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August 16, 1996AbstractFor a reliable, ow-controlled multicast transport protocol to scale, itmust avoid the feedback implosion problem [5], particularly if the pro-tocol targets arbitrarily large multicast groups communicating over lossynetworks.Most existing feedback control mechanisms based on probabilistic sup-pression address the feedback implosion problem by suppressing feedbackusing timers based on round-trip time (RTT) information. This approachrequires that all receivers compute RTT to the data source.We present an algorithm whose major bene�t derives from the factthat it does not need to compute RTT from receivers to the source, anddoes not require knowledge of group membership or network topology. Weuse a small set of representative receivers and probabilistic suppression tolimit feedback.We believe that our approach will perform well in real networks. Simu-lations using randomly-generated network topologies of varying sizes withpessimistic network loss rates show that representatives considerably re-duce the amount of feedback compared to a purely suppression-basedscheme. For various multicast group sizes, a few representatives can keepthe amount of feedback low while not degrading feedback timeliness.Keywords: Multicast, feedback, suppression, representatives1



1 IntroductionWhile many existing multicast transport protocols such as SRM [7], and RTP [17],target delay sensitive, real-time applications, little has been done to addressmultipoint bulk data transfer services, such as multicast FTP.The feedback suppression algorithm we present is part of our e�orts tobuild a scalable ow controlled multicast transport mechanism suitable for bulkdata transfer applications. Our solution addresses the problem of feedbackimplosion[5], while providing the frequent and timely feedback required by aow control algorithm. Our solution does not require knowledge of the multi-cast group membership or network support.Several existing reliable multicast transport protocols, such as SRM [7], useRTT-based probabilistic suppression to avoid feedback implosion at the source.In RTT-based suppression, each receiver measures RTT to the source and sets afeedback timer based on its distance from the source. Receivers nearer the sourcewill be the �rst to respond to a packet loss and will tend to suppress NACKsfrom receivers farther down the multicast tree. This approach is intended forconferencing applications in which many-to-many communication takes place.In this environment, computing RTTs to the source requires little additionaloverhead.In this paper, we present a solution to the feedback implosion problem thatdoes not rely on RTT estimation and hence has greater potential for scalability.Although our mechanism is not tied to any particular application, it is aimed atapplications with a single data source and multiple receivers. All communicationis via multicast.We use a small set of group members, or representatives, to represent the con-gested multicast subtrees. In addition to providing fast feedback to the source,representatives suppress feedback from the other group members. Throughsimulations, we evaluate our feedback suppression mechanism in terms of theamount and timeliness of the feedback generated by the multicast group.For multicast groups of varying sizes communicating over randomly-generatednetwork topologies subject to pessimistic loss rates, our simulation results showthat representatives can greatly reduce the amount of feedback when comparedto purely suppressive algorithms, yet still provide timely feedback to the source.Representatives also make the algorithm less sensitive to suppression timer set-tings, which allows the algorithm to perform well without having to rely onRTT estimation between each receiver and the source. Not performing RTTestimates cuts down the overhead of our feedback control mechanism consid-erably. Our simulations also show that representative set size scales well withmulticast group size.
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2 Related Work2.1 Feedback ControlTraditional reliable unicast transport protocols, such as TCP, use ACKs to re-cover from packet loss. This approach to achieving reliability is often referredto as sender-initiated, since it is the responsibility of the sender to detect packetlosses. In a multicast environment, as group sizes increase, the sender-initiatedscheme may cause ACK implosion since each delivered packet triggers an ac-knowledgment from every receiver in the group.Alternatively, in the receiver-initiated approach to reliability, receivers detectpacket losses and request its retransmission by generating a NACK. Placing theresponsibility of recovering from packet losses on the receiver helps alleviatethe ACK implosion problem. The performance comparison study presented in[15] con�rms that receiver-initiated multicast transport protocols have betterscalability propoerties than their sender-initiated counterparts. For this reason,most reliable multipoint transport protocols are either pure receiver-initiated oruse a hybrid approach by combining receiver- and sender-initiated reliability.However, receiver-based protocols also su�er from the feedback implosionproblem, especially when losses occur higher up in the multicast tree in largergroups over lossy networks. In this section we focus on proposed solutions tothe feedback implosion problem in the context of reliable multicast transportprotocols.In [8], solutions to the feedback implosion problem are classi�ed as structure-based or timer-based. Structure-based approaches, such as the Log-Based Pro-tocol [10], rely on a designated site (either a dedicated server in the case of theLog-Based Protocol [10] or a pre-assigned group member) to process and �lterfeedback information.Timer-based solutions rely on probabilistic feedback suppression to avoid im-plosion at the source. Receivers in the SRM protocol [7], which was designed tosupport the WB distributed whiteboard application, delay their retransmissionrequests for a random interval, uniformly distributed between the current timeand the one-way trip time to the source. The goal is that group members closerto the source send their feedback sooner suppressing feedback from farther awaymembers. A site uses periodic session messages to measure its distance (basedon the resulting RTT) to the other group members.The Deterministic Timeouts for Reliable Multicast (DTRM) [8] algorithmalso uses RTT between receivers and the sender to compute the receivers' sup-pression timeouts.The feedback control mechanism proposed in [13] does not fall into eitherthe structure-based or the timer-based categories. In this approach to feedbackcontrol, which is used by the IVS videoconferencing tool [18] and is layered atopof RTP [17], video sources use probabilistic polling to select a set of receiversthat should provide feedback. 3



2.2 Window-Based versus Rate-Based Flow ControlWe have considered two approaches to ow control. The �rst is the traditionalwindow-based ow control scheme used by TCP. The second approach is therate-based scheme such as that used in NETBLT [4].Window-Based Flow ControlA more traditional approach to ow control is allowing the sender to transmita certain number of packets, or a window, at a time. The sender advances itswindow each time it receives an acknowledgment for an outstanding packet. Theproblem of using a window-based ow control scheme in a multicast environmentis deciding how to adjust the transmission window.Because of the ACK implosion problem, multicast transport protocols usenegative acknowledgment (NACKs) to signal packet loss. Should the windowbe adjusted in the absence of a NACK? How long do we wait for NACKs? Wecould measure the number of NACKs coming back, but since we do not knowthe size of the group, counting NACKs is not very useful.Another conceptual problem is that a window-based ow control mechanismis closely tied to reliability. There has been a number of arguments in theliterature for decoupling ow control from reliability. For these reasons, wedecided to use a rate-based ow control scheme.Rate-Based Flow ControlIn rate-based ow control, the transmission rate can be set independently ofthe reliability mechanism. The source sends packets according to the currenttransmission rate. Since our goal is to avoid packet loss, the receivers shoulddetermine how much queuing is taking place in the network. If there is toomuch data queued in the network, receivers need to notify the source to slowdown.Since packet losses may still occur, the ow control mechanism should re-spond by multiplicatively decreasing the transmission rate when NACKs arereceived at the sender.2.3 Congestion ControlIn [14], Nagle shows that congestion can occur even in a datagram networkwith in�nite storage. Jain et al. [16] proposes a congestion avoidance scheme,where routers signal congestion by setting the congestion avoidance bit in thepacket's network-layer header. Depending on the overall feedback received,sources decide whether to increase or increase the current window size. Jain'snetwork-layer congestion avoidance scheme requires a new bit in the packetheaders as well as routers being able to set this bit.4



In [12], Jacobson describes his slow-start ow control algorithm for TCP,which gradually opens the TCP transmission window as the source receivesacknowledgments from the receivers. Slow-start uses data loss as sign of con-gestion and shuts the window down to 1 packet after a packet is lost. Both theTahoe and Reno distribution of BSD UNIX [11] incorporate Jacobson's slow-start algorithm.In multicast communication, the probability of loosing packets grows as afunction of the group size, and the cost of a packet loss is much higher than ina point-to-point exchange. Because reliable delivery is critical for data distri-bution applications, our goal is to avoid packet drops.Another variant of TCP called TCP Vegas [3] implements a sender-sidecongestion avoidance algorithm. In [1], Danzig et al. con�rms that Vegas'congestion avoidance scheme yields higher throughput and keeps less data inthe network than Reno. By computing the di�erence between best and currentround-trip times (RTT), a Vegas sender measures the amount of data queuedin the network and adjusts its transmission window accordingly.This congestion avoidance approach in a multicast environment does notscale well. Senders need ACKs to measure RTTs, which for large groups, maylead to ack implosion. There is also the unknown membership problem. Ifgroup members' clocks were synchronize, it would be possible to measure one-way trip times, and have receivers compute queuing themselves. However, clocksynchronization requires an additional protocol. In Section 4, we describe sometechniques to address the scalability problem.2.4 Reliable Multicast Transport ProtocolsTraditional reliable unicast transport protocols, such as TCP, use positive ac-knowledgments (ACKs) to recover from packet loss. This approach to achievingreliability is often referred to as sender-initiated, since it is the responsibility ofthe sender to detect packet losses. In a multicast environment, as group sizes in-crease, the sender-initiated scheme may cause acknowledgment implosion sinceeach delivered packet triggers an acknowledgment from every receiver in thegroup.Alternatively, in the receiver-initiated approach to reliability, receivers detectpacket losses and request its retransmission by generating a negative acknowl-edgment. Placing the responsibility of recovering from packet losses on thereceiver alleviates the acknowledgment implosion problem. The performancecomparison study presented in [15] con�rms that receiver-initiated multicasttransport protocols deliver better performance than their sender-initiated coun-terparts.Most reliable multipoint transport protocols are either pure receiver-initiatedor use a hybrid approach by combining receiver- and sender-initiated reliability.Below, we overview some of these protocols.5



3 The ModelOur feedback suppression mechanism focuses on the following application-levelrequirements and lower-layer services.� IP Multicast:Senders transmit data packets using internet multicast. The current mul-ticast routing model which has been in use on hundreds of routing domainsthat form the Internet's MBONE1 is based on DVMRP, a distance-vectormulticast routing protocol. DVMRP builds source-rooted shortest-pathdistribution trees, where all leaf routers are attached to group members.IP multicast uses the Internet Group Management Protocol (IGMP)2 tomanage group membership. Hosts send an IGMP join message to themulticast group they want to join. Multicast-capable routers use IGMPmessages to propagate membership information among themselves and topoll directly attached hosts for updated membership information.Although we are assuming the current Internet multicast model, our pro-tocol will work with any of the alternate multicast models that have beenproposed, such as CBT [2] and PIM [6].� Unknown Group Membership:To support scalability, it is assumed the set of receivers is unknown. Thisis also a reection of the semantics of IP multicast where there is nocentralized group management.� Unknown Network Topology:No knowledge of the underlying physical network topology is assumed.Routers are not relied on to provide feedback about the network condi-tions, or �lter feedback requests.� Static Data:Our focus is on applications that distribute static data as opposed toreal-time data. A multicast �le distribution service, where �les can be ofarbitrary size, is a typical target application.We assume that application semantics issues, such as data consistency,will be handled by the speci�c application.� Per-source Flow Control:Although there can be multiple sources in a multicast group, ow controlis on a per-source basis. In other words, we are not designing an aggregateow control mechanism for a multicast group.1http://www.research.att.com/mbone-faq.html2http://www.cis.ohio-state.edu/htbin/rfc/rfc1112.html6



� Application SemanticsApplications are responsible for the protocol semantics. When movingfrom a one-to-one reliability protocol such as TCP to a one-to-many pro-tocol that would be used in multicast applications, it becomes much moredi�cult to build a single transmission protocol that can handle all thepossible semantics that might be required.Even though we are targeting bulk data transfer applications, the modelis very general. It can be applied to any multicast application requiringprompt feedback.4 Feedback Suppression AlgorithmOur multicast feedback mechanism is based on the assumption that in a largemulticast group, a small set of bottleneck links will cause the majority of thecongestion problems. We exploit this by �nding a small set of group members torepresent the congested multicast subtrees. These group representatives provideimmediate feedback which can suppress feedback from other group membersthus preventing feedback implosion at the source.If a receiver never experiences any packet loss, or has its packet losses coveredby a representative, it will never generate any messages.The �rst challenge in selecting representatives is to choose them such thatthey represent the congested subtrees of the multicast tree. Ideally, each con-gested link would be represented by one representative in the a�ected subtree.The second challenge is to react to new congestion in a timely manner by choos-ing new representatives and discarding those that are no longer contributing tothe feedback e�orts.The congestion avoidance protocol we envision relies on both positive (ACK)and negative (NACK) acknowledgments. ACKs are required to prevent conges-tion collapse, while NACKs are required to provide feedback in the case ofcongestion. If a source does not hear any feedback, it can assume that eitherthere are no group members other than itself, or that there has been some sortof catastrophic network failure.Receivers that have been selected as representatives provide immediate feed-back to the source. Feedback from other receivers is scheduled over a randominterval and is subject to suppression. We explain how suppression timers areset in Section 4.5.At startup, there is no representative set and suppression timers are set veryloosely.3 As feedback comes in, the source builds the representative set. Inthe absence of NACKs, the receivers whose ACKs were received by the sourcewill be selected as representatives. Since NACKs are an immediate indication3In our simulation we initially set the suppression timers to 1500 milliseconds. Once theGRTT (see 4.5.1) is computed we use that as the basis to set timers.7



of congestion, feedback suppression will give precedence to NACKs over ACKs.Receivers sending NACKs will take precedence over receivers sending ACKs forconsideration as representatives. As network conditions change, new feedbackis received by the source and the representative set is updated.4.1 The SourceThe source maintains the representative set and computes the group's currentmaximum round-trip time (GRTT) de�ned in Section 4.5.1. The source is re-sponsible for distributing the current representative set and the GRTT to thegroup.4.2 ReceiversUpon receiving a data packet, non-representative receivers schedule a NACKif a data packet N is received without having seen packet N-14. Otherwise anACK is scheduled. A scheduled response is held for a random period of timebefore being sent. If another response is received before the scheduled send timeand the received response is de�ned to be as \good or better" than the responsescheduled, the scheduled response is suppressed. In our de�nition of \good orbetter", NACKs suppress NACKs and ACKs, while ACKs can only suppressother ACKs.4.3 RepresentativesReceivers designated as representatives send feedback to the source immediatelyforgoing any suppression interval.A receiver designates itself as a representative when it receives a represen-tative set noti�cation in which it is a member. A representative reverts to non-representative operation when it receives a representative set update in whichit is not a member.4.4 Representative SelectionAt startup, any receiver that provides feedback is eligible for selection as arepresentative. After a full representative set has been obtained, only NACKsqualify a receiver for selection as a representative. To prevent a sudden change ofthe representative set, only one new representative may be selected in responseto any one packet. When the representative set is full and a new representativeis selected, an existing representative must be ejected from the current set.The best candidate for ejection is obviously the \worst" representative, but theproblem then lies in what constitutes the \worst". To keep things simple, the4Since this is not a reliability mechanism, we only NACK the N-1 packet. We are notconcerned with any other previous lost packets.8



representative that has not sent a NACK in the longest time is selected. Thiscriteria is based on the assumption that a representative that has not sent aNACK is having the fewest number of congestion problems.4.5 TimersSince we cannot compute RTT between the receivers and the source, we cannotuse the \precise" RTT to set up the suppression timers as done in SRM [7].So we are forced to resort to cruder measures. We can partially compensatefor using loose timers by using representatives to provide fast feedback. Sincerepresentatives provide immediate feedback on behalf of the subtrees they cover,we need \backup" timers for those losses not covered by representatives.We break our suppression times into two components. The �rst is a simplewait period, and the second is a random interval. The purpose of the wait periodis to allow time for responses by the representatives to traverse the group therebysuppressing non-representative feedback. At the same time, they cannot be toolong, so that losses not covered by the current representative set can be detectedin a timely fashion. The purpose of the random interval is to space out feedbackresponses and allow probabilistic suppression to reduce the amount of feedback.The wait interval is set as percentage of the estimated GRTT describedbelow.4.5.1 GRTT MeasurementComputing the maximum group round-trip (GRTT) time is a di�cult and am-biguous proposition. If we simply keep track of the worst RTT in the groupwe can get an overly pessimistic value, i.e., a value inordinately large due totransient congestion. Once a large value has been established, it might never bereduced. The obvious answer is to decay the value over time. Again a problemarises in in choosing what decay function to use.Another alternative is to measure all RTTs and use a simple averaging �lter.One then winds up with an average which is not desirable. If we decay only theworst values, then we have to de�ne a maximum interval over which to wait forresponses, which again, is not what we want.Our solution is for the source to keep a table of the worst RTTs received.Each table entry contains an RTT measurement and a time-to-live (TTL). Eachtime a packet is sent, the TTL is decremented. The current TTL values is setto 10. We chose this value to reduce rapid turnover in the RTT set in the caseof lost packets. Since we are measuring RTT for every feedback packet received,the RTTs should be updated once for every data packet sent.We keep track of the three worst RTTs received. When a new RTT is receivedit is assigned a TTL. Note that we do not generate any additional messages toestimate the GRTT. 9



4.5.2 Timer SettingEach receiver's wait period and suppression interval is de�ned as a percentageof the advertised GRTT. Since ACKs provide little ow control information,they can be suppressed to an arbitrary degree. Ideally we only need one ACKper packet. Currently we set the ACK wait interval to 1 GRTT.In the case of NACKs, we are faced with the following tradeo�. On onehand we seek to minimize the number of NACKs. On the other, we wish toreceive NACKs in a timely fashion since we need to react to them as quickly aspossible. In the normal case, representatives should be selected in such a wayas to maximize the probability of responding to packet loss. When representa-tives fail to cover the packet loss, the backup mechanism of non-representativessending NACKs must react as quickly as possible.4.6 OverheadSince our feedback control mechanism does not rely on RTT estimation, theonly bandwidth overhead required by our scheme is the distribution of a newrepresentative set and GRTT. GRTT measurements are sent as part of a packetheader, and hence do require separate messages.We tried to keep the computational overhead to a minimum. The mostcomputationally intensive features of our algorithm are in the source. The sizesof the representative set and maximum RTT tables are bounded to limit theamount of computational overhead.Similarly, the space requirements at the source are bounded by the repre-sentative set and maximum RTT table sizes.5 ResultsWe use a simple simulator to evaluate our feedback suppression mechanism. Thegoal is to evaluate the amount and timeliness of the feedback generated by thereceivers in a multicast group connected using an arbitrary network topologywith loss rates and delays speci�ed per link.5.1 Evaluation Methodology5.1.1 Network TopologiesEarly tests of the feedback suppression mechanism utilized a simple binary treenetwork with the source transmitting at the root of the tree and all other nodesbeing receivers. While such networks were easy to generate and provided usefulpreliminary information on the feedback suppression mechanism, it was neces-sary to test the feedback suppression mechanism on more realistic networks.10



To generate more realistic topologies we use Steve Hotz's Network TopologyGenerator [9]. The networks generated were three level networks with low delaylinks at the �rst and second levels and large delay links at the third level. Thisis intended to be a loose approximation of a real internetwork topology with ahigh speed backbone, slower regional networks and �nally slow �nal links. Theloss rates were randomly chosen over the interval 0-5%. See [9] for more detailson the generation of the networks.The receivers are all at the third level and hence will tend to be leaves, butstill have di�erent distances to the source. The source is at the top level.5.1.2 SimulatorThe simulator generates a minimum delay spanning tree from a given networktopology. Link delays and drop rates are speci�ed per link. No capacity mod-eling is done, i.e. all links have in�nite bandwidth. End-to-end delay is simplythe sum of the link delays, and no delay jitter is introduced. The membershipof the group is static.Congestion is modeled in a very simple way. At the beginning of a speci�edinterval, a link is chosen at random, and given a high loss rate. After thespeci�ed congestion interval (in number of source packets) has elapsed, the lossrate is returned to normal. In the current simulations, the congestion loss rate isset to 10%, and the interval is set to 20 source packets. Congestion is introducedonce per congestion interval.The source transmits data packets at a constant rate of 10 packets a second.We describe the simulation parameters below and Table 1 summarizes them.� Representatives To measure the e�ect of representatives, we simulatedgroups with 0, 3, 5, and 10 representatives.� NACK Wait Interval As explained in Section 4.5, the feedback timerdelay has two components. The �rst is a simple wait interval, and thesecond is a random interval. The wait interval is a percentage of theestimated maximum group round-trip time (GRTT). The feedback timeis scheduled by adding the wait and random intervals.In our simulations we used wait times of 0, 25, and 100% of the maximumGRTT.� Maximum Link Loss RateEach link is randomly assigned a value between 0 and the maximum lossrate. The overall loss rate of the network is a function of the link lossrates, network size, and topology.In our simulations, the network loss rate is very high. The networks typi-cally have a 9% loss rate since we wanted to test our feedback mechanismon the worst possible cases. 11



Representatives 0, 3, 5, 10NACK wait interval 0, 0.25, 1Maximum link loss rate 0.01, 0.02, 0.05,Table 1: Simulation Parameters� Congestion Interval The length of time that congestion lasts. At thebeginning of the interval, a link is chosen and given a high loss rate. Atthe end of this interval, the loss rate returns to normal.� Congestion Loss Rate The loss rate on the congested link.We ran our simulator using a randomly-generated, 650-node topology, with50, 100, and 500 level-1, level-2, and level-3 nodes, respectively. In each simula-tion run, we vary one of the parameters in Table 1, while keeping all the otherparameters constant.5.2 Evaluation MetricsIn this evaluation we are concerned with two metrics. The �rst is the quantityof the feedback, and the second is timeliness.For feedback quantity, we look at the total amount of feedback received.The less the better. Ideally, we want a constant amount of feedback per packet,independent of group size.For timeliness, we normalize the feedback time to the maximum GRTT overthe entire simulation. Ideally we would like the RTT to be the minimum RTTfor a given congested point to the source. In practice, it is di�cult to select arepresentative that is the �rst representative on the far side of the congestedlink. If we shorten the random suppression interval, the probability of receivingfeedback from the �rst congested receiver increases, but the amount of feedbackis increased. While this is not a problem for leaf links, it can create a great dealof feedback if the congested link occurs near the root of a large multicast tree.5.3 Evaluation ResultsIn the graphs shown in this section, each point corresponds to the average ofa sequence of 20 simulation runs where all parameters were kept constant. Weevaluate the e�ects of the NACK wait timer, representatives, and group sizein the quantity and quality of the feedback generated by the multicast group.The graphs that show amount of feedback generated by the group plot numberof packets received at the source against data packet sequence number. Thetimeliness graphs plot the minimum time for the source to receive feedbacknormalized to GRTT against data packet sequence number.12



5.3.1 NACK Wait Timer SettingsFigures 1 and 2 show how the NACK wait interval inuences the quantity andthe timeliness of the feedback received at the source. Figure 1 shows the amountof feedback generated by the group in terms of number of NACKs and ACKs,and Figure 2 shows the time for NACKs to arrive at the source normalized tothe corresponding GRTT. For these simulations, we use 650-member groups, 3representatives, and a maximum link loss rate of 1%. Note that this maximumlink loss rate resulted in an overall loss rate of approximately 9%, which is aconsiderably higher loss rate than what is observed in real networks. There-fore, in our simulations, we are driving our feedback control algorithms withpessimistic scenarios in terms of loss rates.Regarding NACKs, in the case where the NACK wait timer is zero (Figure1(a)), the average number of NACKs received is at least twice the averagenumber of NACKs when the NACK wait time is 1 GRTT (Figure 1(c)). Thisis due to the fact that longer NACK wait intervals give representatives a betterchance to suppress non-representative NACKs.During the �rst 10 data packets while representatives are �rst being selected,we receive noticeably more feedback. The representative set is constantly chang-ing during the simulation in response to packet loss being detected in subtreesnot covered by the current representative set. This accounts for some of thevariation in the amount of feedback generated.When comparing the graphs obtained for the di�erent NACK timer settingsin the 3-representative case with the 0-representative case 5, it is clear thatrepresentatives greatly reduce the impact of how the NACK wait timer is set.This is because when there are no representatives, feedback control relies onpure suppression and hence timer setting is crucial. Representatives provideimmediate feedback and only rely on NACK timers for packet losses they stilldo not cover.If the current representative set covered all packet losses in their multicastgroup, longer NACK timers would be the way to go. However, since in realnetworks congestion occurs at di�erent points at di�erent times, NACK waittimers should be set so that non-representatives can still respond to losses notcovered by the current representatives in a timely fashion.The graphs in Figure 2 show the impact of NACK timers on feedback time-liness. There is the obvious result that shorter NACK timers allow feedback tobe received sooner. While in the case of 1 GRTT NACK wait timer, it takeson average 1.5 GRTT for feedback to arrive at the source, it takes less than 1GRTT when the NACK wait timer is 0. However, as we discuss in the next sec-tion, representatives compensate for longer NACK timers by sending immediatefeedback.5The 0-representative graphs with di�erent NACK timer settings have been omitted dueto space limitations. 13
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(c) NACK wait timer is 100% of themaximum GRTTFigure 1: E�ects of NACK timers on feedback. Simulation runs used 650-member multicast groups with 3 representatives, maximum link loss rate of 1%,and NACK wait timer equal to 0, 25, and 100% of the GRTT, respectively.Network loss rate is approximately 9%.
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(c) NACK wait timer is 100% of themaximum GRTTFigure 2: E�ects of NACK timers on feedback. Simulation runs used 650-member multicast groups with 3 representatives, maximum link loss rate of 1%,and NACK wait timer equal to 0, 25, and 100% of the GRTT, respectively.Network loss rate is approximately 9%.
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During the �rst 10 data packets, we also observe the impact of the represen-tative set startup on feedback timeliness.5.3.2 RepresentativesFigures 3 and Figure 4 show the amount and timeliness of feedback for di�erentrepresentative set sizes. These simulations used 650-member groups, a maxi-mum link loss rate of 1%, or approximately 9% overall loss rate, and NACK waitinterval of 25% of GRTT. Graphs (a), (b), (c), and (d) in each �gure correspondto representative set sizes of 0, 3, 5, and 10, respectively.Figure 3 shows how representatives can reduce the amount of feedback re-ceived. We observe that using representatives result in a signi�cant reduction inthe amount of feedback generated. Overall, the 3-representative case (averag-ing 3 NACKs per packet sent) generates less feedback than the 0-representativecase (7 NACKs per packet), but still perform e�ective suppression. The 10-representative case however seems to be more e�ective at limiting the variancein the amount of feedback. This is due to the fact that the 10-representativeset provides a better coverage of packet losses, and therefore keeps the amountof feedback generated by the group more constrained.For the non-empty representative set graphs, the amount of feedback is highduring the �rst 10 packets because representatives were still being elected.There is a tradeo� between the amount of feedback generated and the time-liness of the protocol. On average, representatives lower the amount of feedbackwithout incurring unreasonable latency in getting feedback to the source. Fig-ure 4(a) shows the non-representative case. A pure suppression scheme with theNACK wait interval equal to 0 results in an improvement of 1/4 GRTT over thecase where the representative set in not empty. In other words, representativespay a penalty of about 1/4 GRTT in terms of timeliness.In our simple simulation model, representatives tend to be farther from thesource. This is due to the fact that the farther down the tree a receiver is, themore likely it is to lose a packet. The more likely a receiver loses packets, themore likely it is that it be elected as a representative. Hence representativeswill tend not be the receivers closer to the source.In this section we showed that for a given multicast group size, we canperform e�ective suppression with very few representatives. In the next sectionwe show how our algorithm performs for di�erent group sizes.5.3.3 Group SizeFigures 5 and Figure 6 show the amount and timeliness of feedback generatedby groups of di�erent sizes. We use group sizes of 175, 300, and 650, and setthe NACK timer at 25% of the GRTT, and the maximum link loss rate at 1%,or 9% approximate overall loss rate. We use a 3-representative set in all cases.16
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(d) 10 RepresentativesFigure 3: E�ects of representatives on feedback. We use 0, 3, 5, and 10 rep-resentatives in a 650-member group. NACK wait time is 25% of GRTT, andmaximum link loss rate is 1%. Network loss rate is approximately 9%.
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(a) No Representatives 0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100
#
 R

T
T

s
sequence #

NACK Response Times

Min NACK Response
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(c) 5 Representatives 0
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(d) 10 RepresentativesFigure 4: E�ects of representatives on timeliness. We use 0, 3, 5, and 10representatives in a 650-member group. NACK wait time is 25% of GRTT, andmaximum link loss rate is 1%. Network loss rate is approximately 9%.
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(a) 175-member group 0
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(b) 300-member group
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(c) 650-member groupFigure 5: E�ects of group size on amount of feedback. We use 175, 300, and 650-member groups. NACK wait time is 25% of GRTT, maximum link loss rate is1%, and number of representatives is 3. The network loss rate is approximately9%.
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From Figure 5, we observe that the size of the group has relatively littleimpact on the overall feedback received. This con�rms that a few representativesare quite e�ective in keeping feedback amount low. A larger representative set(5 representatives instead of 3) for the 650-member group (Figure 5(c)) resultsin less variation in the amount of feedback. As we pointed out in Section 5.3.2,this is due to the fact that more representatives provide a better coverage ofpacket loss.Similarly to the amount of feedback generated, Figure 6 shows that feedbacktimeliness does not degrade as the group size increase. On average, the time forthe source to receive feedback is kept under 1 GRTT for all groups sizes shown.5.3.4 CongestionWe can see from Figure 7 that when congested links are modeled in a multicasttree, the impact of representatives on the amount and variability of feedbackis obvious. With no representatives, there is a large variability in the amountof feedback. As representatives are added, the variability in the amount offeedback is greatly reduced. Spikes do occasionally occur which is undesirable.The spikes occur when congestion occurs far up the multicast tree, causing alarge number of receivers to schedule NACKS. The suppression mechanism isthen not able to suppress as many replies as we would like. The spikes could bereduced by increasing the timers values, but this would also reduce the overalltimeliness of the responses. More work is required to address this problem.In Figure 8, the timeliness of the NACKs received in the representative casecompares favorably with the non-representative case.6 Future WorkWe have evaluated the utility of representatives in purely lossy networks. Weexpect that performance will be even better in real networks in which lossesresult primarily from congestion. With this in mind, future simulations need totake into account network congestion and bottleneck links. In the short term,we can extend the current simple simulator to create especially lossy links tosimulate congestion and vary these loss rates over time to simulate transientcongestion in the network.An obvious optimization to reduce feedback is to only allow representativesto send ACKs. This will greatly reduce ACKs while still providing protectionin the case of congestion collapse. NACK feedback is not a�ected.In addition to the random topologies we have examined, we will investigatestar networks that one might �nd in satellite systems, as well as networks con-taining mobile hosts. We will also investigate the possibility of automaticallydetermining the a good representative set size.20
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(a) 175-member group 0
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(b) 300-member group
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(c) 650-member groupFigure 6: E�ects of group size on timeliness of feedback. We use 175, 300,and 650-member groups. NACK wait time is 25% of GRTT, maximum linkloss rate is 1%, and number of representatives is 3. The network loss rate isapproximately 9%.
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(c) 10 representativesFigure 7: E�ects of congestion on the amount of NACK feedback for the 650member group. Aggregate network loss rate is approximately 9%.22
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(c) 10 representativesFigure 8: E�ects of congestion on the timeliness of NACK feedback for the 650member group. Aggregate network loss rate is approximately 9%.23



Our goal is to build a full ow control mechanism suitable for bulk datadistribution in a multicast environment. Since any ow control scheme mustdetect congestion in the network, we need to investigate congestion detectionschemes. In addition to evaluating the use of packet loss as a congestion metricas is done in traditional TCP, we would also like to investigate delay-basedmetrics like that used in TCP-Vegas [3].7 ConclusionThis paper described a multicast feedback control scheme that is part of oure�orts to build a scalable reliable, ow-controlled, multicast transport protocolsuitable for bulk data transfer applications.The major bene�t of our algorithm derives from the fact that we do not needto compute round trip time from receivers to the source, and we do not requireknowledge of group membership or network topology.We use a small set of representatives in combination with probabilistic sup-pression to limit feedback, yet not signi�cantly degrading the timeliness of thefeedback with respect to the worst round trip time for the group.We investigated the performance of our feedback control mechanism in purelylossy networks with no capacity modeling. Representatives show a marked im-provement over a purely suppression oriented algorithm.References[1] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan. Evaluation of tcp vegas: Emu-lation and experiment. 1995 ACM SIGCOMM Conference, pages 185{195,October 1995.[2] A.J. Ballardi, P.F. Francis, and J. Crowcroft. Core based trees (cbt). Proc.of the ACM SIGCOMM'93, San Francisco, CA, August 1993.[3] L.S. Brakmo, S.W. O'Malley, and L.L. Peterson. TCP Vegas: New tech-niques for congestion detection and avoidance. 1994 ACM SIGCOMMConference, pages 24{35, May 1994.[4] D.D. Clark, M.L. Lambert, and L. Zhang. Netblt: A high throughputtransport protocol. 1987 ACM SIGCOMM Conference, pages 353{359,August 1987.[5] P. B. Danzig. Optimally Selecting the Parameters of Adaptive Backo� Algo-rithms for Computer Networks and Multiprocessors. PhD thesis, Universityof California, Berkeley, December 1989.24



[6] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei.An architecture for wide-area multicast routing. 1994 ACM SIGCOMMConference, February 1994.[7] S. Floyd, V. Jacobson, S. McCanne, C.G. Liu, and L. Zhang. A reliablemulticast framework for light-weight sessions and application-level framing.1995 ACM Sigcomm Conference, pages 342{356, October 1995.[8] M. Grossglauser. Optimal deterministic timeouts for reliable scalable multi-cast. Proc. of the IEEE Infocomm'96, San Francisco, CA, pages 1425{1432,March 1996.[9] S. Hotz and R. Nagamati. Network topology generator (NTG): A tool forgenerating network topology and policy for protocol simulation purposes.Technical Report, Computer Science Department, University of SouthernCalifornia, Spring 1992.[10] S.K. Singhal H.W. Holbrook and D.R. Cheriton. Log-based receiver-reliablemulticast for interactive simulation". 1995 ACM SIGCOMM Conference,pages 328{341, September 1995.[11] V. Jacobson. Berkeley tcp evolution from 4.3-tahoe to 4.3-reno. Proceedingsof the British Columbia Internet Engineering Task Force, July 1990.[12] Van Jacobson. Congestion avoidance and control. ACM SIGCOMM 88,pages 273{288, 1988.[13] T. Turletti J.C. Bolot and I. Wakeman. Scalable feedback control for mul-ticast video distribution in the internet. Proc. of the Conference on Com-munications Architectures, Protocols, and Applications, ACM SIGCOMM1994, August 1994.[14] J.B. Nagle. On packet switches with in�nite storage. IEEE Transactionson Communications, 35(4):435{438, April 1987.[15] S. Pingali, D. Towsley, and J. F. Kurose. A comparison of sender-initiatedand receiver-initiated reliable multicast protocols. 1994 ACM SIGMET-RICS Conference, May 1994.[16] K.K. Ramakrishnan and Raj Jain. A binary feedback scheme for congestionavoidance in computer networks. ACM Transactions on Computer Systems,2(8):158{181, May 1990.[17] H. Schulzrinne. A transport protocol for real-time applications. Inter-net Draft, Internet Engineering Task Force, Audio-Video Transport WG,March 1993.[18] T. Turletti. H.261 software codec for video conferencing over the internet.INRIA Research Report 1834, January 1993.25


