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Abstract—This paper describes the technical and system
building advances made in IBM’s speech recognition technology
over the course of the Defense Advanced Research Projects
Agency (DARPA) Effective Affordable Reusable Speech-to-Text
(EARS) program. At a technical level, these advances include
the development of a new form of feature-based minimum phone
error training (fMPE), the use of large-scale discriminatively
trained full-covariance Gaussian models, the use of septaphone
acoustic context in static decoding graphs, and improvements
in basic decoding algorithms. At a system building level, the
advances include a system architecture based on cross-adaptation
and the incorporation of 2100 h of training data in every system
component. We present results on English conversational tele-
phony test data from the 2003 and 2004 NIST evaluations. The
combination of technical advances and an order of magnitude
more training data in 2004 reduced the error rate on the 2003 test
set by approximately 21% relative—from 20.4% to 16.1%—over
the most accurate system in the 2003 evaluation and produced the
most accurate results on the 2004 test sets in every speed category.

Index Terms—Discriminative training, Effective Affordable
Reusable Speech-to-Text (EARS), finite-state transducer, full
covariance modeling, large-vocabulary conversational speech
recognition, Viterbi decoding.

I. INTRODUCTION

UNDER the auspices of the Defense Advanced Research
Projects Agency (DARPA) Effective Affordable Reusable

Speech-to-Text (EARS) program from 2002 to 2004, a tremen-
dous amount of work was done in the speech community toward
improving speech recognition and related disciplines. The work
spanned multiple fields ranging from traditional speech recog-
nition to speaker segmentation and sentence boundary detec-
tion, and included separate foci on the transcription of broadcast
news and telephone conversations. Further, speech data from
three languages was used: English, Arabic, and Mandarin. Fo-
cusing specifically on speech recognition, the work included al-
gorithmic advances, new system architectures, and the collec-
tion and processing of an order of magnitude more training data
than was previously used.

This paper describes the algorithmic and system building
advances made specifically at IBM. This work focused on
the recognition of English language telephone conversations,
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as represented by the data collected and distributed by the
Linguistic Data Consortium (LDC) for the EARS and earlier
HUB-5 programs (see Section III-A for a full description of
the data sources). Though several different collection proto-
cols were used, the bulk of the data was collected under the
“Fisher” protocol by paying volunteers a modest amount to call
a phone-bank where they were connected with other volunteers
and asked to discuss one of several dozen topics. Examples
of topics are “health,” “relationships,” and “terrorism.” The
data collection process was designed to get a representative
sample of American (U.S.) telephone-quality speech in terms
of gender, race, geographic location, and channel conditions
[1]. Since the data is conversational in nature, it is relatively
challenging due to the presence of numerous mistakes, repairs,
repetitions, and other disfluencies.

While the techniques described in this paper were developed
in the context of transcribing English language telephone con-
versations, it is important to note that they are not specific to
the language or task. The techniques we describe are based on,
and extend, the general framework of hidden Markov models
(HMMs), and the use of Gaussian mixture models (GMMs) as
output distributions. These frameworks, and our extensions of
them, are broadly applicable, and out techniques have since been
readily applied to other tasks such as the transcription of Arabic
news broadcasts.

The main contributions of our work are as follows.
• A novel feature space extension of minimum phone error

training [2] (fMPE). This is a transformation of the fea-
ture-space that is trained to optimize the minimum phone
error (MPE) objective function. The fMPE transform op-
erates by projecting from a very high-dimensional, sparse
feature space derived from Gaussian posterior probability
estimates to the normal recognition feature space and
adding the projected posteriors to the standard features. A
system that uses fMPE MPE training is more accurate
than a system using MPE alone by approximately 1.4%
absolute (6.7% relative), measured on the RT03 test set.

• The use of a large, discriminatively trained full-covari-
ance system. We developed an efficient routine for likeli-
hood computation that enables the use of full-covariance
Gaussians in time-constrained systems.

• Static decoding graphs that use septaphone (or, to use the
Greek version, heptaphone) context.1

1We note that the use of the term heptaphone would ensure the consistent
use of Greek terms for acoustic terminology and Latin terms for language mod-
eling. However, for consistency with the prevailing practice of using the Latin
term quinphone to denote 5-phone context, we use the Latin term septaphone
to denote 7-phone context in this paper.
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• System combination through cross-adaptation in-
stead of acoustic rescoring of lattices. A cascade of
speaker-adapted systems is used, with the output of
one system being used to estimate the speaker-adaptive
transforms for the next.

• Training of all system components using an order of mag-
nitude more data than previously available—specifically,
2100 h of data.

To illustrate how these technology threads can be tied to-
gether into a complete speech recognizer, we further describe
two representative systems we developed for the 2004 EARS
evaluation sponsored by NIST. Both systems focused on the
transcription of conversational telephony speech (CTS). The
first system we describe is a real time (1 RT) system suitable
for the offline analysis of audio recordings in commercial
applications, and the second is a 10 slower than real time
(10 RT) system which indicates how low we can push the
error rate in the absence of a significant time constraint. Both
systems had the distinction of having the lowest error rates in
their respective categories in this evaluation.

The remainder of this paper is divided into two main sec-
tions.Section II focuses on the technology improvements as gen-
eral techniques, and Section III describes the architecture and
particulars of the IBM systems that were used in the 2004 EARS
evaluations.

II. TECHNOLOGY ADVANCES

This section describes the technological advances made at
IBM. These fall into the categories of discriminative training,
full covariance Gaussian modeling, large-context search space
representation with finite-state acceptors (FSAs), and efficient
decoding techniques.

We are currently using three forms of discriminative training.
Section II-A describes two traditional model-based forms of dis-
criminative training, and Section II-B presents a novel feature-
based technique. Section II-C discusses full-covariance mod-
eling; Section II-D covers improved methods for building de-
coding graphs, and Section II-E describes enhancements in the
decoding algorithms themselves.

A. Model-Space Discriminative Training

The first form of discriminative training is a space-efficient
form of maximum mutual information (MMI) training [3]–[6].
In contrast to standard maximum likelihood (ML) training,
MMI training attempts to maximize the mutual information
between the words in the training data and the acoustic feature
vectors. This mutual information is estimated as

where represents the set of training data, the words of a par-
ticular training utterance, the acoustics of the utterance, and
the parameters of the acoustic and language models. This leads

to updates of the Gaussian means and variances, using statis-
tics computed under two different assumptions. In the first or
“numerator” case, the data is aligned to the states of a hidden
Markov model (HMM) that represents all word sequences con-
sistent with the known transcription (there may be multiple se-
quences due to, for example, the placement of silence). This
represents the “contribution” of the numerator in the objective
function. The second set of statistics is computed by aligning
the data to an HMM that represents all possible word sequences
(analogous to decoding). This represents the contribution of the
denominator of the objective function. In both cases, it is con-
ceptually a soft alignment that results in a posterior probability
for every HMM state at each time instance. After these statistics
are computed, the Gaussian means and variances are updated ac-
cording to [6]

In these equations, is the mean of the th Gaussian mixture,
is its variance, and are the first- and second-

order statistics of the data assigned to Gaussian , and is
the count of the number of observations assigned to it. is a
number computed on a per-Gaussian basis so as to ensure pos-
itive variances. (This constraint leads to a quadratic equation,
and the larger value of is used.)

In MMI training, the main computational burden is the
computation of the “denominator” statistics. The “numerator”
statistics are exactly those computed in standard ML training.
Theoretically, the denominator statistics require a soft align-
ment of each utterance to an HMM that represents all possible
word sequences. One way of doing this is to approximate the
set of all possible word sequences with the set represented by
a lattice created by decoding a training utterance. This is the
“standard” method, and has the advantage that the lattice can
be used for many iterations. In the lattice-free or implicit-lattice
MMI procedure [7], we simply use efficient decoding tech-
nology to do the full computation. The HMM representing
all possible word sequences is constructed using finite-state
transducer (FST) technology (see Section II-D), and a for-
ward–backward pass over this graph results in the necessary
state-level posteriors.

While each iteration of lattice-free MMI takes longer than a
comparable pass of lattice-based MMI, the disk requirements of
the lattice-free technique are much smaller, which is advanta-
geous when working with a large training set [8]. For example,
with 2100 h of data, lattices occupy approximately 30 GB of
disk space, and this along with network congestion is saved with
our technique. The runtime is well below real time, typically
0.5 RT.

The second form of traditional discriminative training is MPE
[2], [9]. This process uses a lattice-based framework; due to
the nature of the objective function, it is not straightforward to
eliminate them. In our implementation, lattices with fixed state
alignments were used. Novel features include the following:
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• training with a pruned bigram language model having
about 150 K bigrams instead of a unigram language model
(the language model was built with a vocabulary of 50 000
words);

• averaging of the statistics in the MPE training over four
sets of acoustic and language model weights, with the
acoustic weight being either 0.10 or 0.16 and the language
model weight being either 1.0 or 1.6 (the standard weights
we use are 0.1 and 1.0; the other two were chosen without
significant experimentation and gave about 2% relative
improvement);

• smoothing the sufficient statistics for MPE with statistics
derived from MMI-estimated means and variances rather
than the ML estimates normally used in I-smoothing [2];

• flooring of the variances in the update to the 20th per-
centile of the distribution of all variances in the appro-
priate dimension.

We now turn to our main innovation in discriminative training,
feature-space minimum phone error training.

B. Feature-Space Discriminative Training: fMPE

In addition to the traditional forms of discriminative training
mentioned previously, we have developed a novel form of dis-
criminative modeling, fMPE. This is a global discriminatively
trained feature projection which works by projecting very high
dimensional features based on Gaussian posteriors down to the
normal feature space and adding them to the normal features.
The Gaussian posteriors are defined without reference to the de-
coding graph or language model and assume a uniform prior. If
we denote the likelihood of the th Gaussian as , its posterior

is given by

The algorithm is described in more detail next.
1) Objective Function: The objective function of fMPE is

the same as that of MPE [2]. This is an average of the transcrip-
tion accuracies of all possible sentences , weighted by the prob-
ability of given the model

(1)

where is defined as the scaled posterior sentence
probability of the
hypothesized sentence , are the model parameters, and
are scaling factors, and the acoustics of the th utterance.

The function is a “raw phone accuracy” of given
the reference , which equals the number of phones in the refer-
ence transcription for utterance minus the number of phone
errors.

2) Feature Projection in fMPE: In fMPE, the acoustic
vector in each time frame is converted into a very high-di-
mensional feature vector by taking posteriors of Gaussians.

is then projected down and added to the original features to
make a new feature

(2)

The matrix is trained using the MPE objective function from
a zero start. It is necessary to add the original features in order
to provide a reasonable starting point for the training procedure.

3) Training the Projection: In fMPE, the feature projection
(the matrix ) is trained using a gradient descent method. A
batch method is used, requiring four to eight iterations. After
each iteration, the models are updated by one iteration of ML
training on the updated features. The learning rates are set for
each matrix element using formulas that try to take into
account the amount of training data available for each matrix
element and the variance of the baseline output features for that
dimension. The training procedure is described in [10]. In ad-
dition, some modifications are described in [11] which improve
the robustness of the training setup.

4) Obtaining the Gradient: The gradient descent on the ma-
trix requires differentiating the MPE objective function with
respect to the change in parameters. This is straightforward.
However, a so-called “indirect” term is added to this differen-
tial which reflects the fact that we intend to perform ML training
on the features. The HMM parameters will change with the fea-
tures; this is taken into account by differentiating the objective
function with respect to the HMM means and variances; and
using the dependence of the means and variances on the training
features to obtain the indirect differential of the objective func-
tion with respect to the features.

The necessity of the indirect differential can also be seen in
light of the model space interpretation of fMPE given in [12].
This approach notes that an offset of all the feature vectors is
identical, in the likelihood computations, to an equal but oppo-
site offset of every Gaussian mean.

5) High Dimensional Features: As mentioned previously,
the high dimensional features are based on posteriors of
Gaussians. In detail, the features used in the fMPE experiments
were obtained as follows. First, the Gaussians in the baseline
HMM set were clustered using a maximum likelihood tech-
nique to obtain 100 000 Gaussians. Note that, as reported in
[11], this gives better results than simply training the Gaussians
as a general HMM on speech data. Then, on each frame, the
Gaussian likelihoods are evaluated and normalized to obtain
posteriors for each Gaussian between zero and one. The re-
sulting vector is spliced together with vectors adjacent in time
and with averages of such vectors to form a vector of size
700 000 as described in [10].

6) Combination With MPE: fMPE trains the model param-
eters using the maximum likelihood (ML) criterion. Because it
is desirable to combine fMPE with model space discriminative
training, we train the fMPE features first, and then perform MPE
training with the fMPE features. In [12], experiments were re-
ported in which MPE training was done first, and then fMPE
training was performed without any model update (and, hence,
without the indirect differential). This appeared to make no dif-
ference to the final result.

7) Improvements From fMPE: Table I shows results on a
speaker adapted system (SA-DC of Section III-D), and using the
output of system SI-DC to estimate the speaker adaptive trans-
forms (vocal tract length normalization and constrained model
adaptation). fMPE reduces the word error rate by approximately
1.4% (6.7% relative) over the use of traditional MPE alone. In
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TABLE I
WORD ERROR RATES ON RT03. 849 K DIAGONAL COVARIANCE GAUSSIANS

WITH SEPTAPHONE CONTEXT (66.2 M PARAMETERS)

further experiments on multiple tasks, we have found that fMPE
alone reliably gives more improvement than MPE alone. MPE
applied on top of fMPE then always gives further improvement,
although this is typically less than half what it would give prior
to fMPE.

8) Comparison With Other Work; and Further Work: The
feature transformation used in fMPE is the same as that used
in SPLICE [13], which is a technique for noise robustness.
SPLICE was originally trained using ML and intended for noise
adaptation of models; recently an MMI version of SPLICE
[14] has been reported which works in the same situations
as fMPE, i.e., normal training rather than adaptation. It gave
good improvements on matched test data but helped very
little when testing in noise conditions different from those
used for training. Something similar was observed in [15]
when applying fMPE to a digit-recognition task: it gave good
improvements on matched noise conditions but very little on
mismatched noise conditions.

As mentioned previously, a model-space formulation of
fMPE was presented in [12]. This formulation allows an exten-
sion: fMPE corresponds to a shift in the means, but then a scale
on the model precisions was also trained, which was called
pMPE. However, it was not possible to get very much further
improvement from this innovation.

More generally, fMPE may be compared to the increasingly
successful neural-net-based methods (e.g., [16], and [17]) which
may be viewed as nonlinear transformations of the input space.
The two approaches represent quite different ways to train the
nonlinear transform, as well as different functional forms for the
transformation, and it would be useful to try different combina-
tions of these elements.

C. Full Covariance Modeling

One of the distinctive elements of IBM’s recently developed
technology is the use of a large-scale acoustic model based on
full-covariance Gaussians [18]. Specifically, the availability of
2100 h of training data (Section III-B) made it possible to build
an acoustic model with 143 000 39-dimensional full-covariance
mixture components. We have found that full-covariance sys-
tems are slightly better than diagonal-covariance systems with a
similar number of parameters, and, in addition, are beneficial for
cross-adaptation. To construct and use these models, a number
of problems were solved.

• Speed of Gaussian evaluation. The likelihood assigned
to a vector is given by

The computation of the argument to the exponent is com-
putationally expensive— , where is the dimen-
sionality, and this expense has hindered the adoption of

this form of model. To improve the evaluation time, we
based the likelihood computation on a Cholesky decom-
position of the inverse covariance matrix, ,
where is an upper-triangular matrix. Denoting by
, and the th row of with , the computation becomes

This is the sum of positive (squared) quantities, and thus
allows pruning a mixture component as soon as the par-
tial sum across dimensions exceeds a threshold. Second,
we used hierarchical Gaussian evaluation as described in
Section II-E5. By combining these two approaches, the
run time for full decoding was brought from 10 RT to
3.3 RT on a 3-GHz Pentium 4 without loss in accuracy.
Of this, approximately 60% of the time is spent in like-
lihood computations and 40% in search. The likelihood
computation itself is about twice as slow as with diagonal
covariance Gaussians.

• Discriminative training. The use of the accelerated like-
lihood evaluation, tight pruning beams, and a small de-
coding graph made lattice-free MMI [7] possible; in the
context of MMI training, we adjust the beams to achieve
real time decoding. One iteration on 2000 h of data thus
takes slightly over 80 CPU days. The MMI update equa-
tions are multivariate versions of those presented in Sec-
tion II-A; the means and the covariance matrices were up-
dated as follows:

(3)

(4)

where the ’s represent the mean and variance statistics
for the numerator and the denominator. is the sum of
the data vectors, weighted by the posterior probability of
the Gaussian in a soft alignment of the data to the numer-
ator or denominator HMM (as done in standard expecta-
tion maximization (EM) training [19]. Similarly,
is the sum of weighted outer products. is the occu-
pancy count of the Gaussian. Both ’s and ’s are of
course summed over all time frames. is chosen to en-
sure that is positive definite and has a minimum eigen-
value greater than a predefined threshold. This is done by
starting with a minimum value and doubling it until the
conditions are met. In addition, two forms of smoothing
were used.

— I-smoothing [2]

(5)

— Off-diagonal variance smoothing

(6)
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TABLE II
WORD ERROR RATES ON RT03. 143 K FULL-COVARIANCE GAUSSIANS

WITH QUINPHONE CONTEXT (106 M PARAMETERS)

In training, and were both set to 200 (on average, each
Gaussian received about 1000 counts). The effect of MMI
is illustrated in Table II for both standard speaker adaptive
training (SAT) [7], [20] features, and SAT-fMPE features.

• MLLR transform estimation. Only the on-diagonal el-
ements of the covariance matrix were used to estimate
MLLR transforms; this produced WER reductions of ap-
proximately 1% absolute (5% relative), in line with ex-
pectations.

D. Building Large-Context Decoding Graphs

We frame the decoding task as a search on a finite-state ma-
chine (FSM) created by the offline composition of several FSTs
[21], [22].2 Specifically, if we take to be an FSM encoding a
grammar or language model, to be an FST encoding a pro-
nunciation lexicon, and to be an FST encoding the expansion
of context-independent phones to context-dependent units, then
the composition yields an FST mapping word se-
quences to their corresponding sequences of context-dependent
units. The resulting FSM, after determinization and minimiza-
tion, can be used directly in a speech recognition decoder; such
decoders have been shown to yield excellent performance [23],
[24]. We note that while it is more common to perform the com-
position in the reverse direction (replacing each FST with its in-
verse), this computation is essentially equivalent and we view
the mapping from high-level tokens to low-level tokens as more
natural.

While this framework is relatively straightforward to imple-
ment when using phonetic decision trees with limited context
such as triphone decision trees, several computational issues
arise when using larger-context trees. For example, with a
phone set of size 45, the naive conversion of a septaphone
decision tree to an FST corresponding to would contain
45 3.7 10 arcs. Consequently, we developed several
novel algorithms to make it practical to build large-context
decoding graphs on commodity hardware. Whereas previous
approaches to this problem focused on long-span left context
[25], [26], our new methods approach the problem differently,
and are able to handle both left and right context. With these
algorithms, we were able to build all of the decoding graphs
described in this paper on a machine with 6 GB of memory.
As an example of the gains possible from using larger-context
decision trees, we achieved a gain of 1.6% absolute WER when
moving from a quinphone system to a septaphone system.

1) Compiling Phonetic Decision Trees Into FSTs: While
the naive representation of a large-context phonetic decision

2We use the term “finite state machine” to represent both FSAs and FSTs.
Whereas acceptors represent weighted sets of symbol sequences, transducers
represent mappings from sequences of input symbols to sequences of output
symbols. Many operations can be made to work with either FSTs or FSAs, with
no substantial difference. We use the term FSM in this section wherever the
algorithms can use either FSTs or FSAs.

tree is prohibitively large, after minimization its size may be
quite manageable. The difficulty lies in computing the min-
imized FST without ever needing to store the entirety of the
original FST. In [27], we describe an algorithm for constructing
the minimized FST without ever having to store an FST much
larger than the final machine; this algorithm was first deployed
for ASR in IBM’s 2004 EARS system.

Briefly, we can express an FSM representing the phonetic de-
cision-tree as a phone loop FSM (a one-state FSM accepting
any phone sequence) composed with a long sequence of fairly
simple FSTs, each representing the application of a single ques-
tion in the decision tree. By minimizing the current FSM after
the composition of each FST, the size of the current FSM never
grows much larger than the size of the final minimized machine.
To prevent the expansion caused by the nondeterminism of FSTs
encoding questions asking about positions to the right of the
current phone, we use two different FSTs to encode a single
question, one for positions to the left and one for positions to
the right. When applying an FST asking about positions to the
right, we apply the reversed FST to a reversed version of the
current FSM, thereby avoiding nondeterministic behavior. For
additional details, see [27].

In practice, we found that even with this process, we had dif-
ficulty compiling septaphone decision trees into FSTs for large
trees. However, note that the final FST need not be able to ac-
cept any phone sequence; it need only be able to accept phone
sequences that can be produced from the particular word vocab-
ulary and pronunciation dictionary we are using. Thus, instead
of starting with a phone loop accepting any phone sequence, we
can start with a phone-level FSM that can accept the equivalent
of any word sequence given our particular word vocabulary.

For a septaphone decision tree containing 22 K leaves, the
resulting leaf-level FSM representation of the tree contained 337
K states and 853 K arcs. After grouping all leaves associated
with a single phone into a single arc label and determinizing,
the final tree FST had 3.1 M states and 5.2 M arcs.

2) Optimizing the Creation of the Full Decoding
Graph: Even if the graph can be efficiently computed,
it is still challenging to compute a minimized version of

using a moderate amount of memory. To enable the
construction of as large graphs as possible given our hardware
constraints, we developed two additional techniques.

First, we developed a memory-efficient implementation of
the determinization operation, as detailed in [27]. This typically
reduces the amount of memory needed for determinization as
compared to a straightforward implementation by many times,
with little or no loss in efficiency. This algorithm is used repeat-
edly during the graph expansion process to reduce the size of
intermediate FSMs.

Second, instead of starting with a grammar expressed as an
FST that is repeatedly expanded by composition, we begin with
a grammar expressed as an acceptor, so that our intermediate
FSMs are acceptors rather than transducers. That is, we encode
the information that is normally divided between the input and
output labels of a transducer within just the input labels of an
acceptor, and we modify the transducers to be applied appropri-
ately. This has the advantage that the determinization of inter-
mediate FSMs can be done more efficiently.
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E. Advanced Decoding Algorithms

In the previous section, we have described how we create
a fully flattened state-level representation of the search space
in the form of an FSM. This section describes the use of these
graphs in our Viterbi decoder, and the implementation “tricks”
we use in that decoder. This material is covered under five
topics: graph representation, the basic Viterbi search, lattice
generation, search speed-ups, and the likelihood computation.

1) Graph Representation: The decoding graphs produced
by the algorithms of the preceding section have three distinc-
tive characteristics when compared to standard FSMs. The first
characteristic is that they are acceptors instead of transducers.
Specifically, the arcs in the graph can have three different types
of labels:

• leaf labels (context-dependent output distributions);
• word labels;
• or empty labels (e.g., due to LM back-off states).
Second, word labels are always placed at the end of a word,

that is, directly following the corresponding sequence of leaves.
This ensures that the time information associated with each
decoded word can be recovered. In contrast, word labels in
generic FSTs can be shifted with respect to the underlying
leaf sequences, with the consequence that the output word
sequences must be acoustically realigned to get correct word
times and scores.

The third characteristic has to do with the types of states
present in our graphs:

• emitting states for which all incoming arcs are labeled by
the same leaf;

• null states which have incoming arcs labeled by words or
.

This is equivalent to having the observations emitted on the
states of the graph and not on the arcs. The advantage of this
is that the Viterbi scores of the states can be directly updated
with the observation likelihoods and the scores of the incoming
arcs. It can happen, however, that after determinization and min-
imization, arcs with different leaf labels point to the same emit-
ting state. In this case, the state is split into several different
states, each having incoming arcs labeled by the same leaf. Even
when using large-span phonetic context, this phenomenon is
relatively rare and leads to only a small increase in graph size
( 10%). Finally, each emitting state has a self-loop labeled by
the leaf of the incoming arcs. Null states can have incoming arcs
with arbitrary word or labels (but no leaf labels). An illustra-
tion of our graph format is given in Fig. 1.

It is important to note that while we represent the search space
with an acceptor rather than a transducer, there is no loss in
generality: it is a simple matter to turn a transducer with context-
dependent phone units on the input side and words on the output
side into an acceptor in which words and phones are interleaved.
The converse mapping from acceptor to transducer is trivial as
well.

The main constraint that our technique does have is that
word labels occur immediately after the last phone in a word.
By allowing the word labels to move relative to the phone
labels (as happens in some transducer operations), greater
compaction could potentially be achieved in the minimization

Fig. 1. Example of an FSA decoding graph (with phone labels instead of leaf
labels).

step, with the previously mentioned drawback that acoustic re-
alignment would be necessary to recover the correct word-time
information.

2) Viterbi Search: At a high level, the Viterbi search is a
simple token passing algorithm with no context information at-
tached to the tokens. It can be written as an outer loop over time
frames and an inner loop over sets of active states. A complica-
tion arises in the processing of null states that do not account for
any observations: an arbitrary number of null states might need
to be traversed for each speech frame that is processed. Further-
more, because multiple null-state paths might lead to the same
state, the nulls must be processed in topological order.

In order to recover the Viterbi word sequence, it is not neces-
sary to store backpointers for all the active states. Instead, one
can store only the backpointer to the previous word in the se-
quence. More precisely, every time we traverse an arc labeled
by a word, we create a new word trace structure containing the
identity of the word, the end time for that word (the current time)
and a backpointer to the previous word trace. We then pass a
pointer to this trace as a token during the search. This procedure
is slightly modified for lattice generation as will be explained
later on. Storing only word traces rather than state traces during
the forward pass reduces dynamic memory requirements dra-
matically (by several orders of magnitude for some tasks). The
drawback of this technique is that the Viterbi state sequence
cannot be recovered.

Even though we store minimal information during the for-
ward pass, memory usage can be excessive for very long utter-
ances, wide decoding beams, or lattice generation. To address
this problem, we implemented garbage collection on the word
traces in the following way. We mark all the traces which are ac-
tive at the current time frame as alive. Any predecessor of a live
trace becomes alive itself. In a second pass, the array of traces
is overwritten with only the live traces (with appropriate pointer
changes). When done every 100 frames or so, the ru -time over-
head of this garbage collection technique is negligible.

3) Lattice Generation: The role of a lattice (or word graph)
is to efficiently encode the word sequences which have appre-
ciable likelihood given the acoustic evidence. Standard lattice
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Fig. 2. N -best lattice generation (N = 2). Here, arcs carry word labels and scores (higher scores are better). Word sequences are represented by hash codes.

TABLE III
LATTICE LINK DENSITY AS A FUNCTION OF N FOR THE DEV04 TEST SET

generation in (dynamic search graph) Viterbi decoding uses a
word-dependent -best algorithm where multiple backpointers
to previous words are kept at word ends [28], [29]. When using
static graphs, however, there is a complication due to the merges
of state sequences that can happen in the middles of words.

To deal with this, we adopt a strategy that is distinct from
the earlier method of [30] in that we keep track of the -best
distinct word sequences arriving at every state. This is achieved
by hashing the word sequences from the beginning of the utter-
ance up to that state. More precisely, during the forward pass,
we propagate tokens from a state to its successors. Token
contains the forward score of the th-best path, the hash code
of the word sequence up to that point and a backpointer to the
previous word trace. Once we traverse an arc labeled by a word,
we create a new word trace which contains the word identity, the
end time and the tokens up to that point. We then propagate
only the top-scoring path (token). At merge points, we perform
a merge sort and unique operation to get from 2 to tokens
(the tokens are kept sorted in descending score order). This lat-
tice generation procedure is illustrated in Fig. 2.

In Table III, we report the link density (number of arcs in
the lattice divided by the number of words in the reference) as
a function of for the same pruning parameter settings. We
normally use to achieve a good balance between lattice
size and lattice quality.

Table IV shows the word error rates for three different test
sets obtained after language model rescoring and consensus pro-
cessing of the lattices at the speaker-adapted level. The language
model used to generate the lattices has 4.1 M -grams while the
rescoring LM has 100 M -grams (Section III-B-2).

4) Search Speed-Ups: Here, we present some search opti-
mization strategies which were found to be beneficial. They are
related with the way the search graph is stored and accessed and
with the way pruning is performed.

• Graph memory layout: The decoding graph is stored
as a linear array of arcs sorted by origin state, each arc
being represented by a destination state, a label and a
cost (12 bytes/arc). Each state has a pointer to the begin-
ning of the sequence of outgoing arcs for that state, the
end being marked by the pointer of the following state (4

TABLE IV
WORD ERROR RATES FOR LM RESCORING AND CONSENSUS

PROCESSING ON VARIOUS EARS TEST SETS

bytes/state). These data structures are similar to the ones
described in [31].

• Successor look-up table: The second optimization has to
do with the use of a look-up table which maps static state
indices (from the static graph) to dynamic state indices.
The role of this table is to indicate whether a successor
state has already been accessed and, if so, what entry it
has in the list of active states.

• Running beam pruning: For a given frame, only the hy-
potheses whose score are greater than the current max-
imum for that frame minus the beam are expanded. Since
this is an overestimate of the number of hypotheses which
survived, the paths are pruned again based on the abso-
lute maximum score for that frame (minus the beam) and
a maximum number of active states (rank or histogram
pruning). This resulted in a 10%–15% speed-up over stan-
dard beam pruning.

5) Likelihood Computation: In [24], we presented a like-
lihood computation strategy based on hierarchical Gaussian
evaluation that is decoupled from the search, and all the system
results presented in this paper use that scheme. In this section,
however, we present some speed-ups that come from com-
bining the hierarchical evaluation method with “on-demand”
likelihood computation where we evaluate the Gaussians
only for the states which are accessed during the search as
suggested in [32]. This works as follows: First, we perform
a top-down clustering of all the mixture components in the
system using a Gaussian likelihood metric until we reach
2048 clusters (Gaussians). At run time, we evaluate the 2048
components for every frame and, for a given state accessed
during the search, we only evaluate those Gaussians which map
to one of the top (typically 100) clusters for that particular
frame. Fig. 3 shows the word error rate versus run-time factor
(including search) for the three different likelihood schemes:
“hierarchical decoupled” (precomputation and storage of all
the likelihoods), “on-demand” and “hierarchical on-demand”
(computing on-demand only those Gaussians which are in the
most likely clusters). For both on-demand techniques, we use
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Fig. 3. Word-error rate versus real time factor for various likelihood schemes
(EARS RT’04 speaker independent decoding). Times are measured on Linux
Pentium IV 2.8-GHz machines and are inclusive of the search.

a batch strategy which computes and stores the likelihoods
for eight consecutive frames, as described in [32]. To generate
these curves, the beam settings were varied in equal increments
from less restrictive to more restrictive values—from 200 to
50 in increments of 12.5 (rounded down) for the number of
Gaussian clusters evaluated; from 12 to 9 in increments of 0.25
for the beam, and from 10 000 to 3000 in increments of 600
for the maximum number of states. The graph indicates that
we improve the run time by approximately 20% at low error
rates, when moving from uncoupled hierarchical computation
to hierarchical on-demand computation. Table V shows the
beams used in our speaker-independent and speaker-adapted
systems; these were identified by manual tuning experiments.

III. SYSTEMS

This section describes the application of the previous tech-
niques in specific systems. Section III-A describes the training
data, Section III-B describes the details of the acoustic and lan-
guage models, and Sections III-C and III-D describe our 1 RT
and 10 RT systems, respectively.

A. Training Data

1) Acoustic Model Data: The acoustic training set used
audio and transcripts from five sources: Fisher parts 1–7,
Switchboard-1, Switchboard Cellular, Callhome English, and
BBN/CTRAN Switchboard-2. All the audio data are available
from the LDC, http://www.ldc.upenn.edu, as are most of the
transcripts. Details on the availability of each source are given
in Table VI.

The Fisher transcripts were normalized using a collection of
840 rewrite rules. Forty-one conversation sides in the original
collection were rejected because they had insufficient quanti-
ties of data (less than 20 s of audio), and an additional 47 h of
data containing words occurring four times or less in the whole
corpus were rejected.

We used ISIP’s October 25 2001 release of Switchboard tran-
scripts for the Switchboard-1 data, with a few manual correc-
tions of transcription errors.

TABLE V
BEAM SETTINGS USED FOR SPEAKER-INDEPENDENT (SI) AND

SPEAKER-ADAPTED (SA) DECODINGS UNDER DIFFERENT TIME

CONSTRAINTS. 1� AND 10� STAND FOR TIMES REAL-TIME

The BBN/CTRAN Switchboard-2 transcripts and LDC tran-
scripts for Switchboard Cellular and Callhome English were
normalized to follow internal conventions (e.g., spelling out
acronyms and mapping all noise symbols to one for vocalized
noises and one for all others), and a few manual corrections
were made.

In addition, the full collection of audio data was resegmented
such that all training utterances had nominally 15 frames of si-
lence at the beginning and end, and all single-word utterances
were discarded [33]. This results in a small improvement in error
rate (0.6% at the speaker-independent level). Following normal-
ization, roughly 2100 h of training data remained.

2) Language Model Data: The language model used all the
acoustic data transcripts listed in Table VI, as well as broad-
cast news transcripts from the LDC and web data provided by
the University of Washington [34]. These sources are listed in
Table VII.

B. System Basics

We use a recognition lexicon of 30.5 K words which was gen-
erated by extending our RT03 lexicon to cover the 5000 most
frequent words in the Fisher data. The lexicon contains a total
of 33 K pronunciation variants (1.08 variants per word). Pro-
nunciations are primarily derived from PRONLEX (LDC cat-
alog number LDC9720 available at http://www.ldc.upenn.edu),
with the manual addition of a few variants to cover reduced pro-
nunciations that are common in conversational American Eng-
lish. Pronunciation variants have weights based on their unigram
counts in a forced alignment of the acoustic training data.

1) Acoustic Modeling: The raw acoustic features used for
segmentation and recognition are perceptual linear prediction
(PLP) features as described in [24]. No echo cancellation was
performed.

The features used by the speaker-independent system are
mea -normalized on a conversation side basis. The fea-
tures used by the speaker-adapted systems are mea - and
variance-normalized on a conversation side basis, but normal-
ization statistics are accumulated only for frames labeled as
speech in the speaker-independent pass.

Words are represented using an alphabet of 45 phones.
Phones are represented as three-state, left-to-right HMMs.
With the exception of silence and noise states, the HMM
states are context-dependent, and may be conditioned on either
quinphone or septaphone context. In all cases, the phonetic
context covers both past and future words. The context-depen-
dent HMM states are clustered into equivalence classes using
decision trees.

Context-dependent states are modeled using mixtures of ei-
ther diagonal-covariance or full-covariance Gaussians. For the
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TABLE VI
ACOUSTIC TRAINING DATA SOURCES AND AVAILABILITY

TABLE VII
LANGUAGE MODEL TRAINING DATA SOURCES AND AVAILABILITY

diagonal-covariance systems, mixture components are allocated
according to a simple power law, ,
where is the number of mixture components allocated to a
state, is the maximum number of mixtures allocated to any
state, is the number of frames of data that align to a state in
the training set, and is a constant that is selected to set the
overall number of mixtures in the acoustic model. Initial max-
imum-likelihood training of the diagonal-covariance systems is
based on a fixed, forced alignment of the training data at the
state level [33], and uses an iterative mixture-splitting method
to grow the acoustic model from a single component per state
to the full size. Typically, maximum-likelihood training con-
cludes with one or two passes of Viterbi training on word graphs.
All training passes are performed over the full 2100-h acoustic
training set.

In the context of speaker-adaptive training, we use two forms
of feature-space normalization: vocal tract length normalization
(VTLN) [35] and feature-space maximum likelihood linear
regression (fMLLR, also known as constrained MLLR) [36].
This process produces canonical acoustic models in which
some of the nonlinguistic sources of speech variability have
been reduced.

The VTLN warping is implemented by composing 21
piecewise linear warping functions with a Mel filterbank to
generate 21 different filterbanks. In decoding, the warping
function is chosen to maximize the likelihood of the frames
that align to speech under a model that uses a single, full-co-
variance Gaussian per context-dependent state to represent the
class-conditional distributions of the static features. Approxi-
mate Jacobian compensation of the likelihoods is performed by
adding the log determinant of the sum of the outer product of
the warped cepstra to the average frame log-likelihood.

When decoding, we do a single pass of MLLR adaptation for
each conversation side, using a regression tree to generate trans-
forms for different sets of mixture components. The regression
tree is an eight-level binary tree that is grown by pooling all
of the mixture component means at the root node, then succes-
sively splitting the means at each node into two classes using
a soft form of the k-means algorithm. The MLLR statistics are
collected at the leaves of the tree and propagated up the tree until
a minimum occupancy of 3500 is obtained and a transform is
generated.

In addition to these speaker-adaptive transforms, we increase
the discriminating power of the features through the use of linear
discriminant analysis (LDA) followed by a diagonalizing trans-
form. The specific diagonalizing transform we use is referred to
as both semi-tied covariances (STC) [37] and maximum likeli-
hood linear transforms (MLLT) [38], [39]. Both attempt to min-
imize the loss in likelihood incurred by the use of diagonal co-
variance Gaussians as opposed to full covariance Gaussians.

2) Language Modeling: The IBM 2004 system uses two
language models: a 4.1 M -gram language model used for
constructing static decoding graphs and a 100 M -gram lan-
guage model that is used for lattice rescoring. Both language
models are interpolated back-off 4-gram models smoothed
using modified Kneser–Ney smoothing. The interpolation
weights are chosen to optimize perplexity on a held-out set of
500 K words from the Fisher corpus. The characteristics of
the constituent language models, as well as their interpolation
weight in the decoding-graph and rescoring language models
are given in Table VIII. The unigram through 4-gram count
thresholds are given in the column entitled “Count Cutoffs.” A
threshold of 0 means every -gram was used, and a cutoff of 1
means only -grams occurring at least twice were used.
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TABLE VIII
LANGUAGE MODEL CHARACTERISTICS FOR THE LMS BUILT FROM EACH DATA SOURCE, AND THEIR INTERPOLATION WEIGHTS IN THE COMPOSITE LMs.

LM1 IS THE LM USED TO BUILD THE DECODING GRAPH, AND LM2 IS THE RESCORING LM

Fig. 4. 1� RT system diagram. Dashed lines indicate that the fMLLR and MLLR steps rely on the 1-best output of the speaker independent decoding. Run times
are reported on a Linux Pentium 4 3.4-GHz, 2.0-GB machine.

C. 1 RT System Architecture

The operation of our 1 RT system comprises the steps
depicted in Fig. 4: 1) segmentation of the audio into speech
and nonspeech segments; 2) speaker independent (SI) decoding
of the speech segments; 3) alignment-based vocal tract length
normalization of the acoustic features; 4) alignment-based es-
timation of one maximum likelihood feature space transforma-
tion per conversation side; 5) alignment-based estimation of one
MLLR transformation per side; and 6) speaker-adapted (SA) de-
coding using MPE-SAT trained acoustic models transformed by
MLLR.

The decoding graphs for the two decoding passes are built
using identical vocabularies, similarly sized 4-gram language
models, but very different context decision trees: the SI tree
has 7900 leaves and quinphone context, while the SA tree has
21 500 leaves and septaphone context. Table IX shows various
decoding graph statistics. The maximum amount of memory
used during the determinization step was 4 GB.

The severe run-time constraints for the 1 RT system forced
us to choose quite different operating points for the speaker-in-
dependent and speaker-adapted decoding. Thus, the SI decoding
was allotted a budget of only 0.14 RT, while the SA decoding

TABLE IX
GRAPH STATISTICS FOR THE SPEAKER-INDEPENDENT (SI) AND

SPEAKER-ADAPTED (SA) DECODING PASSES. THE NUMBER

OF ARCS INCLUDES SELF-LOOPS

TABLE X
DECODING STATISTICS ON RT04 FOR THE 1� RT SYSTEM

received 0.55 RT. This had an influence on the number of
search errors (2.2% versus 0.3%). In Table X, we indicate var-
ious decoding statistics for the two passes. In this table, the
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first row, “Likelihood/search ratio” shows the percentage of the
total runtime dedicated to likelihood computation and Viterbi
recursions (search), respectively. The second row, “Avg. number
of Gaussians/frame,” shows the average number of Gaussians
whose likelihoods were computed for each frame, using the hi-
erarchical likelihood computation (about 1/20th of the total for
both the SI and SA decodings). The last row, “Max. number of
active states/frame,” shows the cutoffs used in rank pruning.

The memory usage for the resource-intensive SA decoding
broke down into 1.2 GB of static memory (divided into 932
MB for the decoding graph and 275 MB for 850 K 40-dimen-
sional diagonal covariance Gaussians) and 133 MB of dynamic
memory (220 MB with lattice generation).

D. A 10 RT Cross-Adaptation Architecture

Our 10 RT system is organized around system combina-
tion through cross-adaptation. Like many evaluation systems
[40]–[42], several different recognition systems are used in
combination to produce the final output. While this is typically
done by generating lattices with one system and rescoring them
with other systems, all communication in the 2004 IBM 10
RT architecture is done through cross-adaptation.

Three different acoustic models were used in our 10 RT
system. In the enumeration below and in later passages, each
system is given a two-part name. The first part indicates whether
it is speaker-independent or speaker-adapted (SI or SA), and the
second part indicates whether it is a diagonal or full-covariance
system (DC or FC).

1) SI.DC: A speaker-independent model having 150 K
40-dimensional diagonal-covariance mixture compo-
nents and 7.9 K quinphone context-dependent states,
trained with MPE. Recognition features are derived from
an LDA MLLT projection from 9 frames of spliced,
speaker-independent PLP features with blind cepstral
mean normalization.

2) SA.FC: A speaker-adaptive model having 143 K 39-di-
mensional full-covariance mixture components and 7.5
K quinphone context-dependent states, trained with MMI
and fMLLR-SAT. Recognition features are derived from
fMPE on an LDA MLLT projection from nine frames
of spliced, VTLN PLP features with speech-based cep-
stral mean and variance normalization.

3) SA.DC: A speaker-adaptive model having 849 K 39-di-
mensional diagonal-covariance mixture components and
21.5 K septaphone context-dependent states, trained with
both fMPE and MPE, and fMLLR-SAT. Recognition fea-
tures are derived from fMPE on an LDA MLLT projec-
tion from nine frames of spliced, VTLN PLP features with
speech-based cepstral mean and variance normalization.

The recognition process comprises the following steps:
1) segmentation of the audio into speech and nonspeech;
2) decoding the speech segments with the SI.DC model;
3) speaker adaptation and decoding with the SA.FC model:

a) Estimation of speech-based cepstral mean and variance
normalization and VTLN warping factors using the hy-
potheses from (2);

b) estimation of fMPE, fMLLR and MLLR transforms for
the SA.FC model using the hypotheses from (2);

c) decoding with the SA.FC model;

TABLE XI
WORD ERROR RATES ON RT03. COMPARISON BETWEEN SELF- AND

CROSS-ADAPTATION. A ROW/COLUMN ENTRY WAS GENERATED BY

ADAPTING THE ROW-SPECIFIED MODELS WITH TRANSCRIPTS FROM

THE COLUMN-SPECIFIED SYSTEM

TABLE XII
WORD ERROR RATES AT DIFFERENT SYSTEM STAGES

4) reestimation of MLLR transforms and decoding with the
SA.DC model:

a) estimation of MLLR transforms using the features
from 3b) and the hypotheses from 3c);

b) lattice generation with the SA.DC model;
5) lattice rescoring with the 100 M -gram LM described in

Section III-B2;
6) confusion network generation and the extraction of the

consensus path [43].
The effect of cross-adaptation was studied on a combination

of diagonal and full covariance models (Table XI). Adapting the
DC models on the errorful transcripts of the FC system led to a
gain of 0.4% compared with self adaptation.

Word error rates at the different system stages are presented
in Table XII for the 2003 test set provided by NIST, the 2004
development set, and the RT04 test set.

IV. CONCLUSION

This paper has described the conversational telephony speech
recognition technology developed at IBM under the auspices of
the DARPA EARS program. This technology includes both ad-
vances in the core technology and improved system building.
The advances in the core technology are the development of fea-
ture-space minimum phone error training (fMPE); the integra-
tionof a full-covarianceGaussian acoustic model includingMMI
trainingandthecomputational techniquesnecessarytoaccelerate
the likelihood computation to a usable level; the development
of an incremental technique for creating an FST representation
of a decision tree—thus enabling very long-span acoustic con-
text static decoding graphs; and highly efficient memory layout,
likelihood computation, and lattice generation for Viterbi search.
Themainsystem-buildingimprovementsweretheadditionofjust
under 2000 h of new acoustic training data and the adoption of an
architecture based on cross-adaptation.

In addition to being useful for conversational telephony
systems, our technical advances have since proven to be gen-
erally applicable, and this experience allows us to make some
judgment as to their relative value in a larger context. Without
a doubt, fMPE is the single most important development. In
addition to an absolute improvement of 1.4% (6.8% relative)
in word-error rate on the experiments reported here, it has
consistently proven to yield 5% to 10% relative improvement
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over MPE alone on tasks as diverse as Mandarin broadcast
news recognition and the transcription of European parliamen-
tary speeches. The next most useful technique for us is the
graph-building method of Section II-D. This enables the con-
struction and use of long-span acoustic models in the context
of FST-based graph representation. Finally, the use of large
amounts of data had a significant effect, approximately equal to
the algorithmic improvements over the best techniques in 2003:
increasing the amount of conversational telephony training data
(in both the acoustic and language models) from 360 to 2100
h reduced the error rate by about 14% relative, from 30.2% to
25.9% on the RT03 test set. Of this, roughly half is attributable
to a better language model and half to the acoustic model.
Thus, our improvements are attributable to a broad spectrum of
changes, and we expect future improvements to similarly come
from both algorithms and data.
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