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Abstract

For coded data transmission over channels introducing
inter-symbol interference, one approach for joint equaliza-
tion and decoding in the receiver is Turbo Equalization.
Wk rederive existing linear equalization algorithms appli-
cable to Turbo Equalization for 2 -ary signal alphabets
and compare their computational complexity. Moreover, by
evaluating the algorithm performance properly, we select
for each iteration the most suitable of the two algorithms
with lowest computational complexity and achieve at low
bit error rates a performance close to that of optimal ap-
proachesfor equalization, i.e., maximum a-posteriori prob-
ability symbol detection.

1. Introduction

We consider a coded data transmission system, wher
blocks of data bits are encoded to code bits using for-
ward error correction (FEC), which are subsequently inter-
leaved, mapped to symbols fron2&-ary signal alphabet
and transmitted over a channel with inter-symbol interfer-
ence (ISl). The channel is modeled in discrete time with the
finite-length impulse response filtein | = Zf‘iglhi d[n—i],

h; € C, of lengthM. The impulse response has energy
E, = Zf‘igﬂhi\? The coefficientdy; are assumed to be
time-invariant and known to the receiver. The noise process
is assumed to be independent and identically distributed
(i.i.d.) and independent of the data. This system model
is valid for many communication systems with frequency
selective or multipath channels.

The receiver of such a system can perform joint decoding
and equalization using Turbo Equalization (Turbo Equ.),
which was pioneered in [4] and enhanced in [1,2]. How-
ever, the used trellis-based detection algorithms (soft-o
Viterbi equalization (SOVE), maximum a-posteriori proba-
bility (MAP) symbol detection) become prohibitively com-
plex for increasing andm. In [5,6,9,12], new equal-
ization techniques based on linear filtering were applied to
significantly reduce the computational complexity. Among
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them, we differentiate between minimum mean squared er-
ror (MMSE) linear equalization (LE) and matched filter-
ing (MF). The LE algorithm derived in [9] was also imple-
mented in an approximate version (APPLE).

In this paper, we provide a framework to use the linear
approaches givenZ"-ary signal alphabet (LE: Section 4.1,
APPLE: Section 4.2, MF: Section 5) and specify how to se-
lect the most suitable equalization algorithm for eactaiter
tion - an approach, which significantly improves the perfor-
mance as shown in [9]. In all systems, a convolutional code
with MAP-based decoding is used for FEC. We start with
a brief system definition, explain next the general approach
to derive linear algorithms applicable for Turbo Equ., deri
in detall the different algorithms (LE, APPLE, and MF) in
the time and, if possible, in the frequency domain, devise an
adaptation criterion to switch between the algorithms, €om

Joare the computational complexity, and conclude the paper

with results and final remarks.
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Figure 1. Coded data transmission system.
2. System definition

Consider the communication system in Figure 1 with a
receiver performing Turbo Equ. Binary data is encoded
using a binary convolutional code to length m blocks
¢ Elchey -y, ] of code symbolg!, € {0,1}. The
interleaver permutes’ to ¢ £ [coct cr.m—1]T denoted
asc=TII(c’). The deinterleavell —!(-) reverses the permu-
tationII(-). The modulator maps: code bitScpk+5, j =
0,..., (m—1), to a complex symbat; according to th@™-



ary symbol alphabe$ = {so, s1, ..., Som _1 }, Wheres; cor-
responds to the bit pattefby o bi,1...b; (m—1)], bi,j €{0, 1}.
We require thah "> o s;=0and & 327 s 2 =1.
Transmitted over the channel is the sequemce=
[xo 1 - - - 21, 1] after the lengthM/ — 1 prefix or guard in-
terval{zr,—ap 21— 41 - - 21,—1], where we assume that the
transmitter knows\/. In many applications, the prescribed
prefix is already part ok due to fixed header and tail se-
guences. The receiving process of the transmittgds

is the product ofn termsPr{cmk+; =b;,;}, which are de-
termined using.(c,,), n=mk+j. From the independence
assumption follows Ca\y, zx ) =0, VK' # k, too. Filter-
ing Z, with h[n] gives

M-1
Zk éE{Zk}: Zh’ i'(k—i) modls k=0,..., (L—l).

i=0

which is subtracted from the received symbe)s This

disturbed by complex-valued additive white Gaussian noisedifference is filtered using a length linear FIR filter
(AWGN), i.e., both the real and imaginary part of the noise With possibly time-varying coefficients; i, i = —Nq,1 -

sampleswy, is i.i.d. with pdfn, 1,. (w) defined as

o oxp(— gk (1w — p)?)
V2mao?
Thus, we haveE{R{w;}*} = E{S{w;}*} = 102 and
E{|wi|?} = 02. The receiver observes the sequence
[20 21 - - - z,—1] (the firstA/—1 symbols are neglected). Due

, w,uER, o2 eRT.

nw,z (w)

to the prefix, the channel state at the block ends is equal and

we can express; as

M-—1
= (Z hiz modL) +wg, k=0,..,(L-1).

i=0

Ny, -+, Na, (N=N;+Ny+1). The output of this filter are
the estimate$;,.

The equalizer output LLRS,(¢,,), n=0, ..., (L-m—1),
are the “extrinsic” information (a-posteriori minus a-quii
information) about,, given the channel observations:

L, (cn) = Lapost (cn) - L(cn)
Pr{c = O‘Cﬁk} p(ﬂek‘cn = 0)
St TR ==
. Pr{c, = 1|} (¢a) =1n p(Zrlen = 1)

It is shown in [8] that this decomposition of the a-postérior
LLR Lgpost(cn) Yields the best performance in the more
general problem of linear MMSE estimation using a-priori

In case alls;, h; € S are real, we can design a receiver jnformation. We must satisfy thd, (c,,) and hence alsy,

using ®{zx} only, which yields E{®{w;}?} = o2 and
E{S{w; )2} =0.

is not a function of..(¢,,) [8]. This is achieved by extending
the approach in [8], which is to remove the influence of all

Before proceeding, some frequently used notation is in- L(cmiss), 5 =0, ...,(m—1), on i and to replace it with

troduced. The x j matrix 0;,; contains all zeros];;
contains all onedl; is thei xi identity matrix. The operator

the influence ofL(cmi+;) = 0, Vj. We assume that,
exhibits a complex Gaussian distributip), |, —, (z), T €

E{-} is the expectation with respect to the joint probabil- ¢ nditioned oy =s;,i=0,1,..., (2" —1):

ity density function (pdf) of ther;, andw;. The covari-
ance operator Cdx,y) equalsE{xy"} - E{x}E{y},
where ! is the Hermitian operator. Th&-value operator
L(c), c€ {0, 1}, equalsL(c) £ n gH=3L e, I(c) is the
log likelihood ratio (LLR). The operatdpiag|-] applied to
a lengthN vector returns av x N matrix with the vector
elements along the diagonal.

3. Linear algorithms for Turbo equalization

pik = E{&p|zr =5},

U?’k 2 COV(ﬁZk, T |33k = Sz)

1 |2 — pi]?
5 —s, (T) & € —_—— ).
pxk\mkfsl( ) 7r0-i2,k Xp( 0-22,19 )

In case alls;, h; € S are realp;, |,,—s; () can be a single
Gaussian pdf, i.ep; |z, =s; () =Ny, 02, (@), z, 1k €ER
By averaging over alp;, |, =5, (z) with ¢, =0 orc, =1,

We present here the general framework to rederive LE, respectivelyLe(c;) is computed as

APPLE, and MF for 2™-ary signal constellation using the
results in [9]. At first, the statistics;, = E{z;} andv; =
Cov(zy, zy) of the symbolse,, are computed using the a-
priori information L(c,,) provided by the decoder:

m—1
Tp= Zsi-Pr{azkzsi}z Z H si-Pr{cmi+j=bi;},

$;i€S s;€S j=0
”k:<zSiQ'Pr{kaSi}>—fk|2- 1)
$;ES

The equalizer assumes thg to be independent (which is
locally achieved using interleaving) such tHat{z; = s;}

> Diplar=s: (Tr) Pr{zr=sc, =0}
Le(en) =In #5522 A ,
Yo Diplar=s; (Tr) Pr{zr=sic, =1}

8;ESicn=1

wheren =mk+j andj =0, ..., (m—1). This simplifies to

2, )

A =24
Oik =0, 1 |33k_uz'7k

>, exp (—0i.k) 'Hf’lBlPr{cmkH =b;;}

I (C )_lnsiES:c"=0 1#5j

e\Cn)= — 3
Y exp (—oik) TI/% Pri{cmiri =bit}
5;€S:icn=1 1#j



using the fact that, as shown latef,, does not depend on  we can compute the statistips . ando?; ;-
i. We assume that no additional a-prioriinformation besides

that of the decoder is available. Thus, in the first iteratien o £ (BE{zi|er =5} —2r+Zrs) s ff's

haveL(c,) =0, Vn, andL.(c,,) can be computed without Hik= D D’

the termsH;’;BlPr{cmkH = bu}. 2 flf‘,COV(Zk A ‘Cﬂk = Sz)fk _ f]fIS (1 — Vg Ska)
I#j Oik = |D|? - D2

4. Turbo_ equahzatlon using MMSE linear whereD = 1 + (1 —w;)s'f,. The derivation to obtain
equalization L.(c,) is completed by finding an expression

4.1. Exact implementation
P Oik = (f,fls (1—wy, stk))fl\ f,f{(zk—ik—l—:ﬁk s)—s; f,f{s \2.

This approach was derived in [8] and applied to Turbo
Equ. in [9]. The design rule to obtain ttfgy, is to minimize For the case thak(c,) =0, Vn, we havez; = z; = 0 and
the MMSE cost function®{|z; — #|?}. In general, the v, =1, V&, yielding a time-invarianf; = fy:
estimatei;, is computed from
fna2 (o2 In+HHT) s,

A T
Zp=|Z z _ 2 (e s
k= [2(ktNy) modL Z(k+N1—1) modZ * * * Z(k—N2) modL] " » 0ik = (E15 (1 x0)) 1 £8 24 — 51 £1,52,

a length NV vector of received symbols, as follows (Ap-

pendix A in [8]): wheren4 stands for “No A-priori information”.
Zi = [Z(kiN1) modL " * * Z(k-Na) modZ) " » 4.2. Approximate implementation
vy, & Diag[v(i+n,) modL * * * V(k—M-+1—Ns) modL ] The costly computation of the vectfyr for eachk is ne-
5 [0 10 ]T glected by simply using the vectfi4 despite the presence
S = 1xNy IX(Na+M=1)] > of non-zero a-priori informatiorl(c,,) # 0 [8]. The esti-
f, = (02In + HV,H) !5, matest; are now given by
iy =Ty + v £ (21 — 21) (in general) Gy = £ (2 — 74 + g 8).
whereH is theN x (N+M—1) channel convolution matrix However, Computing the Statistiqa.’k and Uik becomes
hohy - hayoy 0 - 0 more difficult:
| Ohohy - by 0o 0 pik =By (B{zg o =i} =25+ 31 8) = 5 s,
H= U?}kaJ{TIA(UfUIN-I-HVk HH—UkSSH)fNA.
0 w0 0 ho hyehar In [8], a;{k was approximated by a crude time average.

Due to the mod- L operation we circularly equalize on a Here, the average is over aiﬁk (any i can be selected)
“tail-biting” block z, which is possible using the prefix in ~ corresponding to eacty,, k=0, ..., (L —1):

the transmitter. =
However, i, depends oL (cpkj), j =0, ..., (m—1), = I ook
over z; andv,. As mentioned, we sel(cpi+5) =0, Vj, k=0
yielding z; = 0, andv; = 1 and recomputd;, andz;, by 1=
replacingz; andv, with 0 and1: = o2 £l fna + (f ka> 2 (HHY —sst)fy,.
k=0

fi, = (02In + HV,H” + (1—1v;)ss™)7 s,

n The exponents; ; are given by
T =1 -f;C (z, — Zr, + (T, —0) s).

A—D A H 2
: . . ik =077 &k — 8 fnuS | 3)
We can expresf, as scaled version dj, using the matrix

inversion lemma and; 202 Iy +HV,H": for generalL(c,,) € R. ForL(c,)=0, Vn, yieldingz; =0
andv;, =1, V&, we have especially? = fi,s (1 s fy,)
andzy ZfJ{}IAZk.

In [8], a recursive algorithm was derived to compSiE' 5 Tyrho equalization using matched filtering

from X', with a number of operations only proportional ) e ) .
to N2 akn(;MQ. With the final expression for the estimates: This approach was first introduced in [4] and modified
yielding better results in [9]. The estimator filter coeffi-

cients are set to yield a matched filter to the ISI channel

fi=(Ce+(1—vp)ss™)Ts=(1+(1—vp)s" )" f.

T = (1+(1—’Uk) Ska)71 f,f{(zk — Zp + T, S)

Y



responsé|n]. The algorithm in [9] to compute the estimate SNR s and its lower bound‘(—2 are monotonically decreas-

21, is used without adaptation to2&"-ary signal alphabet: ing in o € [0,1] [8]. The maximums is Eh using MF for
Mo1 v = 0, which is the SNR of an AWGN channel with noise
di=3) hl*—i' i=—(M-1),..,(M-1), variances?,. We thus expect the Turbo Equ. system per-
formance to be below than that of coded data transmission
Ty = Ep Ty + Z b (2(k+i) modL. = Z(k4i) modL ) over the equivalent AWGN channel, since the equalizer is
pin=En s, at most able to provide the same SNR of the estimates
We will not consider LE as alternative algorithm due to
o} =Eno, — Ejvp + Zl L g V1) modr. dy)?. t_he much Iarge_r compu_tational effo_rt. For MAP equali;a—
tion, an analysis using is not possible. We rely here, if
The exponents; , for generalL(c,) € R are given by applicable at all, on the EXIT charts introduced in [9, 11].
=25 2 .. .
Qik =0 1 |[&k — Bp sil”. (4) 7. Frequency domain implementation
For L(cn) =0, Vn, we have especiallyk = bz In [12], the APPLE and MF algorithm were implemented
andcri,f =FE,o2 —E} + Z, - M \dp|2. in the frequency domain. The adaptatior2td-ary signal
alphabets is straightforward. Table 1 depicts this impleme
6. Algorithm adaptation tation (the DFT operator is the Discrete Fourier Transform)
The APPLE and the MF approach derived in Sections 4.2| Input :
and 5 require a number of operations per received symbol - [z0 - zr.—1]", [L(co) - - L(cr.m—1)]7, h[n], ando?,
increasing only linearly withV or M, which is much better Initialization :
than LE (V2) or MAP equalization™"). However, both [Zo-+Zp 1)"+ DFT 29 2p1]"
APPLE and MF suffer a significant performance loss com- | [Ho - Hp—1]T+ DFT [hoh1 -+ hap—1 le(L,M)]T
paredto, e.g., LE. In[9], a scheme was proposed to properly i L f 01 %
-SWIthh betweeln t,?\PPI(_jE or MF.d_epIendlfng Ofey,), Wh|(|:h [ Prior to equalization :
equiring the ransmited data. We proposs anovel approach - COPUSiFo” i) andlv - uril
; ) . o - : ; - decide: use APPLE or MF by comparidg,
using the signal-to-noise ratio (SNR) ®f to decide, prior —
to equalization, which algorithm to use: Equalization :
! [XO -Xr_ 1] — DFT[_ T 1]T
SNR— |E{ik‘1’k:5i}|2 _ ,:42 _ |Ki5i|2 APPLE: X]J— 2+‘Hk‘2 + (u m))ﬁ,Vk
COV(Cﬁk,Cﬁﬂwkzsi) O'l-z’k O'l-z’k ’ MF: Xk(— H*ZL-I-( ‘Hk| )X]HV]C
o 1 v T
whereK = f#,s for APPLE andK = E? for MF. We sug- Pa[:to o ZL_l]l. A DFT [XO Xii]
. L - qualization :
gest that the algorithm yielding the highest average SNR - compute{Le(co) - - Le(crm—1)]T-
A L2t |K sz|2 1% K? Table 1. Frequency domain equalization.
=T sz Z L ‘07 —TQ= _ _
porfer 0k T 2uk=0 90,k 8. Complexity comparison
should be used. The average Var|an€e= + Zk 0 0-0 . In this section, the computational complexity of MAP
is computed as in Section 4.2 yielding the lower bounds ~ equalization, LE, APPLE, and MF is compared. We as-
| = sume that the statisticg, and v, are available for allk
T ka’ and skip the computation to obtaiiy (¢,,) including p;
L k=0 andcri,f (both mappingS, vi « L(c,) and L, (c,) « T
K2 1,557 fi strongly depend oi¥). Any overhead due to initialization
APPLE: — = — T — A ; (one-time computations for all iterations), e.g., to cotepu
o o2 f\ i fna + o £, (HHT —ssH)fyy . X
) ) fara for APPLE orHy, Zy, Vk, is neglected. Table 2 gives
ME: K = B the number of real multiplications and additions per itera-
6%  Epo+0- (Z, i M|d1|2 ) tion required to equaliz& symbolsz; yielding L estimates

2. The DFT is carried out using a radix-2 FFT requir-
ing roughly2L log, (L) real multiplications an@L log, (L)
real additions for, = 2!, 1 = 1,2, ..., [10]. For the com-
plexity of LE see [8]. For MAP equalization, we considered
only the computation of alfs and thex, 8 recursion [7].

on s. Thus, the receiver uses the algorithm with Iarg@ét
for equalization. The bound is tight whenevg, is con-
stant ink, e.g., forc = 0 (symbolsz;, are known to the
receiver) andi = 1 (no a-priori information). The average



approach | domain | real multiplications real additions
MF time | L(10M) L(10M —2)
MF frequency| 4L log,(L)+8L 4L1og,(L)+2L
APPLE time | L(4N + 8M) L(4N +4M — 4)
APPLE | frequency| 4L log,(L)+8L 4L logy(L)+2L
LE - L(16N2+4M?+10M —4N —4) | L(8N?+2M?*—10N +2M +4)
MAP equ. - L(3-2mM 4.2 2m(M=1)) L(3-2mM 4.2(m—1)2m(M—1))

Table 2. Computational complexity of equalization per iteration per block.

9. Results and Conclusions 10°
11— hannel
We tested the bit error rate performance (simulation of at | —e- R%E»L?gnne
least1000 data bit errors) of a Turbo Equ.-based receiver. . - = LE
. B D2 10 .| & SIC
Data is encoded (code generat®(D) = (1, Hlj{_,w)) H o mived LE/SIC
to length L = 2048 blocks of code symbols,, includ- [N CsnNG N ‘| —— MAP - one time
ing S-random (S=30) interleaving [3]. Thg are modu- w2l N [ == MAP equ.
(cor c2k+1) | 00 10 01 11 @ f G
T It | I [ I | 12 & S NG N A
k V2 | V2| V2 2 -3
T Tea) AT 104
Tp ﬁ(tanh T + tanh )
’Uk%l—|£ik|2 (ZZN/—l) ...........................
—2 P 1041 S
Le(cor) V8|porlogy, R{zx} | 10 i
Le(copy1) V8 por|og: S{ak} R EESEE S NSRS VS
Table 3. QPSK modulation. 10° : : : :
) . 4 6 8 10 12
lated tox; according to Table 3 (includes also Egs. (1) E,/N,indB

and (2)). The time-invariant channel impulse response is
h[n]=0.227 §[n]+0.46 §[n—1]+0.688 §[n—2]+0.46 6[n—3]+
0.227 §[n—4]. The system SNR ig: = 31~ The filter pa-
rameters for LE and APPLE arf¥, =9 and N, = 5. Figure

2 depicts the BER results aftgriterations: MAP equaliza-
tion and LE perform best followed by switched APPLE/MF.
Using APPLE and MF alone is not satisfactory. Similar re-
sults were obtained for unknowtin] (including training)
and/or fading coefficients;.

In conclusion, the novel switched APPLE/MF approach
yields a comfortable gain to one-time MAP equalization
and decoding. We think, that this and the LE algorithm are
most suitable for low coplexity Turbo Equ. using higher or-
der signal alphabets, e. ®PSK in the the Enhanced Data
rates for GSM evolution (EDGE) standard. Part of on-going
work is an accurate performance analysis and the imple-
mentation of channel parameter estimation into the itezati
algorithm.

Figure 2. BER performance comparison.
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