
Improved Incremental Prime Number SievesPaul PritchardGri�th University, School of Computing and Information Technology, Queensland,Australia 4111Abstract. An algorithm due to Bengalloun that continuously enumer-ates the primes is adapted to give the �rst prime number sieve that issimultaneously sublinear, additive, and smoothly incremental:{ it employs only �(n= log log n) additions of numbers of size O(n)to enumerate the primes up to n, equalling the performance of thefastest known algorithms for �xed n;{ the transition from n to n+1 takes only O(1) additions of numbersof size O(n). (On average, of course, O(1) such additions increase thelimit up to which all primes are known from n to n+�(log log n)).1 IntroductionA so-called \formula" for the i'th prime has been a long-lived concern, if notquite the Holy Grail, of Elementary Number Theory. This concern seems poorlymotivated, as evidenced by the extraordinary freak-show of solutions pro�eredover the ages. The natural setting is Algorithmic Number Theory, and what isdesired is much better cast as an algorithm to compute the i'th prime. Giventhat approaches involving (all) smaller primes have been deemed acceptable,the problem can perhaps best be formulated as that of �nding an algorithm toenumerate the primes, with e�ciency and (as we shall see) incrementality thedesirable properties.The problem of enumerating the prime numbers is one of the most venerableof algorithmic problems. It received a deceptively simple and e�cient solutionfrom Eratosthenes of Alexandria in the 3rd century B.C. His insight was torecast the problem as that of removing the non-primes up to a �xed limit N .Eratosthenes' sieve requires �(N log logN) additions of numbers of size O(N).To paraphrase a remark of C.A.R. Hoare about Algol 60, Eratosthenes'sieve was an improvement on most of its successors. In this connection, notethat the asymptotically fastest known multiplication algorithm for a RAM,that of Sch�onhage and Strassen (see [2]), has a complexity equal to that of�(log logN log log logN) additions. So the bit-complexity of Eratosthenes' sieveis lower than one of �(N) multiplications. The latter is characteristic of manyproposed parallel algorithms (let alone some sequential ones).Nevertheless, progress was eventually made. The fastest known (sequential)algorithm is now our wheel sieve [9, 10], which requires �(N= log logN) addi-tions. It enjoys the properties of being sublinear, i.e., o(N), and additive, i.e.,not requiring multiplications.

Bengalloun [3] promoted another desideratum, that of being incremental.This means that N need not be �xed, so that the algorithm can in theory be runinde�nitely to enumerate the primes. Bengalloun's incremental sieve requires�(N) multiplications (and additions) to �nd the primes up to N . Any sievealgorithm can be made incremental by repeatedly running it with a doubledlimit. But Bengalloun's is incremental in a much more natural way: it takesbounded time to progress from N to N + 1, for all N . We shall describe it assmoothly incremental.Bengalloun also outlined how our technique of using wheels could be in-corporated in his basic algorithm to reduce its complexity to �(N= log logN)multiplications, but observed that our method in [9] of avoiding multiplicationswould require a prohibitively large number of multiplication tables.The main contribution of this paper is to exhibit an algorithm that simul-taneously enjoys all these desirable properties: it is a sublinear, additive, andsmoothly incremental prime number sieve. The construction of this algorithmproceeds in two phases.The �rst phase modi�es Bengalloun's linear (i.e., �(N)) smoothly incre-mental but multiplicative sieve to avoid multiplications. It does so by calculat-ing di�erences using an incrementally grown multiplication table. Theorems byHeath-Brown and Iwaniec show that the table does not grow too quickly.The second phase shows how dynamic wheels, i.e., reduced residue systems ofthe product of the primes up to a limit that grows with N , can be used to reducethe complexity while still avoiding multiplications and retaining the property ofbeing smoothly incremental.2 NotationWe employ a consistent notation, due to E. W. Dijkstra, wherever a variable isbound by a quanti�er such as 8, 9, P, Q, Max, Min and fg. The set-formingquanti�er fg is our invention; it was �rst used in [13]. The general form for aset-constructor is (fgx : D(x) : t(x)) which denotes the set of values t(x) whenx ranges over the domain characterized by D(x). However, t(x) is commonly x,and in such cases we omit the second colon and term, giving a form very closeto traditional mathematical notation. Such an abbreviation is also used withP,Q, Max and Min.The notion of a wheel is central to the algorithms to be discussed. The k'thwheel Wk (k > 0) is a particular reduced residue system of the product of the�rst k primes. In more prosaic terms, Wk is the set of all natural numbers nogreater than the product of the �rst k primes and not divisible by one of the�rst k primes. W �k is the set of all natural numbers not divisible by one of the�rst k primes. gk is the maximum gap between successive natural numbers notdivisible by one of the �rst k primes. We use the following notation (introducedin [11]):

;: the empty set;jSj: the cardinality of set S;next(S; x): (Min y : y 2 S ^ y > x);a::b: (fgx : a � x � b);(x; y): the g.c.d. of x and y;x j y: x divides y;pi: the i'th prime number;Primes(S): (fgx : x 2 S ^ x is a prime number);�(n): jPrimes(2::n)j;dn: (Max i : pi � n : pi � pi�1), n > 2;�k: (Q i : 1 � i � k : pi), with �0 = 1;Wk: (fgx : 1 � x � �k ^ (x;�k) = 1);W (i)k : the i'th greatest member of Wk;W �k : (fgx : 1 � x ^ x mod �k 2Wk);gk: (Max x : x 2W �k : next(W �k ; x)� x).Our algorithms are expressed in the language of guarded commands used in[4], extended with if- and forall-commands. The commandif b then S fiis an abbreviation of if b! S :b! skip fi:The forall-command denotes iteration over a �xed �nite set in unspeci�ed order(see [12]).3 Bengalloun's SieveThe following discussion of Bengalloun's sieve recapitulates our presentation in[12].Bengalloun's basic sieve is based on the following normal form for compositesc: c = p � f where p = lpf (c) and f > 1 (1)\lpf" denotes the least prime factor function. Note that in (1) we have lpf (f) � pand lpf (c) � pc.Bengalloun's sieve tabulates the function lpf on a superset of an incrementallyincreasing segment 2::n of the natural numbers. lpf (n) is tabulated when n isprocessed if n is even, otherwise it is tabulated when processing the largestcomposite< nwith the same value of f in its normal form.Changing perspective,when composite n = pi � f is processed, lpf is tabulated at pi+1 � f , providedpi < lpf (f). The primes are gathered in an array as they are discovered.In our presentation of the algorithm, f jS denotes the restriction of the func-tion f to the sub-domain S.

Bengalloun's Sieve:n; P; LPF := 2; f2g; f(2; 2)g;fP = Primes(2::n)^ LPF = lpf jdomain(LPF) ^ domain(LPF) = (2::n) [(fgp; f : f > 1 ^ p 2 Primes(3::lpf(f)) ^ prev(P; p) � f � n : p � f)gdo true!n := n + 1;if 2 j n! LPF := LPF [f(n; 2)g:(2 j n)! skipfi;if :(n 2 domain(LPF))! P;LPF := P [fng; LPF [f(n; n)gn 2 domain(LPF)!p := LPF (n);f := n� p;if p < LPF (f)!p0 := next(P; p);LPF := LPF [f(p0 � f; p0)gp = LPF (f)! skipfifiod A neat implementation uses a single array lpf with the representation in-variantlastp = max(P) ^ lpf [x] = 8>>>><>>>>:0; if 2 � x � 2n ^:(x 2 domain(LPF));LPF (x); if x is composite ^x 2 domain(LPF);next(P; x); if x 2 Primes(2::(lastp� 1)).Bertrand's theorem | there is always a prime between n and 2n| justi�es onlyde�ning array lpf up to index 2n.The algorithm clearly requires �(N) multiplications and additions to reachn = N .4 Avoiding Multiplications in Bengalloun's SieveMultiplicative operations occur in two places in Bengalloun's sieve. The �rst isthe computation f := n�p after p has been looked-up in lpf [n]. This is avoidedby the simple expedient of also tabulating the co-factor f along with the leastprime factor. Another array, cf (for co-factor) is used for this purpose. So themultiplicative operation is replaced with f := cf [n].The other multiplicative operation occurs in the abstract operationLPF := LPF [f(p0 � f; p0)g (2)which is now implemented as

n0 := p0 � f ;lpf [n0]; cf [n0] := p0; fSince p0 � f = p � f + (p0 � p) � f , and p � f = n, the problem of computingp0 � f reduces to that of computing (p0 � p) � f . Suppose, after it is computed,this latter product and the value f are recorded abstractly as �(p) and lastf (p)respectively. (We shall postpone implementation details.)Now when a value n is processed, and p0 � f must be computed, the productmay be written asn+ (p0 � p) � lastf (p) + (p0 � p) � (f � lastf (p)); (3)provided lastf (p) is de�ned, in which case the second summand is �(p), whichmay be looked up, and the third involves very small multiplicands.Under this provisional arrangement lastf (pi) and �(pi) are initialised whenprocessing n = pi � pi+1, so only in this case is lastf (pi) unde�ned. Then p0 � f isp2i+1. It is possible to compute this value incrementally without using multiplic-ations, but we shall adopt a more straightforward approach.When p = f , so that n = p2, lastf (p) is initialised to p and�(p) to (p0�p)�p.The e�ect is to extend the invariant with the conjunct(8i : p2i � n : lastf (pi) = (Max f : f = pi _ (lpf (f) > pi ^ pi � f � n)) ^�(pi) = (pi+1 � pi) � lastf (pi))Now the product p0 � f may always be written as (3) above.We shall arrange for a multiplication table to be incrementally tabulated(together with row-o�sets) so that the third summand (p0 � p) � (f � lastf (p))may be looked-up (without a multiplication).The �rst multiplicand is p0 � p. Since n = p � f and f � p0, n � p � p0, sop < pn and hence p0 < 2pn by Bertrand's Theorem. Thereforep0 � p < d2pn:The best known upper bound on prime gaps is the very conservativedn = O(n0:55+�) for any � > 0[6]. Thus p0 � p = O(n0:275+�) for any � > 0:Now consider the second multiplicand. lastf (pi) and f are either pi and pi+1respectively, or successive members of W �i+1. In the former case,f � lastf (pi) = O(n0:275+�)as above. In the latter,f � lastf (pi) = O(gi+1) = O(p2i+1)

by a result of Iwaniec [7]. Since f = n� pi, the di�erence is also bounded bydn�pi = O((n� pi)0:55+�):We may approximately balance these two known bounds as follows. If pi =O(n0:216), the di�erence is O(p2i+1) = O(n0:432). Otherwise, pi =
(n0:216), andthe di�erence is O((n � pi)0:55+�) = O(n0:432).We are thus able to prove that an O(n0:275+�) by O(n0:432) multiplicationtable su�ces for the product (p0 � p) � (f � lastf (p)).In passing, we note that this is certainly a gross over-estimate. According to[1], Cram�er's conjecture that dn = �(log2 n) \has been called into question",but the slightly weaker dn = O(log2+� n) for any � > 0is \still probably true". Suppose this latter claim is true. Then when pi =O(logn), the di�erence is O(p2i+1) = O(log2 n):And when pi =
(logn), the di�erence isO(log2+�(n� pi)) = O(log2+� n):So it is probably the case that a square multiplication table of side O(log2+� n)su�ces!For simplicity we construct a square multiplication table. Because of sym-metry, we only construct the upper triangle, going down each column in order.A one-dimensional array is used, so that i � j is stored at index j(j �1)=2+ i, forj � i. In order to avoid a multiplication when accessing the table, the values j2are incrementally computed and stored as well. With this scheme, a full m by mtable is available after m(m+ 1)=2 entries have been made. c1 entries are addedat each iteration (i.e., for each value of n), for an appropriate constant c1, whichis guaranteed to exist because each side is O(pn). It is very likely that c1 = 1su�ces. Each entry may be computed in O(1) additions.It remains to implement the abstract functions� and lastf . These are merelytabulated in arrays, indexed either by their prime argument (which is wasteful),or its index (in which case the prime indices of the least prime factors wouldneed to be stored in array lpf). Because a bounded number of one-dimensionalarrays is used, they may be interleaved in a single incrementally growing one-dimensional array with O(n) elements, without requiring multiplications for ac-cess.The resulting algorithm is not only incremental, linear and additive, but itis optimally smooth at the bit-complexity level | each value of n is processedin O(1) additions of numbers of size O(n). Note that performing just one mul-tiplication would vitiate the latter property.

5 Using Wheels to Add SublinearityAs was observed by its inventor in [3], Bengalloun's Sieve may be sped up byexploiting the same simple idea powering our wheel sieve (see [10]): a number nexceeding �k can only be prime if n 2 W �k , for otherwise it is divisible by oneof the �rst k primes.To derive maximum bene�t, k is maximised. In order to do so, the wheelthat is maintained must be updated to Wk+1 when n passes �k+1. This isaccomplished by incrementally building Wk+1 while the complete wheel Wk isused to generate candidates n.So rather than simply incrementing n, our new algorithm updates n tonext(W �k ; n), where k is maximal such that �k < n. Since n will be odd, the�rst if-command is no longer needed.Now suppose composite n = p � f is processed by this modi�ed algorithm, sop � pk+1. If p < lpf (f), then p0 � f 2 W �k+1, so it too will later be processed.The present code caters for this by tabulating lpf at p0 � f . The only concern,therefore, is that the least composite number n with a given co-factor f that isprocessed by the new algorithm is factored.These numbers are just those of the formpk+1 � f where k � 1 and f 2 Wk �Wk�1:The �rst of them, 25, is treated specially, and the factorisation of each of theothers is recorded when the previous one n in numerical order is processed. Letn = pk+1�f . There are two cases, depending on whether f is the greatest memberof Wk.If not, then with f 0 the succeeding member,pk+1 � f 0 = n+ pk+1 � (f 0 � f): (4)Consider the product in (4). The multiplicand f 0 � f falls within the bounds ofthe multiplication table. To bound the other multiplicand, note that�k < n < �k+1by de�nition of k. Since Xp�x log p � x(see [5, theorems 420 and 434]),pk+1 = �(logn):Hence the product may be looked up in the multiplication table.In the case that f is the greatest member �k � 1, the next number is pk+2 �(�k + 1), which di�ers from n by(pk+2 � pk+1) ��k + pk+2 + pk+1: (5)

Unfortunately, �k falls outside the bounds of the multiplication table. However,the product in (5) may be incrementally computed by repeated additions of �k.Since pk+2 � pk+1 = O(dpk+2) = �(log0:55+� n);there is ample time to do the calculation after n reaches �k.The incremental construction of Wk+1 is straightforward. The numbers n >�k with lpf (n) > pk+1 may simply be linked as encountered, and those less than�k linked in when used for the last time. The otherwise unused even-numberedelements of array lpf may be used to construct the linked list. Alternatively, twonew arrays may be used: one to hold the current wheel Wk, while the next wheelWk+1 is built in the other.Both new incremental sub-computations | building the next wheel and theproduct of �k | may be carried out in O(1) additions of numbers of size O(n)for each of the O(n= log logn) numbers up to n that are processed.We have arrived at an algorithm that{ employs only �(n= log logn) additions of numbers of size O(n) to enumeratethe primes up to n, equalling the performance of the fastest known algorithmsfor �xed n;{ moves from n to n+ 1 in only O(1) additions of numbers of size O(n). (Onaverage, of course, O(1) such additions increase the limit up to which allprimes are known from n to n +�(log logn)).A remark on the machine model is called for. We have been implicitly as-suming a RAM with a word size that grows with the computation, so that therunning time to �nd all primes up to n is O(n= log logn) arithmetic operationson numbers of size O(n). The reader may be more comfortable with a modelpositing a �xed size word, in which case the numbers used may be represen-ted by linked lists of the appropriate length, with no change to the underlyingbit-complexity.6 Closing RemarksSince the author's discovery of the wheel sieve in 1979, no algorithm for �nd-ing the primes up to even �xed N has been discovered with a complexity ofo(N= log logN) arithmetic operations. We conjecture that O(N= log logN) ad-ditions of numbers of size O(N) is best possible. We have achieved this with asmoothly incremental algorithm.Determining the status of the above conjecture, or more generally, givinggood lower bounds on the time-complexity of the problem of enumerating theprimes up to N (whether or not by incremental algorithms), are daunting openproblems.
(N= logN) additive operations on numbers of size O(N) are neededto list the primes up to N . The same lower bound of
(N) bit operations appliesif output as a bit-vector is permitted. But if output in the form of prime gaps isallowed (and why not?), even this lower bound has yet to be established, since we

showed in [11] that the primes up to N may be stored in O(N log logN= logN)bits and still recovered in order in O(1) additive operations per prime.Our new algorithm lacks one important property: it is not compact. As weshowed in [8, 11], Eratosthenes' sieve and some linear wheel-based sieves can beimplemented to run in O(N0:5) bits, whereas our new algorithm and Bengal-loun's sieve require O(N logN) bits (to enumerate the primes up to N).The space requirement of our new algorithm may be reduced by a factor of1=�(log logn), while preserving its sublinear, additive and smoothly incrementalproperties, by adapting the invertible mapping technique introduced in section7 of [9], but the other techniques presented therein rely on a bounded problemsize, and do not readily adapt to an incremental setting.Little is known about lower bounds for space for sublinear algorithms for�nding the primes, whether or not the algorithms are incremental. The knownupper bounds exhibit a great disparity in moving from a linear to a sublinearalgorithm. Is there a sublinear algorithm with a space complexity of o(N1��)bits for some � > 0?As has been mentioned, great reductions in space requirements for non-incremental algorithms may be obtained by trading in sublinearity. We planto investigate the extent to which this is possible for incremental algorithms ina future paper.References1. Adleman, L.M. and McCurley, K.S.: Open problems in number theoretic complex-ity, II. Proceedings of the First Algorithmic Number Theory Symposium. Thisvolume.2. Aho, A., Hopcroft, J., Ullman., J.: The Design and Analysis of Computer Al-gorithms. Addison-Wesley, Reading, Massachusetts, 1974.3. Bengalloun, S.: An incremental primal sieve. Acta Informatica 23 (1986) 119{1254. Gries, D.: The Science of Programming. Springer-Verlag, New York, 1981.5. Hardy, G.H. and Wright, E.M.: An Introduction to the Theory of Numbers, 5thed. London Univ. Press, London, 1979.6. Heath-Brown, D.R., Iwaniec, H.: On the di�erence between consecutive primes.Inventiones Mathematicae 55 (1979) 49{697. Iwaniec, H.: On the problem of Jacobsthal. Demonstratio Math. 11 (1978) 225{2318. Pritchard, P.: On the prime example of programming. In Tobias, J. (ed.): LanguageDesign and Programming Methodology. Lecture Notes in Computer Science 79,(1980) 85{949. Pritchard, P.: A sublinear additive sieve for �nding prime numbers. Comm. ACM24 (1981) 18{2310. Pritchard, P.: Explaining the wheel sieve. Acta Informatica 17 (1982) 477{48511. Pritchard, P.: Fast compact prime number sieves (among others). J. Algorithms 4(1983) 332{344.12. Pritchard, P.: Linear prime number sieves: a family tree. Sci. Comp. Prog. 9 (1987)17{3513. Pritchard, P.: Opportunistic algorithms for eliminating supersets. Acta Informatica28 (1991) 733{754

This article was processed using the LaTEX macro package with LLNCS style

