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Abstract—Enterprise networks are increasingly adopting
Layer 3 Multiprotocol Label Switching (MPLS) Virtual Private
Network (VPN) technology to connect geographically disparate
locations. The any-to-any direct connectivity model of this tech-
nology involves a very high memory footprint and is causing
associated routing tables in the service provider’s routers to grow
very large. The concept of Relaying was proposed earlier [9]
to separately minimize the routing table memory footprint of
individual VPNs, and involves selecting a small number of hub
routers to maintain complete reachability information for that
VPN, and enabling non-hub spoke routers with reduced routing
tables to achieve any-to-any reachability by routing traffic via a
hub.

A large service provider network typically hosts many thou-
sands of different VPNs. In this paper, we generalize Relaying
to the multi-VPN environment, and consider new constraints on
resources shared across VPNs, such as router uplink bandwidth
and memory. The hub selection problem involves complex trade-
offs along multiple dimensions including these shared resources,
and the additional distance traversed by traffic. We formulate the
hub selection as a constraint optimization problem and develop
an algorithm with provable guarantees to solve this NP-complete
problem. Evaluations using traces and configurations from a
large provider and many real-world VPNs indicate that the
resulting Relaying solution substantially reduces the total router
memory requirement by 85% while smoothing out the utilization
on each router and requiring only a small increase in the end-
to-end path for the relayed traffic.

I. INTRODUCTION

Enterprise networks are increasingly adopting Layer 3
MPLS VPN technology, to connect geographically disparate
locations. This technology offers direct any-to-any reachabil-
ity, via a provider IP network, among different sites of an
enterprise customer. However, this reachability model imposes
a very high memory footprint (details in Section II) and
is causing routing tables in provider routers to grow very
large (e.g., some VPNs can contain more than 10,000 routes).
Consequently, router memory availability has become a key
bottleneck when provisioning customers on a Provider Edge
(PE) router at the boundary of the provider’s network.

To alleviate this bottleneck, the idea of Relaying [9] was
introduced: it reduces the PE memory footprint of a VPN by
having a small number of hub PE routers to maintain full
reachability information, and enabling non-hub PEs (spoke
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PEs) to reach other routers by relaying through a hub (de-
tails in Section II). Intuitively, Relaying is motivated by the
key observation that traffic matrices (i.e., matrices of traffic
volumes between each pair of PEs) in VPNs are typically
very sparse [12], [11]. This is a result of various factors such
as the predominance of client-server applications and typical
corporate structures commonly placing application servers at
a few central locations. The sparse communication pattern
implies we might optimize routing table sizes for the common
case communications.

Selecting the hub routers for Relaying involves making
complex tradeoffs along multiple dimensions. On the one
hand, minimizing the number of hubs is desirable as it
can reduce the VPN memory footprint as well as upfront
installation and maintenance costs for hubs. On the other hand,
traffic between two spoke PEs is rerouted along an indirect
path via an intermediate hub PE, and thus potentially traverses
longer path in the provider network. Such relayed traffic can
(i) experience longer latencies, (ii) impose additional overhead
on the provider network which has to carry the traffic over a
longer distance, and (iii) cause additional load on the links
towards and from the hub and on the hub itself. In addition,
since a hub router is critical to maintaining reachability be-
tween its spoke PEs, Relaying needs to be resilient to common
failure scenarios. The memory usage, increased latency and
bandwidth overheads, additional loads on the hub and its links,
and reliability requirements all impose different constraints
on the Relaying problem, and a solution involves carefully
navigating this multidimensional space for a “sweet spot”
region.

The earlier effort [9] explored Relaying for a single VPN,
and developed practical heuristics (without a provable worst
case guarantee) for determining the hub selection for an
individual VPN that minimized the total number of hubs, while
ensuring that constraints on additional end-to-end latency were
not violated. That work did not consider factors like the
additional relay traffic load on a hub PE and its links, or
constraints on the memory and bandwidth resources arising
from the needs of other VPNs also served by the same provider
network.

A service provider network typically hosts many thousands
of different VPNs. In this paper, we generalize Relaying to
the multi-VPN environment. Different VPNs can have very
different characteristics in terms of size, traffic patterns, and
routing table sizes. While the routing entries are specific to
each VPN, the provider network and individual PEs are shared
resources serving many different VPNs. Decisions made for
one VPN can impact the fate of others in various ways., e.g.,



in terms of the available free PE memory, or available free
capacity on the uplinks of a PE. We formulate the multi-
VPN Relay hub selection problem as a constraint optimization
problem that takes into account both memory and bandwidth
constraints at each PE, the installation and maintenance cost of
a hub, the cost of transporting traffic across the network, and
the need for maintaining reliability for each VPN in the face
of PE failures. This optimization framework addresses a richer
set of constraints and is more general than the formulation
considered for the single VPN case in [9].

We develop three algorithmic approaches to solve the opti-
mization problem: (i) Integrated MULTI, our main algorithm,
uses a mix of group knapsack and reliable set cover ideas; (ii)
Localized MULTI - a simpler and faster variant of Integrated
MULTI; and (iii) Generalized SINGLE - for baseline com-
parison, we adapt and generalize the LCVSR heuristic from
[9] to the multi-VPN problem. While the heuristics from [9]
performed well for the single VPN case, the main multi-VPN
algorithm (Integrated MULTI) introduced here has provable
bounds and enables us to study the various resource tradeoffs
on a stronger footing. We extensively evaluate the algorithms
using real traffic traces, routing information, and topologies
from a large number of VPNs. See Section IV-D for a highlight
of the results of our analysis.

Other than single VPN Relaying, we are not aware of any
other effort for scaling Layer 3 VPN routing architecture that
reduce routing table sizes and satisfy requirements on latency
and load. In the context of the public Internet, a number of
recent efforts including CRIO [15], LISP [6], and ROFL [5],
have addressed the problem of developing scalable routing
architectures (more references in [9]). These works did not
propose specific algorithms for generating complete indirec-
tion configurations that satisfy given user-defined performance
constraints on latency and load.

The remainder of the paper is organized as follows. Sec-
tion II is an overview of the Relaying concept and formu-
lates our optimization problem. Section III presents the main
hub selection and spoke assignment algorithm, its proof of
correctness and finally establishes theoretical hardness results
which show that our guarantees are the best possible unless
P = NP. Section IV presents our experimental evaluations.
Finally, Section V concludes the paper.

II. BACKGROUND

In this section, after presenting the technologies leveraged,
we formulate the optimization problem that we solve in later
sections.

A. MPLS VPN and Relaying overview

Each customer site in an MPLS VPN (see Fig. 1(a))
connects to one or more provider edge (PE) routers in the
provider network. Each customer edge (CE) router announces
its own address blocks (i.e., routes) to the PE router(s) it is
connected to. Each PE router in turn advertises all routes it
received from its directly connected CE routers, as well as
the routes for the CE-PE access links, to all other PEs in the
same VPN. Each PE maintains all the advertised routes for

that VPN in a distinct Virtual Routing and Forwarding (VRF)
table for later packet delivery. For instance, in Fig. 1(b), a VPN
with 5 sites has to install 5 routes on each of the 5 PEs . This
setup ensures direct end-to-end reachability across the provider
network, since each PE has routing knowledge to forward a
given packet to the PE that is directly connected to the CE
advertising the destination address of that packet. Outgoing
customer traffic from a CE is encapsulated via MPLS at the
local PE and carried across the provider network, decapsulated
at the remote PE router and handed off to the customer router.

A provider network hosts many hundreds or thousands of
such VPNs, and a VPN can consist of hundreds or thousands
of sites. A single PE often serves hundreds of VPNs and
needs to maintain a per-VPN routing table, containing routing
information for all advertised routes for each VPN. Thus,
the VPN routing tables in PE routers grow very fast as the
number of customers (i.e., VPNs) and the number of routes per
customer increases. The problem is particularly challenging
considering that each VPN has an entire private IPv4 address
space for itself and customers have to advertise at least two
routes per site (one route for the site and another for CP/PE
link, e.g., a company with 5000 sites will inject at least 10,000
routes on each PE that it is connected to). As a result,
PE router memory space required for storing VPN route has
become a critical bottleneck in provisioning new customers.

Relaying [9] was introduced as a solution to contain the
impact on memory of the any-to-any connectivity made avail-
able to MPLS VPNs. The PEs supporting a given VPN are
categorized as either hub PEs (hubs) or spoke PEs (spokes).
The hubs store all the routes advertised within a VPN, as PEs
do in typical VPNs today, while the spokes need only to keep
the local routes of the sites attached to the PE and one unique
default route, that points to the closest PE. Therefore, when a
spoke receives a packet from a local site, it forwards it to a
hub that forwards it to its final destination. This approach sig-
nificantly reduces the memory on the spoke PEs (see Fig. 1(c).
Unfortunately, this comes at the cost of additional traffic being
relayed on the backbone and increases latency for the VPNs.
A key strength of Relaying is that the provider can implement
the technique simply by modifying the configuration of routers
in the provider network, without requiring changes to the
router hardware and software. Deploying Relaying involves
(1) hub selection: selection of a set of PEs as the hubs for a
VPN and (ii) hub assignment: determining for each spoke, its
corresponding hub.

B. Multi-VPN Relaying Problem Formulation

In the case of the multi-VPN Relaying optimization prob-
lem, a more thorough cost model needs to be created to
navigate the solution space and new constraints need to be
added to those for single-VPN Relaying.

First, the cost model should reflect the fact that every router
to be deployed has fixed costs to cover the hardware purchase,
the deployment and the maintenance regardless of the usage of
that equipment. Second, the cost should include the capacity
of the router utilized by the VPNs. More efficient usage of a
router’s resources is preferable as it frees up more resources
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for new additions. The utilization cost is a function of multiple
resources: the memory utilization that is driven by the number
of routes installed (i.e., ratio of memory used on a PE to
the total memory available), the CPU utilization that is driven
by BGP sessions, customer features and traffic load, and the
number of spare ports available. Finally, while Relaying can
reduce the amount of memory, it will increase the distance
traversed by traffic that is relayed. This is a direct cost for the
provider as it will involve additional resource consumption
in the backbone. Since the added distance traversed in the
backbone is approximately proportional to the added latency
and will turn out to be one of the constraints, this network
transport cost will be expressed as a function of latency. Our
objective is to minimize the cost of these dimensions, which
can be combined by evaluating their monetary costs.
The objective to minimize is therefore

04|H‘+Bzvijklijk+')/zui, )]
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where «, 8 and ~ reflect the monetary costs, |H| is the
number of hub PEs, u; is the utilization of PE 4, v;j; is
the volume exchanged between PE i and PE j for VPN £k,
lijr is the additional latency due to the additional distance
d(i, hub(i, k)) + d(hub(i, k), j) — d(i,j) where hub(i, k) is
the hub assigned to PE ¢ for VPN k and d(i, j) is the distance
between PE ¢ and PE j.
While minimizing this cost function, we require that the
solution should not violate some key constraints:

o Reliability for a constant number of PE failures: each
spoke site is to be assigned to p hubs, for a constant
integer p > 0, to provide a topology that is survivable
when we might have up to p — 1 PE failures;

o No packet incurs a latency increase of more than 6 so
that the experience of the end user is not impacted by
the Relaying architecture;

o The uplink bandwidth of no PE is saturated; and

o The memory usage of each PE is bounded by configurable
utilization upper limits.

An additional objective can be to balance the routing table
sizes across PEs so that the network provisioning team can
more easily provision new customers on any PE. This can be
achieved by changing the memory constraint and by lowering
the memory utilization allowed. Finally, in this paper, we seek
practical approximation algorithms with approximation factors
C, i.e., algorithms which are not necessarily optimal but their
solutions have costs within a factor C' of the optimum.
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C. Additional assumptions

To solve this constraint optimization problem, some as-
sumptions will be made. First, since memory is currently the
bottleneck on PEs, we will assume that the PE utilization is
simply the memory utilization on the PE, which is proportional
to the number of routes installed. Second, the cost model will
assume that the transport cost is linear and proportional to the
distance traversed and that the cost of traffic traversing the
network for the weighted average distance of today’s traffic
is $4 per Mbps [14]. In our model, the cost of PEs will vary
linearly with the memory utilization and be amortized over 36
months: the upfront cost for a PE will be $200K when empty
and reach a total cost of $400K if the memory is fully utilized
(see [2] or [1] for sample prices that will vary depending on
the configuration). A sensitivity analysis of the cost input in
Section IV will show that even a ten-fold change in the ratio
of bandwidth cost vs. router cost or memory cost does not
change the solutions considerably.

III. THEORETICAL RESULTS

In our terminology, a virtual PE is a pair (PE, VPN), where
VPN is installed on PE. In our relaying solution, any virtual
PE should be assigned to a number of hubs. The resemblance
may tempt us to model this problem using the facility location
(FL) problem.1 We can have a client for each virtual PE, and a
facility for each PE (as a candidate hub). One challenge here is
that although latencies are metric in our problem, we need to
resort to non-metric connection costs to accommodate for the
maximum permissible latency increase. We show our problem
cannot be approximated to within a factor o(In N'), where N is
the number of virtual PEs; see Subsection III-C. Nevertheless,
metric facility location® has constant factor approximation
algorithms.

If we relax the latency threshold, bandwidth and memory
constraints, as well as reliability requirements, we can cast
this basic model of the problem as a (non-metric) FL instance.
The only known work studying facility location problems with
“unsplittable hard capacities” for servers is that of Bateni
and Hajiaghayi [4]. Even in this work, however, metricity is

'In a facility location problem, we have facilities with associated opening
cost, and clients which should be connected to open facilities. The goal is to
find the optimal set of facilities to open, and connections to build between
clients and opened facilities, so as to minimize the open facilities’ opening
costs plus the connection costs.

2Metric facility location is a variant of the facility location problem in
which connection costs satisfy metricity.



assumed. In this section, we show how to tackle the problem
in presence of all these extra constraints. In a high level view,
our algorithm combines the greedy approach for solving Set
cover and the Dynamic Programming (DP) technique of the
Knapsack problem; furthermore, we need to generalize these
techniques to a fault-tolerant setting. In standard set cover, we
are given a collection C of subsets of a finite set I/, and the
goal is to find a sub-collection C’ C C of minimum size such
that every element in U/ belongs to at least one member of
C’,ie., U = Ugeer'S. In standard Knapsack, we are given n
of items, each having a value and a weight, and a knapsack
capacity c. The goal is to find a maximum-value subset of
items whose total weight is at most c.
To summarize, the constraints in our model are as follows:
1) We should avoid assigning a PE to a hub causing a
latency increase of more than 6,
2) Each PE has a memory limit; it defines the maximum
number of routes that can be stored in the PE;
3) Each PE has a bandwidth limit. The total traffic through
the PE should not exceed the limit; and
4) We might have a reliability parameter, say p, dictating
that p hubs should be provisioned for any virtual PE.
We usually work with p = 2, though our algorithms can
be easily generalized to any constant integer p > 0.

A. Main algorithm

We first simplify the objective function before stating our
algorithm. We deal with this simplified version in the rest of
the section. We show that any instance Z; with the objective
(1) can be transformed into an instance Z> which has a simpler
objective function we define here:

Zfi + Z%‘jklijk- 2
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The new objective (2) does not have the third term of the
general objective (1) (the one for memory usage of hubs);
neither does it have the multipliers «, 3 and ~. It only accounts
for the initialization costs of selected hubs, H, and for the
extra bandwidth cost. Note that we allow different costs for
different facilities. The proof of the following lemma follows
from a standard reduction (see for instance [10]) and we defer
its proof to the appendix.

Lemma I: For any constant ¢ > 0, we can transform in
polynomial time an instance Z; having an objective in the
form (1) to an instance Z» with the simplified objective form
(2) with a blowup factor at most 1 + €.

The general idea of the proof is as follows: If a particular
router R; is made a hub and gets w,; utilization, then it pays
a price of a + yu,; in (1). In the second instance, we place
multiple routers to model R; of the first instance. Each of
these new routers has a particular memory limit (spanning the
range from zero to Uj;, the total memory of R;); the cost of
such a copy in the new instance is a + yU;; where U;; is the
new memory limit of the copy. We can then show that a small
number of copies suffices to get the said bound of the above
lemma.

Our main algorithm follows a framework of greedily picking
an (approximately) most “efficient” hub to which we assign

a subset of virtual PEs and repeating until we satisfy all the
virtual PEs. A virtual PE is satisfied if it is assigned to a
hub. At each step of the algorithm, we have a set of yet
unsatisfied virtual PEs and we are to find the most “efficient”
hub (i.e., a hub whose selection cost divided by the number of
virtual PEs it satisfies is minimum) for some of them. We can
guess the location of the hub (conceptually, but algorithmically
we try them one by one), and then find the best assignment
for the hub. Fixing the candidate hub, and unsatisfied virtual
PEs, the subproblem (of finding the best assignment for this
hub)—which we will call Density Group Knapsack—is as
follows: there are n virtual PEs (items) partitioned into k
VPN (groups). Each VPN has a memory footprint s; (number
of routes needed for this VPN in each hub), and each virtual
PE has a bandwidth cost ¢; (summation of traffic times latency
increase for the traffic generated at this particular virtual PE).
There is also a global one-time-pay cost F' (i.e., F' = f if
the hub is fixed to be h). Let V be the set of VPNs. The set
of virtual PEs corresponding to VPN 7 is denoted by P;. We
seek to

e pick some VPNs V' C V whose total memory footprint
does not exceed M, the memory capacity of the current
hub, namely ., s; < M,

« deploy their memory footprint in this hub’s memory,

« and then serve using this hub some virtual PEs from each
picked VPN, i.e., we serve a subset of U;c\P;,

e SO as to minimize the ratio of cost to number of virtual
PEs served.

As an extension, we are also given a bandwidth usage v; for
each virtual PE and the sum of bandwidth usages of virtual
PEs we pick should not exceed the bandwidth limit B. To give
the idea of the algorithm, we ignore the issues of bandwidth
limits and reliability requirement (fault-tolerance) for now.
Assuming costs are small integers, we can solve the problem
using a dynamic programming (DP) technique. Let ¢(i,¢) be
the sum of the bandwidth costs of the ¢ cheapest virtual PEs
in VPN 4. Obviously, if we are to choose ¢ virtual PEs from
a VPN, we will pick the cheapest ones. It is straight-forward
to use c(i,¢) values to fill the table D(i,m,c), defined as
the minimum memory usage required to serve m items from
VPNs 1 through ¢ by a bandwidth cost c. Finally, we can
go over the table for ¢ = k (k is the number of VPNs) and
pick the best ratio cell whose memory usage does not exceed
M. Let us once more stress that the intuitive ideas given in
this paragraph is for a special case of the problem, in which
we have extra assumptions about input values and furthermore
bandwidth and reliability requirements are completely ignored.
To lift the assumption about small integers, we use ideas
similar to those for a Polynomial-Time Approximation Scheme
(PTAS), i.e., a (1+ €)-approximation algorithm for any ¢ > 0,
for the Knapsack problem. Now, we modify the instance
Zs (for a particular hub) to be an instance 73, in which
all bandwidth cost and bandwidth usage values have been
discretized to be integer multiples of some granularity (one
for cost and one for usage). We show in Lemma 2 that these
two instances are roughly equivalent. Our goal here is to find
an assignment to this hub of minimum “density,” i.e., the ratio



of cost to the number of virtual PEs satisfied. Let the cheapest
virtual PE have (bandwidth) cost L. The best density is at most
F+L, since one possibility is to only serve the cheapest virtual
PE. So, all virtual PEs costlier than F'+ L can be ignored. For a
given ¢’ > 0, we can define granularity to be 7 = ¢/(F+L)/N,
and costs are rounded down to the next integer multiple of .
Similarly to the granularity for costs, we define the bandwidth
usage granularity x = § B/N, where B is the bandwidth limit
of the current hub.

Lemma 2: The value of the optimum solution for Zs is
no better than that of Z3. Besides, any solution of Z3 with
bandwidth cost C'is a solution for Z5 in which memory usage
is the same, whereas bandwidth cost is at most (1+¢’)C times
that of Z3, and bandwidth usage is at most (1 + J)B.

Proof: The total error caused by the rounding of costs
is at most N7 = ¢(F + L). We next note that the total cost
(rather than density) is at least F' 4 L, as we have to pay the
facility cost F' and the cheapest virtual PE has bandwidth cost
L. So, the error in cost is at most an € factor of the cost. As
for bandwidth usage, the solution for Z3 uses at most B. The
error is at most Nx = 0B. ]
The number of distinct cost values would be at most N/¢’, and
the number of distinct bandwidth usage values is at most N/J.
Hence, one can divide these values by 7 and & respectively to
get an instance in which bandwidth cost and usage values are
polynomially bounded integers. Now, we can proceed with a
dynamic programming algorithm to solve an instance of Z3.

The algorithm in Fig. ?? is more elaborate than the idea
given above. One major complication arises because of the
bandwidth constraints. To update the DP cells, we need to
compute the least cost of serving a virtual PEs from a certain
VPN having a particular bandwidth usage. Had we not had
the bandwidth constraints, we could just sort the virtual PEs
in each VPN according to their cost and pick the a cheapest
ones. The procedure COSTWITHCAP solves this subproblem.
In particular, the procedure fills using a DP approach the
values T"[vpn, cnt, bw] that store the minimum cost of serving
cnt virtual PEs (i.e., A'[vpn, ent, bw]) of the VPN vpn with
bandwidth usage of bw.

B. Proof of correctness

In this section, we prove the following main theorem.

Theorem 3: The  algorithm  COMPUTEASSIGNMENT
(Fig. ??), given any fixed ¢ > 0 and § > 0, runs in
polynomial time and reports a solution whose cost does not
exceed (1 + €)(1 + In pN)cost(OPT). The solution assigns p
hubs to each virtual PE, such that bandwidth constraint of a
hub is violated by at most a factor J, and there is no memory
limit violation.

First we need rephrasing a seminal result:

Lemma 4 ([8]): Suppose that an algorithm works in itera-
tions and in iteration ¢, finds and adds to the partial (infeasible)
solution a hub that covers a subset .S of (previously unsatisfied)
virtual PEs. Let u; be the number of unsatisfied virtual PEs
before iteration i. If for every i, the ratio of the added cost to
|S|, called density, is at most c- w for some parameter
¢, then the total cost of the solution o7utput by the algorithm is

Algorithm 1 ComputeAssignment

{fi: cost of building/maintatining PE ¢ as a hub
b;: bandwidth limit on PE ¢
m;: memory capacity on the routing table size of PE i
s;: memory usage of VPN ¢ (routing table)
d(i,7): latency on the path between PEs ¢ and j
vj4: traffic volume between PE 4 and PE j for VPN ¢
0: the maximum permissible increase in latency }
€ —¢/3
Transform the objective into one of (2)
while there is an unassigned virtual PE router do
Set BestRatio < oo, BestSet « (), BestHub « 0
for h =1 to n do {i.e. for each candidate hub}
Let S be the set of unsatisfied (less than p times
assigned) PE routers s (possibly including h itself) for
which A is not currently a hub, yet it is feasible, i.e.,
d(s,h) 4+ d(h,d) — d(s,d) < 0 Vs,d with vgg >0
for each virtual PE j=(PE s, VPN ¢) in S do
Let v; be total traffic it needs to send
Let c; be the bandwidth usage cost for this assign-
ment i.e., >, Vjqqld(j, h) + d(h,d) — d(s, d)]
end for
Discretize ¢; and v; vals w.r.t. precisions €' and &
Let 7 and  be the respective granularities
for vpn =1 to k£ do
run COSTWITHCAP(vpn)
end for
Run MAINDP(h)
Run EXTRACTSOLUTION(h)
end for
end while
Assign BestSet to BestHub

at most ¢ - (1 4 Inn)cost(OPT), where n is the total number
of virtual PEs to be satisfied.

Next we need several lemmas about the performance and
correctness of the subroutines we use. For the rest of this
subsection, we work with an instance of Z3. The algorithm
COMPUTEASSIGNMENT runs in iterations. At each iteration,
we find the most efficient hub for the remaining virtual
PEs. A remaining virtual PE is one that has not yet been
assigned to p hubs. These virtual PEs are identified, and
the values for feasible assignments are computed. The main
part of the algorithm—procedure MAINDP—runs a DP to
compute the solution to a Density Group Knapsack instance.
However, procedure COSTWITHCAP is run before that, to
update an auxiliary table needed by MAINDP. Afterwards,
EXTRACTSOLUTION can go over the DP table and find the
most efficient assignment.

Lemma 5: Procedure COSTWITHCAP computes, in poly-
nomial time, for any VPN vpn, integer count and bandwidth
usage bwidth, a solution A’[vpn,count, bwidth] with cost
T’[vpn, count, bwidth|, which is the least cost of satisfying
count PEs from given VPN with the specified bandwidth
usage.



Algorithm 2 CostWithCap(vpn)

{For simplicity, we assume the PEs in this VPN are num-
bered from 1 to n}
Initialize T’ [vpn,count,bwidth] to co for all values
T'[vpn,0,0] «+ 0 and A’[vpn,0,0] «—
for cnt = 1 to n do {n is # of elements in this vpn}
for bw = 0 to b; step « do
for i =1 to n do
if v; < bw and
T’'[vpn,cnt,bw] > T’[vpn,cnt-1,bw—v;]+c; then
T'[vpn,ent,bw] < T'[vpn,cnt-1,bw—uv;]+c;
A’[vpn,entbw] «—  A’[vpn,ent-1,bw—uv;]U{i}
end if
end for
end for
end for

Algorithm 3 MainDP(h)

Initialize DP table T'[cost, vpn, served, bandwidth] < oo
T[0,0,0,0] — f»
A[0,0,0,0] — 0
for vpn =1 to k£ do
for feasible values of (srvd, cst, bw) do
Tcst, vpn, stvd, bw] «— T'[cst, vpn-1, srvd, bw]
Alcst, vpn, stvd, bw] <  Alcst, vpn-1, srvd, bw]
for (s, b) where 1 < s < srvd and 0 < b < bw do
¢« T'[vpn,s,b]
if ¢ < cst and T'[cst, vpn, srvd, bw] >
T[cst-c, vpn-1, srvd-s, bw-b] + Sypn  then
Tcst, vpn, stvd, bw] «—
Tcst-c, vpn-1, srvd-s, bw-b] + sypn
Alcst, vpn, stvd, bw] «—
Alest-c, vpn-1, srvd-s, bw-b] U A’[vpn, s, b]
end if
end for
end for
end for

Algorithm 4 ExtractSolution(h)

MAX COST « fj, + minjes ¢;
for served =1 to IV do
for cost = 0 to MAX COST step 7 do
for bandwidth = 0 to b; step x do
if T[cost, vpn, served, bandwidth] < m;
and cost/served < BestRatio then
BestRatio < cost/served
BestSet < A[cost, vpn, served, bandwidth]
BestHub « ¢
end if
end for
end for
end for

Proof: Let, for the sake of contradiction,
A’[vpn, count,bwidth] be the cell with least value for
count with a wrong value. Suppose the best solution is
a set A*, and let ¢* be the last virtual PE in A*. Then
A’[vpn, count — 1,bwidth — v;+] has the correct value, and
thus when the algorithm considers ¢ = ¢* the correct solution
A* should be accepted. The running time is O(N?3/§), which
follows from the simple for-loop structure of the algorithm
and the discretization process. [ ]

Lemma 6: Procedure MAINDP computes, in polynomial
time, the least memory usage for a given hub to service a
specific number of routers obeying its bandwidth capacity.

Proof: We prove a stronger result: for all values 0 <
i < k, we compute the least memory usage of a solution to
serve m virtual PEs from VPNs 1 through & that has cost ¢
and bandwidth usage w; the solution would be Alc,i,m, u]
whose value is Te,i,m,u]. Once again, for the sake of
contradiction, consider a cell T[c,i,m,u] having a wrong
value whose ¢ is minimum. Clearly ¢ # 0. Let A* be the
best solution in this case. If A* does not have any virtual
PE from VPN i, we have a contradiction by minimality of
the counterexample. Otherwise, A* uses some m’ virtual PEs
from VPN ¢. Lemma 5 and the update rule makes sure that
we consider this with the correct values for bandwidth usage
and cost of these m/ virtual PEs (we guess them). This is a
contradiction as we should consider A* and get the optimum
solution in our table. The running time is O(kN®/¢'5%). m

The last remaining step before proving our main theorem
(Theorem 3) is the reliability or fault tolerance feature needed
in our algorithm. At this point, we need to show that Lemma 4
is also valid in case of fault tolerant optimization. In our
algorithm, each virtual PE is assigned to p, say two, hubs.
It arbitrarily picks one of them unless it is forced to switch
to another one due to node failures. This problem is closely
related to Reliable Set Cover defined below. In Reliable Set
Cover, we are given a collection C of sets from a ground
set U of n elements. The goal is to pick the minimum cost
subcollection C’ C C so as to cover each element at least
p times; ie., [{S : S € C';e € S}| > p for any element
e € U. The natural algorithm RELIABLEGREEDY works in

Algorithm 5 ReliableGreedy
C'—10
for all : € U/ do
pi < p {remaining covering requirement of i}
end for
while 3; € U/ with p; > 0 do
Let S € C have maximum efficiency =
C'—Cus
C—C-S
for all i € S do
pi—pi—1
end for
end while

Ccost(S)
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iterations and picks the most efficient set at each iteration, i.e.,
the set whose ratio of cost by number of new covered elements



is minimized. Note that each element is to covered p times.
Hence, as long as an element is not completely satisfied, it is
considered a newly covered element whenever it is included
by a set. We state and prove this lemma—a generalization of
Lemma 4—in this abstract formulation.

Lemma 7: Suppose that an algorithm works in iterations

and in iteration ¢, finds and adds to the partial (infeasible)
solution a set that covers a subset .S of (previously unsatisfied)
elements. Let u; be the number of unsatisfied elements (taking
into account the multiplicity as a weight) before iteration ¢. If
for every 1, the ratio of the added cost to |S|, called density,
is at most c - w for some parameter c, then the total
cost of the solutionboutput by the algorithm is at most ¢- (1+
In pn)cost(OPT), where n is the total number of elements to
be satisfied.
The proof of the lemma appears in the appendix. The proof
is done in a similar fashion to that of Lemma 4. The main
difference here is that each element can be selected multiple
times. At each step, we show that the cost of the greedy
algorithm is comparable to that of the OPT. The factor p thus
appears in the guarantee and in the statement u; needs to take
multiplicities into account.

Now we summarize with the proof of our main theorem.

Theorem 3: We let ¢ = ¢/3. By Lemma 1 transforming
to the instance with simpler cost function causes an increase
in cost of at most a 1 + € factor. For solving a least density
subproblem, Lemma 2 ensures that the discretization does not
increase the cost by more than 1+¢’. We can solve the discrete
version of the subproblem with the simpler cost function, due
to Lemma 6. Lemma 7 completes the proof, noting that (1 +
) <143 =1+e. [ |

Finally we emphasize that in this section, we considered
soft capacities, i.e., we allow multiple routers to be placed at
a facility, each obeying the routing table size limit. Insisting on
hard capacities, i.e., if we cannot replicate routers, makes the
problem very hard. Indeed, we cannot get any approximation
guarantee on costs if we have hard capacities unless P = NP.3
Hence, soft capacity relaxation is necessary for tractability,
yet in practice, we can resort to heuristics which disallow soft
capacities without harming the solution in our current data set.

C. Hardness of approximation

In this section, we show that the algorithm in the previous
section provides the best guarantee one can hope for and
it is essentially optimal. Here, we do not even resort to
bandwidth or memory usage restriction. This also implies that
the hardness is true for the single-VPN special case.

Theorem 8: The problem of minimizing total cost while
obeying the hard threshold on latency 6 is not approximable
to within (1 — o(1))Inn unless NP C DTIME(n©oglogn))
(or to within ¢Inn for some constant ¢ < 1, unless P = NP).

3Any bounded approximation ratio implies we can solve the Knapsack
problem (or its special case called the Subset Sum problem) which is NP-
hard: the idea is to have two candidate hubs, each with memory capacity of
M. We have a total of 2M routes for different VPNs and we want to know
whether there is a way to assign VPN to these two virtual PEs such that the
memory usage in each virtual PE is not violated. This is equivalent to finding
a subset of a set of integers whose sum is exactly half the total sum.

Indeed, for any ¢’ > 0, even if we allow a latency of up to
', we would not get an approximation ratio of better than
O(Inn) for cost.

Proof: Suppose we are given an instance of Set Cover
with n sets S;, and elements e;. In our relaying instance, we
have a virtual PE for each set and 2n2 ones for each element.
The element virtual PEs corresponding to an element e; of Set
Cover are labeled vij,fugj for 1 < j < n?. Each pair Uij,vz’-j
need to send some flow to each other. We pick @ = 1 and
[ =~ = 0. Distance between any two virtual PEs is D > 0
unless one is a set S; and the other is a node corresponding to
an element e; € S;. In this case, their distance is D /2. Note
that the distances satisfy metricity. Finally, 6 is set to be 0.

Take any pair v;;, v;;; their hub can only be one of v;;, vj;
or some set containing e;. We claim that the optimal solution
only uses set nodes as hubs. If some wv;; is picked as a
hub, then there should be at least n2 hubs among the nodes
corresponding to element e;; otherwise, one pair connects to a
set node and all the other nodes could do the same. However,
the cost of this solution is at least n2, while there is a solution
with n hubs (namely, the one that picks all the set nodes).

Hence, each element connects to at least one set, and our
cost is proportional to the number of sets. We can then invoke
the established hardness of Set Cover to draw the conclusion
[7], [13]. Note that any multiplicative relaxation of § = 0
would give the same result. [ ]

IV. EVALUATIONS
A. Relaying Algorithms

We evaluate the performances of the following algorithms
for determining the selection of hubs and assignment of hubs
to spokes for the different VPNs:

o “Status Quo” (STATUS) which shows the current situa-
tion of the network without any optimization.

¢ “baseline” (BASE) which is a generalization of the al-
gorithm proposed by Kim et al. [9] to a multi-VPN
setting, in which optimization for each VPN is done
independently. In this algorithm, VPNs are dealt with in
a random order. For each VPN, we run the single-VPN
optimization of [9] to minimize the total memory usage,
using the residual bandwidth and memory on the PEs;
the use of residual capacities is to avoid violating those
hard thresholds.

o “multi-VPN optimization” (MULTI) that is the algorithm
we proposed earlier in this section.

MULTI is our major contribution and has some variations:
Integrated (INT) and localized (LOCAL). The former runs an
optimization once for the whole instance, whereas the latter
runs the optimization in a “localized” manner. At each step
of the localized algorithm, part of only one VPN can be
handled, whereas each step of INT can deal with parts of
different VPNs. In other words, each step of INT can handle
multiple steps of LOCAL. As is expected, the optimization
for LOCAL is simpler and runs faster; however, the results
are inferior to those of INT, because LOCAL cannot make the
more global optimization - it might well happen that making
a collective decision for all the VPNs is better than that of



making it individually for each VPN. LOCAL* and INT*
are unconstrained versions of the above algorithms, in the
sense that a new VPN might be assigned to a PE which is
not currently part of the VPN. In the constrained version, on
the other hand, each PE can only be a hub for those VPNs
that currently have some CE attached to it from that particular
VPN.

To implement the algorithms, we need to tackle the issue of
large running time. Although the algorithms run in polynomial
time, the running time guarantees are still too large. We
notice that the memory usage of a single VPN is usually not
large compared to the memory capacity of PEs. Were this
always the case, a good approximation would be to solve
fractional knapsack (using an LP-solver such as CPLEX for
a natural linear programming) rather than pseudopolynomial
time dynamic programming solutions to knapsack. However,
this is not the case. Fortunately though, the memory usages can
be divided into two groups: the VPNs whose memory usage is
large and those with small memory usage. The former group
need a dynamic programming solution, whereas a fractional
knapsack solution is sufficient for the latter group. We mix
these ideas with a couple of heuristics to make the running
time of our algorithms tractable.

All our algorithms run in a reasonable amount of time,
which ranges from 10 seconds to the worst case of an
hour, depending on the parameters used. These running times
correspond to instances with hundreds of PEs and thousands
of VPNs. Since we only need to run the optimization occa-
sionally, the times are quite acceptable.

B. Setting

We used traffic, configuration and topology data from a large
tier-1 ISP, collected during a work-week of June 2008. The
data set corresponded to hundreds of PEs, and thousands of
VPNs. Size of VPNs ranges from a few to hundreds of PEs
and thousands of CEs.

In the evaluations below, unless otherwise specified we use
the following default parameters settings : (1) the constraints
on the resources at each PE are : 100% of the memory
(this allows us to compare our scheme which can handle
explicit constraints on memory usage to others) and 80% of the
bandwidth (leaving some room for handling traffic variability);
(2) We limit the increase in path length due to relaying to 200-
miles which corresponds to the threshold (6) for permissible
additional unidirectional latency to be 2.5 msec. Most network
applications today can easily tolerate increases in excess of
this value. The selection of 6§ was also guided by our desire
to limit the extra load on the network due to relayed traffic
traveling longer distances; and (3) the default fault-tolerance
requirement is the non-reliable instance where each spoke in
a VPN needs to be assigned to a single hub PE.

C. Simulation results and analysis

The algorithms BASE, LOCAL, INT, LOCAL* and INT*
cost 80%, 73%, 66%, 36% and 30% of that of “status quo”
(STATUS) respectively. The fraction of PEs which selected as
hubs are 79%, 72%, 64%, 36% and 31% respectively for the

different schemes. BASE and MULTI (all variations) reduce
the total memory usage to about 15% of STATUS QUO, for
the default parameter settings. The bandwidth cost for these
solutions are within 1.5% of each other.

We note that our results (including hub assignments) were
relatively stable when using data for different days and ex-
hibited less than 1% of changes, possibly due to the relative
stability of VPN communication behaviors.

It might be the case that there are poorly utilized hubs very
close to each other. While optimizing using INT*, we may
be able to shut down many of these hubs and maintain only
a few. The cost of INT and INT* can substantially differ if
this is not allowed by INT, since the current hubs have poor
utilization because each has its own set of small VPNs.

In the following, we mainly consider the MULTT algorithms
which, and as shown above, realize the lowest overall cost. We
always compare the total cost and total memory usage to those
for STATUS, and present the values as percentages.

1) Memory utilization limit: Fig. 2 shows the impact of
different memory utilization limits on the total cost incurred
by different solutions. Across the range of utilization limits,
we note that the INT variant always does better than the
LOCAL variant. Also the unconstrained solutions substantially
outperform the constrained ones. For example, given a 50%
memory limit, the cost for INT* is less than half that for INT.
For a given setting, the total number of routes for each scheme
were very similar, the main difference in the schemes was
in the number of hubs required. We also note that memory
utilization has very little impact on the total cost. Further
investigation shows that as we decrease the memory utilization
threshold, each scheme does need a few more hubs, but the
total memory usage stays nearly the same.
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Fig. 2. Effect of maximum memory utilization on the total cost.

Our evaluations showed that the total cost did not change
considerably when we change bandwidth limit values within
a reasonable range. This implies that the links in the network
still have sufficient free bandwidth compared to the traffic
demand that they can accommodate the additional relayed
traffic load.

2) Permissible latency threshold 6: Fig. 3 illustrates the
change in cost and total routes installed caused by varying 6.
As latency increases to about 2000 miles, we reach a steady
state for the non-constrained algorithms where the solutions
incur about 15% of the cost for STATUS. The constrained
solutions, on the other hand, approach a state where we
still incur roughly 40% of the original cost. We also notice
that the total number of routes is essentially independent of
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the algorithm and the constraint, but more importantly is a
function of the permissible latency increase. Even for small 6
in the few hundred miles range, the total memory requirement
reduces dramatically to a small fraction 10— 15% of what is
needed today.

3) Fault-tolerance: We consider three levels of reliability
requirements: 1, 2 and 3hub-reliability. Recall that p-hub
reliability requires that each spoke in each VPN have p
candidate hubs - this ensures any-any connectivity even when
p — 1 hubs fail. Obviously, designing such a network with
high reliability is more costly. In Figs. 4 and 5, we see how
cost of the design increases with these extra requirements.
This is evaluated at different values for permissible latency
increase and memory utilization limit. In each case, the other
parameters are set to defaults. We note that 3hub-reliability
INT* costs less than lhub-reliability LOCAL; i.e., if we relax
the constraint to allow new VPNs in a PE, we can achieve
much higher reliability requirement with the same cost. Also,
in general neither the number of routes nor the total cost
increase linearly with the reliability parameter; see Figs. 4
and 5 and Table L.
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We also found that the total number of routes needed is
not significantly impacted by the memory utilization limit.

TABLE 1
EFFECT OF FAULT-TOLERANCE ON NUMBER OF TOTAL ROUTES NEEDED.

[ New VPNs in PEs [[ Thub reliability [ 2hub reliability [ 3hub reliability ]

Allowed 13% 21% 27%
Not allowed 13% 20% 23%

However the memory usage is impacted by the fault-tolerance
level and the choice between versions of MULTI, see Table 1.
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We next conduct an experiment to explore how the solution
for a 2hub-reliability instance differs from the 1hub-reliability
one. We begin with the 2-hub solution of MULTI and derive
a spoke-to-hub assignment by allowing each spoke PE to
select one of its assigned hubs at randomly. We measure the
change in memory usage if among all the routing table entries
required for the 2-hub solution, we only keep those needed to
support this spoke-to-hub assignment and remove all others.
The results show that 20% of the hubs used no more than half
their current memory, while 50% of them utilize more than
90% thereof. The total number of routes we need to store in
this case is 79% of what the algorithm provisions for 2hub-
reliability. The remaining 21% of the entries account for the
additional overhead of getting 2—hub reliability seamlessly.
Despite this apparent saving, we do not suggest routers should
remove these extra tables from their memory and load them
only in case a particular hub fails. The reason is that this
increases management overhead and disruption time.

Nevertheless, this means that although we have provisioned
for a 2hub-reliability case with all the infrastructure present,
we can drop the cost to 15% more than the optimal, by
just randomly picking among the two hubs and removing the
unnecessary routes. In other words, though our solution is
2hub-reliable, we can easily extract from it a 1hub-reliable
solution whose cost is very close to the optimum.

4) Distribution of memory and bandwidth utilization:
We compare the memory usage for STATUS to the solution
proposed by our algorithm (INT*). Fig. 6 illustrates how our
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algorithm has smoothed out the usage at different routers.
The maximum per-PE memory usage was 30% for INT*
whereas for STATUS a significant number of PEs had much
higher utilization. We stress this effect was not an explicit
major objective of our algorithm, but that careful choice of
parameters can lead to this desirable effect.
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5) Location of hubs: Now, we look at the geographic spread
of hubs selected by our algorithms. Note that the hub location
is constrained to locations where PEs are already present. We
compare the constrained scheme INT vs. the unconstrained
scheme INT*. We consider states with at least four routers.
Fig. 7 shows that for algorithm INT, most states need to keep
more than half of their current PEs as hubs, while in the
INT* solution, most states need less than half the routers. This
finding shows we have reduced the number of hubs in almost
all the States, and not in a few select geographical locations.
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Fig. 8. Comparison of different bandwidth cost models.

6) Stability of cost model: In Fig. 8, we compare between
two different models of routing costs and show that the results
are very close. One labeled as LINK measures the cost of
routings per link. Each link, regardless of its length, costs $4
per month per Mbps, while the other one, marked as MILE,
charges this $4 price on the weighted average distance we
have in our data. This is done, in order to make the costs
more realistic. However, we note that the results are not too
different and this further demonstrates the stability of our
model. Indeed, we have done more experiments to measure
the stability of our model. It turns out that even a ten-fold
change in ratio of bandwidth cost vs router cost or memory

cost does not change the solutions appreciably (i.e., less than
1%).

D. Summary of results

To summarize the main results, our analysis shows that

o There is consistent significant reduction in total cost
(using any assignment to the parameters), as we use
better algorithms; i.e., STATUS, BASE, LOCAL, INT,
LOCAL* and INT*. The last algorithm decreases the
total cost by a factor three from STATUS for the default
parameter values.

o Although we try to minimize the unified objective (1),
we are also able to achieve an 85% reduction on total
memory usage which is close to a theoretical limit.

o Reducing the memory limit from 100% to 35% changes
the total cost by less than 5%, whereas the change
from 35% to 15% imposes a 25% increase of the total
cost. Memory or bandwidth usage limits do not have a
substantial effect on the total number of routes.

o Better reliability can be guaranteed by provisioning
backup hubs for each PE, while the increase in cost is
not substantial. The total cost, number of hubs and total
memory usage is increased by less than 50% to get 2-
reliability and less than 70% to get 3-reliability.

e One constraint in [9] was that a VPN could not be
assigned to a hub, if the PE (candidate hub) was not
part of the VPN. Our experiments show that relaxing this
constraint can lead to substantial reductions of more than
50% in total cost.

e Our cost model is stable, in the sense that changing
several parameters to within a reasonable range, does not
change the assignments by much.

V. CONCLUSION

In this paper we focus on reducing the large service provider
memory footprints of Layer 3 MPLS VPNs for the common
scenario where a single provider network’s memory and band-
width resources are shared by many thousands of different
VPNs. We generalize the concept of VPN Relaying, which
enables routers to reduce routing tables significantly by offer-
ing indirect any-to-any reachability among PEs, to this multi-
VPN setting. We formulate multi-VPN Relay hub selection as
a constraint optimization problem that takes into account both
memory and bandwidth constraints at each PE, the installation
and maintenance cost of a hub, the cost of transporting traffic
across the network, and the need for maintaining resilience
to PE failures for each VPN. We develop solution algorithms
with guaranteed bounds on performance and our evaluations
indicate that our Relaying solutions lead to substantial cost
savings.

Our multi-VPN Relaying technique is readily applicable
in today’s network and works in the context of existing
routing protocols without requiring any changes to either
router hardware and software, or to the customer’s network.
Network administrators can easily deploy the technique by
modifying only routing configurations.
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APPENDIX

Proof of Lemma 1: Take any objective which has the
three terms corresponding to initialization cost, memory usage
cost and bandwidth cost. The objective can be decomposed
into a sum of independent terms for different hubs. For each
hub, we can combine the first and third terms (initialization
and memory usage) to get a linear increasing function of
memory usage, say f(m) = cg + c;m. We assume cg > c¢;.*
We can replace this PE with a number of different PEs,
with different capacities mg = 0,...,m; = M, with re-
spective (new) initialization costs f(my),..., f(my), where
M is the capacity of the PE in the original instance, and
my;’s are picked such that f(m;) = (1 + ¢)f(m;_q) for
i > 0. Thus, the algorithm picks an appropriate PE from
this list and uses it to solve the instance. If it is using
M’ memory units, such that m; < M’ < mj44, then the
algorithm will pick the copy with capacity m;y; and pay
f(mjz1) < (A +€)f(mj) < (1+€)f(M'). In addition, k is
not too large. We note that f(my,) = (1+¢')¥co. The fact that
J(M) < co4+crM < (14 M)co, gives k < [logy, o (1+M)],
which shows the blowup k is only polynomial in the instance

4Otherwise, we can just redefine cg := c1 which gives a factor 2
approximation of f(m). However, this is an impractical case.

size. This results in a polynomial-time reduction as desired.
|

Proof of Lemma 7: After an element e is ever covered by

a set S, we cross out e from S for the rest of the algorithm. Let
ai,az, ..., a4y, be the elements in the order covered. Note that
each element appears exactly p times in this list, for the first p
times covered. Define «; as the density of the set covering a;
at that specific point in time. Then, the cost of our solution is
P" ap. We claim that a; < cost(OPT)/(pn — t + 1). This

is done by considering the optimal solution OPT and crossing
out all the multi-elements satisfied thus far. There are no fewer
than pn —t+ 1 multi-elements left. So, one of the sets in OPT
should have density no worse than cost(OPT)/(pn —t + 1).
The bound on «; follows. Hence, the cost of our solution is
no more than cost(OPT) >"%" 1/(pn —t +1). [



