
ELIoT: Building Internet of Things Software
Combining Localized and Internet-scale Interactions

Alessandro Sivieria, Luca Mottolaa,b, Gianpaolo Cugolaa

a

Politecnico di Milano, Italy

b

Swedish Institute of Computer Science

Abstract

We present ELIOT, a development platform for Internet-connected smart devices.
Unlike most solutions for the emerging “Internet of Things” (IoT), ELIOT allows
to program functionality running within the networks of smart devices without nec-
essarily leveraging the external Internet, and yet enables the integration of such
functionality with Internet-side services. ELIOT thus reconciles the demand for
efficient performance, e.g., minimum latency for implementing localized control
loops, with the need to integrate with the larger Internet. ELIOT builds upon the
Erlang language, adapted to the specifics of IoT programming with dedicated inter-
process communication facilities. Its virtual machine (VM) based execution caters
for the systems’ heterogeneity and the software reconfiguration required in IoT
scenarios. We demonstrate ELIOT based on a smart-home application, supporting
Internet-scale interactions via REST interfaces that ELIOT provides in a reconfig-
urable manner. Our experimental results—obtained atop two hardware platforms
against a C implementation of the smart-home core functionality—indicate that the
performance cost for the increased programming productivity brought by ELIOT
is still viable; for example, memory consumption in ELIOT is comparable to the
C counterparts, and the processing overhead remains within practical limits.

Keywords: Programming, Internet of Things, Erlang

1. Introduction

Everyday’s objects are increasingly equipped with computation and commu-
nication functionality; the latter providing the ability to exchange data with other

Email addresses: sivieri@elet.polimi.it (Alessandro Sivieri),
luca.mottola@polimi.it (Luca Mottola), cugola@elet.polimi.it (Gianpaolo
Cugola)

Preprint submitted to Elsevier June 18, 2013

control
panel

energy providers Internet
hom

e appliances

appliance manufacturers

sensors

Figure 1: Smart-home application.

smart objects and to connect to the larger Internet. Sensors and actuators aboard
these objects enable interactions with the real world. This combination creates
an “Internet of Things” (IoT) enabling novel functionality and added value ser-
vices [1]. Most often, a blend of localized and Internet-scale interactions character-
ize IoT applications, as we exemplify next. How to effectively develop application
software for such settings is, however, an open problem [2].
Scenarios and problem. Figure 1 shows an example smart-home [3] application.
A control panel provides a user interface to coordinate the operation of several
home appliances, such as HVAC systems, kitchen machines, and in-house enter-
tainment, possibly based on environmental conditions gathered through sensors.
Users input to the control panel their preferences, e.g., the desired average temper-
ature, and constraints, e.g., the latest time for a dishwasher to complete washing.

Based on this information, per-appliance models of expected energy consump-
tion, and energy prices found on the Internet, the control panel determines a sched-
ule of activities to meet the user preferences while minimizing energy consump-
tion, e.g., by operating the dishwasher when energy is cheapest but within the user
constraints. At the same time, the control panel offers information on the instan-
taneous energy consumption over the Internet. The energy provider leverages this
information to estimate the overall city-wide load and to make informed decisions
in case of unexpected peaks. Nevertheless, as for the control panel, also individual
appliances should be reachable through the Internet, e.g., for appliance manufac-
turers to update their on-board software.

As we further analyze in Section 2, in this application localized interactions
are required to efficiently realize the control loops to set the operation of home
appliances based on user preferences and sensed data. On the other hand, Internet-

scale interactions characterize the information exchanges between the smart-home
installation and energy providers or appliance manufacturers. This combination
of traits is not unique to the smart home, and is germane to many current and

2

foreseeable IoT applications [2, 4]: examples range from patient monitoring [5] to
vehicular traffic control [6] and logistics [7].

In these scenarios, although developers usually employ devices with suffi-
cient resources to implement localized interactions without necessarily leveraging
Internet-side services [8, 9], existing software platforms [10, 11] almost exclusively
delegate the application-specific functionality to the Internet. There, sensor data is
processed and actuator commands are remotely generated to be later re-injected in
the embedded system. The application logic thus resides entirely outside the net-
works of smart devices. Although this provides a quick path to working prototypes,
it falls short if stricter performance requirements, e.g., low latency for closed-loop
control, become mandatory.
Contribution and road-map. This paper presents ELIOT, a programming sys-
tem for Internet-connected smart devices, which allows to implement functional-
ity running within the local network of embedded devices, while still supporting
their integration with Internet-scale services. ELIOT is based on Erlang [12]: an
industry-strength, functional programming language originally designed for fault-
tolerant applications in the telecommunication domain, which we briefly introduce
in Section 3. Erlang provides an ideal stepping stone to implement IoT applica-
tions, because of its advanced support for parallel and distributed programming
and its VM-based run-time system.

As illustrated in Section 4, with ELIOT we adapt Erlang’s programming model
to the specifics of IoT applications and tailor the corresponding run-time system
to the capabilities of typical IoT devices. This entails, for example, providing
dedicated language constructs to discern different communication guarantees, due
to the unreliability of the wireless channel, and dedicated addressing schemes to
effectively support IoT interactions. At system level, as described in Section 5,
ELIOT’s design allows us to support reconfigurable REST interfaces, which pro-
vide inter-operability of ELIOT devices based on standard-compliant protocols.
Nevertheless, unlike mainstream Erlang run-time systems, ELIOT runs on embed-
ded devices the size of a gum stick and costing less than 40$. We also provide
integrated simulation support for testing and debugging, with the ability of running
hybrid scenarios that include simulated and real devices.

Our evaluation of ELIOT, reported in Section 6, indicates that ELIOT is bene-
ficial for the development of IoT applications. It allows to obtain more concise code
that is easier to debug, maintain, and reason about. The performance penalty to
pay back such benefits is limited: by assessing the performance of a fault-tolerant
ELIOT implementation of the smart-home application against a C-based counter-
part with no embedded fault tolerance, we show that the overall memory consump-
tion is still comparable, whereas CPU usage is higher with ELIOT, but still within
practical limits. Notably, the C-based implementation of the smart-home applica-

3

4: energy rates

3*: energy query
4*: energy prediction

1*: e
nergy q

uery

5: sc
hedule

2*: e
nergy predicti

on

1*: beacon
5: schedule

3:
 e

ne
rg

y
ra

te
s

qu
er

y
2: executable
model

energy provider

home
appliance

home appliance

control panel

Figure 2: Scenario A and B.

5: energy
consumption
and production

4: energy
queries 1*: beacon

2: add operation
3*: energy statusenergy

provider
solar
panel

control
panel

Figure 3: Scenario C.

tion arguably represents the current practice in programming networked embedded
systems.

We end the paper by concisely surveying related work in Section 7 and by
presenting our concluding remarks in Section 8.

1

2. Motivating Application

The smart-home scenario we hint in the Introduction provides a paradigmatic
example of the issues at stake when developing IoT applications. Here we discuss
a base design for this application, together with different deployment scenarios that
lead to additional design choices.

1Luca: Was in the intro before, should be moved to the letter: “We described initial ideas
about ELIOT in an earlier position paper [13]. Here we revisit, extend, concretely realize, and
thoroughly evaluate these ideas against increasingly challenging application scenarios. Specif-
ically, rather than exporting ELIOT’s functionality as a library, we immerse them in Erlang’s
syntax by means of dedicated language constructs. We revisit Erlang’s inter-process commu-
nication facilities to account for the unreliability of wireless communications, while enabling
standard-compliant distributed interactions based on reconfigurable REST interfaces. Finally,
we evaluate these features—both qualitatively and quantitatively—in a concrete application
implementation against its C-based counterpart, which arguably represent the current prac-
tice in programming networked embedded systems.”

4

Base design. In general, the devices in Figure 1, being the control panel or individ-
ual appliances, need to access the Internet, e.g., the control panel must be able to
obtain energy rates from the provider, and to be accessible from the Internet, e.g.,
appliance manufacturers must be able to remotely update the appliances’ on-board
software. At the same time, a local control loop, guided by the control panel, is
beneficial to reduce communication costs and improve performance. In particular,
the control panel acts as a front end for the users and coordinates the appliances’
activities, dealing with:
F1: discovery and monitoring of home appliances, which provides the information

to compute their operating schedules;
F2: processing of the user inputs, and computation of a schedule of appliance

operation whenever required;
F3: communication with external entities, e.g., to query the energy providers for

energy prices or to offer energy consumption information over the Internet.

For ease of installation, smart-home devices are expected to feature wireless
communication. Because of this, we design the discovery functionality required in
F1 using a soft-state approach [14]. The control panel periodically broadcasts bea-
cons that running appliances immediately acknowledge, either to join the system
initially or to confirm their presence afterwards. In absence of acknowledgment,
the control panel removes the appliance from the application state.

The design of the remaining functionality depends on application requirements
and available hardware platforms:

Scenario A: if home appliances are able to locally compute their expected energy
consumption, we can design the schedule computation of F2 by issuing re-
mote queries to obtain the corresponding information. This is shown in the
black sequence of exchanges in Figure 2: whenever the user inputs new in-
formation, the control panel queries the appliances for their expected energy
consumption according to different operating settings (step 1 and 2), and
asks the energy provider for the energy rates at different times of the day
(step 3 and 4). Based on this and environmental data collected from sensors,
the control panel distributes an operating schedule back to the appliances
(step 5).

Scenario B: if an appliance’s computational power is severely constrained, e.g.,
in the case of a light fixture, or the amount of data to exchange is excessive,
the estimation of expected energy consumption for F2 should be performed
by the control panel itself. The blue sequence of message exchanges in Fig-
ure 2 illustrates a design supporting this form of interaction, which requires
computationally-constrained appliances to provide the control panel with a

5

model of their expected energy consumption. The light fixture indeed ac-
knowledges the control panel’s beacon (step 1) by shipping an executable
model to compute its expected energy consumption (step 2). The control
panel locally runs the model (step 3) to compute an estimate of the light fix-
tures’ energy consumption (step 4) before determining and transmitting its
schedule (step 5).

Scenario C: if some devices run different platforms, the necessary coordination
must rely on standard-compliant interfaces and inter-operable message for-
mats. Such interfaces may also need to evolve after the system is installed,
especially for F3. For example, landlords may decide to install solar panels
and to sell the excess energy back to the grid. As shown in Figure 3, when-
ever this happens, the control panel should be extended with an additional
interface to query the amount of produced energy. This interface will be used
by the energy provider in the energy market. This is implemented by letting
the newly installed solar panel answering the control panel’s beacon (step 1)
by requesting the addition of a new operation23 (step 2) and then leveraging
it to periodically inform the control panel about the produced energy (step 3).
The same operation will make this information available over the Internet,
e.g., to the energy provider (step 4 and 5).4

The next sections describe how Erlang provides a stepping stone towards de-
veloping IoT applications exemplified by the smart-home scenario, and how devel-
opers use ELIOT to implement the design above.

3. Erlang

Erlang is an industrial-strength functional language, which includes specific
constructs to ease development of communication protocols, data manipulation
algorithms, and reliable distributed applications.

The example code in Figure 4 shows a recursive function that waits for incom-
ing messages, processes them, and returns the result to the original sender. Erlang’s
concurrency model follows the actor model [15]: Erlang processes are named en-
tities that do not share data, but communicate only through asynchronous message

2GPaolo: Preferirei forse “functionality”. Cambiamo qui e in figura?
3Luca: It’s also in several other places in the paper.
4Luca: It’s unclear who is the user of the added operation. It looks like the panel uses REST

also to talk to the control panel, but I don’t see why given the solar panel may be an ELIOT
device also. Anyways, we don’t say what kind of device is on the solar panel. Am I missing
something?

6

1 % Simple function returning the double of the input
2 double(Number) ->

3 2 * Number.
4
5 % Receive messages, process them, and return results to the original sender
6 loop() ->

7 % Extract the first message from the queue (blocking)
8 receive

9 % Pattern match the content of the message
10 {message_type_1, SenderPID, ListOfNumbers} ->

11 % Apply function Double to the whole list, element by element
12 Result = lists:map(Double, ListOfNumbers),
13 % Send the result back to the original sender
14 SenderPID ! Result;
15 % A different content for the message
16 {message_type_2, SenderPID, Content} ->

17 [...]
18 end,
19 % Recursive call to parse next message in queue (or wait for a new message to arrive)
20 loop()
21 end.

Figure 4: Erlang code sample.

passing. The receive statement in line 8 of Figure 4 takes the first message from
the process’ incoming queue, while the ! operator is used in line 14 to return the
result back to the original sender. Notably, the syntax for inter-process communi-
cation is independent of whether the communicating processes are local or remote,
which simplifies distributed programming by blurring the boundary between local
and remote context.

Distinguishing between message types is specified declaratively using pattern

matching, namely, by stating constraints on the message format, as in line 10
and 16. Erlang’s pattern matching also allows parsing and filtering binary data,
such as message payloads, using very compact code. This is an asset for imple-
menting low-level communication protocols, as often required in IoT applications.

Erlang code is compiled into a bytecode, which is interpreted (or compiled
just-in-time) by the Erlang virtual machine (VM). This provides great flexibility,
allowing processes to be dynamically spawned, also across hosts and based on
bytecode sent over the network. This feature eases the dynamic (re)deployment
of distributed applications: spawning a process remotely uses the same primitives
as in a local setting, while the message-passing functionality remains the same
because of Erlang’s implementation of the actor model described above. Devel-
opers may thus start writing an application in a local context and then move to a
distributed setting with (almost) no changes to the code. This model nicely fits
massively distributed scenarios characterized by transient interactions, such as the
IoT, easing software reconfiguration.

Finally, the Open Telecom Platform (OTP), part of Erlang’s libraries, provides
useful mechanisms to design robust distributed applications. One of the key fea-
tures is the notion of supervisor process, whose job is to monitor the execution of

7

child processes and to implement the necessary failure-handling mechanisms. Su-
pervisor processes can be hierarchically composed to structure fault-tolerant imple-
mentations according to application-specific requirements, which may come handy
for dealing with localized control loops.

Erlang provides a stepping stone to enable development of IoT applications.
On the other hand, the original Erlang’s syntax, semantics, and system support are
not straightforwardly applicable in IoT scenarios. The IoT communication patterns
and resulting communication guarantees differ from those of traditional Erlang
networks. Moreover, mainstream Erlang VMs demand hardware resources rarely
found in IoT settings, whereas debugging and testing IoT applications cannot be
oblivious to the real-world interactions IoT systems are exposed to. ELIOT tackles
these issues as decribed next.

4. ELIoT: Syntax and Semantics

Here we describe ELIOT’s dedicated language constructs, which concerns
three key aspects of inter-process communication key in developing IoT applica-
tions: handling different communication guarantees, supporting extended address-
ing schemes, and providing access to low-level information from the underlying
communication protocols5.
Running example. To make our explanation concrete, we consider the smart-
home application introduced above. The ELIOT code in Figure 5 reports part of the
implementation of the core functionality at the control panel: discovery of home
appliances, as per functionality F1 in the application base design (lines 20 to 29);
gathering of the appliances’ operating parameters, as per scenario A (lines 35
to 42); and installing of the executable model of an appliance’s expected energy
consumption, as per scenario B (lines 46 to 54).

Specifically, after defining constants and structured types, the code in Figure 5
defines a recursive function receiver run by the control panel (line 15). It takes
the current set of known appliances as input and assigns it to the Appliances
variable. Processing stops at the receive statement (line 17) and then unfolds
depending on the type of received message.
Communication guarantees. As mentioned in Section 3, Erlang inter-process
communication is based on the ! operator, which is equally used for sending mes-
sages to a local or to a remote process. In blurring the distinction between local and
remote communication, Erlang assumes that the underlying protocol for sending

5Luca: The only example we have talks about info from the underlying hardware, not pro-
tocols.

8

1 % Define some constants holding chars (1 byte) to be used as headers of messages
2 -define(BCON, $M).
3 -define(APPLIANCE, $A).
4 -define(APPLIANCE_LOCAL, $L).
5 % The timer for sending beacons
6 -define(TIMER, 60000).
7
8 % Define the ’appliance’ record (tuple with named variables) with three fields: the
9 % appliance’s IP address, the process id of the appliance’s model (if running locally),

10 % and the list of its parameters.
11 -record(appliance, {ip, pid = none, parameters = []}).
12
13 % Main (recursive) function handling incoming messages. It takes a dictionary (key, value
14 % pairs) as a parameter, to hold the set of known appliances
15 receiver(Appliances) ->

16 % Extract the first message from the incoming queue (blocking)
17 receive

18 [...]
19 % On receiving the timer self message, build the beacon and send it in broadcast
20 timer ->

21 % Build the beacon with a single byte (8 bits): the value of constant BCON defined above
22 Msg = <<?BCON:8>>,
23 % Send the beacon, unreliably, to the processes called ’appliance’ running on nodes
24 % reachable from this one
25 {appliance, all} ⇠ Msg,
26 % Re-send the timer self-message to myself, after TIMER milliseconds
27 erlang:send_after(?TIMER, self(), timer),
28 % Tail recursion: parse next message
29 receiver(Appliances);
30 % Process message coming from neighbors
31 {RSSI, SourceAddress, Content} ->

32 % Pattern match on the message content
33 case Content of

34 % First byte equals APPLIANCE, next is a binary blob: de-serialize and process
35 <<?APPLIANCE:8, SerializedParameters/binary>> ->

36 Parameters = data:decode_params(SerializedParameters),
37 % Create a new record with this appliance data
38 NewRecord = #appliance{ip = SourceAddress, parameters = Parameters},
39 % Add it to the dictionary (remember: immutable variables)
40 NewApps = dict:store(SourceAddress, NewRecord, Appliances),
41 % Tail recursion with the new set of appliances
42 receiver(NewApps);
43 % First byte equals APPLIANCE_LOCAL, next 20 bytes is a hash, then the lenght
44 % (1 byte) of the following field (SerializedName), then a binary blob holding
45 % serialized code: de-serialize and process
46 <<?APPLIANCE_LOCAL:8, Hash:20/binary, L1:8, SerializedName:L1/binary, Code/binary>> ->

47 Name = erlang:binary_to_list(SerializedName),
48 % Spawn a new process to execute the given code (which is checked against the hash)
49 {Pid, Parameters} = supervisor:start_model(Name, Code, Hash),
50 % Create A new record for the appliance and add it to the dictionary
51 NewRecord = #appliance{ip = SourceAddress, pid = Pid, parameters = Parameters},
52 NewApps = dict:store(SourceAddress, NewRecord, Appliances),
53 % Tail recursion with the new set of appliances
54 receiver(NewApps)
55 end

56 end.

Figure 5: Excerpt of control panel code.

messages among Erlang VMs is reliable6. This is a strong assumption in the IoT
scenarios we target, where wireless communication, often involving direct links7

among nodes, is the rule more than the exception. At the same time, several IoT

6Mainstream Erlang implementations use TCP to provide such guarantees.
7Luca: What do we mean by (wireless) direct link?

9

1 % Extract the first message from the queue (blocking)
2 receive

3 % On receiving the timer self message, build a new message and send it
4 timer ->

5 Message = {Some, Content, Or, Another},
6 % Send Message to the process called ’destination’ on a device named ’node1’
7 % at address 1.2.3.4, using reliable send
8 {destination, ’node1@1.2.3.4’} ! Message;
9 % If something very bad happens, I will receive this NACK...

10 {nack, ReceiverAddress, Message} ->

11 % ... and will react, e.g., by informing the user
12 notify_user("Sending to ⇠p failed", ReceiverAddress);
13 end.

Figure 6: Failure handling triggered by a failed message send.

applications do not need reliable communication and may sacrifice that for better
efficiency. Accordingly, ELIOT complements Erlang’s ! operator, with a new op-
erator: ⇠⇠⇠, which models unreliable, best effort, sending of messages. We see it
at work at line 25 of Figure 5: after creating the single byte beacon (line 22), the
control panel sends it unreliably using the ⇠⇠⇠ operator.

Besides adding the ⇠⇠⇠ operator, ELIOT addresses possible faults of the under-
lying communication protocol by slightly changing the behavior of the ! operator.
In presence of communication faults that cannot be resolved, ELIOT places a spe-
cial nack message into the sender’s incoming message queue. Programmers can
realize application-specific failure-handling mechanisms based on such notifica-
tions, as exemplified in Figure 6. When a timeout expires, the process prepares
and reliably sends a message to a specific destination Node1 (lines 4 to 8). The
clause at line 10 matches the nack message that the underlying VM generates for
the sender process, should the sending fail. In this example, the process simply re-
acts by notifying the user (line 12), yet programmers are free to implement smarter
mechanisms to handle such situations, possibly based on the actual destination and
payload of the failing massage, which are returned as part of the nack message.

More generally, the need to carefully control the costs associated with wireless
communication—both in terms of energy and bandwidth consumed—hardly match
the level of abstraction inherent in Erlang’s original inter-process communication
model. Explicitly providing a best-effort message send operator, alongside a more
reliable one, reconciles the need for providing programming flexibility with the
reality of unreliable wireless communications89.

Notice that ELIOT retains the blurred distinction between local and remote
communication by allowing both message send operators to be used to communi-
cate with local processes. In this case, both straightforwardly guarantee delivery of

8GPaolo: Io taglierei quest’ultima frase.
9Luca: Why?

10

messages.
Addressing schemes. Through the ! operator, Erlang provides solely unicast mes-
saging. Single processes can be easily reached, being them local or remote, once
programmers know their unique identifier or the name they registered to, together
with the address of the VM they run on. This makes it hard to efficiently support
scenarios when a process needs to send a message to all other reachable processes.
This form of broadcast communication is often used in IoT applications, either as
a primitive at the application level, e.g., for discovery, or as a low-level mechanism
to implement higher-level communication protocols.

ELIOT supports these scenarios by offering a richer addressing scheme than
Erlang. In particular, ELIOT messages addressed to {n, all} reach processes
with name n running on all reachable VMs10. We use this feature to implement
discovery of new appliances in Figure 5 (line 25).

Mapping processes to names happens in two steps. First, a process re-

gisters itself under a symbolic name, as in standard Erlang. This allows com-
munication to the registered process based on its name, without knowledge of the
process id that the VM assigns at run-time. The process then becomes accessible
from the network only if explicitly exported, using an ELIOT-specific function.
Separating the two steps spares memory and processing overhead at the VM level
for processes that do not require network interactions. Addressing based on the
all keyword has wide applicability in ELIOT. In particular, programmers may
also use it within the spawn primitive. This is required, for example, when a new
functionality is to be deployed on all reachable nodes at once.

To further control the individual nodes where such spawning must happen, pro-
grammers may use ad-hoc scoping filters. They express a condition—in the form
of a lambda function—that predicates over environment variables the application
supports or that invokes functions available within the application itself. The pro-
cess is actually spawned only on those nodes where the scoping filter evaluates
true. We show an example of scoping filters, together with the ELIOT-specific
spawn cond primitive, in Figure 7.
Access low-level information from the underlying protocols.11 Full isolation of
the various layers that build a networking stack is sometimes impossible to achieve
and often not beneficial to the application. Indeed, some form of cross-layering is
often beneficial for overall efficiency, especially in presence of embedded devices

10The notion of reachability is a function of the target network scenario. Current ELIOT proto-
type implements the sending to all by using broadcast UDP; thus, the span of message spreading
depends on the underlying network configuration.

11Luca: This only talks about RSSI.

11

1 % This function reads some temperatures from sensors and averages them
2 read_avg_temperature() ->

3 Values = read_temperatures(),
4 average(Values).
5
6 % This function checks if the ’temperature_sensor’ variable is set in the ELIoT environment;
7 % we expect it being defined only on devices actually equipped with temperature sensors
8 temperature_node() ->

9 % Check the environment
10 case application:get_env(temperature_sensor) of

11 % The variable is not set
12 undefined -> false;
13 % The variable is set (and we ignore the value of the variable itself)
14 {ok, _} -> true

15 end.
16
17 % Spawn function read_avg_temperature on all devices reachable from this one,
18 % but only on those equipped with temperature sensors
19 spawn_cond(all, read_avg_temperature, temperature_node).

Figure 7: Scoping filters.

and wireless communication, which are the norm for IoT scenarios.
ELIOT makes these considerations concrete by exposing information coming

from the underlying communication layers into the receiver’s incoming queue. In
particular, current ELIOT prototype exposes the address of the source node and the
Received Signal Strength Indicator (RSSI) coming from the radio, but the same
mechanism can be used for other information. Line 31 of Figure 5 shows how
this information can be easily accessed. This sharply contrasts the way program-
mers access and process similar information using low-level embedded system lan-
guages, like C. Indeed, the source address and RSSI reading in ELIOT are treated
as any other type of data, and automatically materialized by ELIOT without re-
quiring intricate platform-dependent code. As a result, ELIOT simplifies not only
the development of application-level functionality, but also the implementation of
system-level services, e.g., RSSI-based localization algorithms [16] required for
location-aware services.

5. ELIoT: System Support

ELIOT provides three dedicated system functionality to effectively support de-
velopment of IoT applications: a reconfigurable REST interface for ELIOT nodes,
a lightweight VM that implements the language constructs we add to Erlang, and
a dedicated simulator for testing and debugging.

5.1. REST Interface

Scenario C in the smart-home application is supported by the reconfigurable

REST interface exported by ELIOT nodes. It provides two features that are useful
for IoT applications.

12

First, it allows ELIOT programmers to easily implement a REST interface for
accessing their devices. This enables interactions based on standard protocols and
inter-operable message formats. For example, any web browser can be used to
query sensors attached to an ELIOT node, with no ad-hoc programming required.

The second feature allows programmers to extend a pre-defined REST inter-
face by dynamically installing new REST operations on a running ELIOT node.
For example, upon installation of the solar panel of scenario C, the attached ELIOT
device will deploy an additional function onto the control panel to enrich its REST
interface with a new operation: one that allows interested parties to access infor-
mation about the amount of energy generated by the home. This operation will
be periodically invoked by the energy provider, that will be able to access such
data in a platform-independent manner, facilitating interoperability between differ-
ent technologies and vendors. Notice that this kind of dynamic reconfiguration is
enabled by the ELIOT’s ability of spawning new processes based on binary code
received from the network.

5.2. Virtual Machine

Erlang was originally designed to run on embedded platforms. However, over
time it grew up to support a much wider range of scenarios, by means of a large
set of libraries and a complex run-time infrastructure. Most of these features find
limited application in IoT applications, unnecessarily increasing the hardware re-
quirements of the Erlang VM.

To address this issue, we develop a custom VM for ELIOT, wiping off most
functionality not required in our target applications. For example, we remove sev-
eral libraries, like those to support Corba middleware systems.

At the communication layer, the ELIOT VM includes a custom networking
stack, with a double objective: improving efficiency and supporting the new com-
munication primitives and addressing mechanisms described in Section 4. In par-
ticular, we abandon TCP in favor of UDP12, both for the reliable and unreliable
communication and coordination primitives, namely, for sending messages in uni-
cast and broadcast, but also for spawning processes. We implement our own reli-
ability layer on top of UDP, supporting the nack mechanisms described in Sec-
tion 4, and we also fully drop Erlang’s network overlay: a logical topology that
Erlang nodes automatically build as they discover each other, which requires pe-
riodic network traffic for maintenance and significant amounts of network state in
memory. In ELIOT, similar functionality are delegated to the application layer,

12In general, this is a custom choice, which can be easily changed by providing a different imple-
mentation for the ELIOT’s communication driver.

13

only if and when required.
As a result of this work, our custom ELIOT VM drastically reduces the hard-

ware requirements compared to Erlang’s VMs, especially w.r.t. memory consump-
tion. This enables ELIOT to run on devices that are quite unusual from those that
Erlang typically applies to. We test two such platforms: i) a Raspberry Pi board
equipped with 256 MB of RAM and an external SD card, and ii) a custom embed-
ded board with a RT3050 MIPS processor called “Carambola”, featuring 32 MB of
RAM and 8 MB of embedded flash. The latter currently represents the minimum
hardware requirements to run ELIOT.

5.3. Simulator

Debugging and testing distributed IoT applications is a key area scarcely sup-
ported by most programming platforms. Gaining the required visibility into the
system state, in particular, is deemed to be a key issue [17]. ELIOT offers a great
opportunity to overcome this situation. By leveraging Erlang’s blurred distinction
between local and distributed functionality, we develop a custom simulator that
allows:

• to simulate an entire system by instantiating a set of virtual nodes running
unmodified ELIOT code;

• to model communication between nodes according to real wireless traces for
increased fidelity13;

• to interact with the simulation, if required, via a standard Erlang shell, e.g.,
to proactively inject messages;

• to run a mixed deployment where virtual nodes seamlessly interact with phys-
ical devices14.

The ELIOT simulator allows to start debugging a system in a fully simulated
deployment, and then to progressively move to a setting where the execution also
spans physical nodes. This retains visibility into the system state through the simu-
lated nodes, but it also allows to check the execution of real hardware and the inter-
actions with the physical environment. As we discuss next, we leverage ELIOT’s
simulator for debugging and testing our implementation of the smart-home appli-
cation, using a Raspberry Pi as the control panel and simulated nodes as home
appliances. This happens with the guarantee that the code being tested coincides,
line by line, with the code that developers will deploy.

13We use the traces from the TOSSIM simulator [18], although using different traces would only
require developing the needed model translation.

14The current prototype supports mixed deployments only with hardware devices that provide
an Ethernet or WiFi connection, but nothing precludes supporting other networks, like 802.15.4,
provided the PCs running the simulator can access such networks, e.g., via an ad-hoc gateway.

14

6. Evaluation

ELIOT aims at simplifying IoT software development. As such, we must eval-
uate ELIOT by considering two aspects: the benefits it brings to developers’ pro-
ductivity, and the run-time overhead it introduces to provide such benefits. To
quantitatively analyze these two aspects on a concrete case, we compare the ELIOT
implementation of the smart-home application against a C implementation that re-
alizes the same core functionality using the pthread library for multi-processing
and standard UDP sockets for communication. The latter largely reflects the cur-
rent practice in programming networked embedded systems [19].

6.1. Benefits to IoT Software Development

ELIOT provides two benefits to programmers: it increases their productivity
by rising the level of abstraction w.r.t. low-level languages like C, and it eases
debugging with custom tools. These two aspects are separately analyzed next.
Programmers’ productivity. It is notoriously difficult to objectively compare the
implementation effort using different programming languages. Measuring the lines
of code provides a rough, yet quantitative indication of such effort. In our case, the
C-based smart home application requires 1623 lines of code, while the ELIOT-
based implementation merely requires 649 lines, corresponding to a 60% saving.

Such figures of improvement become even more relevant as one considers that
the C implementation only provides the core functionality of the smart-home appli-
cation. Indeed, 187 lines of ELIOT code, out of the 649 total, are actually used to
set up the OTP’s application supervisor to provide failure handling against process
crashes, and to configure testing and debugging services. These functionality are
not available in the C implementation. Nevertheless, these fragments of ELIOT
code are largely borrowed from existing templates; thus the number of application-
specific lines of ELIOT code is effectively 462, for a 71.5% reduction w.r.t. the C
implementation.

Beyond the raw numbers, using ELIOT caters for a higher level of abstraction
that improves code readability, facilitating reuse and maintenance. This becomes
visible by looking at the structure of the control panel code, shown in Figure 5.
This structure is typical of ELIOT applications that implement communication
protocols. The code is organized as a single receive statement with multiple ca-
ses, each associated to a specific message type determined in a declarative fashion
by pattern matching.

As an example, line 46 in Figure 5 uses binary pattern matching to determine
when the message payload contains a function to be executed locally. Matching
happens in blocks: the first 8 bits are interpreted as a user-defined code indicating
the message type; the next 20 bytes are a SHA-1 hash code; then a single byte

15

1 int deserialize_params(char *buf, GList **params) {

2 unsigned int params_len;
3 int tot, i;
4 parameter_t *param = NULL;
5 memcpy(¶ms_len, buf, sizeof(unsigned int));
6 for (i = 0, tot = 0; i < params_len; ++i) {

7 tot += deserialize_parameter(buf + sizeof(unsigned int) + tot, ¶m);
8 *params = g_list_append(*params, (void *) param);
9 }

10 return sizeof(unsigned int) + tot;
11 }

12 int deserialize_parameter(char *buf,
13 parameter_t **param) {

14 unsigned long name_len;
15 parameter_t *p = NULL;
16 p = malloc(sizeof(parameter_t));
17 memset(p, 0, sizeof(parameter_t));
18 memcpy(&name_len, buf, sizeof(unsigned long));
19 p->name = g_string_new_len(buf + sizeof(unsigned long), name_len);
20 memcpy(&p->type, buf + sizeof(unsigned long) + name_len, 1);
21 memcpy(&p->value, buf + sizeof(unsigned long) + name_len + 1, sizeof(uint8_t));
22 memcpy(&p->ro, buf + sizeof(unsigned long) + name_len + 1 + sizeof(uint8_t), sizeof(uint8_t));
23 *param = p;
24 return sizeof(unsigned long) + name_len + 1 + 2*sizeof(uint8_t);
25 }

(a) C implementation.

1 % Decode Payload by calling the two-args version of the function passing an empty list,
2 % which will be filled with the data extracted from the payload
3 decode_params(Payload) -> decode_params(Payload, []).
4
5 % Pattern matching on the first arg: if the binary variable is empty, then we finished
6 % (we reached the base case for the recursion) and we can return the ListOfPars...
7 decode_params(<<>>, ListOfPars) -> ListOfPars;
8 % ... otherwise, the first byte (L1) contains the length of the parameter’s name (next field),
9 % and the following bytes represent: its type, its value, and it being read-only; the rest

10 % of the payload contains other parameters that will be extracted in the next (recursive) call
11 decode_params(<<L1:8, SerializedName:L1/binary, Type:8/unsigned-integer,
12 Value:8/unsigned-integer, Ro:8/unsigned-integer, Rest/binary>>, ListOfPars) ->

13 % Fill a new record with the extracted content
14 NewRecord = #parameter{name = erlang:binary_to_list(SerializedName),
15 type = Type, value = Value, ro = Ro},
16 % Recursive call to continue parsing the payload. The new record is saved into the list
17 decode_params(Rest, [NewRecord|ListOfPars]);

(b) ELIOT implementation.
Figure 8: Deserializing appliance operating parameters in the smart-home application.

specifies the length of the string that follows. Variable L1 is assigned the latter
value and immediately used as the length of the next field, namely the function
name. The rest of the sequence is a binary block that holds the function’s byte-
code15. The name, hash, and code of the received function are then passed to the
application supervisor (line 49) to spawn a new process executing the code and to
monitor its execution for reacting should run-time errors occur.

Figure 8 provides additional insights into the expressive power of ELIOT. In

15The bit syntax allows to specify the length of each field using different units (bits or bytes),
depending on the field’s type.

16

particular, it focuses on deserializing the operating parameters of a newly discov-
ered appliance (see line 36 of Figure 5). In C, as shown in Figure 8a, this requires
writing error-prone code that explicitly manages type conversions, memory allo-
cation, and copying. Developers achieve the same functionality recursively and in
a declarative fashion with ELIOT, using the binary pattern matching operators, as
illustrated in Figure 8b. In particular, the decode params function in line 3 of
Figure 8b takes the message payload as input and invokes a function with the same
name and an additional argument: an initially-empty list of appliance’s operating
parameters. In line 7, if the payload is empty, indicating that message deserializa-
tion is complete, the list of deserialized parameters is returned as the final result.
Otherwise, the first parameter is matched and decoded (lines 11 and 12). Each
parameter includes the length of the parameter’s name (L1) followed by the name
itself (SerializedName), the parameter’s type (Type), its value (Value), and
a boolean indicating whether the parameter is read only (Ro). The decoded infor-
mation is used in line 14 to build an Erlang record, prepended to the list of decoded
parameters during the recursive call in line 17. Overall, the 25 lines of C code in
Figure 8a reduce to 7 lines of (uncommented) ELIOT code in Figure 8b.

Similar benefits are found in creating and sending messages. For instance,
Figure 9 shows the C code necessary to prepare and broadcast a beacon message,
as done in lines 22 and 25 of Figure 5. The tedious code necessary to setup the UDP
socket and the broadcast address are replaced in ELIOT by addressing to all and
the ⇠⇠⇠ operator. This makes the 9 lines of C code shrink to only 2 in ELIOT.

Generally, one might argue that the more compact implementations attainable
using the functional paradigm lead to higher chances of programming errors, es-
sentially because the code is semantically more dense. The evidence, however,
demonstrates that this is not the case. On the contrary, and especially for highly
distributed functionality, the more compact code resulting from the use of func-
tional programming ultimately yields more dependable systems [20, 21].

Because of its Erlang core, ELIOT also simplifies implementing concur-

1 [...]
2 char msg = ’M’;
3 memset(&destAddr, 0, sizeof(struct sockaddr_in));
4 destAddr.sin_family = AF_INET;
5 destAddr.sin_port = htons(PORT);
6 destAddr.sin_addr.s_addr = destIp;
7 sock = socket(AF_INET, SOCK_DGRAM, 0);
8 setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (void *) &broadcastPermission,
9 sizeof(broadcastPermission));

10 sendto(sock, &msg, 1, 0, (struct sockaddr *) &destAddr, sizeof(struct sockaddr_in));
11 [...]

Figure 9: C code for sending beacon messages in the smart-home application—functionally equiva-
lent to lines 22 and 25 in Figure 5.

17

⟨1⟩ ⟨2⟩

⟨3⟩

Figure 10: Simulator UI.

rent functionality, by virtue of dedicated language and system support to multi-
threading. As an example, mutexes and condition variables, required in C to ex-
plicitly synchronize concurrent threads, are unnecessary with ELIOT. Already in
the relatively simple smart-home application, nonetheless, C programmers heavily
rely on such synchronization primitives to coordinate access to the shared list of
appliances. ELIOT programmers can, on the other hand, organize the code in such
a way that the list of appliances is modified by the receiving thread only, whereas
other threads operate on an immutable copy of such data structure, included in the
message that triggers their processing.
Testing and debugging. The real-world dynamics and the decentralized opera-
tion of IoT applications complicate testing and debugging. The ELIOT simulator
helps deal with these tasks by providing monitoring and inspection tools for mixed
configurations of real and simulated nodes.

Figure 10 shows the simulator at work with the smart-home application. In this
configuration, the control panel runs on a Raspberry Pi, while four appliances are
simulated for debugging purposes. Developers interact with the ELIOT simulator
in three ways: i) the process monitor in h1i shows the ELIOT processes running on
simulated nodes, identified according to their register-ed names; ii) selecting a
process in h1i opens the code monitoring in h2i that enables inspection of the cur-
rently running code—in Figure 10, the appliance process is blocked waiting for
incoming messages—and allows to step through instructions and set breakpoints,
as well as to inspect or to manipulate the values of variables; iii) the shell in h3i is
bound to the real Raspberry Pi and allows developers to trigger specific executions,
e.g., the schedule computation. When doing so, the simulator then shows how the
appliances answer to the control panel through the process and code monitors. The
shell allows automatizing these operations by scripting sequences of test cases.

The ELIOT simulator presents functionality to developers that are rarely avail-
able using mainstream programming platforms for networked embedded systems.

18

Figure 11: Memory consumption (pmap).

The VM-based execution of ELIOT, together with the actor model that simplifies
inter-process communications, facilitates building tools that effectively support de-
velopers in accurately testing and debugging distributed functionality.

6.2. System Performance

Increasing developers’ productivity often comes at a cost. This is also the case
for ELIOT, where such cost materializes as performance overhead. To precisely
evaluate this aspect, we compare the performance of the C and ELIOT implemen-
tations of the smart-home application by measuring memory consumption, CPU
usage and power consumption, as well as network traffic. We perform this com-
parison on both embedded devices currently running the ELIOT VM.
Memory. We measure memory usage with pmap: a Linux utility that reports the
entire memory allocated for a given application, including code, libraries, stack,
and heap. This gives a precise indication of the amount of memory a device needs
to run the application: devices with less memory would just be unable to run the
same application implementation.

Figure 11 reports the results. The caveat in the results we obtain from the C im-
plementation is that it uses the pthread library for multiprocessing, which leaves to
programmers the burden to explicitly choose the stack size for each thread. Over-
provisioning this value is common practice in mainstream programming, as plenty
of memory is typically available. In embedded system programming, however, this
is conducive to interesting observations: a naive C programmer who uses the de-
fault stack size16 would build an application that uses the same or more memory

16The default stack size in the pthread library is 8 MB for the Raspberry Pi (vanilla Linux) and 2

19

than the corresponding ELIOT implementation. ELIOT programmers, on the other
hand, rely on lightweight multiprocessing provided by the VM and do not need to
worry about such system configuration details. Nevertheless, a skilled C program-
mer able to manually fine-tune the system configuration—a typically error-prone
and time-consuming task—would find working settings at 1MB or even 256 KB
per-thread stack space, the latter being the minimum that allows the application
to run correctly. In this case, the C implementation consumes less than half the
memory of the ELIOT implementation.

To better characterize memory usage in ELIOT, we separately assess the VM
with no application loaded and when the smart-home application is running. As
shown in Figure 11, it turns out that the VM is responsible for most of the mem-
ory used by ELIOT, with the application requiring only a few additional KB. This
has two consequences: i) it clearly points at the VM as an avenue for further im-
provements to battle the memory overhead in ELIOT; and ii) it suggests that the
gap between C and ELIOT likely reduces with more complex applications, as the
memory occupation due to the VM is a fixed cost paid once and for all.
CPU usage and power consumption. We measure the time the CPU is busy pro-
cessing using the getrusage primitive, which returns per-process CPU time split
between user and system time. At the control panel, we run 50 consecutive execu-
tions of the operations to compute the appliances’ schedule, as per functionality F2,
by assuming that the expected energy consumption at the appliances is computed
remotely, corresponding to scenario A. We also include six rounds of beaconing
for discovery and monitoring of appliances between scheduling operations, as per
functionality F1. Such setting is representative of foreseeable usages of the smart-
home application. Each cycle lasts 60 seconds. We repeat the 50 iterations across
30 different runs, and plot the resulting average with the 95% confidence intervals.

Figure 12 depicts the results. Using the C implementation, the user time is
much lower than the system time, especially on a relatively powerful device like
the Raspberry Pi. Differently, the time spent by the CPU using ELIOT on the
Raspberry Pi is split almost equally between user and system time, while on the
Carambola most time is spent executing user code. Using ELIOT, both user and
system times are larger compared to the C counterparts. In absolute terms, how-
ever, the latencies that such CPU times may introduce are less than 30 ms per iter-
ation, which includes a schedule computation and six rounds of beaconing. These
are reasonably within tolerance of non-realtime applications such as a smart-home.

Increased CPU times also correspond to higher power consumption. To assess
this aspect, we hook the Raspberry Pi and the Carambola to a professional voltage

MB for Carambola (OpenWrt).

20

Figure 12: CPU times.

Figure 13: Power consumption. (The idle power consumption is factored out.)

generator/multimeter to measure their average power consumption throughout a
single application iteration.

Figure 13 shows the results of our measurements by factoring out the power
consumption when the board is completely idle. Compared to the C implementa-
tion of the smart-home application core functionality, ELIOT imposes an overhead
of about 5 mW on the Carambola and of 6 mW on the Raspberry Pi, arguably
negligible for the scenarios we consider. Adding the idle baseline to the measures
above results in a relatively high overall figure for the platforms we tested, which
are not optimized for limiting power usage. On the other hand, better engineered
platforms exist, which are powerful enough to run ELIOT and still have a reduced
power usage, in particular at idle. For example, a modern smartphone using a Sam-
sung S3C2442 SoC absorbs about 268 mW when idle [22], and the ARM board

21

that runs the Amazon Kindle 4 (a device explicitly designed for low power con-
sumption) absorbs 45 mW when idle with wifi enabled and connected (our own
measurements).17

Network traffic. Using a standard network inspection tool, we measure the
amount of bytes transferred through the network during a single application it-
eration. This includes several messages exchanged between the control panel and
the appliances. The application payload is the same for both the C and the ELIOT
implementation.

The total overhead of ELIOT w.r.t. C is 10.21% (2126 vs. 1929 bytes). This
is due to the small additional header that the ELIOT VM adds to every message
to support the abstract addressing mechanisms, e.g., to reach specific ELIOT pro-
cesses within a given node. The number of messages, however, is the same in both
the implementations. The small overhead due to ELIOT is then still practical.
Spawn time. We assess the time needed by ELIOT to spawn a new process whose
bytecode comes from the network. This is key to evaluate the actual usability of the
ELIOT mechanisms to upload new functionality on a running node; for example, in
the smart-home application when appliance manufacturers need to update the on-
board software. Particularly, we measure the time it takes from when a message
with the necessary bytecode is received at the node to when the new functionality is
ready to accept input data. On average, this time goes from 50 ms on the Raspberry
Pi to less than 20 ms on the Carambola: arguably acceptable in most practical
scenarios.

7. Related Work

Works closely related to ELIOT mainly target IoT software architectures and
IoT application frameworks. We illustrate these next by contrasting them with
our work. From a conceptual standpoint, the body of work on sensor network
programming and pervasive computing in general is also worth mentioning due to
similarities in some of the objectives. We complement the discussion with a brief
analysis of application-specific frameworks.
IoT architectures and application frameworks. Significant activities are under-
going to define software architectures for the IoT, spanning from the network to
the application layer. For example, the IoT6 project [23] exploits an IPv6-based
network layer to build CoAP services atop. The IoT-A project [24] defines an
architectural reference model for the interoperability of IoT devices, whereas Spit-
fire [25] investigates unified concepts for facilitating the effective development of

17Luca: I’d cut entirely the Kindle stuff. It doesn’t add much IMO.

22

IoT applications.
ELIOT is largely complementary to these efforts. Sound software architectures

are necessary to improve interoperability, organize applications’ functionality, and
reason about the system operation. Orthogonal to these aspects is how to spec-
ify the actual application processing within the individual components, and how
to establish their distribution across the networks of sensors and actuators, and
Internet-side services. ELIOT provides effective support for the latter aspects.

In terms of distributed coordination, integrating smart objects with the Internet
may follow two communication models. Solutions exist to proactively export sen-
sor data to the Internet, such as Publish/Subscribe middleware [26], shared memory
systems [27], and platforms providing storage and processing facilities for sensor
data, such as Cosm [10]. Different solutions instead provide remote access to sen-
sors and actuators from the Internet, such as sMAP [28] and CoAP [29].

At a logical level, in both approaches the application logic runs outside the
network of embedded sensor and actuators. This simplifies prototyping IoT ap-
plications, yet it does not allow an efficient implementation of combined Internet-
scale and localized interactions. ELIOT aims at efficiently enabling the latter by
retaining the ability to coordinate with Internet-side services. For example, as seen
in the smart-home scenario, ELIOT developers can implement control loops that
span neighboring devices and integrate them with externally-running services.

There also exist works tackling the development process of IoT applications.
Srijan [30], for example, presents a model-driven approach by establishing specific
roles for the involved stakeholders, and by introducing domain-specific languages
(DSLs) to model both the application and the underlying systems. Interfaces and
component connectors are automatically generated based on such models. Similar
works are largely complementary to ELIOT, which focuses on providing effective
programming and system support. For example, ELIOT may serve as a target
language for Srijan, likely simplifying code generation.
Sensor network programming and pervasive computing. Although based on a
different target hardware, existing solutions for sensor network programming [14]
allow an efficient implementation of localized interactions by deploying the appli-
cation logic right onto the embedded devices. Sensor network programming may
occur at the operating system level [31, 32], based on platform specific APIs [33],
by relying on custom virtual machines [34], or by using higher-level abstrac-
tions [14]. Largely common to these approaches, however, is the view of the
sensor network as a stand-alone system, where Internet-scale interactions are at
best mediated by ad-hoc gateways that are to be designed and implemented on a
per-application basis. From a conceptual standpoint, ELIOT aims at bringing the
localized interactions already enabled by sensor network programming in Internet-
connected embedded networks.

23

Similar considerations apply in relating ELIOT to the body of work in per-
vasive computing systems. For example, Aura [35] and Gaia [36] focus on ef-
fective development of interactions between users and the devices they operate;
MundoCore [37] provides a low-level framework and middleware for developing
platforms integrating different devices, from mobile systems to computers in a
homogeneous framework. Although MundoCore caters for effective integration
of heterogeneous hardware, an issue we also tackle in ELIOT using a VM-based
execution model, these system do not focus on how to effectively develop Internet-
scale and localized interactions within the same application.
Application scenarios. We use a smart-home application to exemplify the use of
ELIOT. Ad-hoc solutions exist for developing software in specific application do-
mains. For example, Gator Tech [38] presents the design of a pervasive computing
system especially conceived for elderly people, within an environment enriched by
sensors and actuators; whereas HomeOS [39] is a middleware layer implementing
higher-level abstractions for smart-home applications, giving the illusion that the
house itself can be treated as a single computing device.

ELIOT’s applicability extends beyond this particular context. For example, in
the logistics domain, sensor attached to packages may provide fine-grained contin-
uous monitoring of the shipped goods, used to take smart routing decisions and to
inform business analysts at the back-end of item availability and market trends [7].
Such applications feature similar combinations of localized and Internet-scale in-
teractions as our smart-home example. ELIOT precisely aims at enabling both
kinds of interactions within the same development framework.

8. Conclusions

We presented ELIOT, a development platform for the IoT that allows to com-
bine localized and Internet-scale interactions. ELIOT builds upon Erlang by adapt-
ing its inter-process communication facilities to the specifics of IoT applications,
using custom language syntax and semantics. The VM-based execution supports
the diverse IoT hardware and provides the necessary software reconfiguration ca-
pabilities. At system-level, ELIOT nodes export reconfigurable REST interfaces
for standard-compliant interactions, while a dedicated VM tailored to the typical
IoT devices supports the distributed executions of ELIOT applications, and a cus-
tom simulator aids testing and debugging using hybrid configurations of real and
simulated devices.

By comparing, both qualitatively and quantitatively, the implementation of a
smart-home application using ELIOT and standard C, we found that the former
facilitates development by producing more concise and more readable code that is
easier to test and debug. The performance penalty is, on the other hand, limited.

24

For example, memory usage in ELIOT is often comparable to the C counterparts,
whereas CPU usage remains within practical limits.

Acknowledgment. This work was partially supported by the European Commis-
sion, Programme IDEAS-ERC, Project 227977-SMScom.

References

[1] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey, Computer Net-
works 54 (15).

[2] F. Kawsar, G. Kortuem, B. Altakrouri, Supporting interaction with the internet of
things across objects, time and space, in: Proc. Internet of Things Conf., 2010.

[3] D. J. Cook, S. K. Das, How smart are our environments? an updated look at the state
of the art, Pervasive Mob. Comput. 3 (2).

[4] D. Uckelmann, M. Harrison, F. Michahelles, Architecting the Internet of Things,
Springer, 2011.

[5] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel, P. Bonato,
M. Welsh, Mercury: a wearable sensor network platform for high-fidelity motion
analysis, in: Proc. 7th ACM Conf. on Embedded Networked Sensor Systems, 2009.

[6] R. Sen, A. Maurya, B. Raman, R. Mehta, R. Kalyanaraman, N. Vankadhara, S. Roy,
P. Sharma, Kyun queue: a sensor network system to monitor road traffic queues, in:
Proc. 10th ACM Conf. on Embedded Network Sensor Systems, 2012.

[7] SenseAware powered by FedEx, goo.gl/zKc3Q.
[8] BeagleBoard, beagleboard.org/Products/BeagleBone.
[9] Raspberry PI, www.raspberrypi.org.

[10] Cosm, cosm.com.
[11] M. Kovatsch, M. Lanter, S. Duquennoy, Actinium: A RESTful runtime container for

scriptable IoT applications, in: Proc. Int. Conf. on the Internet of Things, 2012.
[12] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic

Bookshelf, 2007.
[13] A. Sivieri, L. Mottola, G. Cugola, Drop the phone and talk to the physical world:

Programming the internet of things with Erlang, in: SESENA, 2012, pp. 8–14.
[14] L. Mottola, G. P. Picco, Programming wireless sensor networks: Fundamental con-

cepts and state of the art, ACM Compututing Surveys.
[15] C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial

intelligence, in: Proc. Int. joint Conf. on Artificial intelligence, 1973.
[16] K. Langendoen, N. Reijers, Distributed localization in wireless sensor networks: a

quantitative comparison, Comput. Netw. 43 (4).
[17] A. Bernauer, K. Roemer, Meta-debugging pervasive computers, in: Proc. Workshop

on Programming Methods for Mobile and Pervasive Systems, 2010.
[18] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate and scalable simulation

of entire TinyOS applications, in: Proc. 1st ACM Conf. on Embedded Networked
Sensor Systems, 2003.

[19] M. Barr, A. Massa, Programming Embedded Systems, O’Relly Media, 2006.

25

goo.gl/zKc3Q

[20] U. Wiger, G. Ask, K. Boortz, World-class product certification using erlang, SIG-
PLAN Not. 37 (12).

[21] B. J. MacLennan, Functional programming: practice and theory, Addison-Wesley
Longman Publishing Co., Inc., 1990.

[22] A. Carroll, G. Heiser, An analysis of power consumption in a smartphone, in: Proc.
of the USENIX annual technical conference, 2010.

[23] IoT6 - Universal Integration of the IoT, www.iot6.eu.
[24] Internet of Things - Architecture, www.iot-a.eu.
[25] Spitfire Semantic Web interaction with Real Objects, spitfire-project.eu.
[26] G. Fox, S. Kamburugamuve, R. Hartman, Architecture and Measured Characteristics

of a Cloud Based Internet of Things, in: Proc. Int. Conf. on Collaboration Technolo-
gies and Systems, 2012.

[27] P. Langendoerfer, K. Piotrowski, M. Diaz, B. Rubio, Distributed Shared Memory as
an Approach for Integrating WSNs and Cloud Computing, in: Proc. 5th Int. Conf. on
New Technologies, Mobility and Security, 2012.

[28] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, D. Culler, sMAP: a simple mea-
surement and actuation profile for physical information, in: Proc. 8th ACM Conf. on
Embedded Networked Sensor Systems, 2010.

[29] Z. Shelby, K. Hartke, C. Bormann, B. Frank, Constrained application protocol
(CoAP), draft-ietf-corecoap-07 (2011).

[30] P. Patel, A. Pathak, D. Cassou, V. Issarny, Enabling high-level application develop-
ment in the Internet of Things, in: Proceedings of the 4th International Conference
on Sensor Systems and Software, 2013.

[31] A. Dunkels, B. Grönvall, T. Voigt, Contiki - a lightweight and flexible operating
system for tiny networked sensors, in: Proc. Int. Workshop on Embedded Networked
Sensors, 2004.

[32] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture
directions for networked sensors, SIGPLAN Not. 35 (11) (2000) 93–104.

[33] Waspmote, www.libelium.com/waspmote.
[34] N. Brouwers, K. Langendoen, P. Corke, Darjeling, A Feature-Rich VM for the Re-

source Poor, in: Proc. of the 7th ACM Conference on Embedded Networked Sensor
Systems, 2009.

[35] J. a. P. Sousa, D. Garlan, Aura: an architectural framework for user mobility in ubiq-
uitous computing environments, in: Proceedings of the IFIP 17th World Computer
Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture: Sys-
tem Design, Development and Maintenance, WICSA 3, Kluwer, B.V., Deventer, The
Netherlands, The Netherlands, 2002, pp. 29–43.

[36] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, K. Nahrstedt,
A middleware infrastructure for active spaces, IEEE Pervasive Computing (2002)
74–83.

[37] E. Aitenbichler, J. Kangasharju, M. Mühlhäuser, MundoCore: A light-weight infras-
tructure for pervasive computing, Pervasive and Mobile Computing (2007) 332–361.

[38] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The gator tech
smart house: A programmable pervasive space, Computer (2005) 50–60.

[39] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, P. Bahl, An operat-

26

www.iot6.eu
www.iot-a.eu
spitfire-project.eu

ing system for the home, in: Proc. 9th USENIX Conf. on Networked Systems Design
and Implementation, 2012.

27

	1 Introduction
	2 Motivating Application
	3 Erlang
	4 ELIoT: Syntax and Semantics
	5 ELIoT: System Support
	5.1 REST Interface
	5.2 Virtual Machine
	5.3 Simulator

	6 Evaluation
	6.1 Benefits to IoT Software Development
	6.2 System Performance

	7 Related Work
	8 Conclusions

