that supervise
the operation of switches and make routing decisions based
on the configured policy. Each controller unit maintains
complete information about the network topology, which al-
lows it to react to failures effectively and compute optimal
paths for traffic flows. As shown in Figure 1, it contains
a functional block responsible for making decisions (Con-
troller logic), and may contain a database as a place to
store all the necessary information that may influence fu-
ture actions (statistics, counters, logs). The proposed so-
lution introduces another two functional blocks. The first
one is called Malicious Switches Detection and Prevention
(MSDP) and is responsible for a continuous, transparent
analysis of the communication between the controller and
switches via the OpenFlow protocol, as well as detection
of any sign of malicious behavior observed in this commu-
nication. To determine whether certain actions should be
classified as malicious, MSDP refers to the second block
(Policy) which contains a set of rules. The rules are config-
ured by network administrators and may be either explicit or
generic. As an example, if a switch pretends not to support
statistics reports required by the controller, a rule might be
created that will isolate this switch from the network until
its configuration is verified by an administrator. Then, the
administrator may either tune the configuration or restore
the original firmware of the switch.

3.3 Management devices
In Software-Defined Networks, management interfaces are

needed mainly to configure policies, monitor network perfor-
mance, set up devices and verify contracts. Access to such
interfaces is restricted to network administrators. Conse-
quently, it may be granted to a limited group of machines

in the management team. In this paper, all such machines
are referred to as Management devices.

In the next section we will discuss the major algorithms
in the MSDP component that are used to detect malicious
switches.

4. ALGORITHMS TO DETECT MALICIOUS
SWITCHES

In an SDN, many reasons can cause the under-performance
of the network. For example, a compromised or malfunc-
tioning switch may drop packets or misroute packets. If
the performance degradation is due to malicious switches,
then isolating those switches may improve the performance
of the network. However, the primary challenge is to iden-
tify which switch causes the performance problem. In this
paper, we propose two solutions that include data collection,
analysis, and decision assistance to reduce the impact of ma-
licious behavior in SDN. The proposed algorithms may be
included in the MSDP module shown in Figure 1, with the
corresponding threshold values defined in the form of rules
in the Policy block.

4.1 Detection of packet droppers
Our anomaly detection strategy for packet droppers in-

cludes the following two components:

• link anomaly detection — indicates that the reports
show abnormal data loss or data gain on a specific link;

• switch anomaly detection — indicates that the re-
ports show abnormal data volume entering and leaving
a specific switch.

According to the OpenFlow Switch Specification (version
1.4.0), the port statistics that are returned by switch devices
in response to the OFPMP PORT STATS request sent by
the controller contain two fields, tx packets and rx packets,
which provide the total number of successfully transmitted
and received packets on each port. Therefore, the controller
can request switches to send the reports with the same in-
tervals. The controller can then detect anomalies through
examining port statistics from all switches.

4.1.1 Packet dropping in switches
When a malicious switch drops packets and does not pro-

vide false information in statistics reports, then the con-
troller can infer abnormal switch behaviors from statistics
reports. For example, in the port statistics report, the num-
ber of received packets and the number of transmitted pack-
ets from all ports should be approximately equal. Other in-
dicators, such as the number of receiving/transmitting errors
and the receiving/transmitting drop rate, can also reflect the
health status of a switch.

We can use a simple threshold-based formula to detect
abnormality of behavior of switch k:∣∣∣∣∣

∑
∀i∈Pk

T i
k −

∑
∀i∈Pk

Ri
k∑

∀i∈Pk
T i
k +

∑
∀i∈Pk

Ri
k

∣∣∣∣∣ > θ ? (1)

where T i
k is the number of transmitted packets from switch

k port i in the last time window, and Ri
k is the number

of received packets from switch k port i in the last time
window. Pk is the set of all ports on switch k. If the total
packet dropping rate is higher than the threshold θ, then
the switch is perceived as malicious or malfunctioning.

4.1.2 Packet dropping on links
One type of behavior of malicious switches is to drop pack-

ets it should forward. The lost packets can be reflected by
missing packets on links. To detect abnormality on data
transmission through links, the controller can analyze port
statistics reports by comparing the number of transmitted
and received packets between adjacent switches in each time
window. If some packets are dropped on a link (e.g., at the
destination network interface), then the number of transmit-
ted packets and the number of received packets reported by
switches at the two ends of the link will be different.

We can assume that during the normal network operation
the packet dropping rate does not exceed a certain percent-
age of the total number of exchanged packets. We propose
to use the following test for each pair of connected switches
on any selected link, Si and Sj , respectively:

|Tij + Tji − Rij − Rji| > α |Tij + Tji| ? (2)

where Tij is the number of transmitted packets from switch
Si to Sj in the last time window, Rij is the number of re-
ceived packets by switch Si from Sj in the last time window,
and α is the chosen threshold value. The left side of the test
denotes the difference between the total number of trans-
mitted packets and total number of received packets from
both ends during the time window. The right side of the
test denotes the total transmitted packets from both ends
during the time window. If Condition (2) is true, then the
related packet dropping is perceived as abnormal.

4.1.3 Packet dropper detection algorithm
Packet dropping can be detected with the aid of two tests

defined in Sections 4.1.1-4.1.2. In this section, we propose an
algorithm (Algorithm 1) that can be used to detect packet
droppers based on information collected from port statistics
from switches.

Once abnormal packet dropping is detected on a switch
or a link during the last time window, the corresponding
anomaly scores are updated. If a switch is an endpoint
of multiple links with abnormal packet dropping, then the
anomaly score of such a switch will be higher. If the condi-
tion in Line 5 is true, then the abnormal packet dropping in-
side the switch is detected and its anomaly score is increased.
Further, if the condition in Line 12 is true, then abnormal
packet dropping is detected and the anomaly scores of both
link endpoints are increased. In this case, it is possible that
only one of the adjacent switches is dropping packets.

The α and θ parameters in Algorithm 1 should be set to
values that provide a reasonable trade-off between false posi-
tives and false negatives, considering the usual differences in
the reported numbers of transmitted and received packets in
case of a trusted network (i.e., a network which is known not
to contain compromised devices at the time of the measure-
ments). Note that the time window may also be modified
accordingly. Note that the computation of anomaly scores
for all switches in Algorithm 1 is triggered after every report-
ing time. The computation complexity for each time cycle is
O(V +E), where V is the total number of switches and E is
the total number of connected pairs of switches. To reduce
computation overhead on the controller side, reducing the
statistics reports frequency can be a feasible solution.

Algorithm 1: Computing anomaly scores of all switches
based on port statistics

Input : S denotes the set of all switches to be monitored
and L denotes the set of links to be monitored; Bij

denotes the number of bytes sent from switch Si to
switch Sj during the last time window; Tij denotes
the number of packets sent from switch Si to
switch Sj during the last time window; Rij

denotes the number of received packets by switch

Sj from switch Si during the last time window; T j
i

denotes the number of packets sent for

transmission by switch Si on port j; Rj
i denotes

the number of packets received by switch Si on
port j; α, θ are the anomaly thresholds to identify
anomalies; β is the discounting factor; Cij is the
capacity of the link between switch Si and Sj (in
bits per second); TW is the length of the fixed
time window (in seconds).

Output: Set H containing packet dropping scores of all
switches.

1 Initialize set H to be all 0s for all switches;

2 Event e: to be triggered after every reporting time cycle
TW .

3 H = βH; // discount scores after each cycle.
4 foreach k s.t. Sk ∈ S do

5 if

∣∣∣∣∑∀i∈Pk
T i
k−

∑
∀i∈Pk

Ri
k∑

∀i∈Pk
T i
k
+
∑

∀i∈Pk
Ri

k

∣∣∣∣ > θ then

6 Hk = Hk + 1
7 end
8 end
9 foreach pair of connected switches (Si, Sj) ∈ L do

10 ∆ = |Tij + Tji −Rij −Rji|
11 Σ = |Tij + Tji|

12 if ∆ > αΣ and
8·Bij

TW
≤ Cij and

8·Bji

TW
≤ Cji then

13 Hi = Hi + 1
14 Hj = Hj + 1

15 end
16 end

17 return H;

4.2 Detection of packet swappers
A malicious switch can also be a packet swapper, i.e.,

forward packets to wrong destinations. In this section, we
propose an algorithm to detect such a behavior.

The principle of the algorithm is described as follows: we
investigate the reports regarding each unknown flow i and
compare the indices of the expected output network interface
(according to the routing table R) with the actually observed
network interface. The function GetPrecedingSwitchIndex
is to find the preceding switch index m where packet pki was
directed to the switch Sk. This can be found by inspect-
ing the port index of the packet that arrives at switch k
and find the corresponding switch connected to that port.
GetExpectedOutputInterface andGetRealOutputInterface
are the corresponding functions to find the expected output
port index and the actual output port index of the packet. If
the indices are different, it means that switch Sm forwarded
the flow via a wrong network interface. Therefore, switch
Sm is likely to be a packet swapper and its binary decision
variable is set to 1.

Algorithm 2: Detecting packet swappers in an SDN

Input : S denotes the set of all switches to be monitored;
T denotes the network topology; R denotes the
current flow routing table maintained by the
controller; pki denotes the first packet of an
unknown flow i received at switch Sk ∈ S.

Output: Set W containing binary decision variables for all
switches in S.

1 Initialize set W to be all 0s for all switches;

2 Event e: to be triggered whenever a switch reports a packet
representing an unknown flow to the controller.

3 m← GetPrecedingSwitchIndex(pki)
4 nout,exp = GetExpectedOutputInterface(R, Sm, i)

5 nout,real = GetRealOutputInterface(T , Sm, Sk, pki)
6 if nout,exp 6= nout,real then
7 Wm = 1
8 end
9 return W ;

5. EVALUATION
To verify the performance of the proposed solutions, we

have implemented them in the widely-used ns-3 simulator,
and then we conducted a simulation-based evaluation for an
example SDN network (Figure 2). We set up a network with
the following features:

• the network contains 10 SDN-enabled switches;

• each switch is directly connected to 2 client devices
(e.g., personal computers or servers) which may gen-
erate and receive network traffic;

• there are always 3 malicious switches in the network
and they are selected at random;

• for packet droppers: the probability that a packet is
dropped is constant and equal to 0.25, whereas β =
0.6;

• packet swappers forward all received packets of a given
flow via the network interface which has the highest
index, and at the same time, which is not the source
or the expected destination interface for this flow;

• in each experiment, 10 UDP CBR3 flows are set up
between pairs of client devices (the source and desti-
nation nodes are selected at random, and the bit rate
of each flow equals 80 kbit/s);

• each simulation case is repeated 10 times (based on
that, we compute the average values and 95% confi-
dence intervals using the Student’s t-distribution).

The effectiveness of the proposed algorithms was assessed
based on the following two metrics:

• detection rate — the ratio of the number of de-
tected malicious switches to the number of all mali-
cious switches in the network;

• false alarm rate — the ratio of the number of switches
misclassified as malicious to the number of all non-
malicious switches in the network.

3Constant Bit Rate

Figure 2: Network topology used in the evaluation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60 70 80 90 100 110 120

P
o
rt

a
n
o
m

a
ly

sc
o
re

Time [s]

Figure 3: An example relation between the port
anomaly score and time for a packet dropper.

We considered three different simulation scenarios with
respect to the type of malicious behavior:

• all malicious switches in the network are packet drop-
pers;

• all malicious switches in the network are packet swap-
pers;

• the type of malicious behavior is selected at random
(either packet dropper or packet swapper).

In addition, each scenario consisted of 12 different cases
in terms of the set of values for the following parameters: α,
β, and θ (see Table 1). The results for each of the scenarios
are discussed in the following sections.

5.1 Scenario A — three packet droppers
In the first scenario, three different switches in the net-

work were selected at random as packet droppers. It was

Table 1: Simulation cases within each scenario
Case no I II III IV V VI VII VIII IX X XI XII

α 0.01 0.01 0.01 0.010 0.10 0.10 0.10 0.10 0.30 0.30 0.30 0.30

β 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

θ 0.01 0.05 0.10 0.50 0.01 0.05 0.10 0.50 0.01 0.05 0.10 0.50

expected that they will be detected as such by any of the
proposed algorithms. The results are summarized in Ta-
ble 2, while Figure 3 shows an example relation between the
port anomaly score and time for a real packet dropper.

Based on the results, the port-related detection method
achieved 100% accuracy in all cases except IV, VIII, and
XII, in which the θ parameter was assigned the highest value
of 0.5 (it means that the difference between the number of
transmitted and received packets on all ports of a switch in
the last time window has never exceeded 50% of the sum
of all transmitted and received packets in this time window
— see Algorithm 1). The selection of α and θ values leads
to the trade-off between the sensitivity of the mechanism
and the corresponding false alarm rate (some packets may
be dropped due to transmission errors, for instance). At the
same time, the flow-related detection method was confirmed
to be ineffective with respect to the detection of packet drop-
pers.

5.2 Scenario B — three packet swappers
The second scenario is similar to the previous one, but

this time all malicious switches are packet swappers. The
results for this case are shown in Table 3.

As expected, the flow-related detection method performed
better than the port-related one. However, note that the de-
tection rate is 77% in all considered cases4, which suggests
that some malicious switches remained undetected. The rea-
son for the observed decrease in performance is that some
packets have been forwarded by malicious switches to client
devices, while client nodes are not aware of SDN and they
are not even connected to the SDN controller. Thus, they do
not provide any statistics to the controller and by definition
are not analyzed by our algorithms.

5.3 Scenario C — three malicious switches of
both types

The last scenario combines both types of malicious be-
havior — three switches, as well as types of their abnormal
behavior, were selected at random. It was expected that
the proposed solutions might be used together to detect the
compromised switches in the network. Table 4 shows the
evaluation results.

According to the results, both algorithms have demon-
strated their ability to detect malicious switches in a mixed
environment (i.e., containing packet droppers and packet
swappers). It is worth to note that no false alarms were
observed, which proves that the proposed solutions are accu-
rate. However, the detection rates reflect the previous con-
clusions regarding the limited applicability of each method
(the algorithms detected distinct malicious switches, accord-
ing to the related type of malicious behavior). Thus, when
combined together, the algorithms can detect malicious switches
more effectively.

4The flow-related method does not depend on α, β, and θ.

6. CONCLUSION AND FUTURE WORK
In this paper, we investigate the problem of malicious

switches in SDN networks and propose a malicious switches
monitoring and detection system that uses information con-
tained in the OpenFlow protocol messages to detect abnor-
mal behavior of SDN-enabled switches. Two algorithms are
presented that recognize packet droppers and packet swap-
pers in a network. The simulation results have confirmed
that each of the two algorithms is able to detect one of the
considered types of abnormal behavior, depending on the
selected threshold values. The proposed concept may be
developed further to detect other signs of malicious behav-
ior, such as an unauthorized modification of the TTL value
included in the IP header.

However, we realize that there are some limitations to
our proposed solution. In our future work, we would like
to address the following problems: (1) what is the impact
from dishonest switches which may provide false informa-
tion in their statistics reports? (2) what if the compromised
switches collude together? (3) what are the other types of
malicious behavior of compromised switches and what are
the corresponding solutions? In addition, we also plan to
use a real SDN testbed to evaluate our proposed solutions.

7. REFERENCES
[1] The Open Networking Foundation.

https://www.opennetworking.org/about.

[2] M. Aminian and F. Aminian. Neural-network based
analog-circuit fault diagnosis using wavelet transform
as preprocessor. Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions on,
47(2):151–156, Feb 2000.

[3] S. R. Chowdhury, M. F. Bari, R. Ahmed, and
R. Boutaba. PayLess: A Low Cost Network
Monitoring Framework for Software Defined Networks.
In Network Operations and Management Symposium
(NOMS), 2014 IEEE, pages 1–9, May 2014.

[4] Cisco. Introduction to Cisco IOS NetFlow, 2012.
http://www.cisco.com/c/en/us/products/collateral/ios-
nx-os-software/ios-netflow/
prod white paper0900aecd80406232.pdf
(last accessed: July 4, 2015).

[5] X. Du, M.-Z. Wang, X. Zhang, and L. Zhu.
Traffic-based Malicious Switch Detection in SDN.
International Journal of Security and Its Applications,
8(5):119–130, 2014.

[6] M. Garcia, A. Bessani, I. Gashi, N. Neves, and
R. Obelheiro. Analysis of operating system diversity
for intrusion tolerance. Software: Practice and
Experience, 44(6):735–770, 2014.

[7] R. Isermann. Supervision, fault-detection and
fault-diagnosis methods — An introduction. Control
Engineering Practice, 5(5):639–652, 1997.

Table 2: Evaluation results for Scenario A
Case no I II III IV V VI VII VIII IX X XI XII

Port-related detection method

Detection rate 1 1 1 0 1 1 1 0 1 1 1 0

Error 0 0 0 0 0 0 0 0 0 0 0 0

False alarm rate 0 0 0 0 0 0 0 0 0 0 0 0

Error 0 0 0 0 0 0 0 0 0 0 0 0

Flow-related detection method

Detection rate 0 ± 0

False alarm rate 0 ± 0

Table 3: Evaluation results for Scenario B
Case no I II III IV V VI VII VIII IX X XI XII

Port-related detection method

Detection rate 0.00 ± 0.00

False alarm rate 0.00 ± 0.00

Flow-related detection method

Detection rate 0.77 ± 0.16

False alarm rate 0.00 ± 0.00

Table 4: Evaluation results for Scenario C
Case no I II III IV V VI VII VIII IX X XI XII

Port-related detection method

Detection rate 0.60 0.60 0.57 0.00 0.60 0.60 0.57 0.00 0.60 0.60 0.57 0.00

Error 0.19 0.19 0.20 0.00 0.19 0.19 0.20 0.00 0.19 0.19 0.20 0.00

False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Flow-related detection method

Detection rate 0.30 ± 0.18

False alarm rate 0.00 ± 0.00

[8] R. Isermann. Fault-Diagnosis Systems: An
Introduction from Fault Detection to Fault Tolerance.
Springer Berlin Heidelberg, 2006.

[9] I. Katzela and M. Schwartz. Schemes for fault
identification in communication networks. Networking,
IEEE/ACM Transactions on, 3(6):753–764, Dec 1995.

[10] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards
Secure and Dependable Software-defined Networks. In
Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 55–60, New York, NY, USA, 2013.
ACM.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[12] S. Neti, A. Somayaji, and M. E. Locasto. Software
Diversity: Security, Entropy and Game Theory. In 7th
USENIX Workshop on Hot Topics in Security,
Berkeley, CA, 2012. USENIX.

[13] S. Shin, V. Yegneswaran, P. Porras, and G. Gu.
AVANT-GUARD: Scalable and Vigilant Switch Flow
Management in Software-Defined Networks. In

Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13,
pages 413–424, New York, NY, USA, 2013. ACM.

[14] M. Steinder and A. S. Sethi. Probabilistic fault
localization in communication systems using belief
networks. Networking, IEEE/ACM Transactions on,
12(5):809–822, Oct 2004.

[15] The Open Networking Foundation. OpenFlow Switch
Specification, 2013.
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-v1.4.0.pdf
(last accessed: July 4, 2015).

[16] L. Wei and C. Fung. FlowRanger: A Request
Prioritizing Algorithm for Controller DoS Attacks in
Software Defined Networks. In IEEE International
Conference on Communications (ICC 2015). IEEE,
2015.

