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Abstract

For coded data transmission over channels introducing
inter-symbol interference, one approach for joint equaliza-
tion and decoding in the receiver is Turbo Equalization.
We rederive existing linear equalization algorithms appli-
cable to Turbo Equalization for 2m-ary signal alphabets
and compare their computational complexity. Moreover, by
evaluating the algorithm performance properly, we select
for each iteration the most suitable of the two algorithms
with lowest computational complexity and achieve at low
bit error rates a performance close to that of optimal ap-
proaches for equalization, i.e., maximum a-posteriori prob-
ability symbol detection.

1. Introduction
We consider a coded data transmission system, where

blocks of data bits are encoded to code bits using for-
ward error correction (FEC), which are subsequently inter-
leaved, mapped to symbols from a2m-ary signal alphabet
and transmitted over a channel with inter-symbol interfer-
ence (ISI). The channel is modeled in discrete time with the
finite-length impulse response filterh[n℄=PM�1i=0 hi Æ[n�i℄,hi 2 C , of lengthM . The impulse response has energyEh =PM�1i=0 jhij2. The coefficientshi are assumed to be
time-invariant and known to the receiver. The noise process
is assumed to be independent and identically distributed
(i.i.d.) and independent of the data. This system model
is valid for many communication systems with frequency
selective or multipath channels.

The receiver of such a system can perform joint decoding
and equalization using Turbo Equalization (Turbo Equ.),
which was pioneered in [4] and enhanced in [1, 2]. How-
ever, the used trellis-based detection algorithms (soft-out
Viterbi equalization (SOVE), maximum a-posteriori proba-
bility (MAP) symbol detection) become prohibitively com-
plex for increasingM andm. In [5, 6, 9, 12], new equal-
ization techniques based on linear filtering were applied to
significantly reduce the computational complexity. Among

them, we differentiate between minimum mean squared er-
ror (MMSE) linear equalization (LE) and matched filter-
ing (MF). The LE algorithm derived in [9] was also imple-
mented in an approximate version (APPLE).

In this paper, we provide a framework to use the linear
approaches given a2m-ary signal alphabet (LE: Section 4.1,
APPLE: Section 4.2, MF: Section 5) and specify how to se-
lect the most suitable equalization algorithm for each itera-
tion - an approach, which significantly improves the perfor-
mance as shown in [9]. In all systems, a convolutional code
with MAP-based decoding is used for FEC. We start with
a brief system definition, explain next the general approach
to derive linear algorithms applicable for Turbo Equ., derive
in detail the different algorithms (LE, APPLE, and MF) in
the time and, if possible, in the frequency domain, devise an
adaptation criterion to switch between the algorithms, com-
pare the computational complexity, and conclude the paper
with results and final remarks.
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Figure 1. Coded data transmission system.

2. System definition

Consider the communication system in Figure 1 with a
receiver performing Turbo Equ. Binary data is encoded
using a binary convolutional code to lengthL �m blocks
0 , [
00 
01 � � � 
0L�m�1℄T of code symbols
0n 2 f0; 1g. The
interleaver permutes
0 to 
 , [
0 
1 � � � 
L�m�1℄T denoted
as
=�(
0). The deinterleaver��1(�) reverses the permu-
tation�(�). The modulator mapsm code bits
mk+j , j =0; :::; (m�1), to a complex symbolxk according to the2m-



ary symbol alphabetS= fs0; s1; :::; s2m�1g, wheresi cor-
responds to the bit pattern[bi;0 bi;1:::bi;(m�1)℄, bi;j 2f0; 1g.
We require that

P2m�1i=0 si=0 and 12m P2m�1i=0 jsij2=1.
Transmitted over the channel is the sequencex =[x0 x1 � � �xL�1℄ after the lengthM�1 prefix or guard in-

terval[xL�M xL�M+1 � � �xL�1℄, where we assume that the
transmitter knowsM . In many applications, the prescribed
prefix is already part ofx due to fixed header and tail se-
quences. The receiving process of the transmittedxk is
disturbed by complex-valued additive white Gaussian noise
(AWGN), i.e., both the real and imaginary part of the noise
sampleswk is i.i.d. with pdfn0; 12�2w (w) defined asn�;�2(w), exp(� 12�2 (w � �)2)p2� �2 ; w; �2R; �22R+ :
Thus, we haveEf<fwkg2g = Ef=fwkg2g = 12�2w andEfjwkj2g = �2w. The receiver observes the sequencez =[z0 z1 � � � zL�1℄ (the firstM�1 symbols are neglected). Due
to the prefix, the channel state at the block ends is equal and
we can expresszk aszk, M�1Xi=0 hi x(k�i) modL!+ wk ; k = 0; :::; (L�1):
In case allsi; hi 2 S are real, we can design a receiver
using<fzkg only, which yieldsEf<fwkg2g = �2w andEf=fwkg2g=0.

Before proceeding, some frequently used notation is in-
troduced. Thei� j matrix 0i�j contains all zeros,1i�j
contains all ones.Ii is thei�i identity matrix. The operatorEf�g is the expectation with respect to the joint probabil-
ity density function (pdf) of thexk andwk. The covari-
ance operator Cov(x;y) equalsEfxyHg�EfxgEfyHg,
whereH is the Hermitian operator. TheL-value operatorL(
), 
2 f0; 1g, equalsL(
), ln Prf
=0gPrf
=1g , i.e.,L(
) is the
log likelihood ratio (LLR). The operatorDiag[�℄ applied to
a lengthN vector returns aN�N matrix with the vector
elements along the diagonal.

3. Linear algorithms for Turbo equalization

We present here the general framework to rederive LE,
APPLE, and MF for a2m-ary signal constellation using the
results in [9]. At first, the statistics�xk ,Efxkg andvk ,
Cov(xk; xk) of the symbolsxk are computed using the a-
priori informationL(
n) provided by the decoder:�xk=Xsi2Ssi �Prfxk=sig=Xsi2Sm�1Yj=0 si �Prf
mk+j=bi;jg;vk= Xsi2Sjsij2 � Prfxk=sig!�j�xkj2: (1)

The equalizer assumes the
n to be independent (which is
locally achieved using interleaving) such thatPrfxk= sig

is the product ofm termsPrf
mk+j= bi;jg, which are de-
termined usingL(
n), n=mk+j. From the independence
assumption follows Cov(xk ; xk0) = 0, 8k0 6= k, too. Filter-
ing �xk with h[n℄ gives�zk,Efzkg=M�1Xi=0hi �x(k�i)modL; k = 0; :::; (L�1):
which is subtracted from the received symbolszk. This
difference is filtered using a lengthN linear FIR filter
with possibly time-varying coefficientsfi;k; i = �N1; 1�N1; � � � ; N2, (N=N1+N2+1). The output of this filter are
the estimateŝxk.

The equalizer output LLRsLe(
n), n=0; :::; (L�m�1),
are the “extrinsic” information (a-posteriori minus a-priori
information) about
n given the channel observations:Le(
n) , Lapost(
n)� L(
n), ln Prf
n = 0jx̂kgPrf
n = 1jx̂kg � L(
n) = ln p(x̂kj
n = 0)p(x̂kj
n = 1) :
It is shown in [8] that this decomposition of the a-posteriori
LLR Lapost(
n) yields the best performance in the more
general problem of linear MMSE estimation using a-priori
information. We must satisfy thatLe(
n) and hence alsôxk
is not a function ofL(
n) [8]. This is achieved by extending
the approach in [8], which is to remove the influence of allL(
mk+j), j = 0; :::; (m�1), on x̂k and to replace it with
the influence ofL(
mk+j) = 0, 8j. We assume that̂xk
exhibits a complex Gaussian distributionpx̂kjxk=si(x), x2C , conditioned onxk=si, i=0; 1; :::; (2m�1):�i;k , Efx̂kjxk=sig;�2i;k , Cov(x̂k; x̂kjxk=si);px̂kjxk=si(x) � 1� �2i;k exp(�jx� �i;kj2�2i;k ):
In case allsi; hi 2 S are real,px̂kjxk=si(x) can be a single
Gaussian pdf, i.e.,px̂kjxk=si(x)=n�i;k ;�2i;k (x), x; �i;k2R.

By averaging over allpx̂kjxk=si(x) with 
n = 0 or 
n = 1,
respectively,Le(
n) is computed asLe(
n)=ln Psi2S:
n=0px̂kjxk=si(x̂k)�Prfxk=sij
n=0gPsi2S:
n=1px̂kjxk=si(x̂k)�Prfxk=sij
n=1g ;
wheren=mk+j andj=0; :::; (m�1). This simplifies to%i;k,��2i;k jx̂k��i;kj2; (2)Le(
n)=ln Psi2S:
n=0exp (�%i;k)�Qm�1l=0l6=j Prf
mk+l=bi;lgPsi2S:
n=1exp (�%i;k)�Qm�1l=0l6=j Prf
mk+l=bi;lg ;



using the fact that, as shown later,�2i;k does not depend oni. We assume that no additional a-priori information besides
that of the decoder is available. Thus, in the first iterationwe
haveL(
n) = 0, 8n, andLe(
n) can be computed without
the terms

Qm�1l=0l6=j Prf
mk+l=bi;lg.
4. Turbo equalization using MMSE linear

equalization

4.1. Exact implementation

This approach was derived in [8] and applied to Turbo
Equ. in [9]. The design rule to obtain thefi;k is to minimize
the MMSE cost functionEfjxk � x̂kj2g. In general, the
estimatêxk is computed fromzk, [z(k+N1)modL z(k+N1�1)modL � � � z(k�N2)modL℄T ;
a lengthN vector of received symbols, as follows (Ap-
pendix A in [8]):�zk, [�z(k+N1)modL � � � �z(k�N2)modL℄T ;vk , Diag[v(k+N1)modL � � � v(k�M+1�N2)modL℄;s ,H �01�N1 1 01�(N2+M�1)�T ;fk = (�2wIN +HVkHH)�1 s;x̂k = �xk + vk fHk (zk � �zk) (in general);
whereH is theN�(N+M�1) channel convolution matrixH , 26664 h0 h1 � � �hM�1 0 � � � 00 h0 h1 � � � hM�1 0 � � � 0

. . .0 � � � 0 h0 h1 � � �hM�137775 :
Due to the mod�L operation we circularly equalize on a
“tail-biting” block �z, which is possible using the prefix in
the transmitter.

However,x̂k depends onL(
mk+j), j = 0; :::; (m�1),
over �xk andvk. As mentioned, we setL(
mk+j) = 0, 8j,
yielding �xk = 0, andvk = 1 and recomputefk and x̂k by
replacing�xk andvk with 0 and1:f 0k = (�2wIN +HVkHH + (1�vk) s sH)�1 s;x̂k = 1 � f 0kH(zk � �zk + (�xk�0) s):
We can expressf 0k as scaled version offk using the matrix
inversion lemma and�k,�2wIN+HVkHH :f 0k=(�k+(1�vk) s sH)�1 s=(1+(1�vk) sH fk)�1 fk:
In [8], a recursive algorithm was derived to compute��1k
from ��1k�1 with a number of operations only proportional
toN2 andM2. With the final expression for the estimates:x̂k = (1+(1�vk) sH fk)�1 fHk (zk � �zk + �xk s);

we can compute the statistics�i;k and�2i;k:�i;k= fHk (Efzkjxk=sig��zk+�xk s)D = si fHk sD ;�2i;k= fHk Cov(zk ; zkjxk=si)fkjDj2 = fHk s (1�vk sHfk)jDj2 ;
whereD = 1 + (1� vk) sH fk. The derivation to obtainLe(
n) is completed by finding an expression for%i;k:%i;k=(fHk s (1�vk sH fk))�1j fHk (zk��zk+�xk s)�si fHk s j2:
For the case thatL(
n) = 0, 8n, we have�xk = �zk = 0 andvk=1, 8k, yielding a time-invariantfk, fNA:fNA,(�2wIN+HHH)�1s;%i;k=(fHNAs (1�sHfNA))�1jfHNAzk � si fHNAsj2;
whereNA stands for “No A-priori information”.

4.2. Approximate implementation

The costly computation of the vectorfk for eachk is ne-
glected by simply using the vectorfNA despite the presence
of non-zero a-priori informationL(
n) 6= 0 [8]. The esti-
mateŝxk are now given byx̂k = fHNA(zk � �zk + �xk s):
However, computing the statistics�i;k and�2i;k becomes
more difficult:�i;k= fHNA(Efzk jxk=sig��zk+�xk s)=si fHNAs;�2i;k= fHNA(�2wIN +HVkHH�vk s sH) fNA:
In [8], �2i;k was approximated by a crude time average.
Here, the average is over all�20;k (any i can be selected)
corresponding to eachxk, k=0; :::; (L�1):�̂2 , 1L L�1Xk=0 �20;k= �2wfHNAfNA + 1L L�1Xk=0vk! fHNA(HHH�s sH)fNA:
The exponents%i;k are given by%i;k = �̂�2j x̂k � si fHNAs j2 (3)

for generalL(
n) 2 R. ForL(
n)=0, 8n, yielding �xk=0
andvk =1, 8k, we have especiallŷ�2 = fHNAs (1�sH fNA)
andx̂k= fHNAzk.

5. Turbo equalization using matched filtering
This approach was first introduced in [4] and modified

yielding better results in [9]. The estimator filter coeffi-
cients are set to yield a matched filter to the ISI channel



responseh[n℄. The algorithm in [9] to compute the estimatex̂k is used without adaptation to a2m-ary signal alphabet:di = XM�1l=0 hl h�l�i; i = �(M�1); :::; (M�1);x̂k = Eh �xk + XM�1i=0 h�i (z(k+i) modL � �z(k+i)modL);�i;k=Eh si;�2i;k=Eh �2w �E2h vk +XM�1l=1�M v(k�l)modL jdlj2:
The exponents%i;k for generalL(
n)2R are given by%i;k = ��2i;k jx̂k �Eh sij2: (4)

ForL(
n)=0, 8n, we have especiallŷxk=PM�1i=0 h�i zk+i
and�2i;k=Eh �2w �E2h +PM�1l=1�M jdlj2.
6. Algorithm adaptation

The APPLE and the MF approach derived in Sections 4.2
and 5 require a number of operations per received symbol
increasing only linearly withN orM , which is much better
than LE (N2) or MAP equalization (2mM ). However, both
APPLE and MF suffer a significant performance loss com-
pared to, e.g., LE. In [9], a scheme was proposed to properly
switch between APPLE or MF depending onL(
n), which
is unfortunately based on empirical performance evaluation
requiring the transmitted data. We propose a novel approach
using the signal-to-noise ratio (SNR) ofx̂k to decide, prior
to equalization, which algorithm to use:

SNR= jEfx̂kjxk=sigj2
Cov(x̂k ; x̂kjxk=si) = j�i;kj2�2i;k = jK �sij2�2i;k ;

whereK= fHNAs for APPLE andK=E2h for MF. We sug-
gest that the algorithm yielding the highest average SNR�s, 1L�2mL�1Xk=0 2m�1Xi=0 jK �sij2�2i;k = 1LL�1Xk=0 K2�20;k � K21LPL�1k=0 �20;k ;
should be used. The average variance�̂2 , 1LPL�1k=0 �20;k
is computed as in Section 4.2 yielding the lower bounds�v , 1L L�1Xk=0vk;
APPLE:

K2�̂2 = fHNAs sHfNA�2wfHNAfNA + �v � fHNA(HHH�s sH)fNA ;
MF:

K2�̂2 = E2hEh �2w + �v � (PM�1l=1�M jdlj2 �E2h) ;
on �s. Thus, the receiver uses the algorithm with largestK2�̂2
for equalization. The bound is tight whenever�20;k is con-
stant ink, e.g., for�v = 0 (symbolsxk are known to the
receiver) and�v =1 (no a-priori information). The average

SNR�s and its lower boundK2�̂2 are monotonically decreas-
ing in �v 2 [0; 1℄ [8]. The maximum�s is Eh�2w using MF for�v = 0, which is the SNR of an AWGN channel with noise
variance�2w. We thus expect the Turbo Equ. system per-
formance to be below than that of coded data transmission
over the equivalent AWGN channel, since the equalizer is
at most able to provide the same SNR of the estimatesx̂k.

We will not consider LE as alternative algorithm due to
the much larger computational effort. For MAP equaliza-
tion, an analysis using�s is not possible. We rely here, if
applicable at all, on the EXIT charts introduced in [9, 11].

7. Frequency domain implementation

In [12], the APPLE and MF algorithm were implemented
in the frequency domain. The adaptation to2m-ary signal
alphabets is straightforward. Table 1 depicts this implemen-
tation (the DFT operator is the Discrete Fourier Transform).Input :

- [z0 � � � zL�1℄T , [L(
0) � � �L(
L�m�1)℄T , h[n℄, and�2w,Initialization :[Z0 � � �ZL�1℄T DFT [z0 � � � zL�1℄T[H0 � � �HL�1℄T DFT [h0 h1 � � �hM�1 01�(L�M)℄T� 1LPL�1k=0 jHk j2�2w+jHkj2Prior to equalization :
- compute:[�x0 � � � �xL�1℄T and[v0 � � � vL�1℄T ,
- decide: use APPLE or MF by comparingK2�̂2 ,Equalization :[ �X0 � � � �XL�1℄T DFT [�x0 � � � �xL�1℄T

APPLE:X̂k H�kZk�2w+jHkj2 + (�� jHkj2�2w+jHk j2 ) �Xk, 8k
MF: X̂k H�kZk + (1�jHkj2) �Xk, 8k[x̂0 � � � x̂L�1℄T DFT�1 [X̂0 � � � X̂L�1℄TPast to equalization :

- compute:[Le(
0) � � �Le(
L�m�1)℄T .

Table 1. Frequency domain equalization.

8. Complexity comparison
In this section, the computational complexity of MAP

equalization, LE, APPLE, and MF is compared. We as-
sume that the statistics�xk and vk are available for allk
and skip the computation to obtainLe(
n) including�i;k
and�2i;k (both mappings�xk ; vk L(
n) andLe(
n) x̂k
strongly depend onS). Any overhead due to initialization
(one-time computations for all iterations), e.g., to computefMA for APPLE orHk, Zk, 8k, is neglected. Table 2 gives
the number of real multiplications and additions per itera-
tion required to equalizeL symbolszk yieldingL estimatesx̂k. The DFT is carried out using a radix-2 FFT requir-
ing roughly2L log2(L) real multiplications and2L log2(L)
real additions forL = 2l, l = 1; 2; :::, [10]. For the com-
plexity of LE see [8]. For MAP equalization, we considered
only the computation of all
s and the�, � recursion [7].



approach domain real multiplications real additions
MF time L(10M) L(10M � 2)
MF frequency 4L log2(L)+8L 4L log2(L)+2L

APPLE time L(4N + 8M) L(4N + 4M � 4)
APPLE frequency 4L log2(L)+8L 4L log2(L)+2L

LE - L(16N2+4M2+10M�4N�4) L(8N2+2M2�10N+2M+4)
MAP equ. - L(3�2mM+2m 2m(M�1)) L(3�2mM+2(m�1)2m(M�1))

Table 2. Computational complexity of equalization per iteration per block.

9. Results and Conclusions
We tested the bit error rate performance (simulation of at

least1000 data bit errors) of a Turbo Equ.-based receiver.
Data is encoded (code generatorG(D) = (1; 1+D21+D+D2 ))
to lengthL = 2048 blocks of code symbols
n includ-
ing S-random (S=30) interleaving [3]. The
n are modu-(
2k 
2k+1) 00 10 01 11xk 1+{p2 �1+{p2 1�{p2 �1�{p2�xk 1p2 (tanh L(
2k)2 + tanh L(
2k+1)2 {)vk 1� j�xk j2 ({=p�1)Le(
2k) p8j�0kj��20k <fx̂kgLe(
2k+1) p8j�0kj��20k =fx̂kg

Table 3. QPSK modulation.

lated toxk according to Table 3 (includes also Eqs. (1)
and (2)). The time-invariant channel impulse response ish[n℄=0:227 Æ[n℄+0:46 Æ[n�1℄+0:688 Æ[n�2℄+0:46 Æ[n�3℄+0:227 Æ[n�4℄. The system SNR isEbN0 = 12�2w . The filter pa-
rameters for LE and APPLE areN1=9 andN2=5. Figure
2 depicts the BER results after5 iterations: MAP equaliza-
tion and LE perform best followed by switched APPLE/MF.
Using APPLE and MF alone is not satisfactory. Similar re-
sults were obtained for unknownh[n℄ (including training)
and/or fading coefficientshi.

In conclusion, the novel switched APPLE/MF approach
yields a comfortable gain to one-time MAP equalization
and decoding. We think, that this and the LE algorithm are
most suitable for low coplexity Turbo Equ. using higher or-
der signal alphabets, e.g.,8PSK in the the Enhanced Data
rates for GSM evolution (EDGE) standard. Part of on-going
work is an accurate performance analysis and the imple-
mentation of channel parameter estimation into the iterative
algorithm.
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