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Abstract

For a reliable, flow-controlled multicast transport protocol to scale, it
must avoid the feedback implosion problem [5], particularly if the pro-
tocol targets arbitrarily large multicast groups communicating over lossy
networks.

Most existing feedback control mechanisms based on probabilistic sup-
pression address the feedback implosion problem by suppressing feedback
using timers based on round-trip time (RTT) information. This approach
requires that all receivers compute RTT to the data source.

We present an algorithm whose major benefit derives from the fact
that it does not need to compute RTT from receivers to the source, and
does not require knowledge of group membership or network topology. We
use a small set of representative receivers and probabilistic suppression to
limit feedback.

We believe that our approach will perform well in real networks. Simu-
lations using randomly-generated network topologies of varying sizes with
pessimistic network loss rates show that representatives considerably re-
duce the amount of feedback compared to a purely suppression-based
scheme. For various multicast group sizes, a few representatives can keep
the amount of feedback low while not degrading feedback timeliness.
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1 Introduction

While many existing multicast transport protocols such as SRM [7], and RTP [17],
target delay sensitive, real-time applications, little has been done to address
multipoint bulk data transfer services, such as multicast FTP.

The feedback suppression algorithm we present is part of our efforts to
build a scalable flow controlled multicast transport mechanism suitable for bulk
data transfer applications. Our solution addresses the problem of feedback
implosion[5], while providing the frequent and timely feedback required by a
flow control algorithm. Our solution does not require knowledge of the multi-
cast group membership or network support.

Several existing reliable multicast transport protocols, such as SRM [7], use
RTT-based probabilistic suppression to avoid feedback implosion at the source.
In RTT-based suppression, each receiver measures RTT to the source and sets a
feedback timer based on its distance from the source. Receivers nearer the source
will be the first to respond to a packet loss and will tend to suppress NACKs
from receivers farther down the multicast tree. This approach is intended for
conferencing applications in which many-to-many communication takes place.
In this environment, computing RTTs to the source requires little additional
overhead.

In this paper, we present a solution to the feedback implosion problem that
does not rely on RTT estimation and hence has greater potential for scalability.
Although our mechanism is not tied to any particular application, it is aimed at
applications with a single data source and multiple receivers. All communication
is via multicast.

We use a small set of group members, or representatives, to represent the con-
gested multicast subtrees. In addition to providing fast feedback to the source,
representatives suppress feedback from the other group members. Through
simulations, we evaluate our feedback suppression mechanism in terms of the
amount and timeliness of the feedback generated by the multicast group.

For multicast groups of varying sizes communicating over randomly-generated
network topologies subject to pessimistic loss rates, our simulation results show
that representatives can greatly reduce the amount of feedback when compared
to purely suppressive algorithms, yet still provide timely feedback to the source.
Representatives also make the algorithm less sensitive to suppression timer set-
tings, which allows the algorithm to perform well without having to rely on
RTT estimation between each receiver and the source. Not performing RTT
estimates cuts down the overhead of our feedback control mechanism consid-
erably. Our simulations also show that representative set size scales well with
multicast group size.



2 Related Work
2.1 Feedback Control

Traditional reliable unicast transport protocols, such as TCP, use ACKs to re-
cover from packet loss. This approach to achieving reliability is often referred
to as sender-initiated, since it is the responsibility of the sender to detect packet
losses. In a multicast environment, as group sizes increase, the sender-initiated
scheme may cause ACK implosion since each delivered packet triggers an ac-
knowledgment from every receiver in the group.

Alternatively, in the receiver-initiated approach to reliability, receivers detect
packet losses and request its retransmission by generating a NACK. Placing the
responsibility of recovering from packet losses on the receiver helps alleviate
the ACK implosion problem. The performance comparison study presented in
[15] confirms that receiver-initiated multicast transport protocols have better
scalability propoerties than their sender-initiated counterparts. For this reason,
most reliable multipoint transport protocols are either pure receiver-initiated or
use a hybrid approach by combining receiver- and sender-initiated reliability.

However, receiver-based protocols also suffer from the feedback implosion
problem, especially when losses occur higher up in the multicast tree in larger
groups over lossy networks. In this section we focus on proposed solutions to
the feedback implosion problem in the context of reliable multicast transport
protocols.

In [8], solutions to the feedback implosion problem are classified as structure-
based or timer-based. Structure-based approaches, such as the Log-Based Pro-
tocol [10], rely on a designated site (either a dedicated server in the case of the
Log-Based Protocol [10] or a pre-assigned group member) to process and filter
feedback information.

Timer-based solutions rely on probabilistic feedback suppression to avoid im-
plosion at the source. Receivers in the SRM protocol [7], which was designed to
support the WB distributed whiteboard application, delay their retransmission
requests for a random interval, uniformly distributed between the current time
and the one-way trip time to the source. The goal is that group members closer
to the source send their feedback sooner suppressing feedback from farther away
members. A site uses periodic session messages to measure its distance (based
on the resulting RTT) to the other group members.

The Deterministic Timeouts for Reliable Multicast (DTRM) [8] algorithm
also uses RTT between receivers and the sender to compute the receivers’ sup-
pression timeouts.

The feedback control mechanism proposed in [13] does not fall into either
the structure-based or the timer-based categories. In this approach to feedback
control, which is used by the IVS videoconferencing tool [18] and is layered atop
of RTP [17], video sources use probabilistic polling to select a set of receivers
that should provide feedback.



2.2 Window-Based versus Rate-Based Flow Control

We have considered two approaches to flow control. The first is the traditional
window-based flow control scheme used by TCP. The second approach is the
rate-based scheme such as that used in NETBLT [4].

Window-Based Flow Control

A more traditional approach to flow control is allowing the sender to transmit
a certain number of packets, or a window, at a time. The sender advances its
window each time it receives an acknowledgment for an outstanding packet. The
problem of using a window-based flow control scheme in a multicast environment
is deciding how to adjust the transmission window.

Because of the ACK implosion problem, multicast transport protocols use
negative acknowledgment (NACKs) to signal packet loss. Should the window
be adjusted in the absence of a NACK? How long do we wait for NACKs? We
could measure the number of NACKs coming back, but since we do not know
the size of the group, counting NACKSs is not very useful.

Another conceptual problem is that a window-based flow control mechanism
is closely tied to reliability. There has been a number of arguments in the
literature for decoupling flow control from reliability. For these reasons, we
decided to use a rate-based flow control scheme.

Rate-Based Flow Control

In rate-based flow control, the transmission rate can be set independently of
the reliability mechanism. The source sends packets according to the current
transmission rate. Since our goal is to avoid packet loss, the receivers should
determine how much queuing is taking place in the network. If there is too
much data queued in the network, receivers need to notify the source to slow
down.

Since packet losses may still occur, the flow control mechanism should re-
spond by multiplicatively decreasing the transmission rate when NACKs are
received at the sender.

2.3 Congestion Control

In [14], Nagle shows that congestion can occur even in a datagram network
with infinite storage. Jain et al. [16] proposes a congestion avoidance scheme,
where routers signal congestion by setting the congestion avoidance bit in the
packet’s network-layer header. Depending on the overall feedback received,
sources decide whether to increase or increase the current window size. Jain’s
network-layer congestion avoidance scheme requires a new bit in the packet

headers as well as routers being able to set this bit.



In [12], Jacobson describes his slow-start flow control algorithm for TCP,
which gradually opens the TCP transmission window as the source receives
acknowledgments from the receivers. Slow-start uses data loss as sign of con-
gestion and shuts the window down to 1 packet after a packet is lost. Both the
Tahoe and Reno distribution of BSD UNIX [11] incorporate Jacobson’s slow-
start algorithm.

In multicast communication, the probability of loosing packets grows as a
function of the group size, and the cost of a packet loss is much higher than in
a point-to-point exchange. Because reliable delivery is critical for data distri-
bution applications, our goal is to avoid packet drops.

Another variant of TCP called TCP Vegas [3] implements a sender-side
congestion avoidance algorithm. In [1], Danzig et al. confirms that Vegas’
congestion avoidance scheme yields higher throughput and keeps less data in
the network than Reno. By computing the difference between best and current
round-trip times (RTT), a Vegas sender measures the amount of data queued
in the network and adjusts its transmission window accordingly.

This congestion avoidance approach in a multicast environment does not
scale well. Senders need ACKs to measure RTTs, which for large groups, may
lead to ack implosion. There is also the unknown membership problem. If
group members’ clocks were synchronize, it would be possible to measure one-
way trip times, and have receivers compute queuing themselves. However, clock
synchronization requires an additional protocol. In Section 4, we describe some
techniques to address the scalability problem.

2.4 Reliable Multicast Transport Protocols

Traditional reliable unicast transport protocols, such as TCP, use positive ac-
knowledgments (ACKs) to recover from packet loss. This approach to achieving
reliability is often referred to as sender-initiated, since it is the responsibility of
the sender to detect packet losses. In a multicast environment, as group sizes in-
crease, the sender-initiated scheme may cause acknowledgment implosion since
each delivered packet triggers an acknowledgment from every receiver in the
group.

Alternatively, in the receiver-initiated approach to reliability, receivers detect
packet losses and request its retransmission by generating a negative acknowl-
edgment. Placing the responsibility of recovering from packet losses on the
receiver alleviates the acknowledgment implosion problem. The performance
comparison study presented in [15] confirms that receiver-initiated multicast
transport protocols deliver better performance than their sender-initiated coun-
terparts.

Most, reliable multipoint transport protocols are either pure receiver-initiated
or use a hybrid approach by combining receiver- and sender-initiated reliability.
Below, we overview some of these protocols.



3 The Model

Our feedback suppression mechanism focuses on the following application-level
requirements and lower-layer services.

o [P Multicast:

Senders transmit data packets using internet multicast. The current mul-
ticast routing model which has been in use on hundreds of routing domains
that form the Internet’s MBONE! is based on DVMRP, a distance-vector
multicast routing protocol. DVMRP builds source-rooted shortest-path
distribution trees, where all leaf routers are attached to group members.
IP multicast uses the Internet Group Management Protocol (IGMP)? to
manage group membership. Hosts send an IGMP join message to the
multicast group they want to join. Multicast-capable routers use IGMP
messages to propagate membership information among themselves and to
poll directly attached hosts for updated membership information.

Although we are assuming the current Internet multicast model, our pro-
tocol will work with any of the alternate multicast models that have been
proposed, such as CBT [2] and PIM [6].

e Unknown Group Membership:

To support scalability, it is assumed the set of receivers is unknown. This
is also a reflection of the semantics of IP multicast where there is no
centralized group management.

e Unknown Network Topology:

No knowledge of the underlying physical network topology is assumed.
Routers are not relied on to provide feedback about the network condi-
tions, or filter feedback requests.

e Static Data:

Our focus is on applications that distribute static data as opposed to
real-time data. A multicast file distribution service, where files can be of
arbitrary size, is a typical target application.

We assume that application semantics issues, such as data consistency,
will be handled by the specific application.
e Per-source Flow Control:

Although there can be multiple sources in a multicast group, flow control
is on a per-source basis. In other words, we are not designing an aggregate
flow control mechanism for a multicast group.

Thttp://www.research.att.com/mbone-faq.html
2http://www.cis.ohio-state.edu/htbin/rfc/rfc1112.html



e Application Semantics

Applications are responsible for the protocol semantics. When moving
from a one-to-one reliability protocol such as TCP to a one-to-many pro-
tocol that would be used in multicast applications, it becomes much more
difficult to build a single transmission protocol that can handle all the
possible semantics that might be required.

Even though we are targeting bulk data transfer applications, the model
is very general. It can be applied to any multicast application requiring
prompt feedback.

4 Feedback Suppression Algorithm

Our multicast feedback mechanism is based on the assumption that in a large
multicast group, a small set of bottleneck links will cause the majority of the
congestion problems. We exploit this by finding a small set of group members to
represent the congested multicast subtrees. These group representatives provide
immediate feedback which can suppress feedback from other group members
thus preventing feedback implosion at the source.

If a receiver never experiences any packet loss, or has its packet losses covered
by a representative, it will never generate any messages.

The first challenge in selecting representatives is to choose them such that
they represent the congested subtrees of the multicast tree. Ideally, each con-
gested link would be represented by one representative in the affected subtree.
The second challenge is to react to new congestion in a timely manner by choos-
ing new representatives and discarding those that are no longer contributing to
the feedback efforts.

The congestion avoidance protocol we envision relies on both positive (ACK)
and negative (NACK) acknowledgments. ACKs are required to prevent conges-
tion collapse, while NACKs are required to provide feedback in the case of
congestion. If a source does not hear any feedback, it can assume that either
there are no group members other than itself, or that there has been some sort
of catastrophic network failure.

Receivers that have been selected as representatives provide immediate feed-
back to the source. Feedback from other receivers is scheduled over a random
interval and is subject to suppression. We explain how suppression timers are
set in Section 4.5.

At startup, there is no representative set and suppression timers are set very
loosely.? As feedback comes in, the source builds the representative set. In
the absence of NACKs, the receivers whose ACKs were received by the source
will be selected as representatives. Since NACKs are an immediate indication

3In our simulation we initially set the suppression timers to 1500 milliseconds. Once the
GRTT (see 4.5.1) is computed we use that as the basis to set timers.



of congestion, feedback suppression will give precedence to NACKSs over ACKs.
Receivers sending NACKs will take precedence over receivers sending ACKs for
consideration as representatives. As network conditions change, new feedback
is received by the source and the representative set is updated.

4.1 The Source

The source maintains the representative set and computes the group’s current
maximum round-trip time (GRTT) defined in Section 4.5.1. The source is re-
sponsible for distributing the current representative set and the GRTT to the

group.

4.2 Receivers

Upon receiving a data packet, non-representative receivers schedule a NACK
if a data packet N is received without having seen packet N-1%. Otherwise an
ACK is scheduled. A scheduled response is held for a random period of time
before being sent. If another response is received before the scheduled send time
and the received response is defined to be as “good or better” than the response
scheduled, the scheduled response is suppressed. In our definition of “good or
better”, NACKs suppress NACKs and ACKs, while ACKs can only suppress
other ACKs.

4.3 Representatives

Receivers designated as representatives send feedback to the source immediately
forgoing any suppression interval.

A receiver designates itself as a representative when it receives a represen-
tative set notification in which it is a member. A representative reverts to non-
representative operation when it receives a representative set update in which
it is not a member.

4.4 Representative Selection

At startup, any receiver that provides feedback is eligible for selection as a
representative. After a full representative set has been obtained, only NACKs
qualify a receiver for selection as a representative. To prevent a sudden change of
the representative set, only one new representative may be selected in response
to any one packet. When the representative set is full and a new representative
is selected, an existing representative must be ejected from the current set.
The best candidate for ejection is obviously the “worst” representative, but the
problem then lies in what constitutes the “worst”. To keep things simple, the

4Since this is not a reliability mechanism, we only NACK the N-1 packet. We are not
concerned with any other previous lost packets.



representative that has not sent a NACK in the longest time is selected. This
criteria is based on the assumption that a representative that has not sent a
NACK is having the fewest number of congestion problems.

4.5 Timers

Since we cannot compute RTT between the receivers and the source, we cannot
use the “precise” RTT to set up the suppression timers as done in SRM [7].
So we are forced to resort to cruder measures. We can partially compensate
for using loose timers by using representatives to provide fast feedback. Since
representatives provide immediate feedback on behalf of the subtrees they cover,
we need “backup” timers for those losses not covered by representatives.

We break our suppression times into two components. The first is a simple
wait period, and the second is a random interval. The purpose of the wait period
is to allow time for responses by the representatives to traverse the group thereby
suppressing non-representative feedback. At the same time, they cannot be too
long, so that losses not covered by the current representative set can be detected
in a timely fashion. The purpose of the random interval is to space out feedback
responses and allow probabilistic suppression to reduce the amount of feedback.

The wait interval is set as percentage of the estimated GRTT described
below.

4.5.1 GRTT Measurement

Computing the maximum group round-trip (GRTT) time is a difficult and am-
biguous proposition. If we simply keep track of the worst RTT in the group
we can get an overly pessimistic value, i.e., a value inordinately large due to
transient congestion. Once a large value has been established, it might never be
reduced. The obvious answer is to decay the value over time. Again a problem
arises in in choosing what decay function to use.

Another alternative is to measure all RTTs and use a simple averaging filter.
One then winds up with an average which is not desirable. If we decay only the
worst values, then we have to define a maximum interval over which to wait for
responses, which again, is not what we want.

Our solution is for the source to keep a table of the worst RTTs received.
Each table entry contains an RTT measurement and a time-to-live (TTL). Each
time a packet is sent, the TTL is decremented. The current TTL values is set
to 10. We chose this value to reduce rapid turnover in the RTT set in the case
of lost packets. Since we are measuring RTT for every feedback packet received,
the RTTs should be updated once for every data packet sent.

We keep track of the three worst RTTs received. When a new RTT is received
it is assigned a TTL. Note that we do not generate any additional messages to
estimate the GRTT.



4.5.2 Timer Setting

Each receiver’s wait period and suppression interval is defined as a percentage
of the advertised GRTT. Since ACKs provide little flow control information,
they can be suppressed to an arbitrary degree. Ideally we only need one ACK
per packet. Currently we set the ACK wait interval to 1 GRTT.

In the case of NACKs, we are faced with the following tradeoff. On one
hand we seek to minimize the number of NACKs. On the other, we wish to
receive NACKSs in a timely fashion since we need to react to them as quickly as
possible. In the normal case, representatives should be selected in such a way
as to maximize the probability of responding to packet loss. When representa-
tives fail to cover the packet loss, the backup mechanism of non-representatives
sending NACKs must react as quickly as possible.

4.6 Overhead

Since our feedback control mechanism does not rely on RTT estimation, the
only bandwidth overhead required by our scheme is the distribution of a new
representative set and GRTT. GRTT measurements are sent as part of a packet
header, and hence do require separate messages.

We tried to keep the computational overhead to a minimum. The most
computationally intensive features of our algorithm are in the source. The sizes
of the representative set and maximum RTT tables are bounded to limit the
amount of computational overhead.

Similarly, the space requirements at the source are bounded by the repre-
sentative set and maximum RTT table sizes.

5 Results

We use a simple simulator to evaluate our feedback suppression mechanism. The
goal is to evaluate the amount and timeliness of the feedback generated by the
receivers in a multicast group connected using an arbitrary network topology
with loss rates and delays specified per link.

5.1 Evaluation Methodology
5.1.1 Network Topologies

Early tests of the feedback suppression mechanism utilized a simple binary tree
network with the source transmitting at the root of the tree and all other nodes
being receivers. While such networks were easy to generate and provided useful
preliminary information on the feedback suppression mechanism, it was neces-
sary to test the feedback suppression mechanism on more realistic networks.
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To generate more realistic topologies we use Steve Hotz’s Network Topology
Generator [9]. The networks generated were three level networks with low delay
links at the first and second levels and large delay links at the third level. This
is intended to be a loose approximation of a real internetwork topology with a
high speed backbone, slower regional networks and finally slow final links. The
loss rates were randomly chosen over the interval 0-5%. See [9] for more details
on the generation of the networks.

The receivers are all at the third level and hence will tend to be leaves, but
still have different distances to the source. The source is at the top level.

5.1.2 Simulator

The simulator generates a minimum delay spanning tree from a given network
topology. Link delays and drop rates are specified per link. No capacity mod-
eling is done, i.e. all links have infinite bandwidth. End-to-end delay is simply
the sum of the link delays, and no delay jitter is introduced. The membership
of the group is static.

Congestion is modeled in a very simple way. At the beginning of a specified
interval, a link is chosen at random, and given a high loss rate. After the
specified congestion interval (in number of source packets) has elapsed, the loss
rate is returned to normal. In the current simulations, the congestion loss rate is
set to 10%, and the interval is set to 20 source packets. Congestion is introduced
once per congestion interval.

The source transmits data packets at a constant rate of 10 packets a second.
We describe the simulation parameters below and Table 1 summarizes them.

¢ Representatives To measure the effect of representatives, we simulated
groups with 0, 3, 5, and 10 representatives.

¢ NACK Wait Interval As explained in Section 4.5, the feedback timer
delay has two components. The first is a simple wait interval, and the
second is a random interval. The wait interval is a percentage of the
estimated maximum group round-trip time (GRTT). The feedback time
is scheduled by adding the wait and random intervals.

In our simulations we used wait times of 0, 25, and 100% of the maximum
GRTT.
e Maximum Link Loss Rate

Each link is randomly assigned a value between 0 and the maximum loss
rate. The overall loss rate of the network is a function of the link loss
rates, network size, and topology.

In our simulations, the network loss rate is very high. The networks typi-
cally have a 9% loss rate since we wanted to test our feedback mechanism
on the worst possible cases.

11



Representatives 0,3, 5,10
NACK wait interval 0, 0.25, 1
Maximum link loss rate | 0.01, 0.02, 0.05,

Table 1: Simulation Parameters

e Congestion Interval The length of time that congestion lasts. At the
beginning of the interval, a link is chosen and given a high loss rate. At
the end of this interval, the loss rate returns to normal.

e Congestion Loss Rate The loss rate on the congested link.

We ran our simulator using a randomly-generated, 650-node topology, with
50, 100, and 500 level-1, level-2, and level-3 nodes, respectively. In each simula-
tion run, we vary one of the parameters in Table 1, while keeping all the other
parameters constant.

5.2 Ewvaluation Metrics

In this evaluation we are concerned with two metrics. The first is the quantity
of the feedback, and the second is timeliness.

For feedback quantity, we look at the total amount of feedback received.
The less the better. Ideally, we want a constant amount of feedback per packet,
independent of group size.

For timeliness, we normalize the feedback time to the maximum GRTT over
the entire simulation. Ideally we would like the RTT to be the minimum RTT
for a given congested point to the source. In practice, it is difficult to select a
representative that is the first representative on the far side of the congested
link. If we shorten the random suppression interval, the probability of receiving
feedback from the first congested receiver increases, but the amount of feedback
is increased. While this is not a problem for leaf links, it can create a great deal
of feedback if the congested link occurs near the root of a large multicast tree.

5.3 Evaluation Results

In the graphs shown in this section, each point corresponds to the average of
a sequence of 20 simulation runs where all parameters were kept constant. We
evaluate the effects of the NACK wait timer, representatives, and group size
in the quantity and quality of the feedback generated by the multicast group.
The graphs that show amount of feedback generated by the group plot number
of packets received at the source against data packet sequence number. The
timeliness graphs plot the minimum time for the source to receive feedback
normalized to GRTT against data packet sequence number.
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5.3.1 NACK Wait Timer Settings

Figures 1 and 2 show how the NACK wait interval influences the quantity and
the timeliness of the feedback received at the source. Figure 1 shows the amount
of feedback generated by the group in terms of number of NACKs and ACKs,
and Figure 2 shows the time for NACKs to arrive at the source normalized to
the corresponding GRTT. For these simulations, we use 650-member groups, 3
representatives, and a maximum link loss rate of 1%. Note that this maximum
link loss rate resulted in an overall loss rate of approximately 9%, which is a
considerably higher loss rate than what is observed in real networks. There-
fore, in our simulations, we are driving our feedback control algorithms with
pessimistic scenarios in terms of loss rates.

Regarding NACKSs, in the case where the NACK wait timer is zero (Figure
1(a)), the average number of NACKs received is at least twice the average
number of NACKs when the NACK wait time is 1 GRTT (Figure 1(c)). This
is due to the fact that longer NACK wait intervals give representatives a better
chance to suppress non-representative NACKs.

During the first 10 data packets while representatives are first being selected,
we receive noticeably more feedback. The representative set is constantly chang-
ing during the simulation in response to packet loss being detected in subtrees
not covered by the current representative set. This accounts for some of the
variation in the amount of feedback generated.

When comparing the graphs obtained for the different NACK timer settings
in the 3-representative case with the O-representative case °, it is clear that
representatives greatly reduce the impact of how the NACK wait timer is set.
This is because when there are no representatives, feedback control relies on
pure suppression and hence timer setting is crucial. Representatives provide
immediate feedback and only rely on NACK timers for packet losses they still
do not cover.

If the current representative set covered all packet losses in their multicast
group, longer NACK timers would be the way to go. However, since in real
networks congestion occurs at different points at different times, NACK wait
timers should be set so that non-representatives can still respond to losses not
covered by the current representatives in a timely fashion.

The graphs in Figure 2 show the impact of NACK timers on feedback time-
liness. There is the obvious result that shorter NACK timers allow feedback to
be received sooner. While in the case of 1 GRTT NACK wait timer, it takes
on average 1.5 GRTT for feedback to arrive at the source, it takes less than 1
GRTT when the NACK wait timer is 0. However, as we discuss in the next sec-
tion, representatives compensate for longer NACK timers by sending immediate
feedback.

5The 0-representative graphs with different NACK timer settings have been omitted due
to space limitations.
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Figure 1: Effects of NACK timers on feedback. Simulation runs used 650-
member multicast groups with 3 representatives, maximum link loss rate of 1%,
and NACK wait timer equal to 0, 25, and 100% of the GRTT, respectively.
Network loss rate is approximately 9%.
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During the first 10 data packets, we also observe the impact of the represen-
tative set startup on feedback timeliness.

5.3.2 Representatives

Figures 3 and Figure 4 show the amount and timeliness of feedback for different
representative set sizes. These simulations used 650-member groups, a maxi-
mum link loss rate of 1%, or approximately 9% overall loss rate, and NACK wait
interval of 25% of GRTT. Graphs (a), (b), (¢), and (d) in each figure correspond
to representative set sizes of 0, 3, 5, and 10, respectively.

Figure 3 shows how representatives can reduce the amount of feedback re-
ceived. We observe that using representatives result in a significant reduction in
the amount of feedback generated. Overall, the 3-representative case (averag-
ing 3 NACKs per packet sent) generates less feedback than the 0-representative
case (7 NACKSs per packet), but still perform effective suppression. The 10-
representative case however seems to be more effective at limiting the variance
in the amount of feedback. This is due to the fact that the 10-representative
set provides a better coverage of packet losses, and therefore keeps the amount
of feedback generated by the group more constrained.

For the non-empty representative set graphs, the amount of feedback is high
during the first 10 packets because representatives were still being elected.

There is a tradeoff between the amount of feedback generated and the time-
liness of the protocol. On average, representatives lower the amount of feedback
without incurring unreasonable latency in getting feedback to the source. Fig-
ure 4(a) shows the non-representative case. A pure suppression scheme with the
NACK wait interval equal to 0 results in an improvement of 1/4 GRTT over the
case where the representative set in not empty. In other words, representatives
pay a penalty of about 1/4 GRTT in terms of timeliness.

In our simple simulation model, representatives tend to be farther from the
source. This is due to the fact that the farther down the tree a receiver is, the
more likely it is to lose a packet. The more likely a receiver loses packets, the
more likely it is that it be elected as a representative. Hence representatives
will tend not be the receivers closer to the source.

In this section we showed that for a given multicast group size, we can
perform effective suppression with very few representatives. In the next section
we show how our algorithm performs for different group sizes.

5.3.3 Group Size

Figures 5 and Figure 6 show the amount and timeliness of feedback generated
by groups of different sizes. We use group sizes of 175, 300, and 650, and set
the NACK timer at 25% of the GRTT, and the maximum link loss rate at 1%,
or 9% approximate overall loss rate. We use a 3-representative set in all cases.
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Figure 3: Effects of representatives on feedback. We use 0, 3, 5, and 10 rep-
resentatives in a 650-member group. NACK wait time is 25% of GRTT, and
maximum link loss rate is 1%. Network loss rate is approximately 9%.
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Figure 4: Effects of representatives on timeliness. We use 0, 3, 5, and 10
representatives in a 650-member group. NACK wait time is 25% of GRTT, and
maximum link loss rate is 1%. Network loss rate is approximately 9%.
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Figure 5: Effects of group size on amount of feedback. We use 175, 300, and 650-
member groups. NACK wait time is 25% of GRTT, maximum link loss rate is
1%, and number of representatives is 3. The network loss rate is approximately

9%.
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From Figure 5, we observe that the size of the group has relatively little
impact on the overall feedback received. This confirms that a few representatives
are quite effective in keeping feedback amount low. A larger representative set
(5 representatives instead of 3) for the 650-member group (Figure 5(c)) results
in less variation in the amount of feedback. As we pointed out in Section 5.3.2,
this is due to the fact that more representatives provide a better coverage of
packet loss.

Similarly to the amount of feedback generated, Figure 6 shows that feedback
timeliness does not degrade as the group size increase. On average, the time for
the source to receive feedback is kept under 1 GRTT for all groups sizes shown.

5.3.4 Congestion

We can see from Figure 7 that when congested links are modeled in a multicast
tree, the impact of representatives on the amount and variability of feedback
is obvious. With no representatives, there is a large variability in the amount
of feedback. As representatives are added, the variability in the amount of
feedback is greatly reduced. Spikes do occasionally occur which is undesirable.
The spikes occur when congestion occurs far up the multicast tree, causing a
large number of receivers to schedule NACKS. The suppression mechanism is
then not able to suppress as many replies as we would like. The spikes could be
reduced by increasing the timers values, but this would also reduce the overall
timeliness of the responses. More work is required to address this problem.

In Figure 8, the timeliness of the NACKs received in the representative case
compares favorably with the non-representative case.

6 Future Work

We have evaluated the utility of representatives in purely lossy networks. We
expect that performance will be even better in real networks in which losses
result primarily from congestion. With this in mind, future simulations need to
take into account network congestion and bottleneck links. In the short term,
we can extend the current simple simulator to create especially lossy links to
simulate congestion and vary these loss rates over time to simulate transient
congestion in the network.

An obvious optimization to reduce feedback is to only allow representatives
to send ACKs. This will greatly reduce ACKs while still providing protection
in the case of congestion collapse. NACK feedback is not affected.

In addition to the random topologies we have examined, we will investigate
star networks that one might find in satellite systems, as well as networks con-
taining mobile hosts. We will also investigate the possibility of automatically
determining the a good representative set size.
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Figure 6: Effects of group size on timeliness of feedback. We use 175, 300,
and 650-member groups. NACK wait time is 25% of GRTT, maximum link
loss rate is 1%, and number of representatives is 3. The network loss rate is

approximately 9%.
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Figure 7: Effects of congestion on the amount of NACK feedback for the 650
member group. Aggregate network loss rate is approximately 9%.
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member group. Aggregate network loss rate is approximately 9%.



Our goal is to build a full flow control mechanism suitable for bulk data
distribution in a multicast environment. Since any flow control scheme must
detect congestion in the network, we need to investigate congestion detection
schemes. In addition to evaluating the use of packet loss as a congestion metric
as is done in traditional TCP, we would also like to investigate delay-based
metrics like that used in TCP-Vegas [3].

7 Conclusion

This paper described a multicast feedback control scheme that is part of our
efforts to build a scalable reliable, flow-controlled, multicast transport protocol
suitable for bulk data transfer applications.

The major benefit of our algorithm derives from the fact that we do not need
to compute round trip time from receivers to the source, and we do not require
knowledge of group membership or network topology.

We use a small set of representatives in combination with probabilistic sup-
pression to limit feedback, yet not significantly degrading the timeliness of the
feedback with respect to the worst round trip time for the group.

We investigated the performance of our feedback control mechanism in purely
lossy networks with no capacity modeling. Representatives show a marked im-
provement over a purely suppression oriented algorithm.
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