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A B S T R A C T

Two broad classes of market mechanisms are compared with respect to their
computational complexity. First the conventional Walrasian interpretation of
markets is considered, in which prices are centrally computed by an
auctioneer. The existence of Walrasian equilibria is a consequence of either
the Brouwer or Kakutani fixed point theorems, constructive proofs of which
serve as the basis of algorithms for computing such equilibria. Recent results
on the computational complexity of such fixed points are reviewed, and it is
argued that the non-polynomial complexity of these algorithms makes
Walrasian general equilibrium an implausible conception of markets. Second,
a decentralized picture of market processes is described, involving concurrent
exchange within transient coalitions of agents. These non-tâtonnement
mechanisms yield (non-Walrasian) equilibrium allocations that are Pareto
optimal and do so in polynomial  time. Such processes may thus be
meaningfully viewed as a kind of massively parallel, distributed computation of
optimal allocations. These decentralized exchange processes feature price
dispersion, yield allocations that are not in the core, modify the distribution of
wealth, are always stable, but are also path-dependent—distinct interaction
histories produce distinct equilibrium prices and allocations. Overall,
replacing the dominant Walrasian framing of markets with a more
decentralized picture requires substantial revision of conventional wisdom
concerning markets.

keywords: non-Walrasian model, decentralized exchange process,
computational complexity, parallel computation, agent-based computing,
bilateral exchange
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I Markets and the Emergence of Prices
Consider the following strategic environment. There is a heterogeneous

population of autonomous entities, each of whom has internal states that
describe its self-interest as well as certain external states. Each entity is
engaged in purposive activity to further its interests, including altering its
external state in exchange for alterations in the external states of other
agents. Each individual receives information from other individuals directly,
and has access to some global state information as well, although no agent
has complete information on the global state. Calling these entities agents, we
imagine that each one engages in more or less strategic behavior. That is, each
agent has some internal model for how the individuals in the population will
behave and uses this model in order to decide how best to act subsequently.
Finally, there exist performance measures, both subjective and objective, for
the individuals as well as for the overall system of agents.

At a very high level of abstraction, this picture of interacting agents can
describe a great variety of human activity, economic activity in particular. It
might be a story about consumption behavior insofar as the agents are
humans who exchange money for goods, making decisions at least partly on
the basis of information—on product quality, say—received from others. It
could also be a framework for studying the operation of firms, in which
individual actions are sufficiently coordinated that economic goods result
from the interactions. Here, agents must communicate the nature of their
productive actions to their peers, and adapt their behavior as external data
arrives and their internal models are updated. This abstract depiction of
interacting agents can also be a model of markets, in which the agents
exchange items of value about which each individual has its own, typically
private, assessments. Such private valuations may not depend significantly
on how other agents value the good, as when the item provides a service from
which the agent benefits, e.g., the transportation service a car provides.
Alternatively, the items being traded may have value to a particular agent
that depends in an essential way on how other agents value it, e.g., the resale
value of a car. This is the case of financial markets, in which the items being
exchanged provide little utility intrinsically but rather have value insofar as
they can be exchanged for consumption goods at later times.

Beyond purely economic activity, this abstract conception of interacting,
self-interested entities is also a credible portrait of other complex adaptive
systems, both natural and artificial. In an ant colony each individual ant
performs a function, using local, socially-transmitted information in order to
do its task. In the human immune system heterogeneous cell types interact to
synthesize antibodies in order to neutralize invaders. In engineered systems,
like computer networks, it is increasingly common for individual nodes to
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have well-defined objective functions (e.g., keep busy) and a behavioral
repertoire that attempts to further that objective. Indeed, consider the general
problem of distributed computing in which a single task is divided into pieces
so that it can be worked on by several computers at once. Each individual
computer in the network works on its piece of the larger task while
communicating intermediate results to other computers. In such
circumstances each node may locally adapt its behavior as its instantaneous
duties change, attempting to achieve a balanced load across the population of
processors for instance. Alternatively, the load might be balanced from the
top down, perhaps by a dedicated processor that is otherwise off-line, not part
of the main distributed computation. Performance measures for such systems
increase in the speed of obtaining a solution to the problem, a metric that is
typically an increasing function of the quality of load balancing achieved.

This paper is primarily concerned with drawing out the connections
between economic exchange, on the one hand, and distributed computation on
the other, linked through this abstract picture of interacting, purposive
agents. We shall argue that actions by self-interested agents in economic
markets have much in common with the decentralized interactions of
processors in distributed computation environments. Using the asynchronous
model of distributed computing, we shall study the performance of market
systems as a function of their scale, i.e., the number of agents in the
marketplace and the number of commodities being traded. The computational
complexity of such systems is analyzed and compared to that of conventional
market models having centralized price determination, i.e., the Walras-
Arrow-Debreu model.

A more practical motivation of this paper arises from a class of market
models known as ‘agent-based artificial markets’. In agent-based
computational models a population of software objects is instantiated and
each agent is given certain internal states (e.g., preferences, endowments) and
rules of behavior (e.g., seek utility improvements). The agents are then
permitted to interact directly with one another and a macrostructure emerges
from these interactions. Patterns in this macrostructure may then be
compared with empirical data, agent internal states and rules revised, and
the process repeated until an empirically plausible model obtains. Models of
this type are capable of reproducing both stylized features of financial
markets (Arthur et al. [], Chen and Yeh [], and LeBaron []) as well as many
quantitative facts (Lux [199x], Levy, Levy and Solomon [], Darley et al. [], and
Za []).
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An important aspect of these agent market models is the price formation
process.1 Through the interactions of the agents prices emerge in such models,
either mediated by middlemen or market makers or not. In financial market
models agents use past prices to form idiosyncratic forecasts of future prices,
and trade accordingly. New prices are created. Over time forecasting rules
evolve, unprofitable ones are replaced by speculative ones, and the population
of agents coevolves to one another. In more traditional, non-financial market
models prices are similarly emergent from the local interactions of self-
interested agent. Interesting dynamics can result from the evolultion of
preferences, or shocks to supply chains, inventories, or technology, to name but
a few possibilities. This distributed price formation process seems much
closer to what happens in real world markets than the metaphor of the
Walrasian auctioneer.

There is another notion of complexity at work here, one more in the spirit
of the other papers in this special section. Agent computing lies at the heart of
the complex adaptive systems approach to complexity in economics. For such
agent models are capable of producing perpetual dynamics at the agent level
that yield coherent macrostructure that is at least very difficult to analyze
analytically. From the perspective of agent modeling, the focus of analytical
models on fixed points is mere mathematical expediency. For when one places
purposive agents in economic environments of significant complexity rarely do
they stumble into any kind of equilibrium configuration. Rather, the engage in
a kind of perpetual co-evolution to one another’s strategies and there emerges
more or less stable ‘ecologies’ of strategies. These ecologies may display
quasi-stationary states, but eventually such configurations are ‘tipped’ into
other arrangements, i.e., the macro-equilibria are punctuated by periods of
rapid transition.

In what follows we compare the computational complexity of the
Walrasian model of exchange with a radically more decentralized one. In
particular, § II recapitulates recent results on the computational complexity of
algorithms for computing Brouwer and Kakutani fixed points. It turns out
that these algorithms fall into a complexity class that makes them among the
hardest problems in all of computer science. § III first describes the analytical
structure of a general model of local exchange between agents, demonstrates
that it can produce equilibrium allocations that are Pareto optimal, although
not in the core and path dependent, and that the rate of convergence is
geometric. Then, in § IV the complexity of this exchange process is

                                                
1  A more conventional title for this section would have been ‘Markets and Price Formation’
but I feel there is a subtle bias in this terminology. For ‘price formation’ seems to
presuppose that a single price characterizes most exchange activity, and this is precisely
what I wish to deny in the distributed, decentralized view of markets presented here.
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investigated both analytically and computationally. It is demonstrated that
the number of interactions required to produce an epsilon approximation of
general equilibrium is polynomial in the number of agents and commodities. §
V summarizes these results.

II The Complexity of Walrasian Exchange
Fixed-point theorems were ostensibly introduced into economic theory

by von Neuman in his work on the input-output model that bears his name
[1945-46].  Since then, many domains of economic theory have come to depend
on fixed point theorems to prove the existence of equilibria, notably general
equilibrium theory but also Nash equilibria in game theory.

Now, the existence of an equilibrium is not the same as its
achievement. That is, the achieving equilibrium requires a mechanism for
converging to (an epsilon approximation of) a fixed point in a finite length of
time, using a bounded (presumably small) amount of resources.  Without such
a mechanism there is little reason to believe that a fixed point would ever be
observed.

The "tatonnment" process of price adjustment is a mechanism for
producing Walrasian general equilibrium. However, it is not a particularly
realistic mechanism—among its several unreasonable requirements are that
(1) agent truthfully reveal their preferences, (2) no trading takes place before
the market-clearing price vector is announced, and (3) all agents trade at
exactly the same prices.  But the Walrasian mechanism has many nice
properties: (1) it is determinate in the sense that the final prices and
allocations are completely determined from agent preferences and
endowments, and (2) the agent behavior it requires is very simple, involving
nothing more than truthful reporting of demands at announced prices

Unfortunately, the job of the Walrasian "auctioneer", who must
compute prices, is extremely hard. The lower bound for worst-case
computation of Brouwer fixed points is exponential in the dimension of the
problem [Hirsch et al., 1989]—the dimension being the size of the commodity
space in the Arrow-Debreu version of general economic equilibrium.
Furthermore, it has recently been shown that the computational complexity of
Brouwer and Kakatani fixed points are closely related to the complexity of the
parity argument,2 the connection between the two being Sperner's lemma
[Papadimitriou 1994]. In particular, Brouwer and Kakutani are contained in a
complexity class PPA (for polynomial parity argument), related to the search

                                                
2  The parity argument…
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problem classes FP and FNP as FP ⊆  PPA ⊆  FNP.3 If fact, Brouwer and
Kakutani are PPA-complete. These results can be summarized as

Proposition 1: Arrow-Debreu equilibria are sufficiently difficult to compute
that the Walrasian picture of market behavior is simply not plausible.

There are at least two possible responses to this state of affairs. One is
to simply dismiss theoretical complexity results, in the same way that
exponential worst case complexity for linear programming does not vitiate use
of the simplex algorithm for practical problems. Typical running times for
particular general equilibrium codes have been estimated. Scarf [1973], for
example, reports that the number of function evaluations required to
equilibrate a computable general equilibrium (CGE) model via his algorithm
scales like the size of the commodity space to the fourth power.4  While not as
bad as exponential dependence, this result means that an economy with 1000
commodities requires 10,000 times as many computations to equilibrate as
compared with one with but 100 commodities. Such results seem unrealistic
as a description of actual market behavior.

A very different response is to argue that the Walrasian model, which
has no empirical underpinnings [e.g., Hausman 1992: 55], is not a reasonable
picture of how an exchange economy works. For indeed, there are a variety of
non-Walrasian exchange mechanisms that yield equilibrium allocations that
are Pareto optimal. In particular, mechanisms that are radically more
decentralized than the Walrasian one, with its single, uniform price vector,
display greater fidelity to real economic processes. As Rust [1996] has
written:

The reason why large scale computable general equilibrium problems
are difficult for economists to solve is that they are using the wrong
hardware and software.  Economists should design their computations
to mimic the real economy, using massively parallel computers and
decentralized algorithms that allow competitive equilibria to arise as
'emergent computations'...[T]he most promising way for economists to
avoid the computational burdens associated with solving realistic large
scale general equilibrium models is to adopt an 'agent-based' modeling

                                                
3  More recent work of Papadimitriou and coworkers [Devanur et al., 200x and Deng et al.,
2002] pertain to linear utilities and demonstrate that polynomial algorithms exist for this
restricted class of economies.

4  The number of function evaluations does not depend on the number of agents, since the
auctioneer uses only aggregate demand functions. However, this does not mean that the
complexity of Walrasian equilibrium is independent of the number of agents. Rather, if one
also accounts for how these demand functions are built up from the demands of individual
agents then one gets that Walrasian equilibrium has complexity that is linear in the size of
the population.
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strategy where equilibrium prices and quantities emerge endogenously
from the decentralized interactions of agents.

We will show that such decentralized exchange processes can have complexity
properties that are better (less complexity) than the Walrasian process. If so,
a further argument against Walras is a simple evolutionary one: if
computation is costly then when two equally efficient (i.e., Pareto optimal)
market mechanisms having significantly different computational complexity
are competing, the one ultimately selected will be the least costly one, i.e., the
one requiring the least number of computations—the market institution
having the lower complexity.5

III Decentralized Exchange Processes
In this section it is shown that a particular process of decentralized

exchange in a population of agents having continuous, strictly convex
preferences converges to an equilibrium. The bilateral exchange process is
stable in the sense that starting from any initial conditions it always
converges. Furthermore, convergence occurs at a geometric rate. Conditions
under which such equilibria are Pareto optimal are given. In formulating
these results a variety of previous work is synthesized.

Note the set of agents by A = {1,..., A} and the set of commodities by N =
{1,..., N}. Exchange occurs at a set of times T = {1, 2,...,τ}; elements of T
represent the indices of the sequence of physical times at which trade takes
place.  Each agent possesses an allocation xi(t) ∈ R+

N  at each time t ∈ T; xi(0)
is agent i ’s endowment. Each agent has continuous, strictly convex
preferences, represented for agent i by utility function Ui: R+

N  →  R. Some
number of agents, k, group to trade some number of goods at each period t
∈ T .  In general, multiple groups of agents can trade multiple goods at a
particular time, but no agent can be a member of more than one trade group
at a particular time. Call πt the set of all agent groups that engage in trade at
time t ∈ T.  A trade history, Π = {π1,π2,..., πT}, gives the agent groups that trade
particular goods at particular times; Π  may be either exogeneous or
endogenous to the exchange process.  Overall, the exchange process is given by
the history-parameterized mapping T∏: R+

AN  → R+
AN , that is

x t +1( ) = TΠ x t( )( ) . (0)

                                                
5  It is worth pointing out that Walras' notion of 'groping' for market-clearing prices more
closely resembles the kind of decentralized exchange processes described below, so it is the
Arrow-Debreu formalism that is being argued against here.
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Exchange between agents is required to be individually rational, that
is, for each agent group, γ ∈ πt, Uk(xk(t+1)) ≥ Uk(xk(t)) for all k ∈ γ, and either
Uk(xk(t+1)) > Uk(xk(t)) for some k  ∈  γ . Exchange does not alter the total
quantity of commodities.  Define exchange to be feasible in a population of
agents if there exists and agent group such that an individually rational
exchange between the agents is possible. The agent population is in economic
equilibrium when exchange is not feasible.

III.1 Existence of k-lateral Exchange Equilibria

Existence of k-lateral exchange equilibrium is easily demonstrated
through construction of a Lyapunov function V: R+

AN  →  R  for the exchange
process [Uzawa 1962]:

V x t( )( ) ≡ Ui x i t( )( )
i∈α
∑ .

Proposition 2:  k-lateral exchange equilibria exist since

(i) V(x(t)) increases monotonically as long as trade takes place;

(ii) the allocation path, x(t, x(0)), is bounded, thus V(x(t)) is bounded above;

(iii) therefore

lim
t→∞

V x t, x(0)( )( ) = V * ,

and x(t, x(0)) has a subsequence converging on x* st V(x*) = V*.

Note that this result does not depend on any particular bargaining
algorithm. As long as each trade is individually-rational then V(t) is an
increasing function.

III.2 Rate of Convergence of k-lateral Exchange Processes

The existence of equilibria is of little practical value if such equilibria
are difficult to achieve, such as when prices cycle in the Walrasian adjustment
process as first described by Scarf [1960]. In the case of k-lateral exchange no
such difficulties are encountered. Since each exchange makes at least one
agent strictly better off, i.e., Ui(xi(t+1)) > Ui(xi(t)) for some i and each t, it is
also true that V(x(t+1) > V(x(t)) for all t. Define a convergence parameter, β, as

lim
t→T
sup V

* − V(x(t +1))
V * −V (x(t ))

≡ β .

Since convergence is monotonic it must be the case that β < 1. Therefore,



The        Complexity       of        Exchange                                                                                                     Axtell   

8

V* − V (x(t +1)) ≤ β V* − V(x(t))( )
≤ β t+1 V * −V (x(0))( )

(1)

and we have demonstrated

Proposition 3: The rate of convergence of k-lateral exchange processes is
geometric.

This result will serve as the basis for the results on the computational
complexity of decentralized in § IV below.

III.3 Stability of k-lateral Exchange Processes

It is usual in economic theory to talk about the stability of an exchange
process, not of the allocations resulting from such a process. For example, in
the context of the Walrasian model an auctioneer's rule is called globally
stable if a price path approaches an equilibrium for all initial price vectors
[Arrow and Hahn, 1971: 271]. In the case of k-lateral exchange the existence of
a Lyapunov function for the dynamics guarantees that every initial allocation
will result in an equilibrium allocation. Thus  we have

Proposition 4: The k-lateral exchange process is globally stable.

The more usual notion of stability—that of a perturbed dynamical system
returning to equilibrium—never obtains for economic equilibria, since
displacements in allocations that yield utility increases for some at the
expense of others do not have individually rational paths back to the original
equilibrium.

III.4 Optimality of k-lateral Exchange Equilibria

After two agents engage in welfare-improving trade their marginal
rates of substitution (MRSs) in the exchanged commodities will be closer
together than before trade.  When the agents trade all the way to the contract
curve their post-exchange MRSs will be identical and the allocations are
optimal.  What are sufficient conditions such that k-lateral optimal
allocations throughout a population are equivalent to Pareto optimal
allocations?

There are a variety answers to this question in the literature.  The first
was given by Rader [1968] and amounts simply to the requirement that one
agent must have positive quantities of all commodities.  This result is usually
interpreted as the importance of having middlemen, market makers, and
other types of agents who facilitate trade.  The second answer was given by
Feldman [1973]. He showed that as long as all agents possessed some non-
zero amount of a particular commodity then pairwise optimality implied
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Pareto optimality. Such a commodity is commonly interpreted as money.
These results can be summarized in the following proposition, which is a kind
of welfare theorem of decentralized exchange:

Proposition 5: (first welfare theorem for decentralized exchange): k-lateral
exchange equilibria are Pareto optimal if either

 (i)  ∃ i s.t. xj
i  > 0 ∀ j;

(ii)  ∃ j s.t. xj
i  > 0 ∀ i.

The first condition may be interpreted as the existence of a middleman who
holds all goods, while the second is the existence of money. These older results
apply primarily to a population in which all agents can interact with one
another, i.e., a perfectly mixed population. More recently, Bell [1997] gives
analogous results for agents who interact over fixed networks.

This result is directly analogous to the first welfare theorem of
neoclassical economics. But note that the distributed, decentralized character
of the ‘invisible hand’ is manifest here. Indeed, the fact that the Smithian
‘hand’ is ‘invisible’ means that this version of it is much more in keeping with
its intuitive meaning (Nozick [], Rothschild []).

The second welfare theorem states that any Pareto optimal allocation
is a Walrasian equilibrium from some endowments, and is usually taken to
mean that a social planner/society can select the allocation it wishes to
achieve and then use tax and related regulatory policy to alter endowments
such that subsequent market processes achieve the allocation in question. We
have demonstrated above that the job of such a social planner would be very
hard indeed, and here we ask whether there might exist a computationally
more credible version of the second welfare theorem.

First, note that the second welfare theorem invites the interpretation
that endowments can be modified. In addition to preferences and
endowments, in decentralized trade models the history of interaction
determines final prices and allocations. Therefore, if we could somehow
specify or alter the trade history the equilibrium outcome could be modified.

Proposition 6 (second welfare theorem for decentralized exchange): Any Pareto
optimal and individually rational allocation can be achieved via some
decentralized exchange process

Results of this type are often found under the title of ‘accessibility of Pareto
optima’ and are an active topic of research. Note that Proposition 6 is more
like a true converse of Proposition 5 than in the Walrasian model.

III.5 Non-Core Character of k-lateral Exchange Processes
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Although k-lateral exchange allocations are Pareto optimal, it is easy
to see that they are not in the core (from initial endowments). Start two
agents out with identical preferences and endowments and let them trade to
equilibrium but with distinct interaction sequences. It would be mere
coincidence if they ended up with identical allocations and thus a non-core
allocation has been generated.6 Feldman [1973] first pointed this out for the
bilateral exchange case.

Proposition 7: Allocations resulting from k-lateral exchange processes are not
in the core

It is ‘wealth effects’ which are the subject of the next subsection.

III.6 Wealth Effect in k-lateral Exchange Processes

While Walrasian exchange has no effect on the wealth of individual
agents—that is, Walras’ law holds—in distributed exchange environments
some agents gain wealth while others lose it. This is so because exchange at
non-equilibrium prices alters agent wealth with respect to the equilibrium
price. While the overall amount of wealth in the agent population is constant
(at final market prices), the general effect of k-lateral exchange is to disperse
wealth.

                                                
6  Core allocations always have the equal treatment property (Green []).
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Proposition 8: k-lateral exchange processes disperse wealth if the following
condition holds:

Δwi t( ) 2wi 0( ) + Δwi t( )( )[ ]
i=1

A
∑ ≥ 0

To establish this , compute the change in the variance as

var w(t)( ) ≥ var w 0( )( )

p ⋅ xi t( )( )2
i=1

A
∑ ≥ p ⋅ xi 0( )( )2

i=1

A
∑

p ⋅ xi t( )( )2 − p ⋅ xi 0( )( )2 
  

 
  i=1

A
∑ ≥ 0

p ⋅ xi t( ) − p ⋅ xi 0( )( ) p ⋅ xi t( ) + p ⋅ xi 0( )( )[ ]
i=1

A
∑ ≥ 0

Δwi t( ) 2wi 0( ) + Δwi t( )( )[ ]
i=1

A
∑ ≥ 0

Thus, under certain conditions the distribution of wealth can be expected to
increase as a result of decentralized exchange.

III.7 Path Dependence of k-lateral Exchange Processes

Each distinct trade history will in general produce a distinct
equilibrium. Since there are a combinatorially huge number of histories, there
will exist vast numbers of k-lateral exchange equilibria. The vast majority of
these are not accessible via a Walrasian mechanism (unless one rearranges
endowments) since they do not satisfy the equal treatment property.

Proposition 9: Equilibrium allocations and prices depend on the history of
exchange

The simple example mentioned above—of agents with identical endowments
nad preferences—well illustrates this path dependence.

IV Complexity of Decentralized Exchange
In this section the complexity of bilateral exchange models is

investigated.  We present results on the number of computations required to
achieve bilateral exchange equilibria as a function of the number of agents
and the number of commodities.  First some formal results are developed.
Then computational results which support the formal analysis are given, for
economies as large as a million agents and 20,000 commodities per agent.
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IV.1 Analytical Results

From the basic iteration (0) above, together with the fact that β < 1, we
know that convergence is geometrically fast.  It remains to figure out how β
depends on the number of agents and the size of the allocation space, AN.
Since this is a conservative system the operator T  always has a unit
eigenvalue, and so the rate of convergence, β, is controlled by the sub-
dominant eigenvalue. For particular exchange processes it is possible to
compute β explicitly. In general it is possible to place an upper bound on the
number of interactions required to equilibrate a market by noting that each
application of T requires no more than O((AN)2) operations. Define

ε ≡
V * −V x t( )( )
V* − V x 0( )( )

≤ β τ

and solve for τ  the number of time steps required to produce an ε
approximation of equilibrium. This quantity is clearly bounded from above by

τ ≤
ln 1

ε
 
 
 
 

ln 1
β

 

 
  

 

.

This leads naturally to

Proposition 10: The number of interactions is bounded from above by
A2N2τ(ε,β), therefore the computational complexity of k-lateral exchange is P.

Furthermore, in the case of bilateral exchange it is possible to develop a
sharper result,

Proposition 11: The computational complexity of bilateral exchange is
bounded from above by AN2τ(ε, β).

There at least three ways to understand these results heuristically.
First, because the dimension of the allocation space is AN, each interaction
shrinks the set of feasible bilateral exchanges by

β0
1
AN ,

where β0 is some constant. But this is not the whole story, for it is also true
that as N gets larger, the number of MRSs increases linearly. Thus, the
number of interactions required to converge a norm of the vector of MRSs to
within ε of equilibrium scales like εN. Therefore, calling   I  the maximum
number of bilateral interactions necessary to reach an ε approximation of
equilibrium, we have
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I ≤
ln 1

ε0
N

 

 
  

 
 

ln 1
β0
1

AN

 

 
 

 

 
 

=

N ln 1
ε0

 

 
  

 
 

1
AN

ln 1
β0

 

 
  

 
 

= AN 2
ln 1

ε0

 

 
  

 
 

ln 1
β0

 

 
  

 
 

Overall, this upper bound on the requisite number of interactions is
proportional to the number of agents and the number of commodities squared.

The second intuitive rationale for these results relates to the
dependence on A. Imagine an economy composed of very large numbers of both
agents and commodities, and consider two experiments. First, randomly
divide the population into two equal-sized groups of agents, each of whom has
preferences over the entire commodity space. Now equilibrate each one via
bilateral exchange with agents in its own group. Each of these sub-economies
converge to very similar prices. In fact, if the overall economy is large enough
then the two sub-economies converge to exactly the same price, in which all
agents have the same MRSs. Thus, combining the two groups of agents
subsequently there are very few further trades that can be arranged and the
economy is quickly put in equilibrium.

The third thought experiment that conveys the general character of the
result consists of converging the economy across all agents for two
commodities, and measuring the number of total interactions required—call
it I2. Now, to this equilibrium configuration add 1 commodity and re-
equilibrate. Intuitively, the number of interactions necessary should be
proportional to 2 I2, since the new commodity must be equilibrated with each
of the original two. Next, add a fourth commodity, requiring interactions
proportional to 3 I2, and so on until the commodity space consists of all N
commodities.  Overall, the total number of interactions necessary for this
process is

i −1( )I2
i= 2

N

∑ = I2 i −1( )
i=2

N

∑ = I2 i
i=1

N −1

∑ = I2
N2

2 .

Thus the quadratic dependence on N.

Example 1:  Bilateral exchange on a circle

Albin and Foley [1992] studied exchange of 2 commodities in parallel
among agents with homogeneous Cobb-Douglas preferences arranged in a
circle. Consider such a ring, composed of A agents, an even number, indexed
from 1. In any period all even numbered first agents trade with odd
numbered agents whose index is less than theirs, e.g., agent #4 trades with
agent #3.  Then, even numbered agents trade with the odd indexed agents
just above them. Overall, this double set of trades constitute one time
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period.  Call T1(x) the algorithm by which even-numbered agents trade with
those directly below them, and T2(x) the other exchange process. Then the
overall exchange algorithm is T(x) = T2(T1(x)). It can be shown that this
leads to a tridiagonal set of equations, for which the eigenvalues can be
calculated explicitly; the subdominant one is strictly less than unity.

IV.2 Computational Results

In this section results from a variety of computational experiments are
described involving bilateral exchange at local Walrasian prices.  Overall,
some one trillion exchange transactions are summarized here. These results
support the analytical results obtained above.

Dependence on the Number of Agents

How many agent-agent interactions are required to produce a bilateral
exchange equilibrium?7  This depends on many things, including how good an
approximation to equilibrium we wish to compute.  But the general character
of the dependence of the number of interactions on the number of agents will
not be sensitive to the accuracy of the approximation.

Example 2: Heterogeneous Cobb-Douglas agents

Figure 1 gives the number of interactions necessary to equilibrate a
heterogeneous population of agents having Cobb-Douglas preferences
distributed uniformly over (0,1). Endowments are distributed uniformly over
[50, 150]. Agents are paired at random, truthfully report their preferences,
and trade directly to the contract curve. All exchange is terminated once the
largest standard deviation in the ln(MRS) distribution falls below 10-2.
Results are shown for three distinct sizes of the commodity space, N = 2, 10
and 50, varying the number of agents from 10 to 1,000,000.

                                                
7  We will use the number of interactions as a surrogate for the complexity of the exchange
process.  This is reasonable since each interaction involves a fixed number of computations.
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Figure 1:  Number of interactions required for market convergence as a function of the
number of agents, A, parameterized by the number of commodities, N; termination occurs

once ||variance(ln(MRS))||∞ ≤ ε = 0.01

Note that the effect of increasing the number of commodities is merely to
increase the number of interactions necessary for equilibration, but does not
change the nature of the dependence on the number of agents.  Each line in
the figure has a slope of 1.000, meaning that as the number of agents
increases the number of interactions required to produce equilibrium
increases linearly.  If 103 bilateral interactions are necessary to equilibrate
a population of 102 agents then 106 agents require 107 interactions, and so
on.  The number of interactions/agent, is independent of the size of the
population.

Similar results obtain for different values of the termination criteria.
The overall effect of decreasing ε is to require more agent-agent interactions,
as shown in Figure 2 for N = 2.
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Figure 2:  Number of interactions required for convergence as a function of the number of
agents, A, parameterized by the termination criterion ε, such that termination occurs once

||variance(ln(MRS))||∞ ≤ ε; 2 commodities

For other specifications of preferences (e.g., CES) and different interaction
topologies (e.g., parallel instead of serial) we have obtained results identical
in character, i.e., the number of interactions required to produce bilateral
exchange equilibria is linear in the population size.

This result has important implications. Imagine if it were not true, but
rather that the number of interactions/agent increased as the total number of
agents increased.  Then, as each new agent were added to the society the
economic complexity for each extant agent would grow, independent of
whether or not any particular agent even interacted with the new agent.  This
seems unreasonable.  Rather, bilateral trade produces a kind of social
computer which endogenously decentralizes economic computations.

Dependence on the Number of Commodities

The dependence of the number of interactions on the number of
commodities is similar.  In the example below we find that as the commodity
space, N, increases the number of bilateral interactions required to produce
equilibrium increases in proportion to N2.

Example (continued):

We instantiate various populations of Cobb-Douglas agents, as above,
having heterogeneous preferences and endowments, pair them randomly,
and track the number of interactions necessary to produce bilateral
exchange equilibria having a variance of no more than 10-2 in the final
ln(MRS) distribution, all as a function of the number of commodities (N
from 2 to 20,000).  The results are shown in Figure 3.
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Figure 3:  Number of interactions required for convergence as a function of the number of
commodities, N, parameterized by the number of agents, A; termination occurs once

||variance(ln(MRS))||∞ ≤ ε = 0.01

The slope of each curve in Figure 3 is 2.000, meaning that the required
number of interactions scales like N2.  The effect of increasing the number of
agents, holding the number of commodities constant, is merely to increase
the number of interactions required for equilibrium.

The effect of tightening approximation is to require additional
interactions, as shown in Figure 4

1 10 100 1000 10000
Commodities1000

100000.

1.¥107

1.¥109

Interactions A = 100
e = 10- 2

e = 10- 1e = 10- 3

Figure 4:  Number of interactions required for convergence as a function of the number of
commodities, N, parameterized by the termination criterion ε, such that termination

occurs once ||variance(ln(MRS))||∞ ≤ ε; 100 agents

An interesting open question is 'Does there exist an exchange process
for producing Pareto optimal allocations that has has complexity linear in the
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number of commodities?' From the computational evidence above it would
appear that the answer is 'no' for bilateral exchange.

V Summary and Conclusions
It has been argued that the Walrasian model of exchange is

problematical on a variety of grounds.  Notably, recent results on the
computational complexity of Brouwer and Kakutani fixed points suggest that
real markets cannot possibly operate according to the Walrasian model. A
decentralized exchange model has been offered as an alternative to the
Walrasian picture. In particular, k-lateral exchange equilibria have much
better computational complexity than do Walrasian equilibria. Differences
between the models are summarized in Table 1 below.

Walras-Arrow-Debreu k-lateral Exchange

Price formation global local

Price determination OR problem (ostensibly
solved by auctioneer)

DAI problem (‘solved’
by market of agents)

Existence of
equilibrium

fixed point theorems Lyapunov function

Character of equilibrum determinate (depends on
preferences, endowments)

indeterminate (depends
also on interaction history)

Welfare of equilibrium Pareto optimal Pareto optimal

Stability of equilibrum ambiguous globally stable

Dynamics one-shot (no trade out of
equilibrium)

path-dependent

Wealth effect none (Walras’ law holds) dispersive (Walras’ law
violated)

Complexity exponential (worst case)
N4 (average case)?

polynomial (quadratic
in A and N)

Table 1:  Comparison of Walrasian and decentralized exchange equilibria

When agents have Cobb-Douglas preferences then it turns out that one
can solve for the Walrasian equilibrum simply by inverting a N x N matrix
derived from agent excess demands.  Therefore, the computational complexity
of this process goes like N3.  Note that even this is relatively slower than the
decentralized exchange process.
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As described above, Scarf has observed that for general CGE models
the number of computations scales like N4. Call kb N2 the number of
computations required to equilibrate a N commodity economy via bilateral
exchange, while kW N4 is the corresponding number for Walrasian exchange.
Clearly, if kb < kW then the bilateral exchange process is always more efficient
computationally than the Walrasian one.  Consider the opposite case, kb > kW

.  Then for small numbers of commodities the Walrasian process requires
fewer computations, but as N grows the bilateral exchange process quickly
becomes more efficient.  There is some critical number of commodities, Nc
such that

kbNc
2 = kW Nc

4 .

For N  > Nc = √kb /kW  , the bilateral exchange process is superior to the
Walrasian one computationally.  Note that even if the Walrasian algorithms
are 100 times more efficient for small problems—i.e., kb /kW = 100—bilateral
exchange will be more efficient for N greater than 10.

Conventional Walras as Arrow-Debreu as ‘emperor w/o clothes’

Core is the main casualty

GE underdetermined

Walrasian markets in their Arrow-Debreu conception are an ideal type,
in the terminology of the philosophy of science, a caricature of reality that
abstracts from many details of real markets in order to provide a home for our
intuitions and a point of departure for deeper exploration of market processes.
Unfortunately, the embodiment of this ideal type in CGE software, especially
when utilized for policy purposes, institutionalizes a series of propositions
that more  behaviorally realistic and decentralized models reveal to be false,
namely, that markets don’t disperse wealth, yield allocations that are
determined solely by preferences and endowments and are not history-
dependent, and . Luckily, the unreality of this ideal type is given away by it
computational intractability.

In the end we advocate not the jettisoning of this useful abstraction, but
merely its circumspect use whenever focused on questions for which it has
limited ability to adjudicate an appropriate answer, e.g., distributional
issues, actual prices. But because policy-focused model deal always and
everywhere with just these issues, a direct consequence of the results
described above is to at least cast a pale on the utility of such analyses, if not
to vitiate them altogether.
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