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Abstract

Given n sensors and m targets, a monitoring schedule is a partition of the sensor set such that each part
of the partition can monitor all targets. Monitoring schedules are used to maximize the time all targets are
monitored when there is no possibility of replacing the batteries of the sensors. Each part of the partition
is used for one unit of time, and thus the goal is to maximize the number of parts in the partition.

We present distributed algorithms for Monitoring Schedule under the following assumptions: 1) identical
sensors can each monitor all targets within a certain radius, 2) the n sensors are randomly distributed
uniformly in a large square containing the targets, 3) the number of sensors is high enough given the area
the square, and 4) the communication range is twice the sensing range (thus any two sensors which can
monitor the same target can communicate in one hop). Our results hold with high probability. With the
further assumptions that the sensors are capable (for example, by GPS) of knowing their exact geographic
position, and targets fill out the square, our schedule has at least (1−ǫ)opt parts, where opt is the optimum
solution. Without geographic position we show that a previously proposed distributed algorithm can be
modified to achieve a constant approximation ratio. Our algorithms run in a polylogarithmic number of
communication rounds, with the exact running time depending on assumptions on the information a sensor
receives when packets collide.

1 Introduction

The input to the Monitoring Schedule problem consists of n sensors, m targets, and a matrix describing
which sensor can monitor which target. We call the range of sensor u the set of targets that u can monitor.
In our model, an active sensor can monitor simultaneously all targets in its range. The output assigns every
sensor a time-slot (an integer); we call this assignment a schedule. In a distributed environment in which the
sensors have limited energy supply, the schedule dictates when a sensor actively monitors its range. More
precisely, the sensor will sleep in all time-slots except the one assigned to it. The quality of the schedule is
given by the maximum integer i such that for all 1 ≤ j ≤ i, the set of sensors assigned time-slot j can monitor
all targets. The objective is to maximize the quality of the schedule. In other words, we try to maximize the
time all targets are covered, which is one appropriate measure [39] for the lifetime of the network. Several
works [9, 32, 46] use “lifetime” to mean either the quality of such a schedule, or the quality of the best possible
schedule for a given network.

The problem is motivated by the fact that, as opposed to traditional ad hoc networks, sensor networks
are quite limited in power, computational capacity, and memory. A wireless sensor node typically consists
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of sensing hardware, an embedded processor and memory, a transceiver, and batteries. In most applications,
replenishment of power resources is impossible. As noted in [20], the energy density of batteries has doubled
only every 5 to 20 years, depending on the particular chemistry, and prolonged refinement of any chemistry
yields diminishing returns. Thus energy efficiency will be critical for a long time.

This problem was considered by Cardei and Du [9], who present centralized heuristics. Since the sensors
are left unattended after deployment, localized algorithms are preferable. In a localized algorithm, each
sensor decides by itself its time-slot, after exchanging information with neighboring sensors. Two sensors
are neighbors if they can communicate in one hop. Moscibroda and Wattenhoffer [32] and Calinescu [8] (see
also [24]) adapt one Feige et al. algorithm [18] to give a randomized algorithm that, assuming no collisions,
computes in one communication round a schedule whose quality is at least 1/O(lnm) of the optimum quality.
The results of Feige et al. [18] also immediately imply that, for arbitrary sensor-target matrices, obtaining
a significantly better approximation ratio with a polynomial-time algorithm (even a centralized one) is very
unlikely. The survey by Cardei and Jie [12] discusses, among others, this problem and cite more works on it,
all heuristics without proven bounds: Slijepcevic and Potkonjak [37] and Cardei et al. [11]. Also, Cardei and
Du [9] prove that, if the given sensor-target matrix is arbitrary, it is NP-Hard to determine if a schedule of
quality 2 exists.

In practice, the given sensor-target matrix might not be arbitrary. An important special case is the
Euclidean model, when sensors and targets are points in the two-dimensional plane, and the range of sensors
is given by disks of the same radius. Whether a centralized algorithm can achieve significantly better than
O(ln m) in approximating the optimum schedule in the Euclidean model is an open problem. In this paper, we
concentrate on the random Euclidean model, which further assumes that the sensors are randomly deployed
uniformly in an area slightly larger than the square containing the targets.

To our best knowledge, this is the first work to consider computing monitoring schedules in this model.
If the sensors are capable (for example, by GPS) of knowing their exact geographic position, and the targets
fill out a large square, we present a very simple distributed algorithm whose output has quality at least
(1 − ǫ)opt, where opt is the quality of the optimum solution. Without geographic position we show that a
previously proposed distributed algorithm can be modified to achieve a constant approximation ratio. Our
algorithms run in a polylogarithmic number of communication rounds, with the exact running time depending
on assumptions the information a sensor receives when packets collide. In the next subsection we discuss the
assumptions under which our results hold, together with related work.

Other works with different definition of lifetime and random deployment of sensors include Maleki and
Pedram [31], Xue and Ganz [40, 41], and Chen et. al. [15]. Heterogeneous sensors are considered by [29].

1.1 Related Results, Preliminaries, and Models

We start by describing the related Domatic Number problem and the existing results for it. Then we succinctly
describe related work on randomly deployed sensor networks. We continue with the model of communication
used by our algorithm, and explain why the number of communication rounds is the appropriate measure for
localized algorithms in this setting, together with the quality of the produced schedule.

A set of vertices in a graph is a dominating set if every vertex outside the set has a neighbor in the set.
The Domatic Number problem is that of partitioning the vertices of the graph into the maximum number of
disjoint dominating sets.

Let n be the number of vertices in the graph and δ the minimum degree. As is standard, in this paper o(1)
means ǫn, with ǫn → 0 as n → ∞; and whp (with high probability) means with probability converging to 1 as
the indexing variable goes to infinity. Feige et al. [18] gave a polynomial-time algorithm to obtain a domatic
partition with (1 − o(1))(δ + 1)/ lnn dominating sets. This implies a (1 + o(1)) ln n-approximation algorithm
for the Domatic Number, since the domatic number is always at most δ + 1. Moreover, they show that this is
essentially best possible: for every ǫ > 0, a (1− ǫ) lnn-approximation implies that NP ⊆ DTIME(nO(ln ln n)).
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Figure 1: Lifetime can differ from δ: sensors are small circles, targets are squares, and the big circles are the
coverage area of each sensor.

Their algorithm as well as their hardness result carry over to computing monitoring schedules.
If we take δ to be the minimum over all targets of the number of sensors covering a given target, then δ is

an obvious upper bound on the quality of any monitoring schedule. Even in the Euclidean model, achieving
a schedule of quality δ may not always be possible, as shown in this simple example: three sensors having
sensing radius 1 and located at the vertices of an equilateral triangle of side length 2− ǫ, and three targets at
the midpoints of the sides of the triangle – see Fig. 1. Each target is covered by two sensors, but no monitoring
schedule of quality 2 exists. It is open as to whether any Euclidean instance has a schedule with quality at
least a constant times δ [34].

In the random Euclidean model, Zhang and Hou [46] explore the issue of what density of sensors is needed
for each target to be monitored by at least k sensors, finding bounds for δ. Further research in the same
random model was done by Kumar et al. [28] and Wan and Yi [44]. Brass [6] defines “coverage” as he ratio
of the area covered by a sensing disk to the total area and presents near-optimal results (see also Liu and
Towsley [30]).

Another approach considered in the literature is to periodically rebalance the work of sensors [38, 5, 7, 16].
This method applies not just to monitoring, but also to clustering and communication [45, 22, 13, 23, 36, 45, 21].
Papers considering rebalancing typically have fewer sensors with more energy each. Assuming no changes
in the monitoring situation, each such sensor can be replaced by a number, corresponding to the initial
energy, of identical sensors, after which algorithms for computing the monitoring schedule can be used. This
transformation may not preserve randomness, if present in the initial instance. If we ignore rebalancing costs
and schedule in a centralized manner, a constant approximation ratio follows immediately from the results of
[3] and [19], combined, for example, as in [5]. Monitoring schedule protocols have also been proposed in [43],
Yan et al. [42] and recently in [10]; these papers present simulations without theoretical results.

In particular Berman et al. [5] use an algorithm called LBP (Load Balancing Protocol) which we adapt
in our paper. LBP works as follows: in each rebalancing, each sensor starts without a status and repeatedly
executes until its status becomes “on” or “off”: 1) if sensor s has a target t covered only by s from the set
of sensors without status or with status “on”, then s changes its status to “on” and stays on until the next
rebalancing, and 2) if sensor s detects that all its targets are covered by sensors with higher energy which
are not “off”, s changes its status to “off” and becomes idle until the next rebalancing. Similar schemes were
proposed previously for clustering by Basagni [4] and Chatterjee et al. [14], and were called “generic” by
Younis and Fahmy [45].

None of the localized rebalancing protocols or monitoring protocols mentioned above have proofs of both
approximation ratio and running time (defined in the next paragraph). Also, to the best of our knowledge,
there are no proven approximation guarantees for LBP nor non-trivial bounds on its running time.
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Since we are considering localized approximation algorithms, we measure the performance of the algorithm
by:

• The approximation ratio, which is the quality of the optimum schedule divided by the the quality of the
output (so the approximation ratio is at least 1).

• The number of rounds required to prepare the schedule. This is a reasonable estimate for the overhead of
the algorithm. As customary in the distributed algorithms setting [35], we call this number the running
time of the algorithm.

We do not focus on the total number of packets sent for the computation of the schedule, as a good total
number does not guarantee that certain sensors are not overloaded by sending a large number of packets and
thus left without enough energy to monitor the slots assigned to them in the schedule. A small number of
communication rounds, on the other hand, does guarantee a bound on the maximum energy spent computing
the schedule.

Continuing with the assumptions, sensors are identical, starting with the same amount of energy and
having communication radius twice the sensing radius. At the moment of deployment, sensors know the total
number of sensors, and each sensor knows its own unique ID. Thus any two sensors which can monitor the same
target can communicate in one hop. In fact, as we will see later, having larger communication range can be
detrimental to our algorithms’ running time due to more packet collisions. We also assume the communication
rounds are synchronized.

A packet broadcast by a sensor is received by all active sensors within the sender’s communication range.
Depending on hardware, certain information is available to sensors when packets collide. In the most beneficial
model, there are no collisions. In the hardest model, no sensor receives information on collisions. Various
other models have been considered in the literature [1]; for example, the receiver could be aware of the collision
while the sender is not.

To simplify matters, we assume all targets are in a large B × B square, and sensors have sensing radius
1 and are deployed uniformly and independently at random in a larger (B + 4) × (B + 4) square. The latter
assumption allows us to ignore boundary effects. One can verify that all of our results, assuming no boundary
effects, hold for all “fat” convex target areas (not necessarily a square). Here “fat” means that the ratio
of the perimeter to the area is a at most ǫ/10. For non-fat convex area, our algorithms have the slightly
worse approximation ratio of (2π

√
3)/9 + ǫ when sensors have GPS information, and again a large constant

approximation ratio when they do not.

Define q = 2
√

3
9 (B + 4)2 (the significance of 2

√
3

9 comes from being the reciprocal of the area of a regular
hexagon with side length 1). If direct placement of sensors is allowed, then clearly Θ(q) sensors are required
to cover the whole B × B square containing the targets. Under uniform random placement, by recasting
parameters for Theorem 2 of [44], (9(2π

√
3)−1 + o(1))q ln q sensors are required to cover all but a vanishing

fraction of the area with high probability. Throughout, we use q to give explicit bounds on the number of
sensors n required by, and the running times of, our algorithms.

1.2 New Results

First, we consider the case when the sensors are capable (for example, by GPS) of knowing their exact
geographic position, and the whole (large) square must be covered for each time-slot of the schedule. Let r
be a positive integer. When n ≥ f(ǫ)(r + 1)2q ln[(r + 1)2q], with probability at least 1 − 1

q2 , our algorithm

produces a schedule with quality at least r2

(r+1)2 (1 − ǫ)opt, where opt is the quality of the optimum solution

and f(ǫ) is a function we make explicit later, but does not exceed 6(1/ǫ)2. Thus the higher the density of
sensors the better the approximation we obtain. With no collisions, our localized algorithm runs in constant
time. In the hardest collision model, our algorithm requires each sensor to participate in O(ln2 n) rounds of
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communication. This algorithm requires that nodes know (or have a good approximation of) n and B. The
algorithm is very simple and is presented in Section 2. The same results hold if instead of requiring full area
coverage the instance has at least (16/ǫ2)q(ln q) targets randomly distributed uniformly and independently in
the square.

Second, we consider the case when the sensors do not have any geographic information. We make here the
assumptions that the targets can be identified, in that the sensors are capable of assigning a locally unique
ID to each target, meaning that (1) each target is assigned the same ID by all sensors covering it, and (2) no
sensor covers two targets with the same ID. Also we assume the targets are distributed so that each sensor
can broadcast the targets in its range in a polylogarithmic number of rounds (this is true whp if the number
of targets is at most q · polylog(q), and they are randomly distributed). We must use a different algorithm
here: Randomized Load-Balancing Protocol (RLBP), a randomized variation of the LBP algorithm mentioned
above in which balancing occurs in one step. When n ≥ q ln2 q, with probability at least 1− 1

n2 , our algorithm
produces a schedule with quality at least c ·opt, where c is a (small) universal constant. With no collisions, our
localized algorithm requires each sensor to participate in O(ln2 q) rounds of communication. In the hardest
collision model, each sensor participates in O(ln5 q) rounds of communication.

Although we can only prove a large constant approximation ratio, some experiments reported in [8] suggest
a randomized version of the LBP algorithm may produce whp schedules close to δ in quality on random
instances. We present and analyze the RLBP algorithm in Section 3, and make concluding remarks in Section
4.

2 Distributed algorithm with geographic information

We put on top of the (B +4)× (B +4) square a lattice of disjoint regular hexagons, which we call cells, of side
length 1/(r + 1), where r is a positive integer (See Fig. 2). We are only interested in relevant cells, defined as
those fully contained in the bigger (B + 4)× (B +4) square. Note that every target or point which need to be
covered is inside a relevant cell, and in fact any point within distance 1 of the smaller B × B square is inside
a relevant cell. We disregard the other cells, i.e., those not fully contained in the (B + 4) × (B + 4) square.

Since the area of a cell is (9/(2
√

3))(1/(r + 1)2), the total number of relevant cells N is N = B2(r +
1)22

√
3/9+O(B). As every relevant cell is contained in the (B +4)× (B +4) square, we deduce N ≤ (r+1)2q;

also note that q = (1/(r + 1)2)N(1 + O(N−1/2)).
Each of the n sensors is placed uniformly and independently at random within the (B + 4) × (B + 4)

square. With perfect information on geographic position, every sensor knows its own cell. First assume no
collisions. Then in one communication round each sensor broadcasts its own ID and geographic position. The
total number of packets sent is O(n), each having O(log n) bits.

The centers of each cell sit on the intersection points of a small triangular lattice (with nearest-neighbor
distance

√
3/(r + 1)), and also on the intersection points of a large (r-times scaled up) triangular lattice or

translate thereof (See Fig. 3). We define cells/centers lying on the intersection points of the same large lattice
to be in the same class, and arbitrarily choose one center as the class representative. In Fig. 3, the thick circle
and thick circle-with-“x” centers are in the same class with the thick circle as representative. Similarly, the
thick square centers form a second class. Nearest-neighbor distance within a class of centers is

√
3r/(r + 1).

By considering translates by integer combinations of the basis vectors generating the large triangular
lattice, we may take a full set of class representatives to lie in 2 abutting triangles as in Fig. 3. By an easy
computation, there are r2 classes. An ordering of these r2 classes can be determined easily and computed by
each sensor based on its location – the ordering method does not matter, so long as each sensor uses the same
one.

The algorithm consists of the following: (1) each sensor uses GPS to determine its class and gathers the
IDs and position of all the sensors in its cell; and (2) if the sensor is in class g, and it is the kth sensor in
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Figure 2: Here part of a regular hexagonal tiling is depicted close to the corner of a (B + 4)× (B + 4) square,
bounded by the dashed line. The inner B ×B square containing the targets is bounded by the solid line. For
this lattice r = 4, so that each hexagon has side length (and radius) 1/5, and the distance between centers of
abutting hexagons is

√
3/5. The three cells shaded gray are relevant – one completely outside the inner square,

one partially intersecting the inner square, and the other completely inside the inner square. The gray circle
of radius 1 indicates that a sensor having sensing radius 1 and lying in a relevant cell completely outside the
inner square might still cover a target in the inner square. However, the black cell which is partially outside
the outer (B + 4) × (B + 4) square is not relevant, and none of the sensors inside this non-relevant cell can
cover a target.

2

its cell according to the ID, the sensor becomes active in time-slot (1 − ǫ)(n/(q(r + 1)2))(g − 1) + k, where
ǫ = o(1) is chosen (later in this Section) so that whp the minimum number of sensors in a relevant cell is at
least (1 − ǫ)n/(q(r + 1)2).

Letting t = ⌊r2(1 − ǫ)n/(q(r + 1)2)⌋, we have the following bound on schedule quality.

Claim 1 Let ǫ > 0 and let n ≥ f(ǫ)(r + 1)2q ln[q(r + 1)2], with f(ǫ) sufficiently large. Then with probability
at least 1 − o(1), each relevant cell contains at least (1 − ǫ)n/(q(r + 1)2) sensors, and so for each time-slot
from 1 to t, all points in the target region are covered by some active sensor.

Proof. We defer the precise formula for f(ǫ) and for the probability bound until after the proof of Theorem
2. Given at least (1 − ǫ)n/(q(r + 1)2) sensors per relevant cell, for any time-slot from 1 to t, we have one
class (which we call active class) such that in every relevant cell from the class, a sensor is active. Because
of the lattice arrangement of cells in a class, the hexagons of radius r/(r + 1) with centers in the active class
completely cover (partition) the target area. The dotted hexagons centered at the thick circles of Fig. 3 are
three members of such a class. The radius of a small cell is 1/(r + 1). By the triangle inequality, the distance
from some point x in the target area to any sensor in the nearest relevant cell from the active class is at most
r/(r + 1) + 1/(r + 1) = 1, the sensing radius.

To obtain the f(ǫ) and the probability bound of the claim, we proceed as follows. Let Y
(j)
i be the probability

that sensor i lies in relevant cell j, where 1 ≤ i ≤ n and 1 ≤ j ≤ N . For a fixed j, the Y
(j)
i ’s are independent

6



Figure 3: Here again is depicted a partition of the space into “small” regular hexagons with sides length (and
radius) 1/(r + 1), with r = 4. Four abutting small hexagons are depicted here along with centers of many
others. A sensor in a small hexagon covers any target inside the containing dotted hexagon of side length
r/(r + 1) with the same center. There are r2 small hexagons not containing an “x” in the two abutting
triangles, called “class representatives”. If a sensor is active in a class representative and each of its translates
along the depicted triangular lattice with nearest neighbor distance

√
3r/(r + 1), then these active sensors

cover the entire area.

random variables with Pr(Y
(j)
i = 1) = p and Pr(Y

(j)
i = 0) = 1 − p, where p := 3

√
3/(2(r + 1)2(B + 4)2) =

1/(q(r + 1)2). By considering the minimum number of sensors η(1) := minj

∑

i Y
(j)
i in a relevant cell, we

obtain the following.

Theorem 2 Let n = xN lnN , where x > 1 is constant. Let β(x) be the root of the equation

γ + x(ln γ − γ + 1) = 0 (1)

which lies in (1,∞). Then with probability (1 − o(1)) as N → ∞, the minimum number η(1) of sensors in a
cell from placing n sensors independently and uniformly at random into N cells is at least x lnN/β(x).

The proof depends on the following distributional result (see, for example, [26, p.112]) on placing particles into
cells. Following [26], define α = n/N , and pk = αke−α/k! for any nonnegative integer k (pk is the probability
for a Poisson random variable with intensity α equaling k).

Theorem 3 If α/ lnN → x > 1 as n, N → ∞ and r′ = r′(α, N) is chosen so that r′ < α and Npr → λ,
where λ is a positive constant, then α/r′ → β(x) and

Pr(η(1) ≤ r′) ≥ 1 − exp

(

− λβ(x)

β(x) − 1

)

, (2)

where β(x) is the root of (1) in the interval 1 < β(x) < ∞.

We note that β(x) = x
1−xW−1

(

1−x
ex

)

, where W−1(·) is the −1 branch of the Lambert function, which is the
inverse of f(x) = xex (see, for example, [17, p.331]).
Proof. [Proof of Theorem 2] We show that by setting r∗ = x ln N/β(x), Theorem 3 implies Pr(η(1) ≤ r∗) → 0
(as N → ∞). As a consequence, every cell has at least r∗ sensors.
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Following the proof of Lemma 3 of [26, p.99], for any λ > 0, if r′ = r′(α, N) is chosen so that Npr′ → λ as
N → ∞, by using the Stirling approximation for r′!, taking the log of both sides, and multiplying through by
α/(r′ lnN),

α

r′
+

α

lnN

(

ln
α

r′
− α

r′
+ 1

)

→ β(x)

ln N
lnλ .

Similarly,
α

r∗
+

α

lnN

(

ln
α

r∗
− α

r∗
+ 1

)

→ β(x)

lnN
(− ln(x ln N)) .

Both right-hand sides converge to 0 as N → ∞. However, β(x)
ln N lnλ > β(x)

ln N (− ln(x ln N)) for N sufficiently
large, and f(γ) = γ+ α

lnN (ln γ−γ+1) is decreasing in the neighborhood of β(α/ lnN). Thus for N sufficiently
large, α/r′ < α/r∗, forcing r′ > r∗ and Pr(η(1) ≤ r∗) ≤ Pr(η(1) ≤ r′). Since this is true for all λ > 0, by
inspection of the right-hand side of (2), Pr(η(1) ≤ r∗) → 0.

We obtain f(ǫ) by setting x = f(ǫ) and N = q(r + 1)2 in Theorem 2, so that (1 − ǫ) = 1/β(f(ǫ)).
Plugging this for γ into Equation 1 we get 1/(1 − ǫ) + f(ǫ)(ln(1/(1 − ǫ)) − 1/(1 − ǫ) + 1) = 0. Using
the Taylor expansion ln(1 + y) ≤ y − y2/2 + y3/3 which holds for all y > 0, and simplifying, we obtain
that f(ǫ) = 6(1 − ǫ)2/(3ǫ2 − 5ǫ3) suffices to have (1 − ǫ) ≤ 1/β(f(ǫ)). If ǫ is small enough, f(ǫ) ≤ 3/ǫ2.
Although the probability convergence in Theorem 2 is only guaranteed to be Pr(η(1) ≤ r∗) = o(1), we believe
that a careful extension of the proofs of [26] would provide at least exponential convergence of the form
Pr(η(1) ≤ r∗) = O(exp(−const ·N)), since the limiting distribution of the number of sensors in a relevant cell
is Poisson with intensity α. Alternatively, a straightforward application of the Chernoff bound of [2, Theorem
A.1.13] yields convergence Pr(η(1) ≤ r∗) ≤ 1/q2 for f(ǫ) = 6(1/ǫ2) and q sufficiently large.

A theorem of Kershner [25] shows that at least (1 + o(1))2
√

3B2/9 disks of radius 1 are needed to cover
any convex shape of area B2; this limit is asymptotically achieved by dividing the B×B square into hexagons
(cells) of radius 1 (it is not surprising a perfect cellular placement would be optimal). Thus the optimum must
use at least (1 − o(1))q sensors to cover the area (in this and next paragraph o(1) = O(1/B)), and therefore

opt ≤ (1 + o(1))n/q. Thus our algorithm has approximation ratio (r+1)2

r2 (1 + ǫ), as promised.
We have replaced requiring target coverage with requiring full area coverage. However, for ǫ > 0, if

the number of targets is m = (1/ǫ2)q(ln q + ω(1)), then with high probability coverage of targets placed
uniformly and independently at random also requires q(1 − o(1)) sensors. Indeed, given a radius ǫ hexagon
tiling completely inside the B × B square, this m guarantees with high probability that each tile contains a
target, and so expanding the radii of a disc cover of the targets by a factor of (1 + 2ǫ) gives full area coverage
of a smaller (B − 4ǫ) × (B − 4ǫ) target area, after which Kershner’s theorem can be applied.

Finally, we discuss the case when collisions are detected by neither sender nor receiver. We treat here r
as a constant that does not depend on n, as r influences the approximation ratio. Or, if the density is very
high, one could trade better approximation for larger time, or decrease if possible the transmission range to
2/(r + 1), in effect eliminating r from the computation below. Only nodes in the same cell need to hear each
other!

When collisions are detected by neither sender nor receiver, it is beneficial to partition the set of sensors
into parts S1, S2, . . . , Sl, all but Sl of size f(ǫ)(r + 1)2q ln[q(r + 1)2], and Sl having size between f(ǫ)(r +
1)2q ln[q(r + 1)2] and 2f(ǫ)(r + 1)2q ln[q(r + 1)2], such a partitioning can be done based on sensor IDs prior to
deployment and preserves the fact that each part consists of sensors placed uniformly at random. Moreover,
for each part, we have a sharp estimate of the quality of the schedule our algorithm produces. We process
the parts separately as follows: sensors from Sj sleep for (j − 1)r2(1 − ǫ)f(ǫ) ln[q(r + 1)2] units of time, then
communicate with each other and cover the area for the next r2(1 − ǫ)f(ǫ) ln[q(r + 1)2] units of time, after
which, except for the case j = l, the sensors still alive from Sj stop communicating to allow the sensors from
Sj+1 to operate.
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Now we concentrate on only one Sj . From Chernoff’s bound ([2], Theorem A.1.11) we obtain that in each
Sj , with probability at least 1 − 1

q6 , each sensor has at most 200(r + 1)2f(ǫ) ln q other sensors within twice

the communication range. Consider 200(r + 1)2f(ǫ) ln q time-slots, and each sensor picking one time-slot at
random to communicate its coordinates and ID. With constant probability, this packet will be received by all
the destinations. Repeating this random process Θ(ln q) times ensures that with high probability each sensor
has one packet received by all sensors in its communication range. Thus each sensor sends Θ(ln q) packets and
is involved in Θ(ln2 q) rounds of communication, and with high probability manages to broadcast its ID and
position. The total number of packets sent is Θ(n lnn) and each packet has O(log n) bits.

3 Distributed algorithm without geographic information

We present the RLBP algorithm and prove that, with high probability, it has a constant approximation ratio,
and each sensor participates in a polylogarithmic number of communication rounds.

We use r = 1 when constructing the hexagonal grid; thus the cells have sides of length 1/2 and diameter

1. Note (this is also implicitly proved in the previous section) that every sensor in a cell covers the whole cell.
Define q′ := 4q.

Note that (as is implicitly proved in the previous section) the number of relevant cells is N = q′(1 −
O(q′−1/2)). We assume below that n = q′ ln2 q′, with the case n > q′ ln2 q′ treated by partitioning the sensors
into parts of roughly q′ ln2 q′ sensors each as done for our first algorithm. Since we only prove a large constant
approximation ratio, we will assume without loss of generality whenever necessary that q′ (and thus n) are
large.

The RLBP algorithm works as follows. The first version assumes no collisions. Recall that each sensor is
able to monitor one time unit. Initially all sensors are alive. At the beginning of a each time unit, all alive
sensors wake up and execute the following:

1. Each sensor s produces a random number rank(s) uniformly between 1 and n5, and broadcasts it. This
is the only communication during one time unit.

2. Each sensor s verifies, for each of its targets, if there is some sensor with smaller rank-value covering
that target. If this holds for all its targets, sensor s goes to sleep and wakes up after one unit of time. If
the condition does not hold (i.e., there is a target t such that s has the smallest rank-value among the
sensors covering t), then sensor s monitors for one unit of time, after which it runs out of energy and
dies.

For each target, the sensor with the smallest rank among those covering the target will not go to sleep,
and thus the algorithm is correct as long as there are enough sensors alive to monitor all targets.

The size of each packet sent is O(log n) bits, and each node sends O(log2 n) packets – at most one per time
unit. The total number of packets sent is O(n log2 n).

Both the instance and the algorithm are random. “Bad” events may happen - events which make the
algorithm perform poorly. As shown below, the algorithm will be successful (that is, will cover all targets for
time within a constant of the optimum time) if no bad event happens. We define what exactly are bad events
later, and will prove that the probability of any bad event happening is small.

The average number of sensors per relevant cell (cells are defined in the previous section) is n·(1/q′) = ln2 q′.
Note that the sensors in the algorithm are unaware of the cells; only the proof uses the cells extensively. The
first bad event, A, is that there is a relevant cell with more than 1.01 ln2 q′ or with less than 0.99 ln2 q′ sensors.

Lemma 4 For q′ sufficiently large, Pr[A] ≤ 1/q′3
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Proof. The probability that sensor s is in relevant cell a is the same for all sensors and relevant cells:
p = 1/q′. Define Ya to be the (random) set of sensors in relevant cell a; |Ya| is a random variable. Then
E[|Ya|] = n · p = ln2 q′. The Chernoff bound ([2], Corollary A.1.14) states that

Pr[||Ya| − E[|Ya|]| > ǫE[|Ya|]] < 2e−cǫE[|Ya|], (3)

where cǫ > 0 depends only on ǫ. In our case, ǫ = 0.01. We can pick q′ large enough to have ln q′ > 10 · 1
cǫ

and
therefore

Pr[||Ya| − E[|Ya|]| > ǫE[|Ya|]] < 2e−10 ln q′

<
1

q′4
, (4)

There are at most q′ relevant cells a, and so the probability that there exists an a with Ya out of the desired
range is at most 1/q′3.

For i a nonnegative integer, define Y i
a to be the (random) set of sensors which are in cell a and which have

not been used for monitoring during time-slots 1, 2, . . . , i; here Y 0
a is Ya as defined in the proof of the previous

lemma. Define Y i = ∪aY i
a . Define the random variable αi = mina |Y i

a |, where the minimum is over relevant
cells a; we are very interested in αi as the quality of the schedule is at least i if αi > 0 (recall that every target
is in a relevant cell).

Define X i
a to be the (random) set of sensors from cell a that are used to monitor in time-slot i, for i > 0.

Thus we have Y i
a = Y i−1

a \ X i
a.

A second bad event, C, is that there are two sensors which pick the same rank in the same time unit. We
have

Pr[C] ≤ ln2 q′ · n · n · 1

n5
≤ 1

n2
, (5)

since there are at most ln2 q′ interesting time units, n2 pairs of sensors, and the probability two sensors pick
the same rank is 1/n5. When C does not occur, the ranking of sensors gives a random permutation Πi of the
sensors, with s1 before s2 iff rank(s1) < rank(s2); it is immediate that Πi is uniformly random from the set
of n! permutations.

Call two cells adjacent if there is a sensor in each cell covering the same target; a cell is adjacent with
itself if it contains a sensor covering a target. By elementary geometry a cell is adjacent to at most 21 cells
(including itself).

Lemma 5 Fix a sensor s and a relevant cell a, and assume β > 0.51 We have: Pr[s ∈ X i+1
a | s ∈ Y i

a ∧ (αi >
β ln2 q′) ∧ C̄] ≤ 21

(1/2) ln2 q′
.

Proof. If s ∈ X i+1
a , then there exists a target t in a nearby relevant cell a′ for which s is the first sensor in

Y i covering t. The sensors Y i
a′ ∪ {s} certainly cover t. Conditioned on the event s ∈ Y i

a ∧ (αi > β ln2 q′) ∧ C̄,
the probability that s ranks first among Y i

a′ ∪ {s} is at most |Y i
a′ |−1 ≤ α−1

i ≤ 2(ln2 q′)−1. By subadditivity
over the at most 21 nearby cells potentially containing targets that s could cover, the result follows.

For distinct cells a, a′ adjacent after round i, define Qi
a(a′) to be the set of sensors s ∈ Y i

a such that s ranks
first in Y i

a′ ∪ {s}. Define si
a to be the sensor in Y i

a with lowest rank in Πi. By step 2 of the algorithm and the
definition of adjacency,

X i+1
a ⊆ {si

a} ∪
⋃

a′ 6=a,a′ a relevant cell adjacent to a

Qi
a(a′). (6)

We bound |X i+1
a | in terms of |Qi

a(a′)| as follows.

Lemma 6 Let a be a relevant cell, i ≥ 1 a time-slot, β > 0.51, and d a nonnegative integer. Then

Pr[|X i+1
a | ≥ d | C̄ ∧ Ā ∧ (αi > β ln2 q′)] < 21(2/3)d. (7)
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Proof. If d = 1, the lemma is immediate. Thus we assume below that d > 1. Let a′ be a relevant cell
adjacent to but distinct from a. Let Π′

i be the restriction of the rank permutation Πi to Y i
a ∪ Y i

a′ . The event
|Qi

a(a′)| ≥ d occurs iff the first d elements of Π′
i all come from Y i

a . The proportion of such permutations Π′
i

on Y i
a ∪ Y i

a′ is
|Y i

a | · (|Y i
a | − 1) · · · (|Y i

a | − d + 1) · (|Y i
a | + |Y i

a′ | − d)!

(|Y i
a | + |Y i

a′ |)!
≤ |Y i

a |d
(|Y i

a | + |Y i
a′ |)d

.

The conditioning on αi > 0.51 ln2 q′ implies that |Y i
a′ | > 0.51 ln2 q′, and on Ā implies that |Y i

a | ≤ 1.01 ln2 q′;
thus |Y i

a |/(|Y i
a | + |Y i

a′ |) < 2/3 and so Pr[|Qi
a(a′)| ≥ d | C̄ ∧ Ā ∧ (αi > β ln2 q′)] < (2/3)d. For a′, a′′ relevant

cells distinct from a, one of Qi
a(a

′), Qi
a(a′′) is always a subset of the other; this is because Qi

a(a′) is determined
solely by the lowest rank sensor in Y i

a′ . Therefore if X i+1
a = d > 1, then for some relevant cell a′ adjacent to

but distinct from a, |Qi
a(a′)| ≥ d. The result follows by subadditivity over (6).

If β > 0.51, by a direct application of Lemma 6 we have that for all i and relevant cells a:

Pr[|X i+1
a | ≥ 18 ln q′ | C̄ ∧ Ā ∧ (αi > β ln2 q′)] ≤ 1

q′7
(1 + o(1)),

and thus

Pr[αi+1 < αi − 18 ln q′ | C̄ ∧ Ā ∧ (αi > β ln2 q′)] ≤ 1

q′6
(1 + o(1)).

Using the equation above and letting k = 0.01 ln q′ and γ > 0.74,

Pr[αi+k < αi − k · 18 ln q′ | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ k

q′6
(1 + o(1)),

Fix one relevant cell a below, and one i. Assume γ > 0.74. Let nonnegative integers d1, d2, . . . , dk satisfy
∑k

j=1 dj = d. We have

Pr[|Xa
i+1| = d1 ∧ |X i+2

a | = d2 ∧ . . .

∧ |X i+k
a | = dk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 21(2/3)d,

using Lemma 6, which we note holds conditioned on all the events Y j
a′ for all cells a′ and all j ≤ i, and thus

can be used to bound Pr[|X i+2
a | = d2| | |X i+1

a | = d1], and so on. Here we used the fact that independent rank
functions are used in each time unit.

There are
(

d+k−1
k−1

)

ways of writing d as a sum of nonnegative d1, d2, . . . , dk, and we note that for d > 20k,
(

d+k
k−1

)

< 1.1
(

d+k−1
k−1

)

. Let d = δk, where δ is a (large) constant to be chosen later. Therefore for all i and all
relevant cells a we have:

Pr[
k

∑

j=1

|X i+j
a | = δk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 21(2/3)δk (δk + k)k

k!
.

Using the Stirling approximation, we obtain:

Pr[

k
∑

j=1

|X i+j
a | = δk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 21((2/3)δ(δ + 1)e)k.

As remarked above,
(

d+k
k−1

)

< 1.1
(

d+k−1
k−1

)

, and thus 21(2/3)d+1
(

d+k
k−1

)

< 21(3/4)(2/3)d
(

d+k−1
k−1

)

. It follows

that the numbers 21(2/3)d
(

d+k
k−1

)

decrease in geometric progression for large enough d, and therefore

Pr[

k
∑

j=1

|X i+j
a | ≥ δk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 4 · 21((2/3)δ(δ + 1)e)k.
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For a very large δ, taking into consideration k = 0.01 ln q′, we can obtain for all relevant cells a:

Pr[
k

∑

j=1

|X i+j
a | ≥ δk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 1

n4
,

and therefore

Pr[αi+k < αi − δk | C̄ ∧ Ā ∧ (αi > γ ln2 q′)] ≤ 1

n3
.

Start with i = 0 and repeat the argument above r := 1
4kδ ln2 q′ times to obtain that, with high probability,

αkr > 0.74 ln2 q′, and therefore the number of time units used is at least kr. Recall that the optimum cannot
exceed (1 + o(1))4n/q′ = (1 + o(1)) ln2 q′. Therefore the approximation ratio is (4 + ǫ) ln2 q′/(kr) = 4(4 + ǫ)δ.

Assume now that collisions are detected by neither sender nor receiver. Each sensor has Θ(ln2 q′) sensors
within twice its communication range. As described in the last paragraph of Section 2, Θ(ln3 q′) time-slots
are enough for a randomly repeated packet to be received whp by all its destinations: for Θ(ln q′) phases, a
node randomly picks just one time-slot out of the Θ(ln2 q′) time-slots of a phase. There are at most ln2 q′ time
units of the algorithm above, and thus a sensor can be involved in at most O(ln5 q′) rounds of communication.
The size of each packet sent is O(log n) bits and each node sends O(log3 n) packets - O(log n) per time unit.
The total number of packets sent is O(n log3 n).

4 Conclusions and Open Problems

We showed that deploying a large number of sensors randomly is, in relation to certain lifetime issues, very
close to the optimal deployment. Indeed, with high probability, our algorithm using geographic information
produces a monitoring schedule with quality at least (1 − o(1))superopt, where superopt is the quality of the
best monitoring schedule obtained by any placement of the same number of sensors. The first open question
is to obtain similar results with a smaller number of sensors, e.g., n ≤ q ln q. Both algorithms presented can
be used for values of n smaller than what we used, but we cannot analyze the quality of their output.

Regarding boundary effects, it is fairly easy to generalize our proofs to give a constant approximation if
the sensors are only distributed in a convex target area (previously the sensors were distributed in a slightly
larger area). For example, for a square target area and with n large enough, by using a single partition of the
target B ×B square into squares of diameter 1 and area 1/2 we get a quality of almost n/(2B2). A corner of
the target area is covered by circa πn/(4B2) sensors and thus the approximation ratio is (1 + o(1))π/2. With
a large number of sensors and a large square target area, one can use a clever partition (which we omit for
lack of space) into little squares to get a quality within (1− ǫ) of the degree of the corner – thus again a (1+ ǫ)
approximation.

The methods we presented extend to the following cases:

• the range of a sensor is given by lp metric rather than just l2 (Euclidean distance),

• the region to be monitored, and where the sensors are randomly placed, is three dimensional.

• k-coverage is needed – each target must be covered by k sensors.

In regard to the communication range, our work suggests that having communication range exactly twice
the sensing range is beneficial in that a localized algorithm exists, and larger communication range would only
result in more collisions.

We made many assumptions to make our proofs work. RLBP needs a communication range at least twice
the sensing range, but with GPS and enough sensors a small communication range is enough to compute
the schedule – only nodes in the same cell need to communicate. When targets are mobile, the GPS-based
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algorithm is the same as it covers the whole area, while RLBP needs to acquire and communicate targets in
each round, before deciding which node sleeps – and still runs the risk of a target leaving the covered area.

Both algorithms can be easily made to work without knowing n, the total number of sensors, in the case
that there are no collisions. More research is needed to make algorithms that work without knowing n, with
collisions, and for both scenarios, without synchronization.

Future work might assume only partial geographic information (e.g., angle of signal arrival [33, 27]) and
obtain results similar to those presented here with full geographic information, as well as getting better running
time with intermediate models of the information that is available to sensors when packets collide.

If the sensoring work is evenly distributed in the plane, as is the case with our algorithms in the case of
randomly distributed sensors, algorithms for collecting the data in a balanced manner are straightforward.
Note that our first algorithm, using geographic information, does create, with high probability given our
assumptions, a connected network: there is a node in each cell and nodes in adjacent cells are one-hop
neighbors. The RLBP algorithm, without geographic information, can be made to produce a connected
network with high probability if we insist that each sensor is also a target. Doing so does not change anything
in Section 3.
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