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Abstract. Microcontroller software typically consists of a few hundred
lines of code only, but it is rather different from standard application
code. The software is highly hardware and platform specific, and bugs
are often a consequence of neglecting subtle specifications of the micro-
controller architecture. Currently, there are hardly any tools for analyz-
ing such software automatically. In this paper, we outline specifics of
microcontroller software that explain why those programs are different
to standard C/C++ code. We develop a static program analysis for a
specific microcontroller, in our case the ATmega16, to spot code deficien-
cies, and integrate it into our generic static analyzer Goanna. Finally, we
illustrate the results by a case study of an automotive application. The
case study highlights that – even without formal proof – the proposed
static techniques can be valuable in pinpointing software bugs that are
otherwise hard to find.

1 Introduction

Microcontrollers are systems-on-a-chip consisting of a processor, memory, as
well as input and output functions. They are mainly used when low-cost and
high-reliability is paramount. Such systems can be found in the automotive,
entertainment, aerospace and global positioning industry. Since microcontrollers
are almost always used in embedded devices, many of them mission critical, a
potential re-call is costly. Hence, not only the hardware, but in particular the
software running on these microcontrollers has to be reliable, i.e., bug free.

There are a number of formal verification techniques to find bugs or even
ensure the absence of them. However, the typically short development cycles for
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microcontroller-based products made it prohibitive to apply proof-based meth-
ods. Model checking and static analysis, which are fully automatic, are in prin-
ciple suitable for such development environments. Software model checkers such
as [2, 3, 10] operate on a low level semantic, which allows them to be precise at
the expense of speed. Static analysis tools [4, 9, 12, 13], in contrast, have been
concentrating on a shallower but more scalable and applicable analysis of large
code bases [6].

There are a number of obstacles to the application of existing tools to micro-
controller software: it is often written in non-standard C, containing assembly
statements, direct memory access and custom platform-dependent language ex-
tensions [16]. Crucial microcontroller features such as timers and direct memory
accesses make model checking in particular challenging, as they require platform-
specific hardware models, e.g., for the memory layout, which can result in exces-
sively large state spaces. Common static program analyzers, on the other hand,
work on a higher level of abstraction as their main purpose is not to ensure
correctness, but to find bugs. If they are able to parse the C dialect, they can
easily deal with code base sizes common for microcontrollers. However, commer-
cial static analysis tools typically check for standard deficiencies missing bugs
resulting from subtle deviations of the hardware specification.

In this work, we use Goanna [7], an industrial-strength static program an-
alyzer that is based on standard model checking technology and can easily be
adjusted to include microcontroller-specific checks. Goanna works on syntactic
abstractions of C/C++ programs. The checks are specified in temporal logic. We
demonstrate the strength of this approach by defining and integrating targeted
checks for the analysis of the ATMEL ATmega16 microcontroller in a simple
and concise manner.

The resulting analysis is fast and precise. This finding is supported by a
case study applying Goanna to an automotive application. In more than 400
academic C programs, Goanna finds about 150 deficiencies, either severe bugs
or serious compatibility issues. The rate of false alarms is zero in this case study,
that is, all alarms were true alarms. The analysis time for a few hundred lines
of ATMEL code is typically below 1 second.

The paper is structured as follows. The next section briefly discusses the
particularities of microcontroller code, and what sets it apart from standard
ANSI C. Section 3 introduces the static analysis approach via model checking as
it is implemented in the tool Goanna. Section 4 gives a detailed description of
three different rules that we implemented for the ATmega16. Section 5 describes
the results that we obtained for an automotive case study. Finally, Section 6
concludes the paper, and discusses future work.

2 Why Software for Microcontrollers is Different

C programs for microcontrollers commonly include – besides standard ANSI C
language features – compiler-specific constructs, hardware-dependent features,
and embedded assembly language statements. One feature that breaks common
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analysis frameworks is direct memory access, which is a crucial feature, as certain
operations of the microcontroller are controlled by specific registers that are
located at fixed memory addresses. An example are I/O registers that are used
to communicate with the environment. Most C code model checkers and static
analyzers consider direct memory access to be an error [16] because it can lead
to defects in an environment with dynamic linking and loading.

One option is to extended standard C code model checkers to cater for mi-
crocontroller specific features. This is, however, not an easy task given that the
correctness of a program can depend on the underlying hardware layout. An-
other option is implemented in the [mc]square tool [15]. It analyzes ATMEL
C code by analyzing the compiled assembly and relating it back to the C code.
While this captures all the necessary platform particularities, it also requires to
track a large state space, which limits the analysis to certain code sizes. In this
paper, we follow the alternative option to amend the static analysis tool Goanna,
which bases its checks on temporal logic specifications.

3 Static Analysis by Model Checking

In this work, we use an automata-based static analysis framework that is imple-
mented in our tool Goanna. In contrast to typical equation solving approaches
to static analysis, the automata based approach [5, 11, 18] defines properties in
terms of temporal logic expressions over annotated graphs. The validity of a
property can then be checked automatically by graph exploring techniques such
as model checking. Goanna3 itself is a closed source project, but the technical
details of the approach can be found in [7].

The basic idea of our approach is to map a C/C++ program to its corre-
sponding control flow graph (CFG), and to label the CFG with occurrences of
syntactic constructs of interest. The CFG together with the labels can easily
be mapped to the input language of a model checker or directly translated into
a Kripke structure for model checking. Consider the simple example program
fibonacci in Fig. 1, which is computing Fibonacci numbers. For example, to
check whether variables are initialized before their first use, we syntactically
identify program locations that declare, read, or write variables. For variable
q in Fig. 1 (a) we automatically label the nodes with labels declq, readq and
writeq, as shown in Fig. 1 (b). Given this annotated CFG, checking whether q
is used initialized then amounts to checking the following CTL formula.

AG declq ⇒ (A ¬readq W writeq) (1)

CTL uses the path quantifiers A and E, and the temporal operators G,F,X,
and U. The (state) formula Aφ means that φ has to hold on all paths, while Eφ
means that φ has to hold on some path. The (path) formulae Gφ,Fφ and Xφ
mean that φ holds globally in all states, in some state, or in the next state of

3 http://nicta.com.au/research/projects/goanna
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1 int fibonacci(int n) {

2 int x = 0, y = 1, q, i = 0;

3 do {

4 int oldy = y;

5 y = x;

6 q = x + oldy;

7 x = q;

8 i++;

9 } while(i < n);

10 return q;

11 } (a)
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Fig. 1. (a) Example C program, and (b) annotated control flow graph (CFG). Each
node corresponds to one line-of-code for simplicity.

a path, respectively. The until φUψ means that until a state occurs along the
path that satisfies ψ, property φ has to hold. We also use the weak until φWψ.
It differs from the until in that either φ holds until ψ holds, or φ holds globally
along the path. The weak until operator does not require that ψ holds for any
state along the paths, as long as φ holds everywhere. It can also be expressed
in terms of the other operators. In CTL a path quantifier is always paired with
a temporal operator. For a formal definition of CTL we refer the reader to [1].
CTL formula (1) means that whenever variable q has been declared, it cannot
be read until it is written, or it is never read at all. Note, that the annotated
CFG in Fig. 1 (b) satisfies CTL formula (1).

Once patterns relevant for matching atomic propositions have been defined,
the CFG will be annotated automatically, and it is straightforward to translate
the annotated graph automatically into a Kripke structure, which can then be
analyzed by a model checker. Adding new checks only requires to define the
property to be checked and the patterns representing atomic propositions. We
implemented this framework in our tool Goanna. Goanna is able to handle full
C/C++ including compiler-dependent switches for the GNU gcc compiler and
uses the open source model checker NuSMV [1] as its generic analysis engine.
The run-times are typically in the order of the compilation, i.e., we experience
an average overhead of 2 to 3 times the compilation time.

4 Codifying the Rules

Microcontroller code is different from common C/C++ source code, and the
rules that were developed for large code bases, such as Firefox, have limited
applicability in this domain. For example, the standard Goanna tool with its
predefined properties does not produce any warnings for the microcontroller-
specific case study presented in Section 5.

This section describes how to define platform-specific properties that look for
common deficiencies in microcontroller code. Three aspects of microcontroller
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133 //ISR for Timer0 Overflow
134 SIGNAL (SIG_OVERFLOW0)
135 {
136 cli(); //deactivate all Interrupts
137 outp(0x00,TCCR0); //stop Timer0
138
139 mode++;
140 if(mode > 4) mode = 0;
141
142 outp(0x00,TCNT0); //timer0 reset
143 outp(0x04,TCCR0); //start Timer0 with prescaler = 256
144 sei(); //activate all Interrupts
145 }

Fig. 2. Example of a non-interruptible routine violating the interrupt-handling check.

code are especially prone to error: the correct handling of interrupts, the correct
call to and the correct use of timers, and the use of special function registers. For
this paper, we have chosen to develop rules specific for the ATMEL ATmega16,
to illustrate the approach, but the rules can be extended and changed to fit other
platforms as well.

4.1 Incorrect-Interrupt-Handling Check

A common cause of bugs in microcontroller code is the incorrect disabling and
enabling of interrupts in interrupt service routines (ISRs). The ATmega16 pro-
vides two types of ISRs. The first type disables by default all interrupts at the
beginning of the ISR, and enables them by default when it has been handled. The
programmer should at no point in the ISR enable or disable any interrupt. The
second type of ISRs requires from the programmer to pair enabling and disabling
of interrupts. He has to disable them before he can enable them. Unlike other
microcontrollers, the ATmega16 does not provide interrupts with priorities, and
typically also not that ISRs can be preempted.

To deal with interrupt handling we define syntactic patterns for the following
labels:
- signal is the label for the entry to an ISR that automatically disables

interrupts when entering and enables interrupts when leaving.
Interrupts should not be enabled or disabled in this routine.

- interrupt is the label for the entry to an ISR that does not disable inter-
rupts when entering and does not enable interrupts when leav-
ing. If someone disables interrupts in this handler, he should
enable them afterwards.

- cli is the label for register assignments that disable all interrupts.
- sei is the label for register assignments that enable all interrupts.
- fnend is the label for the end of the routine.
Note, that the preprocessor replaces the commands cli and sei by register as-
signments, i.e., our patterns work on these assignments. Given the labels defined
above, we define the following rules for the scope of the ISR:
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– The rule that ISRs with the attribute signal should not enable or disable
interrupts at all is expressed in CTL formula (2).

AG (signal ⇒ (AG¬(cli ∨ sei))) (2)

– Other ISRs, with the attribute signal, have to disable and enable interrupts
themselves. If they do, they have to first disable the interrupts, i.e., they
cannot enable them, unless they have disabled them earlier. This is expressed
in CTL formula (3).

AG (interrupt ⇒ (A¬seiWcli)) (3)

We use the weak until operator W to denote that it is acceptable to never
disable interrupts.

– If interrupts are disabled, they should always be enabled before the routine
leaves the ISR. This is encoded in CTL formula (4)

AG (cli ⇒ (A¬fnendWsei)) (4)

– And finally, interrupts should not be enabled twice, without being disabled
in-between, and vice versa, not disabled twice, without being enabled in-
between. This is encoded in formulae (5) and (6).

AG (cli ⇒ AX(A¬cliWsei)) (5)
AG (sei ⇒ AX(A¬seiWcli)) (6)

The temporal operator AX is used in the last two CTL formulae because each
state labelled cli trivially violates A¬cliWsei . This operator states that after
a state labelled cli there should not follow another state labelled cli , unless a
state labelled sei has been encountered earlier along the same path.

Example. Figure 2 shows a routine with attribute signal, which means that it
is not interruptible. Interrupts are disabled before the routine is entered. Use of
sei() in line 144 opens a window for other routines to interfere, and to corrupt
the stack. This ISR does not satisfy (2), and this bug will be flagged as an error.

4.2 Incorrect-Timer-Service Check

The ATmega16 has three timers. The programmer can define different ISRs for
these timers. It can be syntactically checked which timer a service routine should
refer to. Two of the three timers have two configuration registers, and the other
one four. When a routine uses one type of timer, the programmer should not
change the configuration registers of other timers. For each timer i, we introduce
the following labels:

- timer i is the label for the entry to a routine that should use timer i.
- config i is the label for an assignment to registers that modifies the con-

figuration registers of timer i
For instance, timer 0 is used correctly if CTL formula (7) holds. We include
analogous checks for timers 1 and 2.

AG (timer0 ⇒ (AG¬(config1 ∨ config2))) (7)
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18 SIGNAL (SIG_OVERFLOW2)
19 {
20 TCNT0 = START_VALUE; // reload timer with initial value
21 ++g_ticks;
22 }

Fig. 3. Example of a routine violating the interrupt-service check.
63 void timer_init(void)
64 {
65 TCCR1A = 0x00; // no compare/capture/pwm mode
66 TCCR1B = 1 << CS12 | 1<< CS11; // External clock source on T1 pin.
67 // Clock on falling edge.
68 }

Fig. 4. Example code violating the reserved bit property.

Example. Figure 3 shows an example of an ISR that violates this check. At line
20, timer 0 is assigned an initial value, but the routine was triggered by timer 2.

4.3 Register-to-Reserved-Bits Check

The ATmega16 data sheet defines for each register the use of its bits, but it also
defines which bits are reserved and should not be used. The Global Interrupt
Control Register (GICR), for example, is a register used to store which interrupts
have been enabled. For the ATmega16 five bits are used; the three most signif-
icant bits to enable or disable external interrupts, and the two least significant
bits are used to handle the so called Interrupt Vector table. The three remaining
bits are reserved. Bits in registers may be reserved because they are used inter-
nally, by future extensions of the ATMega16, or by other microcontrollers of the
same family, such as the ATmega128. If a program modifies reserved bits while
running on an ATmega16, it might not cause any unexpected behavior. Such
deficiencies may remain undetected by any amount of testing on the ATmega16,
but only once the program is deployed to a different or extended platform they
cause problems.

The data sheet detailing the reserved bits of the ATmega16 can be viewed
as a map from addresses to reserved bits. The reserved bits are akin to a mask.
For the ATMega16 there are 14 registers that have reserved bits. It is easy to
adapt this mapping from registers to reserved bits for other platforms.

Given such a mapping from registers to masks, any assignment to a regis-
ter that matches a mask is a potential deficiency. Checking if an assignment
accesses a certain register, say GICR, is a syntactic check. Checking if the as-
signed value matches the associated mask of reserved bits is also a syntactic
check. If this happens it is flagged as a violation of the register-to-reserved-bit
check. The check can be formulated as an invariant AG¬assign reservedi, where
assign reservedi is a proposition that can be syntactically defined on the AST
for a mask i.

Example. Figure 4 shows an example microcontroller code that violates the
reserved-bit property. At line 66 reserved bit 5 of the Timer/Counter1 Con-
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trol Register B (TCCR1B) is set to zero. If the programmer had used TCCR1B
= TCCR1B | 1 << CS12 | 1<< CS11; instead, or set the bits individually, the
value of bit 5 would have been be preserved. Goanna flags this potential com-
patibility issue, warning that the programmer should only write bits that are
actually used by the ATmega16 microcontroller.

5 Application to an Automotive Case Study

This section presents a case study that uses the additional checks for the AT-
mega16 discussed in the previous section. We have implemented these checks
in Goanna. In this case study, we applied Goanna to different academic solu-
tions developed in a lab course at the RWTH Aachen University. In this lab
course, students had to solve an automotive real-time problem, namely a four
channel speed measurement with a CAN bus interface. The course focussed on
the differences between reconfigurable hardware and CPU-based systems, and
the students were required to implement one solution using a Complex Pro-
grammable Logic Device (CPLD) and one solution using a microcontroller. For
latter, an ATMEL ATmega16 microcontroller in combination with a PHILIPS
SJA1000 stand-alone CAN controller was used. The aim was to provide a solu-
tion that could be integrated into an experimental vehicle. Each group had to
develop and implement their own control strategies. The final submission of each
group at the end of the lab course had to pass an elementary acceptance test to
obtain a certain level of quality in all versions. The details of this process, and
more general, of the lab course and its educational aims are described in [14].

The same code base was used in [17] to demonstrate the capabilities of the
model checker [mc]square. This work selected solutions of three groups and
subjected them to a thorough analysis. The specification formalized three aspects
of a correct implementation: (1) the program should not exhibit stack-collisions,
(2) it should ensure that the measured speed is within given bounds, and (3) the
unit should eventually produce a defined output if the input exceeds a certain
threshold. The first two properties are safety properties, while the latter is a
liveness property. Even though the students did not follow any guidelines to
make model checking easier, the model checker could be applied with no or little
conditioning of the source code. The run times range from a few seconds to find
a counterexample, up to 9 hours to show correctness.

5.1 Code Base

For this paper, we use the C code that was developed for the ATmega16, and
is thus aimed at the avr-gcc compiler. There are a total of 475 files, of which
439 are proper C, i.e., these files include all header files and can be parsed. Files
that cannot be parsed were mostly scratch files, and in some cases not even C;
one file, for example, is just a technical ASCII illustration of the experimental
setup. Of the 439 proper C files, Goanna is able to analyze 431, the others cause
an exception in the interface between Goanna and the front-end parser. The
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cause for this exception needs further investigation. The code is organized into
24 projects. Each project contains the final version of a student group, and for
some groups also intermediate versions.

The entire code base of 431 files consists of 97527 LoC (lines-of-code) before,
and 203638 LoC after preprocessing. The average size after preprocessing is
472 LoC, while the size of the largest file is 1489 LoC; 98% of all files are
smaller than 1000 LoC. Each file consists on average out of 9 functions, while the
maximal number of functions is 58; 99% of all files have less than 25 functions.
The code base covers a whole range of programs, from well structured code
to monolithic ”spaghetti” code, which makes it a suitable testbed for software
analysis techniques.

5.2 Implementation Notes

The source code analysis tool Goanna is implemented in Ocaml. It uses a com-
mercial front-end to parse the source code and the symbolic CTL model checker
NuSMV as back-end. The front-end supports most common C/C++ compilers
such as gcc, the ATmega compiler avr-gcc, however, is not among them. Note,
that to be able to analyze the code Goanna does not need to fully compile the
code, it is sufficient to obtain the AST after parsing. Our parser and the ATmega
compiler differed in some aspects such as scoping and the use of binary numbers.
This required conditioning of the source code, something which could fortunately
be achieved by applying a few systematic rewrite rules. A more fundamental
problem was that our parser did not retain all of the important information that
we needed for the analysis. The most notable example was whether an interrupt
service routine has the attribute SIGNAL or the attribute INTERRUPT; information
Goanna requires to perform the Incorrect-Interrupt-Handling check as described
in Section 4.1. To implement this check we amended the front-end parser such
that this information was available for analysis.

5.3 Results

The experiments were performed on a DELL PowerEdge SC1425 server, with
an Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache and 1.5 GiB
DDR-2 400 MHz ECC memory. Analyzing all 431 files took 164 seconds, which
amounts to an average analysis time of 0.38 seconds, or approximately 1200LoC
per second. The maximal runtime was 1.84 seconds. Figure 5 (a) shows the
distribution of runtimes. The analysis of all but 2 files (99.5%) took less than 1
second. In 50% of all cases the runtime was smaller than 0.36 seconds.

Figure 5 (b) shows the relation between file size in lines-of-code (after prepro-
cessing) and the runtime. It appears that there is roughly a linear correlation,
although there are many outliers. The relation between the number of functions
and the analysis time is much more pronounced, as shown in Figure 5 (c). There
is approximate a linear correlation with only a few outliers.

At least as important as the runtime are the results of the analysis itself. In
the 431 analyzed files, Goanna found 154 errors, i.e., cases that violated one of the
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Fig. 5. (a) Distribution of the analysis time. (b) Analysis time versus file size in lines-
of-code. (c) Analysis time versus file size in number of functions.

three rules defined in Section 4. There were 4 incorrect uses of the timers, 7 cases
of incorrect interrupt enabling and disabling, and 143 cases of an assignment to
a reserved bit. The examples shown in Section 4 are based on actual code from
this code base.

The seven cases of incorrect interrupt enabling all dealt with enabling inter-
rupts in ISRs in which interrupts are disabled by default. These warnings are
path dependent, i.e., they could be false positives. However, inspection showed
that they are not. The same holds for the warning on incorrect use of timers.
They are all legitimate warnings. These 143 warnings do not appear evenly dis-
tributed among the projects, but are in six of the 24 projects only. This suggests
that some students assign habitually values to reserved registers, while the ma-
jority uses them correctly. To the extend that intermediate versions were present,
it can be observed that warnings that appeared in earlier versions of the project
are also present in the final version. This might be due to the fact that it refers
to a compatibility issue that cannot easily be found through testing.

6 Conclusion

Results. This paper describes why microcontroller C code is different to stan-
dard C/C++ code, why tool support has to be particularly tailored and why
automatic tools can make a significant contribution to software development in
this area.

In particular, we present an extended version of our tool Goanna, which in-
cludes static analysis checks specific for microcontroller program code. As such,
it is the first of its kind targeted at the ATMEL ATmega16 platform. Since the
analysis checks properties that are specific for microcontroller programs such as
use of reserved registers, interrupt behavior and timer usage, it is able to de-
tect bugs that otherwise might remain undetected. For the presented case study,
Goanna found numerous bugs that had slipped through testing earlier. More-
over, the rate of false alarms was, in this case, zero. This gives a good indication
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about the value of integrating Goanna and similar tools into the microcontroller
software development process. Since the overhead of running such a tool is neg-
ligible, precision is high and real-life bugs can be discovered by non-experts,
we estimate a significant decrease in debugging time and in turn in software
development time.

We have shown that adding platform-specific checks for microcontroller code
to Goanna can be done in a simple and concise manner. This mostly stems from
using a model checker as the underlying analysis engine, i.e., that ability to use
CTL as a specification language. In contrast, semantic software model checking
requires a detailed semantic model, for example, of the memory layout of the
specific hardware. While this is possible, as demonstrated by [16], it is a laborious
task and run-time behavior does not encourage a compile-time integration of such
a tool. On the other hand, semantic analysis allows for a much deeper analysis
unearthing even more subtle bugs.

However, Goanna’s abstract rules for interrupt unlocking and locking as
shown in Section 4 are similar in nature to specifications used by semantic model
checkers. Further investigations are required to quantify the added value seman-
tic software model checkers can provide for finding more bugs and being more
precise not only for constructed examples, but for real existing code bases.

Future Work. The main challenge to add microcontroller specific checks in this
work was to find appropriate CTL formulae, and to deal with a specific non-
ANSI dialect of C. Although, the resulting CTL specifications are very succinct,
it does take experience to find a specification that does find the right bugs while
being low on false positives. To simplify the specification of new properties, we
are currently working on a pattern language that allows for the introduction of
new specifications without detailed knowledge of CTL.

The other challenge was to deal with the fact that the front-end parser used
by Goanna does not natively parse and compile code for the ATMEL ATmega
platform. It is an unfortunate fact that different microcontrollers use different
dialects of C, which necessitates some rewriting of code and additions to the
parser. Fortunately, the kind of analysis that Goanna supports, does not require
the ability to compile the code for the target platform.

Future work is to move the application from a lab course within an industrial
setting, to a truly industrial setting. This will require to add other platform
specific properties and to support other platforms. We have formulated these
properties for the ATMEL ATmega16 microcontroller, but they can be easily
reformulated for other microcontrollers, provided that we can extend the parser
to accept the specific C dialect.

Opportunities. Our results suggest that different programmers have different bug
profiles. This means that tools such as Goanna can be used in software quality
assurance to assess the quality and maturity of code, and to some extend also to
assess the quality of programmers. Similarly, these tools can also be used in ed-
ucation as a tool to teach platform-specific programming guidelines. Automatic
tools provide an immediate feedback, which can be much more effective than
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finding and correcting these mistakes through testing or inspection. We consid-
ered a code base that has been subject to three different approaches to improve
the design and implementation of microcontroller code. The model checking ap-
proach followed in [17] puts the emphasis on functional correctness. The work
presented in [16] had a focus on the underlying technology and the software de-
velopment cycle. Our work contributes to these with an automated analysis that
improves software quality, maintainability and compatibility across platforms.
All three, if not more, are necessary to improve design and implementation of
microcontroller applications.
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