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Abstract

This paper presents a novel Gaussian pro-
cess (GP) approach to regression with input-
dependent noise rates. We follow Gold-
berg et al.’s approach and model the noise
variance using a second GP in addition to the
GP governing the noise-free output value. In
contrast to Goldberg et al., however, we do
not use a Markov chain Monte Carlo method
to approximate the posterior noise variance
but a most likely noise approach. The re-
sulting model is easy to implement and can
directly be used in combination with various
existing extensions of the standard GPs such
as sparse approximations. Extensive experi-
ments on both synthetic and real-world data,
including a challenging perception problem in
robotics, show the effectiveness of most likely
heteroscedastic GP regression.

1. Introduction

Gaussian processes (GPs) have emerged as a powerful
yet practical tool for solving various machine learning
problems such as non-linear regression or multi-class
classification (Williams, 1998). The increasing popu-
larity is due to the fact that non-linear problems can be
solved in a principled Bayesian framework for learning,
model selection, and density estimation while the basic
model just requires relatively simple linear algebra. An
important practical problem, that has been addressed
in the recent literature, is to relax the assumption of
constant noise made in the standard GP model. In
many real-world problems, the local noise rates are im-
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portant features of data distributions that have to be
modeled accurately. Consider for example the Motor-
cycle benchmark dataset depicted in Figure 1. While
the standard GP regression model quite accurately es-
timates the mean of the sought after distribution, it
clearly overestimates the data variance in some areas
and underestimates it in others. In contrast, taking
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Figure 1. Silverman’s (1985) motorcycle benchmark is an
example for input dependent noise. It consists of a se-
quence of accelerometer readings through time following a
simulated motor-cycle crash.

the input-dependent noise into account the variance in
the flat regions becomes low. The main contribution
of the present paper is a novel GP treatment of input-
dependent noise. More precisely, we follow Goldberg
et al.’s (1998) approach and model the noise variance
using a second GP in addition to the GP governing the
noise-free output value. In contrast to Goldberg et al.,
however, we do not apply a time consuming Markov
chain Monte Carlo method to approximate the poste-
rior noise variance but replace it with an approxima-
tive most likely noise approach. This treatment allows
us to develop a fast (hard) EM-like procedure for learn-
ing both the hidden noise variances and, in contrast
to other approaches, also the kernel parameters. Ex-
periments on synthetic and real-world data sets show
that our most likely noise approach clearly outper-
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forms standard GP regression and is competitive with
existing heteroscedastic regression approaches. At the
same time, our approach is substantially less complex
than previous ones and has the additional advantage of
fully staying within the GP regression framework. Ex-
tensions to standard GPs such as online learning, de-
pendent outputs, non-stationary covariance functions,
and sparse approximation can directly be be adapted.
In the present paper, we will exemplify this by com-
bining our model with the projected process approx-
imation (Rasmussen & Williams, 2006), which only
represents a small subset of the data for parameter
estimation and inference. As our experiments show,
this can keep memory consumption low and speed up
computations tremendously.

Aside from this, we discuss a challenging, new ap-
plication area for heteroscedastic regression, namely
the modeling of range sensors for robotics applica-
tions. Modeling range sensors is an important task in
robotics and engineering. We will review this model-
ing problem in the experimental section and show that
heteroscedastic GP regression outperforms standard
GP regression as well as customized existing models
when applied to the task of mobile robot localization.
This establishes a new, interesting link between the
machine learning and the robotics communities as en-
couraged by the NIPS 2005 workshop on “Open Prob-
lems in Gaussian Processes for Machine Learning”!.
Actually, robotics applications go one step ahead as
they typically call for non-standard settings such as
periodic covariance functions and heteroscedasticity.

We proceed as follows. After reviewing related work in
Section 2, we will develop our most likely heteroscedas-
tic GP regression model in Section 3, discuss parame-
ter adaptation in Section 4, and show how to achieve
sparse approximations in Section 5. Before concluding,
we will present the results of an extensive set of exper-
iments including the mobile robot localization task.

2. Related Work

The non-linear regression problem has been exten-
sively studied in research areas such as machine learn-
ing, statistics, or engineering. While many exist-
ing approaches to the problem assume constant noise
throughout the domain, there is also a growing body
of work addressing heteroscedasticity, i.e., varying lev-
els of noise. Scholkopf et al. (2000) present an SVM
based algorithm that takes a known variance function
into account. Nott (1996) propose a Bayesian model
based on penalized splines and give an MCMC algo-

!See http://gp.kyb.tuebingen.mpg.de/.

rithm for inferring the posterior. Chan et al. (2006)
derive a similar model for the Gaussian case, which
adapts the noise variances and also requires MCMC for
inference. Edakunni et al. (2007) presents a mixture
of local linear regression models that can be learned
using variational Bayesian EM. Opsomer et al. (1997)
present an iterative procedure for dealing with het-
eroscedasticity in the context of kriging. They assume
a linear model for the mean that is fitted using gener-
alized least squares. Smnelson et al. (2003) propose a
nonlinear transformation of the output space to model
a kind of output-dependent noise variances. Yuan and
Wahba (2004) also jointly estimate the mean and noise
variances but do not deal with the problem of selecting
the kernel function. Le et al. (2005) also estimate the
variance non-parametrically along with the mean of
the distribution. In contrast to other approaches, they
propose a maximum-a-posteriori estimation of the nat-
ural parameters in the exponential family. This yields,
for the case of given kernel parameters, a convex op-
timization problem that can be solved efficiently. Re-
cently, Snelson and Ghahramani (2006) proposed to
utilize the dependency of the predictive uncertainty
on the density of input data points.

3. The Model

The non-linear regression problem is to recover a func-
tional dependency t; = f(x;)+e¢; from n observed data
points D = {(x;,%;)}_,. Here, t; € R are the (noisy)
observed output values at input locations x; € R%.
The task is to learn a model for p(t*|x*, D), i.e., the
predictive distribution of new target values t* indexed
by x* depending on the observed data set D. If we
assume independent, normally distributed noise terms
€; ~ N(0,0;), where the noise variances o; are mod-
eled by o; = r(x;), i.e., by a function of x, we get a
heteroscedastic regression problem as studied by Gold-
berg et al. (1998), where the noise rate is not assumed
constant on the domain. By placing a Gaussian pro-
cess prior on f and assuming a noise rate function
7(x), the predictive distribution P(t*|x7,...,x;) at
the query points x7,...,x; is a multivariate Gaussian
distribution A (p*, ¥*) with mean

p =E[t*]=K*"(K+R) 't (1)

and covariance matrix
S =var[t'] = K¥* + R* — K*(K+R) ' K*T . (2)
In these equations, we have K € R"™*"™ K,
k(xi,xj), K* € R”*" Kj = k(xf,x;), K**
R4, Ky = k(x},x5), t = (ti,te,...,tn)", R
diag(r) with r = (r(x1),7(x2),...,7(x,))?, and R*

diag(r*) with r* = (r(x}), r(x3),...,r(x;)"

ml
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An integral part of this model is the covariance func-
tion k(x;,x;) that specifies the covariance cov(t;,t;)
of the corresponding targets. Common choices, that
we also employ throughout this work, are the squared
exponential covariance function

ksp(xi,x;) = ojexp (—(A5)/(26%) . (3)

with A;; = ||x; — x;||, which has a relatively strong
smoothing effect, or instances of the Matern type of
covariance functions, like kar(x;,x;) =

5A;;  VBAZ 5A:;
o} <1+\[€ L+ 3£2j>~exp(\[gj> .

These two covariance functions are called stationary,
since they only depend on the distance A;; between
input locations x; and x;. In the definitions above,
oy denotes the amplitude (or signal variance) and ¢
is the characteristic length-scale, see Rasmussen and
Williams (2006) for a detailed discussion. These pa-
rameters are called hyper-parameters of the process.
They are typically denoted as 6 = (o, {).

Goldberg et al. (1998) do not specify a functional
form for the noise level r(x) but place a prior over
it. More precisely, an independent GP is used to
model the logarithms of the noise levels, denoted as
z(x) = log(r(x)). This z-process is governed by a
different covariance function k., parameterized by 9.
The locations x1i,...x, of the training data points
z = {21, 29,...,2,} for the z-process can be chosen ar-
bitrarily, however, for notational convenience, we set
them to coincide with the ones of the ¢-process here.

Since the noise rates z; are now independent latent
variables in the combined regression model, the predic-
tive distribution for t*, i.e., the vector of regressands at
points X* = {x7,...,x;}, changes to P(t*|x*,D) =

//P(t*w*,z,z*,p) - P(z,2*|X*, D) dz dz* . (4)

Given (z,z*), the prediction P(t*|X*, z,2*,D) is
Gaussian with mean and variance as defined by (1) and
(2). The problematic term is indeed P(z,z*|X*, D)
as it makes the integral difficult to handle ana-
lytically.  Therefore, Goldberg et al. proposed a
Monte Carlo approximation. More precisely, given a
representative sample {(z1, 2}),..., (zx, z;)} of (log-
arithmic) noise rates the integral (4) can be ap-
proximated by %25:1 P(t*|X*, 2,25, D) . The sam-
pling is quite time consuming and the expectation
can be approximated by the most likely noise lev-
els (z,2*). That is, we approximate the predictive
distribution by P(t*|X*,D) =~ P(t*|x*,z 2*,D) ,

where (2, 2*) = arg maxz z-y P(z, 2*|X*, D) . This will
be a good approximation if most of the probability
mass of P(z,2*|X*, D) is concentrated around (z, Z*).
Moreover, computing the most likely noise level and
P(t*|X*, D) now requires only standard GP inference,
which is faster than the fully Bayesian treatment.

4. Optimization

So far, we have described our model and how to make
predictions assuming that we have the parameters 6,
of the z-process and the parameters 6 of the noise-free
t-process, which uses the predictions of the z-process
as noise variances at the given points. In practice,
we are unlikely to have these parameters a-priori and,
instead, we would like to estimate them from data.

The basic observation underlying our approach is very
similar to the one underlying the (hard) EM algorithm:
learning would be easy if we knew the noise level val-
ues for all the data points. Therefore, we iteratively
perform the following steps to find the parameters:

1. Given the input data D = {(x;,t;)},, we esti-
mate a standard, homoscedastic GP G; maximiz-
ing the likelihood for predicting ¢ from x.

2. Given G1, we estimate the empirical noise
levels for the training data, ie., 2z =
log (var[t;, G1(xi,D)]), forming a new data set

D' ={(x1,21), (X2,25), ..., (Xn, 25)}.

3. On D/, we estimate a second GP Gj.

4. Now we estimate the combined GP G5 on D using
G4 to predict the (logarithmic) noise levels r;.

5. If not converged, we set G; = G5 and go to step 2.

To summarize the procedure, we take the current noise
model and complete the data, i.e., make the noise lev-
els observed. We then fix the completed data cases and
use them to compute the maximum likelihood parame-
ters of G's. This process is repeated until convergence.
Like the hard EM, the algorithm is not guaranteed to
improve the likelihood in each step and can start os-
cillating as it considers most-likely completions of the
data only. In our experminents, however, this hap-
pened only occasionally and only at reasonably accu-
rate estimates.

Step 2, i.e., the empirical estimation of the noise lev-
els is most crucial step o the procedure: given the
data D = {(x;,t;)}!; and the predictive distribution
of the current GP estimates, find an estimate of the
noise levels var[t;, G1(x;, D)] at each x;. Consider a



Most Likely Heteroscedastic Gaussian Process Regression

sample tg from the predictive distribution induced by
the current GP at x;. Viewing ¢; and t{ as two inde-
pendent observations of the same noise-free, unknown
target, their arithmetic mean (t; — t7)%/2 is a natu-
ral estimate for the noise level at x;. Indeed, we can
improve the estimate by taking the expectation with
respect to the predictive distribution. This yields

var[t;, G1(x;, D)] = st ZS L 0.5-(t; — tg)z
J:

where s is the sample size and the tg are samples from
the predictive distribution induced by the current GP
at x;. This minimizes the average distance between
the predictive distribution and the prototype value t;.
For large enough number of samples (s > 100), this
will be a good estimate for the noise levels.

5. Sparse Approximation

The heteroscedastic regression model presented in the
previous section can directly be combined with various
extensions of the GP model, like online learning, de-
pendent outputs, non-stationary covariance functions,
and sparse approximations. To exemplify this, we dis-
cuss how the projected process approximation (Ras-
mussen & Williams, 2006) can be applied to our model
to increase its efficiency for large data sets. Section 6.3
also gives experimental results for this extension.

Several approximative models have been proposed for
GPs in order to deal with the high time and storage
requirements for large training data sets. In general,
existing approaches select a subset Z, |Z| = m, of data
points (the support set) from the full training set D,
|D| = n, to reduce the complexity of learning, model
representation, and inference. In contrast to simpler
approaches that discard D\ Z completely, the so called
projected process (PP) approximation considers a pro-
jection of the m-dimensional space of Z up to n dimen-
sions in order to be able to involve all available data
points. The key idea is to only represent m < n latent
function values, denoted as f,, with f; = f(x;),x; € Z,
which leads to smaller matrices that have to be stored
and calculated. Then, in the homoscedastic case where
a constant noise level o2 is assumed, the ‘discarded’
points t,,_,, from D\ Z are modeled by

tnm ~ NE[fn_m|fm],021) . (5)

As detailed in (Rasmussen & Williams, 2006), this
leads to an easy to implement modification of the pre-
dictive distribution p(t*|x*, D). For our heteroscedas-
tic model, we replace 021 in Equation (5) by the input
noise rate matrix R (as defined in Section 3), which
leads to a straightforward modification of the approx-
imated predictive distribution of the homoscedastic

case. An issue not discussed so far is how to select
the active set Z from D. While existing approaches
make informed selection decisions based on the infor-
mation gain or on the predictive variance at prospec-
tive points in a greedy fashion, we employed a sim-
ple random sampling strategy for the experiments re-
ported in Section 6.3. Due to this, the results reported
there can be seen as a lower bound for the performance
of our model under the PP approximation. More im-
portantly, it takes only time O(m?n) to carry out the
necessary matrix computations. For a fixed m, this is
linear in n as opposed to O(n?) for standard GPs.

6. Experiments

The goal of our experimental evaluation was to
investigate to which extent most likely heteroscedastic
GP regression is able to handle input-dependent noise:

(Q1) Is there a gain over standard GP regression?
(Q2) Can it rediscover the hidden noise function?
(Q3) Can it deal with non-smooth noise?

(Q4) Can sparse GP techniques be employed?
(Q5)  Are there real-world applications in which it

is useful and outperforms standard GP regression?
We conducted several experiments on benchmark
data sets as well as in the context of mobile robot
localization. We implemented our approach in Matlab
using Rasmussen and Williams’s (2006) GP toolbox
as well as in C++ for the robotics experiment. The
benchmark data set experiments were run on a
PowerBook G4 using Matlab 7.2 using a squared
exponential covariance function. The mobile robot
localization experiments were run on a 2.1GHz P4
Dual Core workstation using Linux using a Matern
covariance function for the constant noise process
and a squared exponential for the noise process. The
parameters were always initialized randomly. As
performance measures, we used two different losses.
For traditional reasons, we report on the normalized
mean squared error MSE = 137" % , where
m; is the mean of the estimated predictive distribu-
tion p(t;|xz;) and var(t) is the empirical variance of
the data, which only takes a point prediction into
account that minimizes squared errors. A better loss
for our task is the average negative log estimated
predictive density NLPD = 13"  —logp(t;|x;) ,
which penalizes over-confident predictions as well as
under-confident ones.

6.1. Benchmark Data Sets

We evaluated most likely heteroscedastic GP regres-
sion on the following benchmark data sets known from
the literature, which have been used to empirically in-
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Figure 2. Size of scallop catch prediction. (Left) mean and variance estimate for standard GP regression. (Right) mean
and variance prediction for most likely heteroscedastic GP regression. Note the difference in both the mean and the
variance prediction. Standard GP regression is unable to adapt to the increase in noise at the location of higher variance.

Data- MSE NLPD

set GP Het GP GP Het GP
G 0.40 £0.20 0.40+£0.19 | 1.57+0.31 1.46 + 0.30e
Y 0.88+0.19 0.89+0.18 | 1.66 £0.21 1.37 + 0.26e
A%% 0.49 £+ 0.30 0.49 £+ 0.30 0.78 £0.35 0.35 £ 0.39e¢
L 0.49+0.30 0.49+0.30 | 0.78 £0.36  0.35+ 0.39e

Table 1. Mean test set MSE and NLPD over 10 reruns. In
each run, the data set was randomly split into 90% training
and 10% test data points. A ’e’ denotes a significant im-
provement (t-test, p = 0.05) over the corresponding value.
Values are rounded to the second digit.

vestigate other heteroscedastic regression methods:

G: The synthetic data originally used by Goldberg
et al. (1998): 100 points z; have been chosen uni-
formly spaced in the interval [0,1] and the targets
t; = 2sin(2mz;) have been corrupted with a Gaussian
noise where the standard deviation increases linearly
from 0.5 at z =0to 1.5 at z = 1.

Y: The synthetic data originally used by Yuan and
Wahba (2004): 200 points x; have been chosen uni-
formly spaced in [0,1]. The targets were sampled
from a Gaussian t; ~ N (u(z;), exp(g(x;))) with mean
w(z;) = 2[exp(—30(z; —0.25)?) +sin(7z?)] — 2 and the
logarithm of the standard deviation g(x;) = sin(27z;).

W: The synthetic data originally used by Williams
(1996): 200 input x; are drawn from a uniform distri-
bution on [0, ]. The targets t; are distributed accord-
ing to a Gaussian with mean sin(2.5z;) - sin(1.5z;) and
standard deviation 0.01 + 0.25(1 — sin(2.5x;))2.

L: The LIDAR data set (Sigrist, 1994) consists of 221
observations from a light detection and ranging exper-
iment. The logarithm of the ratio of received light
from two laser sources are given for several distances
traveled before the light is reflected back to its source.

For each data set, we performed 10 independent runs.
In each run, we randomly split the data into 90% for
training and 10% for testing. Table 1 summarizes the

experimental results on the test sets. As one can see,
most likely heteroscedastic GP regression is always at
least as good as GP regression and always significantly
improves the estimated predictive distribution. We
observed the same when we investigating Ecker and
Heltshe’s (1994) scallop data set. the data consist of
148 data points concerning scallop abundance and it is
based on a 1990 survey cruise in the Atlantic continen-
tal shelf off Long Island, New York, USA. The input
specifies the location (latitude and longitude) and the
target is the size of scallop catch at this location. We
performed a 20 times estimate on 129 randomly se-
lected data points for training and tested the model
on the remaining 19 points. On average, GP regres-
sion achieved a MSE of 1.93 £ 2.0 and a NLPD of
8.16 + 0.64. Our heteroscedastic GP regression ap-
proach achieved a MSE of 1.03 4+ 0.16 and a NLPD
of 7.73 £ 1.78. The difference in NLPD is significant
(t-test, p = 0.07), the one in MSE not. To summarize,
the results clearly answer Q1 in an affirmative way.

To investigate Q2, we ran experiments on all gener-
ated data sets, i.e., data sets G, Y, and W. In Fig-
ures 3 (top and bottom-left), the average standard
deviation of the inferred noises have been plotted. No-
tice how in all cases the estimated noise is in close
agreement with the data generator. Moreover, they
are also in the range of the ones reported in the lit-
erature. Thus, our method is competitive with other
heteroscedastic regression methods. This is clearly an
affirmative answer to Q2.

To summarize, these results show that our method in-
deed improves GP regression, that it is able to redis-
cover the hidden noise function, and that it is compet-
itive with other heteroscedastic regression approaches.

6.2. Non-Smooth Noise

Most likely heteroscedastic Gaussian processes assume
the noise function to be smooth. Here, we will exper-
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Figure 3. Solid curves give the averaged std. dev. of the
noise and dashed curves the corresponding two-std.-dev.
confidence interval. Dashed-dotted curves show the true
noises. (Top-left) G data set: 30 runs & 60 samples. (Top-
right) Y data set: 10 runs, 200 samples. (Bottom-left) W
data set: 10 runs, 100 samples. (Bottom-right) Average
variance for the step function (20 runs, 100 samples).

imentally investigate Q3, i.e., to which extent they
can handle non-smooth noise functions. To this aim,
we followed Cawley et al. (2006) and considered the
step function on [—1,1]: f(z) =1 if z > 0 and 0 oth-
erwise. 100 points have been chosen uniformly spaced
in the interval [—1,1] and the targets have been cor-
rupted with a Gaussian noise of standard deviation 0.1.
The optimal predictive variance is very large around
0. A standard GP with stationary covariance function
is in fact unable to model this. In contrast, the pre-
dictive variance of a most likely heteroscedastic GP
captures the misfit around 0 well. Figure 3 (bottom-
right) shows the estimated variance averaged over 20
reruns. The peak is at zero and the average of 0.4 is the
same as Cawley et al.’s (2006) result using ’leave-one-
out heteroscedastic kernel regression’. The non-zero
variance in the flat regions is directly related to the
noise in the targets. This affirmatively answers Q3.

6.3. Sparse Approximations

In order to investigate Q4, i.e., sparse approximation
techniques within most likely heteroscedastic GP re-
gression, we ran three sets of experiments.

First, we reconsidered the benchmark data sets from
Section 6.1. For the synthetic data sets, we sampled
1000 examples in each run; for the L data set, we used
the original data set. The data was randomly split
into 90% training and 10% test points. 100 random
samples of the training set were used as support set.

MSE NLPD
GP Het GP GP Het GP
G 0.73+0.18 0.73 +£0.17 2.02 +0.12 1.92 + 0.16e
Y 0.88 £0.05 0.84 £0.05e 1.88 +0.14 1.46 £ 0.13e
W | 0.59 +0.09 0.56 £ 0.11 0.90 £0.11 0.41 £0.18e
L 0.08 £0.04 0.08 £ 0.03 —1.03 £0.33 —1.35 £0.32e

Table 2. Mean test set MSE and NLPD over 10 runs of
sparse approximation. A ’e’ denotes a significant improve-
ment (t-test, p = 0.05) over the corresponding value. Val-
ues are rounded to the second digit.

Table 2 summarizes the results. As one can see, most
likely heteroscedastic GP regression is again always at
least as good as GP regression and always significantly
improves the estimated predictive distribution.

Second, we investigated the kin-8nh data set. This
data set was generated synthetically from a realistic
simulation of the forward dynamics of an 8 link all-
revolute robot arm?. The task is to predict the dis-
tance of the end-effector from a target. The inputs
are 8 features describing quantities like joint positions,
twist angles, etc. In total, there are 2000 training ex-
amples. We ran our approach 10 times and each time
randomly selected a subset of 200 as support set. Stan-
dard GP regression achieved a MSE of 0.52+0.03 and
a NLPD of —0.23 £ 0.023 on the whole data set; the
most likely heteroscedastic GP regression a MSE of
0.49 + 0.03 and a NLPD of —0.26 4+ 0.024. Both dif-
ferences are significant (t-test, p = 0.05).

Third, we considered the Spatial Interpolation Com-
parison (SIC) 2004 competition. The target variable
is ambient radioactivity measured in Germany. More
precisely, the data are gamma dose rates reported
by means of the national automatic monitoring net-
work®. There are two scenarios: the “normal” and
the “anomaly”, which contains an anomaly in radia-
tion at a specific location. We have focused on the
“anomaly” scenario. As Le et al. (2005) point out,
there is no reason to believe that radioactivity would
exhibit highly nonuniform behavior. GP regression,
however, is unable to cope with local noise due to the
“step-like” anomaly. In contrast, heteroscedastic GP
regression should adapt locally to the noise. To inves-
tigate this, we performed 10 random estimates using
400 of the 808 given examples as support set. The ini-
tial parameters were selected on the “normal” data set.
On the complete data set, the standard GP achieved a
MSE of 24.72 4 8.51 and a NLPD of 6.84 + 3.63, both
averaged over the 10 runs. Owur heteroscedastic ap-
proach achieved a MSE of 58.27429.17 and a NLPD of
4.21 + 0.25. Thus, the most likely heteroscedastic GP

2See http://www.cs.toronto.edu/ delve/
3See http://www.ai-geostats.org/events/sic2004/index.htm
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Figure 4. (Left and middle) Spatial interpolation Comparison (SIC) 2004 data. (Left) mean estimate and (middle) variance
estimates for most likely heteroscedastic GP regression. Note the peak in variance at location of the outbreak. (Right)
Pose estimation of a moving real robot: number of successful localizations after 8 integrated sensor readings for different
numbers of particles used in the Monte Carlo localization algorithm.

models the predictive distribution significantly better
(t-test, p = 0.05), but achieve a significantly worse
MSE measure (t-test, p = 0.05). This is because the
outbreak was identified as noise as shown in Figure 4,
which depicts a typical radioactivity prediction using
our method. Actually, the estimated variance was only
high at the location of the outbreak. This contrasts
with standard GPs, did not adapt to the local noise.

To summarize, the results of all three experiments af-
firmatively answer Q4, the SIC experiment also Q3.
Furthermore, they confirmed the drop in runnning
time from O(n?) for standard GPs to O(m?n) for the
projective process approximation.

6.4. Mobile Robot Perception

We have applied our heteroscedastic regression frame-
work to the problem of range sensor modeling for
robotic applications. Here, the task is to interpret dis-
crete sets of measured distances r; along given beam
directions «;. An important type of range sensors are
the so called laser range finders, which use a laser beam
and a rotating mirror to determine the distances to re-
flective objects. In contrast to existing models (Thrun
et al., 2005) that reason on the discrete set of measure-
ments directly, we view the measurements as samples
from a stochastic process and apply the heteroscedas-
tic regression technique introduced in this paper. Fig-
ure 5 illustrates the scenario of a mobile robot navi-
gating in an office environment that uses a laser range
finder to localize itself relative to a given map. The left
diagram of this figure gives a typical predictive distri-
bution of range measurements using standard GP re-
gression, while the right diagram depicts the results
using our approach. It can be seen from the dia-
grams, that the heteroscedastic model achieves physi-
cally more plausible predictions, where real test beams
recorded at the same robot pose (visualized by red
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Figure 5. Standard GP regression (left), which assumes
constant noise, and our most likely heteroscedastic GP re-
gression (right), which deals with non-constant noise. The
heteroscedastic approach yields lower predictive uncertain-
ties at places with low expected noise levels such as the
walls in front. Scales are given in meters. The red lines
depict possible range measurements at this robot pose.

lines) receive higher observation likelihoods.

To quantitatively evaluate the benefits of our model
in the robot perception domain, we ran a set of global
localization experiments with a real robot. Here, the
task was to find the pose of a moving robot within
an environment using a stream of wheel encoder and
laser measurements. The environment used consists of
a long corridor and 8 rooms containing chairs, tables
and other pieces of furniture. In total, the map is 20
meters long and 14 meters wide.

The results are summarized in the right diagram of
Figure 4, which gives the number of successful local-
izations after 8 integrated sensor readings for different
numbers of particles used. We compared four mod-
els: the standard GP regression model, the most likely
heteroscedastic GP regression model, and two state-
of-the-art models used in the robotics community, i.e.
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the beam model and the likelihood fields model (Thrun
et al., 2005). In this experiment, we assumed that
the localization was achieved when the estimated pose
was at most 30 cm apart from the true location of
the robot. Our heteroscedastic model clearly outper-
forms the likelihood fields model and standard GPs,
and it is slightly better than the beam-based model.
Additional analysis using different data sets revealed
that the heteroscedastic treatment is especially bene-
ficial in highly cluttered environments, such as rooms
containing many chairs and tables.

7. Conclusions

This paper has shown that effective Gaussian process
(GP) regression with input-dependent noise can be
fully implemented using standard GP techniques. In
experimental tests, most likely heteroscedastic GP re-
gression, the resulting approach, produced estimates
that are significantly better than standard GPs and
competitive with other heteroscedastic regression ap-
proaches. Furthermore, most likely heteroscedastic
GP regression outperformed standard techniques on
a challenging perception problem in robotics.

Directions for future work include studying online
learning, classification, and applications within other
learning tasks such as reinforcement learning. Fur-
thermore, it would be interesting to investigate ”al-
most surely convergence” along the lines of Bottou and
Bengio (1995) and to understand it from a variational
Bayes perspective.
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