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c©Hervé Abdi 2011

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2011

All rights reserved.
Copies of this publication may be made for educational purposes.

1 3 5 7 9 10 8 6 4 2



Contents

23 Matrix Algebra 1
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
23.2 Matrices: Definition . . . . . . . . . . . . . . . . . . . . . . . . 1

23.2.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
23.2.2 Norm of a vector . . . . . . . . . . . . . . . . . . . . . . 2
23.2.3 Normalization of a vector . . . . . . . . . . . . . . . . . 3

23.3 Operations for matrices . . . . . . . . . . . . . . . . . . . . . . 3
23.3.1 Transposition . . . . . . . . . . . . . . . . . . . . . . . 3
23.3.2 Addition (sum) of matrices . . . . . . . . . . . . . . . . 3
23.3.3 Multiplication of a matrix by a scalar . . . . . . . . . . 4
23.3.4 Multiplication: Product or products? . . . . . . . . . . 4
23.3.5 Hadamard product . . . . . . . . . . . . . . . . . . . . 4
23.3.6 Standard (a.k.a.) Cayley product . . . . . . . . . . . . . 5

23.3.6.1 Properties of the product . . . . . . . . . . . . 6
23.3.7 Exotic product: Kronecker . . . . . . . . . . . . . . . . 7

23.4 Special matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 7
23.4.1 Square and rectangular matrices . . . . . . . . . . . . 8
23.4.2 Symmetric matrix . . . . . . . . . . . . . . . . . . . . . 8
23.4.3 Diagonal matrix . . . . . . . . . . . . . . . . . . . . . . 9
23.4.4 Multiplication by a diagonal matrix . . . . . . . . . . . 9
23.4.5 Identity matrix . . . . . . . . . . . . . . . . . . . . . . . 10
23.4.6 Matrix full of ones . . . . . . . . . . . . . . . . . . . . . 10
23.4.7 Matrix full of zeros . . . . . . . . . . . . . . . . . . . . 11
23.4.8 Triangular matrix . . . . . . . . . . . . . . . . . . . . . 11
23.4.9 Cross-product matrix . . . . . . . . . . . . . . . . . . . 11

23.4.9.1 Variance/Covariance Matrix . . . . . . . . . . 12
23.5 The inverse of a square matrix . . . . . . . . . . . . . . . . . . 13

23.5.1 Inverse of a diagonal matrix . . . . . . . . . . . . . . . 14
23.6 The Big tool: eigendecomposition . . . . . . . . . . . . . . . . 14

23.6.1 Notations and definition . . . . . . . . . . . . . . . . . 14
23.6.2 Eigenvector and eigenvalue matrices . . . . . . . . . . 16
23.6.3 Reconstitution of a matrix . . . . . . . . . . . . . . . . 16
23.6.4 Digression: An infinity of eigenvectors for one eigen-

value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



ii 0.0 CONTENTS

23.6.5 Positive (semi-)definite matrices . . . . . . . . . . . . 17
23.6.5.1 Diagonalization . . . . . . . . . . . . . . . . . 18
23.6.5.2 Another definition for positive semi-definite

matrices . . . . . . . . . . . . . . . . . . . . . 18
23.6.6 Trace, Determinant, etc. . . . . . . . . . . . . . . . . . 18

23.6.6.1 Trace . . . . . . . . . . . . . . . . . . . . . . . 18
23.6.6.2 Determinant . . . . . . . . . . . . . . . . . . . 19
23.6.6.3 Rank . . . . . . . . . . . . . . . . . . . . . . . 19

23.6.7 Statistical properties of the eigen-decomposition . . . 19
23.7 A tool for rectangular matrices:

The singular value decomposition . . . . . . . . . . . . . . . . 21
23.7.1 Definitions and notations . . . . . . . . . . . . . . . . 21
23.7.2 Generalized or pseudo-inverse . . . . . . . . . . . . . 22
23.7.3 Pseudo-inverse and singular value decomposition . . 23

24 The General Linear Model 27
24.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
24.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

24.2.1 The general linear model core equation . . . . . . . . 27
24.2.2 Additional assumptions of the general linear model . 28

24.3 Least square estimate for the general linear model . . . . . . 28
24.3.1 Sums of squares . . . . . . . . . . . . . . . . . . . . . . 28
24.3.2 Sampling distributions of the sums of squares . . . . . 29

24.4 Test on subsets of the parameters . . . . . . . . . . . . . . . . 30
24.5 Specific cases of the general linear model . . . . . . . . . . . 31
24.6 Limitations and extensions of the general linear model . . . . 31



23
Matrix Algebra

23.1 Introduction

Sylvester developed the modern concept of matrices in the 19th century.
For him a matrix was an array of numbers. Sylvester worked with systems
of linear equations and matrices provided a convenient way of working
with their coefficients, so matrix algebra was to generalize number oper-
ations to matrices. Nowadays, matrix algebra is used in all branches of
mathematics and the sciences and constitutes the basis of most statistical
procedures.

23.2 Matrices: Definition

A matrix is a set of numbers arranged in a table. For example, Toto, Marius,
and Olivette are looking at their possessions, and they are counting how
many balls, cars, coins, and novels they each possess. Toto has 2 balls, 5
cars, 10 coins, and 20 novels. Marius has 1, 2, 3, and 4 and Olivette has 6, 1,
3 and 10. These data can be displayed in a table where each row represents
a person and each column a possession:

balls cars coins novels

Toto 2 5 10 20
Marius 1 2 3 4
Olivette 6 1 3 10

We can also say that these data are described by the matrix denoted A
equal to:

A =

2 5 10 20
1 2 3 4
6 1 3 10

 . (23.1)

Matrices are denoted by boldface uppercase letters.
To identify a specific element of a matrix, we use its row and column

numbers. For example, the cell defined by Row 3 and Column 1 contains
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the value 6. We write that a3,1 = 6. With this notation, elements of a matrix
are denoted with the same letter as the matrix but written in lowercase
italic. The first subscript always gives the row number of the element (i.e.,
3) and second subscript always gives its column number (i.e., 1).

A generic element of a matrix is identified with indices such as i and
j. So, ai,j is the element at the the i-th row and j-th column of A. The
total number of rows and columns is denoted with the same letters as the
indices but in uppercase letters. The matrix A has I rows (here I = 3)
and J columns (here J = 4) and it is made of I × J elements ai,j (here
3 × 4 = 12). We often use the term dimensions to refer to the number of
rows and columns, so A has dimensions I by J .

As a shortcut, a matrix can be represented by its generic element writ-
ten in brackets. So, A with I rows and J columns is denoted:

A = [ai,j] =



a1,1 a1,2 . . . a1,j . . . a1,J

a2,1 a2,2 . . . a2,j . . . a2,J
...

...
. . .

...
. . .

...
ai,1 ai,2 . . . ai,j . . . ai,J

...
...

. . .
...

. . .
...

aI,1 aI,2 . . . aI,j . . . aI, J


. (23.2)

For either convenience or clarity, we can also indicate the number of
rows and columns as a subscripts below the matrix name:

A = A
I × J

= [ai,j] . (23.3)

23.2.1 Vectors
A matrix with one column is called a column vector or simply a vector. Vec-
tors are denoted with bold lower case letters. For example, the first column
of matrix A (of Equation 23.1) is a column vector which stores the number
of balls of Toto, Marius, and Olivette. We can call it b (for balls), and so:

b =

21
6

 . (23.4)

Vectors are the building blocks of matrices. For example, A (of Equa-
tion 23.1) is made of four column vectors which represent the number of
balls, cars, coins, and novels, respectively.

23.2.2 Norm of a vector
We can associate to a vector a quantity, related to its variance and standard
deviation, called the norm or length. The norm of a vector is the square
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root of the sum of squares of the elements, it is denoted by putting the
name of the vector between a set of double bars (‖). For example, for

x =

21
2

 , (23.5)

we find
‖ x ‖=

√
22 + 12 + 22 =

√
4 + 1 + 4 =

√
9 = 3 . (23.6)

23.2.3 Normalization of a vector
A vector is normalized when its norm is equal to one. To normalize a vec-
tor, we divide each of its elements by its norm. For example, vector x from
Equation 23.5 is transformed into the normalized x as

x =
x

‖ x ‖
=


2
3

1
3

2
3

 . (23.7)

23.3 Operations for matrices

23.3.1 Transposition
If we exchange the roles of the rows and the columns of a matrix we trans-
pose it. This operation is called the transposition, and the new matrix is
called a transposed matrix. The A transposed is denoted AT . For example:

if A = A
3× 4

=

2 5 10 20
1 2 3 4
6 1 3 10

 then AT = A
4× 3

T =


2 1 6
5 2 1
10 3 3
20 4 10

 . (23.8)

23.3.2 Addition (sum) of matrices
When two matrices have the same dimensions, we compute their sum by
adding the corresponding elements. For example, with

A =

2 5 10 20
1 2 3 4
6 1 3 10

 and B =

3 4 5 6
2 4 6 8
1 2 3 5

 , (23.9)

we find

A + B =

2 + 3 5 + 4 10 + 5 20 + 6
1 + 2 2 + 4 3 + 6 4 + 8
6 + 1 1 + 2 3 + 3 10 + 5

 =

5 9 15 26
3 6 9 12
7 3 6 15

 . (23.10)
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In general

A + B =



a1,1 + b1,1 a1,2 + b1,2 . . . a1,j + b1,j . . . a1,J + b1,J

a2,1 + b2,1 a2,2 + b2,2 . . . a2,j + b2,j . . . a2,J + b2,J
...

...
. . .

...
. . .

...
ai,1 + bi,1 ai,2 + bi,2 . . . ai,j + bi,j . . . ai,J + bi,J

...
...

. . .
...

. . .
...

aI,1 + bI,1 aI,2 + bI,2 . . . aI,j + bI,j . . . aI, J + bI, J

 . (23.11)

Matrix addition behaves very much like usual addition. Specifically,
matrix addition is commutative (i.e., A + B = B + A); and associative
[i.e., A + (B + C) = (A + B) + C].

23.3.3 Multiplication of a matrix by a scalar
In order to differentiate matrices from the usual numbers, we call the latter
scalar numbers or simply scalars. To multiply a matrix by a scalar, multiply
each element of the matrix by this scalar. For example:

10×B = 10×

3 4 5 6
2 4 6 8
1 2 3 5

 =

30 40 50 60
20 40 60 80
10 20 30 50

 . (23.12)

23.3.4 Multiplication: Product or products?
There are several ways of generalizing the concept of product to matrices.
We will look at the most frequently used of these matrix products. Each
of these products will behave like the product between scalars when the
matrices have dimensions 1× 1.

23.3.5 Hadamard product
When generalizing product to matrices, the first approach is to multiply
the corresponding elements of the two matrices that we want to multi-
ply. This is called the Hadamard product denoted by �. The Hadamard
product exists only for matrices with the same dimensions. Formally, it is
defined as:

A�B = [ai,j × bi,j]

=



a1,1 × b1,1 a1,2 × b1,2 . . . a1,j × b1,j . . . a1,J × b1,J

a2,1 × b2,1 a2,2 × b2,2 . . . a2,j × b2,j . . . a2,J × b2,J
...

...
. . .

...
. . .

...
ai,1 × bi,1 ai,2 × bi,2 . . . ai,j × bi,j . . . ai,J × bi,J

...
...

. . .
...

. . .
...

aI,1 × bI,1 aI,2 × bI,2 . . . aI,j × bI,j . . . aI, J × bI, J

 . (23.13)
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For example, with

A =

2 5 10 20
1 2 3 4
6 1 3 10

 and B =

3 4 5 6
2 4 6 8
1 2 3 5

 , (23.14)

we get:

A�B =

2× 3 5× 4 10× 5 20× 6
1× 2 2× 4 3× 6 4× 8
6× 1 1× 2 3× 3 10× 5

 =

6 20 50 120
2 8 18 32
6 2 9 50

 . (23.15)

23.3.6 Standard (a.k.a.) Cayley product
The Hadamard product is straightforward, but, unfortunately, it is not the
matrix product most often used. This product is called the standard or
Cayley product, or simply the product (i.e., when the name of the product
is not specified, this is the standard product). Its definition comes from
the original use of matrices to solve equations. Its definition looks surpris-
ing at first because it is defined only when the number of columns of the
first matrix is equal to the number of rows of the second matrix. When
two matrices can be multiplied together they are called conformable. This
product will have the number of rows of the first matrix and the number
of columns of the second matrix.

So, A with I rows and J columns can be multiplied by B with J rows
and K columns to give C with I rows and K columns. A convenient way
of checking that two matrices are conformable is to write the dimensions
of the matrices as subscripts. For example:

A
I × J
× B

J ×K
= C

I ×K
, (23.16)

or even:

I
A
J
B
K
= C

I ×K
(23.17)

An element ci,k of the matrix C is computed as:

ci,k =
J∑
j=1

ai,j × bj,k . (23.18)

So, ci,k is the sum of J terms, each term being the product of the corre-
sponding element of the i-th row of A with the k-th column of B.

For example, let:

A =

[
1 2 3
4 5 6

]
and B =

1 2
3 4
5 6

 . (23.19)
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The product of these matrices is denoted C = A × B = AB (the × sign
can be omitted when the context is clear). To compute c2,1 we add 3 terms:
(1) the product of the first element of the second row of A (i.e., 4) with the
first element of the first column of B (i.e., 1); (2) the product of the second
element of the second row of A (i.e., 5) with the second element of the first
column of B (i.e., 3); and (3) the product of the third element of the second
row of A (i.e., 6) with the third element of the first column of B (i.e., 5).
Formally, the term c2,1 is obtained as

c2,1 =
J=3∑
j=1

a2,j × bj,1

= (a2,1)× (b1,1) + (a2,2 × b2,1) + (a2,3 × b3,1)

= (4× 1) + (5× 3) + (6× 5)

= 49 . (23.20)

Matrix C is obtained as:

AB = C = [ci,k]

=
J=3∑
j=1

ai,j × bj,k

=

[
1× 1 + 2× 3 + 3× 5 1× 2 + 2× 4 + 3× 6
4× 1 + 5× 3 + 6× 5 4× 2 + 5× 4 + 6× 6

]
=

[
22 28
49 64

]
. (23.21)

23.3.6.1 Properties of the product

Like the product between scalars, the product between matrices is associa-
tive, and distributive relative to addition. Specifically, for any set of three
conformable matrices A,B and C:

(AB)C = A(BC) = ABC associativity (23.22)

A(B + C) = AB + AC distributivity. (23.23)

The matrix products AB and BA do not always exist, but when they
do, these products are not, in general, commutative:

AB 6= BA . (23.24)

For example, with

A =

[
2 1
−2 −1

]
and B =

[
1 −1
−2 2

]
(23.25)
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we get:

AB =

[
2 1
−2 −1

] [
1 −1
−2 2

]
=

[
0 0
0 0

]
. (23.26)

But

BA =

[
1 −1
−2 2

] [
2 1
−2 −1

]
=

[
4 2
−8 −4

]
. (23.27)

Incidently, we can combine transposition and product and get the fol-
lowing equation:

(AB)T = BTAT . (23.28)

23.3.7 Exotic product: Kronecker

Another product is the Kronecker product also called the direct, tensor, or
Zehfuss product. It is denoted ⊗, and is defined for all matrices. Specif-
ically, with two matrices A = ai,j (with dimensions I by J) and B (with
dimensions K and L), the Kronecker product gives a matrix C (with di-
mensions (I ×K) by (J × L)) defined as:

A⊗B =



a1,1B a1,2B . . . a1,jB . . . a1,JB
a2,1B a2,2B . . . a2,jB . . . a2,JB

...
...

. . .
...

. . .
...

ai,1B ai,2B . . . ai,jB . . . ai,JB
...

...
. . .

...
. . .

...
aI,1B aI,2B . . . aI,jB . . . aI, JB


. (23.29)

For example, with

A =
[
1 2 3

]
and B =

[
6 7
8 9

]
(23.30)

we get:

A⊗B =

[
1× 6 1× 7 2× 6 2× 7 3× 6 3× 7
1× 8 1× 9 2× 8 2× 9 3× 8 3× 9

]
=

[
6 7 12 14 18 21
8 9 16 18 24 27

]
.

(23.31)
The Kronecker product is used to write design matrices. It is an essen-

tial tool for the derivation of expected values and sampling distributions.

23.4 Special matrices

Certain special matrices have specific names.
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23.4.1 Square and rectangular matrices
A matrix with the same number of rows and columns is a square matrix.
By contrast, a matrix with different numbers of rows and columns, is a
rectangular matrix. So:

A =

1 2 3
4 5 5
7 8 0

 (23.32)

is a square matrix, but

B =

1 2
4 5
7 8

 (23.33)

is a rectangular matrix.

23.4.2 Symmetric matrix
A square matrix A with ai,j = aj,i is symmetric. So:

A =

10 2 3
2 20 5
3 5 30

 (23.34)

is symmetric, but

A =

12 2 3
4 20 5
7 8 30

 (23.35)

is not.
Note that for a symmetric matrix:

A = AT . (23.36)

A common mistake is to assume that the standard product of two sym-
metric matrices is commutative. But this is not true as shown by the fol-
lowing example, with:

A =

1 2 3
2 1 4
3 4 1

 and B =

1 1 2
1 1 3
2 3 1

 . (23.37)

We get

AB =

 9 12 11
11 15 11
9 10 19

 , but BA =

 9 11 9
12 15 10
11 11 19

 . (23.38)

Note, however, that combining Equations 23.28 and 23.36, gives for sym-
metric matrices A and B, the following equation:

AB = (BA)T . (23.39)
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23.4.3 Diagonal matrix
A square matrix is diagonal when all its elements, except the ones on the
diagonal, are zero. Formally, a matrix is diagonal if ai,j = 0 when i 6= j. So:

A =

10 0 0
0 20 0
0 0 30

 is diagonal . (23.40)

Because only the diagonal elements matter for a diagonal matrix, we
just need to specify them. This is done with the following notation:

A = diag {[a1,1, . . . , ai,i, . . . , aI,I ]} = diag {[ai,i]} . (23.41)

For example, the previous matrix can be rewritten as:

A =

10 0 0
0 20 0
0 0 30

 = diag {[10, 20, 30]} . (23.42)

The operator diag can also be used to isolate the diagonal of any square
matrix. For example, with:

A =

1 2 3
4 5 6
7 8 9

 (23.43)

we get:

diag {A} = diag


1 2 3
4 5 6
7 8 9

 =

15
9

 . (23.44)

Note, incidently, that:

diag {diag {A}} =

1 0 0
0 5 0
0 0 9

 . (23.45)

23.4.4 Multiplication by a diagonal matrix
Diagonal matrices are often used to multiply by a scalar all the elements of
a given row or column. Specifically, when we pre-multiply a matrix by a di-
agonal matrix the elements of the row of the second matrix are multiplied
by the corresponding diagonal element. Likewise, when we post-multiply
a matrix by a diagonal matrix the elements of the column of the first matrix
are multiplied by the corresponding diagonal element. For example, with:

A =

[
1 2 3
4 5 6

]
B =

[
2 0
0 5

]
C =

2 0 0
0 4 0
0 0 6

 , (23.46)
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we get

BA =

[
2 0
0 5

]
×
[
1 2 3
4 5 6

]
=

[
2 4 6
20 25 30

]
(23.47)

and

AC =

[
1 2 3
4 5 6

]
×

2 0 0
0 4 0
0 0 6

 =

[
2 8 18
8 20 36

]
(23.48)

and also

BAC =

[
2 0
0 5

]
×
[
1 2 3
4 5 6

]
×

2 0 0
0 4 0
0 0 6

 =

[
4 16 36
40 100 180

]
. (23.49)

23.4.5 Identity matrix
A diagonal matrix whose diagonal elements are all equal to 1 is called an
identity matrix and is denoted I. If we need to specify its dimensions, we
use subscripts such as

I
3× 3

= I =

1 0 0
0 1 0
0 0 1

 (this is a 3× 3 identity matrix). (23.50)

The identity matrix is the neutral element for the standard product. So:

I×A = A× I = A (23.51)

for any matrix A conformable with I. For example:1 0 0
0 1 0
0 0 1

×
1 2 3
4 5 5
7 8 0

 =

1 2 3
4 5 5
7 8 0

×
1 0 0
0 1 0
0 0 1

 =

1 2 3
4 5 5
7 8 0

 . (23.52)

23.4.6 Matrix full of ones
A matrix whose elements are all equal to 1, is denoted 1 or, when we need
to specify its dimensions, by 1

I × J
. These matrices are neutral elements for

the Hadamard product. So:

A
2× 3
� 1

2× 3
=

[
1 2 3
4 5 6

]
�
[
1 1 1
1 1 1

]
(23.53)

=

[
1× 1 2× 1 3× 1
4× 1 5× 1 6× 1

]
=

[
1 2 3
4 5 6

]
. (23.54)

The matrices can also be used to compute sums of rows or columns:

[
1 2 3

]
×

11
1

 = (1× 1) + (2× 1) + (3× 1) = 1 + 2 + 3 = 6 , (23.55)
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or also [
1 1

]
×
[
1 2 3
4 5 6

]
=
[
5 7 9

]
. (23.56)

23.4.7 Matrix full of zeros
A matrix whose elements are all equal to 0, is the null or zero matrix. It
is denoted by 0 or, when we need to specify its dimensions, by 0

I × J
. Null

matrices are neutral elements for addition[
1 2
3 4

]
+ 0

2× 2
=

[
1 + 0 2 + 0
3 + 0 4 + 0

]
=

[
1 2
3 4

]
. (23.57)

They are also null elements for the Hadamard product.[
1 2
3 4

]
� 0

2× 2
=

[
1× 0 2× 0
3× 0 4× 0

]
=

[
0 0
0 0

]
= 0

2× 2
(23.58)

and for the standard product:[
1 2
3 4

]
× 0

2× 2
=

[
1× 0 + 2× 0 1× 0 + 2× 0
3× 0 + 4× 0 3× 0 + 4× 0

]
=

[
0 0
0 0

]
= 0

2× 2
. (23.59)

23.4.8 Triangular matrix
A matrix is lower triangular when ai,j = 0 for i < j. A matrix is upper
triangular when ai,j = 0 for i > j. For example:

A =

10 0 0
2 20 0
3 5 30

 is lower triangular, (23.60)

and

B =

12 2 3
0 20 5
0 0 30

 is upper triangular. (23.61)

23.4.9 Cross-product matrix
A cross-product matrix is obtained by multiplication of a matrix by its trans-
pose. Therefore a cross-product matrix is square and symmetric. For ex-
ample, the matrix:

A =

1 1
2 4
3 4

 (23.62)

pre-multiplied by its transpose

AT =

[
1 2 3
1 4 4

]
(23.63)
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gives the cross-product matrix:

ATA =

[
1× 1 + 2× 2 + 3× 3 1× 1 + 2× 4 + 3× 4
1× 1 + 4× 2 + 4× 3 1× 1 + 4× 4 + 4× 4

]

=

[
14 21
21 33

]
. (23.64)

23.4.9.1 A particular case of cross-product matrix:
Variance/Covariance

A particular case of cross-product matrices are correlation or covariance
matrices. A variance/covariance matrix is obtained from a data matrix
with three steps: (1) subtract the mean of each column from each element
of this column (this is “centering”); (2) compute the cross-product matrix
from the centered matrix; and (3) divide each element of the cross-product
matrix by the number of rows of the data matrix. For example, if we take
the I = 3 by J = 2 matrix A:

A =

2 1
5 10
8 10

 , (23.65)

we obtain the means of each column as:

m =
1

I
× 1

1× I
× A

I × J
=

1

3
×
[
1 1 1

]
×

2 1
5 10
8 10

 =
[
5 7

]
. (23.66)

To center the matrix we subtract the mean of each column from all its ele-
ments. This centered matrix gives the deviations from each element to the
mean of its column. Centering is performed as:

D = A− 1
J × 1
×m =

2 1
5 10
8 10

−
11
1

× [5 7
]

(23.67)

=

2 1
5 10
8 10

−
5 7
5 7
5 7

 =

−3 −60 3
3 3

 . (23.68)

We note S the variance/covariance matrix derived from A, it is com-
puted as:

S =
1

I
DTD =

1

3

[
−3 0 3
−6 3 3

]
×

−3 −60 3
3 3


=

1

3
×
[
18 27
27 54

]
=

[
6 9
9 18

]
. (23.69)

(Variances are on the diagonal, covariances are off-diagonal.)
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23.5 The inverse of a square matrix

An operation similar to division exists, but only for (some) square matri-
ces. This operation uses the notion of inverse operation and defines the
inverse of a matrix. The inverse is defined by analogy with the scalar num-
ber case for which division actually corresponds to multiplication by the
inverse, namely:

a

b
= a× b−1 with b× b−1 = 1 . (23.70)

The inverse of a square matrix A is denoted A−1. It has the following
property:

A×A−1 = A−1 ×A = I . (23.71)

The definition of the inverse of a matrix is simple. but its computation, is
complicated and is best left to computers.

For example, for:

A =

1 2 1
0 1 0
0 0 1

 , (23.72)

the inverse is:

A−1 =

 1 −2 −1
0 1 0
0 0 1

 . (23.73)

All square matrices do not necessarily have an inverse. The inverse of
a matrix does not exist if the rows (and the columns) of this matrix are
linearly dependent. For example,

A =

3 4 2
1 0 2
2 1 3

 , (23.74)

does not have an inverse since the second column is a linear combination
of the two other columns:40

1

 = 2×

31
2

−
22
3

 =

62
4

−
22
3

 . (23.75)

A matrix without an inverse is singular. When A−1 exists it is unique.
Inverse matrices are used for solving linear equations, and least square

problems in multiple regression analysis or analysis of variance.
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23.5.1 Inverse of a diagonal matrix
The inverse of a diagonal matrix is easy to compute: The inverse of

A = diag {ai,i} (23.76)

is the diagonal matrix

A−1 = diag
{
a−1i,i
}
= diag {1/ai,i} (23.77)

For example, 1 0 0
0 .5 0
0 0 4

 and

1 0 0
0 2 0
0 0 .25

 , (23.78)

are the inverse of each other.

23.6 The Big tool: eigendecomposition

So far, matrix operations are very similar to operations with numbers. The
next notion is specific to matrices. This is the idea of decomposing a ma-
trix into simpler matrices. A lot of the power of matrices follows from this.
A first decomposition is called the eigendecomposition and it applies only
to square matrices, the generalization of the eigendecomposition to rect-
angular matrices is called the singular value decomposition.

Eigenvectors and eigenvalues are numbers and vectors associated with
square matrices, together they constitute the eigendecomposition. Even
though the eigendecomposition does not exist for all square matrices, it
has a particularly simple expression for a class of matrices often used in
multivariate analysis such as correlation, covariance, or cross-product ma-
trices. The eigendecomposition of these matrices is important in statistics
because it is used to find the maximum (or minimum) of functions involv-
ing these matrices. For example, principal component analysis is obtained
from the eigendecomposition of a covariance or correlation matrix and
gives the least square estimate of the original data matrix.

23.6.1 Notations and definition
An eigenvector of matrix A is a vector u that satisfies the following equa-
tion:

Au = λu , (23.79)

whereλ is a scalar called the eigenvalue associated to the eigenvector. When
rewritten, Equation 23.79 becomes:

(A− λI)u = 0 . (23.80)
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Therefore u is eigenvector of A if the multiplication of u by A changes
the length of u but not its orientation. For example,

A =

[
2 3
2 1

]
(23.81)

has for eigenvectors:

u1 =

[
3
2

]
with eigenvalue λ1 = 4 (23.82)

and

u2 =

[
−1
1

]
with eigenvalue λ2 = −1 (23.83)

When u1 and u2 are multiplied by A, only their length changes. That is,

Au1 = λ1u1 =

[
2 3
2 1

] [
3
2

]
=

[
12
8

]
= 4

[
3
2

]
(23.84)

and

Au2 = λ2u2 =

[
2 3
2 1

] [
−1
1

]
=

[
1
−1

]
= −1

[
−1
1

]
. (23.85)

This is illustrated in Figure 23.1.
For convenience, eigenvectors are generally normalized such that:

uTu = 1 . (23.86)

For the previous example, normalizing the eigenvectors gives:

u1 =

[
.8321
.5547

]
and u2

[
−.7071
.7071

]
. (23.87)

3

2

12

8

u1

1Au

-1

1
1

-1

u

Au

a b

2

2

Figure 23.1: Two eigenvectors of a matrix.
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We can check that:[
2 3
2 1

] [
.8321
.5547

]
=

[
3.3284
2.2188

]
= 4

[
.8321
.5547

]
(23.88)

and [
2 3
2 1

] [
−.7071
.7071

]
=

[
.7071
−.7071

]
= −1

[
−.7071
.7071

]
. (23.89)

23.6.2 Eigenvector and eigenvalue matrices
Traditionally, we store the eigenvectors of A as the columns a matrix de-
noted U. Eigenvalues are stored in a diagonal matrix (denoted Λ). There-
fore, Equation 23.79 becomes:

AU = UΛ . (23.90)

For example, with A (from Equation 23.81), we have[
2 3
2 1

]
×
[
3 −1
2 1

]
=

[
3 −1
2 1

]
×
[
4 0
0 −1

]
(23.91)

23.6.3 Reconstitution of a matrix
The eigen-decomposition can also be use to build back a matrix from it
eigenvectors and eigenvalues. This is shown by rewriting Equation 23.90
as

A = UΛU−1 . (23.92)

For example, because

U−1 =

[
.2 .2
−.4 .6

]
,

we obtain:

A = UΛU−1

=

[
3 −1
2 1

] [
4 0
0 −1

] [
.2 .2
−.4 .6

]

=

[
2 3
2 1

]
. (23.93)

23.6.4 Digression:
An infinity of eigenvectors for one eigenvalue

It is only through a slight abuse of language that we talk about the eigen-
vector associated with one eigenvalue. Any scalar multiple of an eigenvec-
tor is an eigenvector, so for each eigenvalue there is an infinite number of
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eigenvectors all proportional to each other. For example,[
1
−1

]
(23.94)

is an eigenvector of A: [
2 3
2 1

]
. (23.95)

Therefore:

2×
[

1
−1

]
=

[
2
−2

]
(23.96)

is also an eigenvector of A:[
2 3
2 1

] [
2
−2

]
=

[
−2
2

]
= −1× 2

[
1
−1

]
. (23.97)

23.6.5 Positive (semi-)definite matrices

Some matrices, such as
[
0 1
0 0

]
, do not have eigenvalues. Fortunately, the

matrices used often in statistics belong to a category called positive semi-
definite. The eigendecomposition of these matrices always exists and has
a particularly convenient form. A matrix is positive semi-definite when it
can be obtained as the product of a matrix by its transpose. This implies
that a positive semi-definite matrix is always symmetric. So, formally, the
matrix A is positive semi-definite if it can be obtained as:

A = XXT (23.98)

for a certain matrix X. Positive semi-definite matrices include correlation,
covariance, and cross-product matrices.

The eigenvalues of a positive semi-definite matrix are always positive
or null. Its eigenvectors are composed of real values and are pairwise or-
thogonal when their eigenvalues are different. This implies the following
equality:

U−1 = UT . (23.99)

We can, therefore, express the positive semi-definite matrix A as:

A = UΛUT (23.100)

where UTU = I are the normalized eigenvectors.
For example,

A =

[
3 1
1 3

]
(23.101)

can be decomposed as:

A = UΛUT
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=

 √1
2

√
1
2√

1
2
−
√

1
2

[4 0
0 2

] √1
2

√
1
2√

1
2
−
√

1
2


=

[
3 1
1 3

]
, (23.102)

with  √1
2

√
1
2√

1
2
−
√

1
2

 √1
2

√
1
2√

1
2
−
√

1
2

 =

[
1 0
0 1

]
. (23.103)

23.6.5.1 Diagonalization

When a matrix is positive semi-definite we can rewrite Equation 23.100 as

A = UΛUT ⇐⇒ Λ = UTAU . (23.104)

This shows that we can transform A into a diagonal matrix. Therefore the
eigen-decomposition of a positive semi-definite matrix is often called its
diagonalization.

23.6.5.2 Another definition for positive semi-definite matrices

A matrix A is positive semi-definite if for any non-zero vector x we have:

xTAx ≥ 0 ∀x . (23.105)

When all the eigenvalues of a matrix are positive, the matrix is positive
definite. In that case, Equation 23.105 becomes:

xTAx > 0 ∀x . (23.106)

23.6.6 Trace, Determinant, etc.
The eigenvalues of a matrix are closely related to three important numbers
associated to a square matrix the: trace, determinant and rank.

23.6.6.1 Trace

The trace of A, denoted trace {A}, is the sum of its diagonal elements. For
example, with:

A =

1 2 3
4 5 6
7 8 9

 (23.107)

we obtain:
trace {A} = 1 + 5 + 9 = 15 . (23.108)
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The trace of a matrix is also equal to the sum of its eigenvalues:

trace {A} =
∑
`

λ` = trace {Λ} (23.109)

with Λ being the matrix of the eigenvalues of A. For the previous example,
we have:

Λ = diag {16.1168,−1.1168, 0} . (23.110)

We can verify that:

trace {A} =
∑
`

λ` = 16.1168 + (−1.1168) = 15 (23.111)

23.6.6.2 Determinant

The determinant is important for finding the solution of systems of linear
equations (i.e., the determinant determines the existence of a solution).
The determinant of a matrix is equal to the product of its eigenvalues. If
det {A} is the determinant of A:

det {A} =
∏
`

λ` with λ` being the `-th eigenvalue of A . (23.112)

For example, the determinant of A from Equation 23.107 is equal to:

det {A} = 16.1168×−1.1168× 0 = 0 . (23.113)

23.6.6.3 Rank

Finally, the rank of a matrix is the number of non-zero eigenvalues of the
matrix. For our example:

rank {A} = 2 . (23.114)

The rank of a matrix gives the dimensionality of the Euclidean space which
can be used to represent this matrix. Matrices whose rank is equal to
their dimensions are full rank and they are invertible. When the rank of
a matrix is smaller than its dimensions, the matrix is not invertible and
is called rank-deficient, singular, or multicolinear. For example, matrix A
from Equation 23.107, is a 3 × 3 square matrix, its rank is equal to 2, and
therefore it is rank-deficient and does not have an inverse.

23.6.7 Statistical properties of the eigen-decomposition
The eigen-decomposition is essential in optimization. For example, prin-
cipal component analysis (PCA) is a technique used to analyze a I × J ma-
trix X where the rows are observations and the columns are variables. PCA

finds orthogonal row factor scores which “explain” as much of the variance
of X as possible. They are obtained as

F = XQ , (23.115)
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where F is the matrix of factor scores and Q is the matrix of loadings of
the variables. These loadings give the coefficients of the linear combina-
tion used to compute the factor scores from the variables. In addition to
Equation 23.115 we impose the constraints that

FTF = QTXTXQ (23.116)

is a diagonal matrix (i.e., F is an orthogonal matrix) and that

QTQ = I (23.117)

(i.e., Q is an orthonormal matrix). The solution is obtained by using La-
grangian multipliers where the constraint from Equation 23.117 is expressed
as the multiplication with a diagonal matrix of Lagrangian multipliers de-
noted Λ in order to give the following expression

Λ
(
QTQ− I

)
(23.118)

This amounts to defining the following equation

L = trace
{
FTF−Λ

(
QTQ− I

)}
= trace

{
QTXTXQ−Λ

(
QTQ− I

)}
.

(23.119)
The values of Q which give the maximum values of L, are found by first
computing the derivative of L relative to Q:

∂L
∂Q

= 2XTXQ− 2ΛQ, (23.120)

and setting this derivative to zero:

XTXQ−ΛQ = 0⇐⇒ XTXQ = ΛQ . (23.121)

Because Λ is diagonal, this is an eigendecomposition problem, and Λ is
the matrix of eigenvalues of the positive semi-definite matrix XTX ordered
from the largest to the smallest and Q is the matrix of eigenvectors of XTX.
Finally, the factor matrix is

F = XQ . (23.122)

The variance of the factors scores is equal to the eigenvalues:

FTF = QTXTXQ = Λ . (23.123)

Because the sum of the eigenvalues is equal to the trace of XTX, the first
factor scores “extract” as much of the variances of the original data as pos-
sible, and the second factor scores extract as much of the variance left un-
explained by the first factor, and so on for the remaining factors. The di-
agonal elements of the matrix Λ

1
2 which are the standard deviations of the

factor scores are called the singular values of X.
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23.7 A tool for rectangular matrices:
The singular value decomposition

The singular value decomposition (SVD) generalizes the eigendecomposition
to rectangular matrices. The eigendecomposition, decomposes a matrix
into two simple matrices, and the SVD decomposes a rectangular matrix
into three simple matrices: Two orthogonal matrices and one diagonal
matrix. The SVD uses the eigendecomposition of a positive semi-definite
matrix to derive a similar decomposition for rectangular matrices.

23.7.1 Definitions and notations
The SVD decomposes matrix A as:

A = P∆QT . (23.124)

where P is the (normalized) eigenvectors of the matrix AAT (i.e., PTP =

I). The columns of P are called the left singular vectors of A. Q is the
(normalized) eigenvectors of the matrix ATA (i.e., QTQ = I). The columns
of Q are called the right singular vectors of A. ∆ is the diagonal matrix
of the singular values, ∆ = Λ

1
2 with Λ being the diagonal matrix of the

eigenvalues of AAT and ATA.
The SVD is derived from the eigendecomposition of a positive semi-

definite matrix. This is shown by considering the eigendecomposition of
the two positive semi-definite matrices obtained from A: namely AAT

and ATA. If we express these matrices in terms of the SVD of A, we find:

AAT = P∆QTQ∆PT = P∆2PT = PΛPT , (23.125)

and
ATA = Q∆PTP∆QT = Q∆2QT = QΛQT . (23.126)

This shows that ∆ is the square root of Λ, that P are eigenvectors of
AAT, and that Q are eigenvectors of ATA.

For example, the matrix:

A =

 1.1547 −1.1547
−1.0774 0.0774
−0.0774 1.0774

 (23.127)

can be expressed as:

A = P∆QT

=

 0.8165 0
−0.4082 −0.7071
−0.4082 0.7071

[2 0
0 1

] [
0.7071 0.7071
−0.7071 0.7071

]
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=

 1.1547 −1.1547
−1.0774 0.0774
−0.0774 1.0774

 . (23.128)

We can check that:

AAT =

 0.8165 0
−0.4082 −0.7071
−0.4082 0.7071

[22 0
0 12

] [
0.8165 −0.4082 −0.4082
0 −0.7071 0.7071

]

=

 2.6667 −1.3333 −1.3333
−1.3333 1.1667 0.1667
−1.3333 0.1667 1.1667

 (23.129)

and that:

ATA =

[
0.7071 0.7071
−0.7071 0.7071

] [
22 0
0 12

] [
0.7071 −0.7071
0.7071 0.7071

]

=

[
2.5 −1.5
−1.5 2.5

]
. (23.130)

23.7.2 Generalized or pseudo-inverse
The inverse of a matrix is defined only for full rank square matrices. The
generalization of the inverse for other matrices is called generalized in-
verse, pseudo-inverse or Moore-Penrose inverse and is denoted by X+. The
pseudo-inverse of A is the unique matrix that satisfies the following four
constraints:

AA+A = A (i)

A+AA+ = A+ (ii)

(AA+)T = AA+ (symmetry 1) (iii)

(A+A)T = A+A (symmetry 2) (iv) . (23.131)

For example, with

A =

 1 −1
−1 1
1 1

 (23.132)

we find that the pseudo-inverse is equal to

A+ =

[
.25 −.25 .5
−.25 .25 .5

]
. (23.133)
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This example shows that the product of a matrix and its pseudo-inverse
does not always gives the identity matrix:

AA+ =

 1 −1
−1 1
1 1

[ .25 −.25 .5
−.25 .25 .5

]
=

[
0.3750 0.1250
0.1250 0.3750

]
. (23.134)

23.7.3 Pseudo-inverse and singular value decomposition
The SVD is the building block for the Moore-Penrose pseudo-inverse. Be-
cause any matrix A with SVD equal to P∆QT has for pseudo-inverse:

A+ = Q∆−1PT . (23.135)

For the preceding example we obtain:

A+ =

[
0.7071 0.7071
−0.7071 0.7071

] [
2−1 0
0 1−1

] [
0.8165 −0.4082 −0.4082
0 −0.7071 0.7071

]

=

[
0.2887 −0.6443 0.3557
−0.2887 −0.3557 0.6443

]
. (23.136)

Pseudo-inverse matrices are used to solve multiple regression and anal-
ysis of variance problems.
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24
The General Linear Model

24.1 Overview

The general linear model (GLM) provides a general framework for a large
set of models whose common goal is to explain or predict a quantitative
dependent variable by a set of independent variables which can be cat-
egorical of quantitative. The GLM encompasses techniques such as Stu-
dent’s t test, simple and multiple linear regression, analysis of variance,
and covariance analysis. The GLM is adequate only for fixed effect models.
In order to take into account random effect model, the GLM needs to be
extended and becomes the mixed effect model.

24.2 Notations

Vectors are denoted with bold lower case letters (e.g., Y ), matrices are de-
noted with bold upper case letters (e.g., X). The transpose of a matrix is
denoted by the superscript T, the inverse of a matrix is denoted by the su-
perscript −1. There are I observations. The values of a quantitative depen-
dent variable describing the I observations are stored in an I by 1 vector
denoted Y . The values of the independent variables describing the I ob-
servations are stored in an I by K matrix denoted X, K is smaller than I
and X is assumed to have rank K (i.e., X is full rank on its columns). A
quantitative independent variable can be directly stored in X, but a qual-
itative independent variable needs to be recoded with as many columns
as they are degrees of freedom for this variable. Common coding schemes
include dummy coding, effect coding, and contrast coding.

24.2.1 The general linear model core equation

For the GLM, the values of the dependent variableare obtained as a linear
combination of the values of the independent variables. The vector for
the coefficients of the linear combination are stored in a K by 1 vector
denoted b. In general, the values of Y cannot be perfectly obtained by a
linear combination of the columns of X and the difference between the
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actual and the predicted values is called the prediction error. The values
of the error are stored in an I by 1 vector denoted e. Formally the GLM is
stated as:

Y = Xb + e . (24.1)

The predicted values are stored in an I by 1 vector denoted Ŷ and, there-
fore, Equation 24.1 can be rewritten as

Y = Ŷ + e with Ŷ = Xb . (24.2)

Putting together Equations 24.1 and 24.2 shows that

e = Y − Ŷ . (24.3)

24.2.2 Additional assumptions of the general linear model
The independent variables are assumed to be fixed variables (i.e., their val-
ues will not change for a replication of the experiment analyzed by the
GLM, and they are measured without error). The error is interpreted as
a random variable and in addition the I components of the error are as-
sumed to be independently and identically distributed (“i.i.d.”) and their
distribution is assumed to be a normal distribution with a zero mean and
a variance denoted σ2

e. The values of the dependent variableare assumed
to be a random sample of a population of interest. Within this framework,
the vector b is seen as an estimation of the population parameter vector β.

24.3 Least square estimate for the general linear
model

Under the assumptions of the GLM, the population parameter vector β is
estimated by b which is computed as

b =
(
XTX

)−1
XTY. (24.4)

This value of b minimizes the residual sum of squares (i.e., b is such that
eTe is minimum).

24.3.1 Sums of squares
The total sum of squares of Y is denoted SSTotal, it is computed as

SSTotal = Y TY . (24.5)

Using Equation 24.2, the total sum of squares can be rewritten as

SSTotal = Y TY =
(
Ŷ + e

)T (
Ŷ + e

)
= Ŷ TŶ + eTe + 2Ŷ Te, (24.6)
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but it can be shown that 2Ŷ Te = 0, and therefore Equation 24.6 becomes

SSTotal = Y TY = Ŷ TŶ + eTe . (24.7)

The first term of Equation 24.7 is called the model sum of squares, it is
denoted SSModel and it is equal to

SSModel = Ŷ TŶ = bTXTXb. (24.8)

The second term of Equation 24.7 is called the residual or the error sum of
squares, it is denoted SSResidual and it is equal to

SSResidual = eTe = (Y −Xb)T(Y −Xb). (24.9)

24.3.2 Sampling distributions of the sums of squares
Under the assumptions of normality and i.i.d for the error, we find that
the ratio of the residual sum of squares to the error variance SSResidual

σ2
e

is dis-
tributed as a χ2 with a number of degrees of freedom of ν = I−K−1. This
is abbreviated as

SSResidual

σ2
e

∼ χ2(ν) . (24.10)

By contrast, the ratio of the model sum of squares to the error variance
SSModel
σ2
e

is distributed as a non-central χ2 with ν = K degrees of freedom
and non centrality parameter

λ =
2

σ2
e

βTXTXβ.

This is abbreviated as
SSModel

σ2
e

∼ χ2(ν, λ) . (24.11)

From Equations 24.10 and 24.11, it follows that the ratio

F =
SSModel/σ

2
e

SSResidual/σ2
e

× I −K − 1

K
=

SSModel

SSResidual
× I −K − 1

K
(24.12)

is distributed as a non-central Fisher’s F with ν1 = K and ν2 = I − K − 1
degrees of freedom and non-centrality parameter equal to

λ =
2

σ2
e

βTXTXβ.

In the specific case when the null hypothesis of interest states that H0 :
β = 0, the non-centrality parameter vanishes and then the F ratio from
Equation 24.12 follows a standard (i.e., central) Fisher’s distribution with
ν1 = K and ν2 = I −K − 1 degrees of freedom.
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24.4 Test on subsets of the parameters

Often we are interested in testing only a subset of the parameters. When
this is the case, the I byK matrix X can be interpreted as composed of two
blocks: an I by K1 matrix X1 and an I by K2 matrix X2 with K = K1 +K2.
This is expressed as

X =
[
X1

... X2

]
. (24.13)

Vector b is partitioned in a similar manner as

b =

b1

. . .
b2

 . (24.14)

In this case the model corresponding to Equation 24.1 is expressed as

Y = Xb + e =
[
X1

... X2

]b1

. . .
b2

+ e = X1b1 + X2b2 + e . (24.15)

For convenience, we will assume that the test of interest concerns the pa-
rametersβ2 estimated by vector b2 and that the null hypothesis to be tested
corresponds to a semi partial hypothesis namely that adding X2 after X1

does not improve the prediction of Y . The first step is to evaluate the qual-
ity of the prediction obtained when using X1 alone. The estimated value of
the parameters is denoted b̃1—a new notation is needed because in gen-
eral b1 is different from b̃1 (b1 and b̃1 are equal only if X1 and X2 are two
orthogonal blocks of columns). The model relating Y to X1 is called a re-
duced model. Formally, this reduced model is obtained as:

Y = X1b̃1 + ẽ1 (24.16)

(where ẽ1 is the error of prediction for the reduced model). The model
sum of squares for the reduced model is denoted SS b̃1

(see Equation 24.9
for its computation). The semi partial sum of squares for X2 is the sum of
squares over and above the sum of squares already explained by X1. It is
denoted SSb2|b1 and it is computed as

SSb2|b1 = SSModel − SS b̃1
. (24.17)

The null hypothesis test indicating that X2 does not improve the predic-
tion of Y over and above X1 is equivalent to testing the null hypothesis
that β2 is equal to 0. It can be tested by computing the following F ratio:

Fb2|b1 =
SSb2|b1

SSResidual
× I −K − 1

K2

. (24.18)

When the null hypothesis is true, Fb2|b1 follows a Fisher’s F distribution
with ν1 = K2 and ν2 = I − K − 1 degrees of freedom and therefore Fb2|b1

can be used to test the null hypothesis that β2 = 0.
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24.5 Specific cases of the general linear model

The GLM comprises several standard statistical techniques. Specifically,
linear regression is obtained by augmenting the matrix of independent
variablesby a column of ones (this additional column codes for the inter-
cept). Analysis of variance is obtained by coding the experimental effect
in an appropriate way. Various schemes can be used such as effect cod-
ing, dummy coding, or contrast coding (with as many columns as there
are degrees of freedom for the source of variation considered). Analysis of
covariance is obtained by combining the quantitative independent vari-
ablesexpressed as such and the categorical variables expressed in the same
way as for an analysis of variance.

24.6 Limitations and extensions of the general linear
model

The general model, despite its name, is not completely general and has
several limits which have spurred the development of “generalizations” of
the general linear model. Some of the most notable limits and some pal-
liatives are listed below.

The general linear model requires X to be full rank, but this condition
can be relaxed by using, (cf. Equation 24.4) the Moore-Penrose general-
ized inverse (often denoted X+ and sometime called a “pseudo-inverse”)
in lieu of

(
XTX

)−1
XT. Doing so, however makes the problem of estimat-

ing the model parameters more delicate and requires the use of the notion
of estimable functions.

The general linear model is a fixed effect model and therefore, it does
not naturally works with random effect models (including multifactorial
repeated or partially repeated measurement designs). In this case (at least
for balanced designs), the sums of squares are correctly computed but the
F tests are likely to be incorrect. A palliative to this problem is to compute
expected values for the different sums of squares and to compute F -tests
accordingly. Another, more general, approach is to model separately the
fixed effects and the random effects. This is done with mixed effect mod-
els.

Another obvious limit of the general linear model is to model only lin-
ear relationship. In order to include some non linear models (such as, e.g.,
logistic regression) the GLM needs to be expended to the class of the gen-
eralized linear models.
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