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Abstract. This paper describes the robust reading
competitions for ICDAR 2003. With the rapid growth
in research over the last few years on recognizing text
in natural scenes, there is an urgent need to establish
some common benchmark datasets and gain a clear
understanding of the current state of the art. We use
the term ‘robust reading’ to refer to text images that
are beyond the capabilities of current commercial OCR
packages. We chose to break down the robust reading
problem into three subproblems and run competitions
for each stage, and also a competition for the best overall
system. The subproblems we chose were text locating,
character recognition and word recognition. By breaking
down the problem in this way, we hoped to gain a better
understanding of the state of the art in each of the
subproblems. Furthermore, our methodology involved
storing detailed results of applying each algorithm to
each image in the datasets, allowing researchers to
study in depth the strengths and weaknesses of each
algorithm. The text-locating contest was the only one
to have any entries. We give a brief description of each
entry and present the results of this contest, showing
cases where the leading entries succeed and fail. We also
describe an algorithm for combining the outputs of the
individual text locators and show how the combination
scheme improves on any of the individual systems.

Keywords: Reading competition – Text locating –
Camera captured

1 Introduction

Fifty years of research in machine reading systems has
seen great progress, and commercial OCR packages now
operate with high speed and accuracy on good-quality
documents. These systems are not robust, however, and
do not work well on poor-quality documents or on
camera-captured text in everyday scenes. The goal of
general-purpose reading systems with human-like speed
and accuracy remains elusive. Applications include data
archive conversion of noisy documents, textual search of
image and video databases, aids for the visually impaired
and reading systems for mobile robots.

Recent years have seen significant research into gen-
eral reading systems that are able to locate and/or read
text in video or natural scene images [7, 8, 11,13,32,33].
So far, however, there have not been any standard pub-
licly available ground-truthed datasets, which severely
limits the conclusions which may be drawn regarding
the relative merits of each approach.

Hence, the aims of these competitions were as follows:

– To capture and ground-truth a significant size text-
in-scene dataset. This should have a shelf-life well
beyond that of the competitions.

– To design or adopt standard formats for these
datasets, and also for the results produced by the
recognizers.

– To design or adopt standard evaluation procedures
according to current best practices.

– To run the competitions in order to get a snapshot
of the current state of the art in this area.
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Fig. 1. The multistage evaluation process

We aimed to broadly follow the principles and proce-
dures used to run the Fingerprint Verification 2000 (and
2002) competitions [16]. Well in advance of the deadline
we published sample datasets for each problem, the eval-
uation software to be used, and the criteria for deciding
the winner of each contest. To enter the contests, re-
searchers had to submit their software to us in the form
of a ready-to-run command-line executable. This takes a
test-data input file and produces a raw results file. The
raw results are then compared to the ground truth for
that dataset by an evaluation algorithm, which produces
a set of detailed results and also a summary. The detailed
results report how well the algorithm worked on each im-
age, while the summary results report the aggregate over
all the images in the dataset. All these files are based on
simple XML formats to allow maximum compatibility
between different versions of evaluation systems, recog-
nizers and file formats. In particular, new attributes and
elements can be added to the markup while retaining
backward compatibility with older recognition systems.
The generic process is depicted in Fig. 1.

2 Data capture

Images were captured with a variety of digital cameras
by each of the Essex authors. Cameras were used with a
range of resolution and other settings, with the particu-
lar settings chosen at the discretion of the photographer.

To allow management of the ground-truthing or tag-
ging of the images, and with a view to possible future
tagging jobs, we implemented a Web-based tagging sys-
tem. This operates along similar lines to the OpenMind
concept.1 People working as taggers can log in to the sys-

1 D. Stork, The Open Mind Initiative,
http://www.openmind.org

tem from anywhere on the Internet using a Java (1.4)-
enabled Web browser. On logging in, a Java applet win-
dow appears and presents a series of images. The tagger
tags each image by dragging rectangles over words and
then typing in the associated text. The applet then sug-
gests a possible segmentation of the word into its indi-
vidual characters, which the tagger can then adjust on a
character-by-character basis. The tagger can also adjust
the slant and rotation of the region. When the tagger
has finished an image, he clicks ‘Submit’, at which point
all the tagged rectangles are sent back to a server, where
they are stored in a database. One of the parameters of
the system is how many taggers should tag each image.
If we had a plentiful supply of tagging effort, then we
could send each image to several taggers and simply ac-
cept all the images where the tags from different taggers
were in broad agreement. This is somewhat wasteful of
tagging effort, however, since it is much quicker to check
an image than it is to tag it. We therefore adopted a
two-tier tagging system of taggers and checkers, where
the job of a checker was to approve a set of tags.

There are several ways of communicating between
the applet and the server. We chose to use Simple Ob-
ject Access Protocol (SOAP) – partly to gain experience
of SOAP on a real project, and partly to allow good in-
teroperability with other systems. Potentially, someone
could now write a tagging application in some other lan-
guage, and still request images to tag, and upload tagged
images to our server.

Figure 2 shows a fragment of XML used to markup
the data we captured. This sample corresponds to the
word Department in Fig. 3. The root element is tagset
and consists of a sequence of image elements – one for
each image in the dataset. The imageName element gives
the relative path to the image file, and the resolution
element gives the width and height of the image. The
taggedRectangles element contains a taggedRectangle el-

<tagset>
<image>

<imageName>scene/ComputerScienceSmall.jpg</imageName>
<resolution x="338" y="255" />
<taggedRectangles>

<taggedRectangle x="99" y="94" width="128" height="20"
offset="0" rotation="0">

<tag>Department</tag>
<segmentation>

<xOff>16</xOff>
<xOff>29</xOff>
<xOff>43</xOff>
<xOff>54</xOff>
<xOff>64</xOff>
<xOff>74</xOff>
<xOff>93</xOff>
<xOff>106</xOff>
<xOff>117</xOff>

</segmentation>
</taggedRectangle>
...

</image>
...

</tagset>

Fig. 2. A sample of our XML format for marking up the
words in images
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ement for each word in the image. The x, y, width and
height attributes specify the location (top left corner)
and size of the word, while the offset and rotation spec-
ify the slant (e.g. for italicised text) and rotation of the
word. The text of the word is given as the body of the tag
element. The segmentation element specifies a sequence
of offsets for each character segmentation point in the
word. Note that this model does not exactly fit all the
possible variations in camera-captured text but was an
adequate model for the vast majority of images that we
captured. This format was used to mark up the ground
truth for the images and also as a general output for-
mat for the robust reading and text-locating contests.
Entries for the text-locating contest omitted the tag and
segmentation elements and also the offset and rotation
attributes.

3 The competitions

Reading text in an image is a complex problem that may
be decomposed into several simpler ones. The best way
to do this decomposition is open to debate. We chose
to break down the robust reading problem into three
stages and run competitions for each stage and also a
competition for the best overall system. The stages we
chose were text locating, character recognition and word
recognition. Another possible stage would have been seg-
mentation of words into separate characters. This idea
was rejected on the grounds that we believed the im-
ages would be too difficult to segment in a way that was
independent of the OCR process, and we also wanted
to place some limit on the number of competitions to
be run. However, the segmentation data exist for all the
words in the database, so it is still possible for researchers
to evaluate their segmentation algorithms on these data.

3.1 Pretrained systems

For all the competitions, we debated whether to run
them for trainable or non-trainable systems. We de-
cided that any system training or tuning was best left
to the system designers, and hence each of the contests
dealt with evaluating pretrained systems. The contes-
tants were advised to download the trial datasets well
in advance of the competition deadline in order to tune
their systems for optimal performance on this type of
data.

From a machine learning perspective it would be de-
sirable to test the learning ability of each method. Our
prime concern here, however, was to find the system that
performed best on each task, irrespective of the amount
of hand tuning that went into its design. Hence we justi-
fied our decision to base the contests on pretrained sys-
tems.

3.2 Text locating

The aim of the text-locating competition was to find
the system that could most accurately identify the word
regions in an image.

Fig. 3. Example scene containing text

For this contest, a text-locating algorithm takes a
JPEG file as input and produces a set of rectangles as
output. The preferred system interface is that both the
input and output files are in a simple XML format, de-
scribed on the contest Web page. Taking the example
image in Fig. 3, a text-locating algorithm would ide-
ally identify five rectangles in image pixel coordinates
surrounding the words ‘Department’, ‘of’, ‘Computer’,
‘Science’, ‘1’.

Note that several design options were possible here
– such as specifying that the system find complete text
blocks, or individual words or characters. We chose words
since they were easier to tag and describe (it would be
harder to fit rectangles to text blocks since they are more
complex shapes).

We aimed to design an evaluation scheme that would:

– Be easy to understand and compute;
– Reward text-locating algorithms that would be most

useful as a component of a text-in-scene word recog-
nizer;

– Heavily punish any trivial solutions (e.g. such as re-
turning a single rectangle covering the entire image,
or returning all the possible rectangles for a given
image size).

The proposed evaluation system is based on the no-
tions of precision and recall, as used by the information
retrieval community. An alternative form of evaluation
would be a goal-directed approach [23]. In this case, the
text-locating algorithms could be judged by the word
recognition rate they achieve when used in conjunction
with a word recognizer (or OCR package). A difficulty
of this approach, however, is its dependence on the par-
ticular recognizer used. A detailed description of various
object detection evaluation methods is given in [17].

In general, precision and recall are used to measure
a retrieval system as follows. For a given query (in this
case, find all the word-region rectangles in an image), we
have a ground-truth set of targets T and the set returned
by the system under test, which we call estimates E. The
number of correct estimates we denote c.

Precision p is defined as the number of correct esti-
mates divided by the total number of estimates:
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p =
c

|E|
Systems that overestimate the number of rectangles

are punished with a low precision score.
Recall r is defined as the number of correct estimates

divided by the total number of targets:

r =
c

|T |
Systems that underestimate the number of rectangles

are punished with a low recall score.
For text locating it is unrealistic to expect a system

to agree exactly with the bounding rectangle for a word
identified by a human tagger. Hence we need to adopt
a flexible notion of a match. We define the area match
ma between two rectangles r1 and r2 as twice the area
of intersection divided by the sum of the areas of each
rectangle i.e.:

ma(r1, r2) =
2a(r1 ∩ r2)

a(r1) + a(r2)

where a(r) is the area of rectangle r. This figure has the
value one for identical rectangles and zero for rectangles
that have no intersection. For each rectangle in the set of
estimates we find the closest match in the set of targets,
and vice versa.

Hence, the best match m(r, R) for a rectangle r in a
set of rectangles R is defined as:

m(r, R) = max ma(r, r′) | r′ ∈ R

Then, our new, more forgiving definitions of precision
and recall:

p′ =
Σre∈E m(re, T )

|E|

r′ =
Σrt∈T m(rt, E)

|T |
We adopt the standard f measure to combine the

precision and recall figures into a single measure of qual-
ity. The relative weights of these are controlled by α,
which we set to 0.5 to give equal weight to precision and
recall:

f =
1

α/p′ + (1 − α)/r′

The results reported later in this paper are the aver-
age values of p, r and f respectively over the images in
the test sets.

We had planned to impose a time limit of 10 s per
image on average but dropped this as some of the sys-
tems submitted were unable to comply with this, and
given the small number of entries, we felt it would be
inappropriate to be too strict.

3.3 Robust word and character recognition

The aim of these competitions was to find the sys-
tems best able to read single words and single charac-
ters, respectively, that had been extracted from camera-
captured scenes. The word recognizer takes two inputs:

a file of words to be recognized and a dictionary file. For
these experiments a custom dictionary was supplied that
had 100% coverage of the words in the images. The term
word is used loosely here to mean any string of characters
that the image taggers approved as a word; some of the
character strings would not be in a conventional dictio-
nary. To simplify our software, we designed the character
recognizer interface to operate in an identical manner to
the word recognizer, except that words had to be one
character in length. Despite several expressions of inter-
est, we received no submissions for these contests in time
to include in this paper. Example word and character
images are shown in Figs. 4 and 5 respectively.

Fig. 4. Example extracted words

Fig. 5. Example extracted characters

3.4 Robust reading

The aim of this competition was to find the best system
able to read complete words in camera-captured scenes.

Taking the example image in Fig. 3, it would ideally
identify five words: ‘Department’, ‘of’, ‘Computer’, ‘Sci-
ence’, and ‘1’ and also specify a bounding rectangle (in
image pixel coordinates) for each word.

Note that text locating, robust character recognition
and robust word recognition all tackle subparts of this
problem. The robust reading competition aimed to iden-
tify the system that best does the complete job. The ro-
bust reader took as input a scene image and produced a
set of tagged rectangles as output, where each rectangle
was tagged with a single word hypothesis. The standard
measures of precision and recall were used to evaluate the
performance of a robust reader. Unlike the text-locating
contest, where we rated the quality of match between a
target and estimated rectangle, we defined a strict no-
tion of match between the target and estimated words:
the rectangles must have an area match score ma (see
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Table 1. Measures of interest in each problem. Note that
the download files for the text-locating and robust reading
contests were the same

Problem Downloads EOIs Entries
Text locating 394 7 5
Word recognition 228 4 0
Character recognition 218 5 0
Robust reading 394 0 0

above) of greater than 0.5, and the word text must match
exactly. The winning system would be the one with the
best f score.

4 Experimental setup

We organised the data for each competition into Sample,
Trial and Competition datasets. Sample datasets were
provided to give a quick impression of the data and also
to allow functional testing of software, i.e. researchers
could check that their software could read and write the
specified dataset formats but not get any statistically
meaningful results.

Trial datasets had two intended uses. They could be
used to get results for ICDAR 2003 papers. For this
purpose, they were partitioned into two sets: TrialTrain
and TrialTest. The instructions were to use TrialTrain
to train or tune algorithms, then quote results on Tri-
alTest. For the competitions, the instructions were that
algorithms should be trained or tuned on the entire trial
set (i.e. TrialTest ∪ TrialTrain).

Competitors were then invited to submit their tuned
systems by the competition deadline of 30 April 2003.
The submissions were then evaluated by running them
on the competition datasets.

Table 1 gives an idea of the level of interest in each
problem. The downloads column shows the number of
downloads of the sample dataset for each problem; in
each case, the number of downloads of the trial datasets,
which are much larger, was approximately half this fig-
ure. Note that the text-locating dataset (locating in the
table) was the same as the robust reading dataset, but
there were no expressions of interest in the robust read-
ing problem. Note that only in the case of the text-
locating problem did the expressions of interest (EOIs)
translate to actual entries.

5 Text-locating entries

Text-locating systems typically exploit standard image
processing and computer vision methods to transform
raw pixels into higher-level features and components.
Before describing each of the text-locating systems in
detail, we first list the main methods used in each sys-
tem. We refer to the systems by their submitted names:
Ashida, HWDavid, Wolf and Todoran.

The Ashida system is perhaps the system most dis-
tinct from the others. It is the only one not to use an

image pyramid and is based on the following sequence of
processes:

– Fuzzy clustering algorithm (pixel-colour based)
– Multipass binarisation depending on cluster member-

ship
– Connected component analysis (blobbing)
– Bounding rectangles for blobs
– Rectangle grouping
– Rectangle group feature extraction
– SVM used to classify text/non-text rectangle groups

based on their features

While the other methods achieve some degree of scale
invariance by using an image pyramid, Ashida achieves
scale invariance through its choice of rectangle group fea-
tures. The trainable part of the Ashida system is the
Support Vector Machine (SVM).

The HWDavid system is not trainable but has many
parameters which can be hand-tuned to the task, es-
pecially in the text/non-text component classification
heuristics. The main processes involved are:

– Image pyramid construction
– Edge detection
– Low-pass filtering (in the horizontal direction)
– Morphology (closing, opening)
– Connected component analysis
– Application of heuristics to classify components as

text or non-text.

The Wolf system employs a set of operations similar
to that of the HWDavid system, but a few differences are
worth noting. First, the classification heuristics are re-
placed with an SVM. Unfortunately, the authors did not
have the opportunity to train the SVM on the ICDAR
2003 training set and used a model trained on a differ-
ent type of dataset (based more on text in video images).
Secondly, the order of the classification and morphology
operators are reversed compared with HWDavid. Either
or both of these factors could account for the significant
difference in the performance of the algorithms on these
data. Note also that HWDavid was nearly 60 times faster
than Wolf (Table 2), which is probably explained by the
fact that Wolf used an SVM at an early and therefore
data-intensive processing stage.

The Todoran system operates with the following pro-
cesses:

– Image pyramid construction
– Texture filtering
– K-means clustering of filtered values
– Tagging as text pixels those pixels that correspond

to the lowest energy cluster
– Edge detection
– Morphology
– Connected component analysis
– Application of heuristics to classify components as

text or non-text

The fact that the heuristics used in Todoran were tuned
to return text lines or blocks rather than words put this
system at a disadvantage. That said, we found cases
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where Todoran greatly overestimated the size of a text
block.

The methods used in all of these systems give a rea-
sonable but not entirely complete picture of the state
of the art in text-region locating. For example, trainable
non-linear filters (such as multilayer perceptrons) are no-
tably absent from the set of methods used in this paper,
though they have been applied successfully to closely re-
lated tasks elsewhere e.g. [8].

5.1 Ashida (by Ashida, Nagai, Okamoto, Yamamoto
and Miyao)

Methods for character extraction or text location can
be broadly categorised into three types: region-based,
texture-based and edge-based methods.

Region-based methods assume that pixels of each
character have similar colour and can be segmented from
the background by colour clustering. As a result, sev-
eral monochrome images are generated by thresholding
on a colour space, then characters are extracted under
some simple heuristic constraints, such as the size and
aspect ratio of circumscribing rectangles for each image.
In these methods, the clustering process plays an im-
portant role and may produce irrelevant monochrome
images for complex background in some cases. Texture-
based methods depend on texture features which need
considerable time to compute and are not robust for ac-
curate localization. Edge-based methods find vertical or
horizontal edges to detect character location. However,
for images with a complex background, too many edges
make it difficult to select only adequate ones for charac-
ter extraction.

We use a region-based method. The method makes
no assumptions with regard to the illumination condi-
tions and the types of objects and textures present in
the scene images. This means that a clustering algo-
rithm may yield many regions which do not correspond
to character patterns. For this reason, we adopt a fuzzy
clustering method to select colours for thresholding on a
colour space. Additionally, in order to distinguish char-
acter patterns from background ones, we use a Support
Vector Machine (SVM) [5,25]. The SVM uses features of
blobs (connected components) in the monochrome im-
ages.

Our algorithm consists of three major steps. First,
fuzzy clustering is applied to a given image, resulting in
a set of binary images called colour separation images.
Second, some blobs in each colour separation image are
grouped under simple heuristic constraints to calculate
the geometric features. Finally, an SVM trained on these
features selects the blobs corresponding to character pat-
terns. The overall process is shown in Fig. 6. Each step
will be described with the aid of examples in the follow-
ing subsections.

5.1.1 Clustering in colour space. Our colour clustering
algorithm assumes that characters appear with the same
colour in every character string or text line in a given
image. In practice, this assumption is not realistic, and

Fuzzy clustering

using membership value
Binarization of the image by thresholding

Extraction of character pattern

Grouping rectangles

A color scene image

Discrimination of character patterns by SVM

Fig. 6. Overview of the algorithm

Fig. 7. Original image

even within a character various colours are seen due to
dithering of the printing process and reflections etc. This
fact makes the clustering process difficult, so we apply an
edge-preserving smoothing process to the scene image.

A colour image is usually given by three values: R
(red), G (green) and B (blue). However, it is important
to select a suitable colour coordinate system according to
each purpose. It is generally accepted that the 1976 CIE
LUV uniform colour space works well for colour segmen-
tation. In this colour space, two colours that are equally
distant are perceived as equally distant by viewers.
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Several image segmentation methods based on colour
clustering techniques have been proposed [6,14,19]. With
these methods, performance of the clustering technique
could dramatically affect segmentation results. Our aim
in clustering is to obtain the blobs of pixels correspond-
ing to character patterns. In our clustering method, a
given image with 8 bits per R, G and B is translated
into LUV colour space, and the colour histogram is cre-
ated in reduced LUV colour space with 17×45×40 bins.

There are many possible choices of clustering algo-
rithm. We use a fuzzy clustering algorithm which de-
cides the number of clusters automatically. This is based
on the well-known Fuzzy C-Means (FCM) algorithm [3].
In FCM the number of clusters c is fixed, but the ap-
propriate number of clusters is different for each image.
Therefore, we allow splitting, merging and discarding
of clusters in our algorithm. If the standard deviation
within a cluster exceeds a threshold value, the cluster
is divided into two. On the other hand, if two clusters
locate closely, they are merged. Also, clusters which con-
tain few elements are discarded. Apart from this, our
fuzzy clustering algorithm is the same as FCM.

For each colour separation image, connected com-
ponents for both black (foreground) and white (back-
ground) pixels are labelled, and their circumscribed rect-
angles are generated. The reason for this process is to
increase the performance of character extraction.

Figure 7 shows an example image, and Fig. 8 shows
colour separation images generated by the clustering pro-
cess and the associated circumscribed rectangles.

5.1.2 Grouping rectangles. It is more difficult to distin-
guish single character patterns from background pat-
terns than from word or text lines. For this reason, some
blobs in colour separation images are grouped into some
regions that may correspond to character strings. In this
paper, we assume horizontal or slightly skewed character
strings in an image and do not consider vertical strings.
The blobs in the colour separation image are grouped by
the following conditions (Fig. 9). Although many blobs
are not grouped and remain as single regions, we treat
all regions henceforth as character candidates.

Cluster Circumscribed rectangle of Circumscribed rectangle of
black pixels white pixels

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Fig. 8. Result of clustering and grouping
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a b

Fig. 9a,b. Grouping condition: The rectangles in bold lines are circumscribed rectangles, and the shaded parts show the regions
where the adjacency condition is checked. θ1, θ2 and θ3 correspond to the angles between the upper left corner and the centers
of the rectangles respectively. tn is the rectangle magnification factor in the horizontal direction. a Alignment condition. b
Adjacency condition

Fig. 10. Result of grouping rectangles

1. θ1, θ2 and θ3 (Fig. 9a) are smaller than tθ.
2. The adjacent rectangles are overlapped in the mag-

nified regions(Fig. 9b).
3. The ratio of areas of the adjacent rectangles is smaller

than ta, where ta is a threshold.

We decided tθ = 35◦, tn = 0.2 and ta = 8 experimen-
tally. Figure 10 shows all of character candidate rectan-
gles generated from the colour separation image of clus-
ter 6 in Fig. 8. In particular, the shaded rectangles in
Fig. 10 show the grouped rectangles.

5.1.3 Discrimination of character patterns. Our algo-
rithm discriminates character patterns from background
ones by using a support vector machines (SVM).

In this paper, the SVM is trained on 13,289 samples
labelled as character pattern or background in 250 scene
images. We use the software programme SVMTorch [9].
The following features were calculated for each character
candidate and used as input to the SVM.

Cross-correlation feature: Cross-correlations are
calculated between a scan line and all succeeding
scan lines within the region of th% height of a
character candidate’s boundary box, and their
variance is obtained. This calculation is repeated by
changing the scan line at a distance of th/2. We use
the average of the variances as the cross-correlation
feature. The above procedure is also performed in the
vertical direction, and a similar feature is obtained.

Fig. 11. Character extraction result for Fig. 7

These feature values tend to be low for character
patterns. We determined th = 10[%] experimentally.

Run length feature: Variance of run length in each
character candidate is used as the run length feature.
This feature for character patterns also tends to be
low since widths of character strokes are similar.

Smoothness of contour line: For the outer contour
lines of blobs in a character candidate rectangle, the
number of concave and convex points are counted
and used as the feature of smoothness of contour
line. These values are also lower for character pat-
terns compared with background patterns.

Changing point of black/white pixels: The num-
ber of changing points from black to white pixels and
vice versa is counted. These values have the same
characteristic as those for the above-mentioned fea-
tures.

LAG feature: The number and average length of path
nodes in the LAG (line adjacency graph) [20] con-
structed for blobs are used. The former values in
character patterns are lower than background pat-
terns, and the latter tend to be constant in character
patterns.

Other features: Percentage of foreground pixels
within a character candidate, and aspect ratio of
character bounding box.

5.1.4 Discrimination by SVM. The above features may
not be useful for character pattern discrimination inde-
pendently, but they work well when combined using an
SVM. We normalised all features in [0,1]. As a kernel

function, we adopted the radial basis function (e− |a−b|2
σ2 )

with σ = 0.85, which was determined experimentally.
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Fig. 12. Sobel templates in four di-
rections (A,B,C,D)

Fig. 13. a Original image.
b Thresholded gradient density
image. c After 7-opening mor-
phological filter. d After 15-
closing morphological filter

Figure 11 shows the character extraction result for the
image in Fig. 7. Most characters except ‘95’ in the bot-
tom line are extracted correctly, but some non-character
patterns which look like characters are also extracted in
the bottom line.

5.2 HWDavid: (by Zhu and Ou)

In order to allow a degree of scale invariance (i.e. detect
text of different sizes), we use an image pyramid strategy.
First we extract the text blocks from each level of the
image pyramid separately and then get the final results
of the input image by using a special function to combine
the results of each level.

Firstly, we describe the text detection algorithm for a
single layer of the pyramid. Based on the fact that most
text in natural scenes is horizontal, we use a measure
of gradient density in the horizontal direction. The first
step is to apply four Sobel edge operators, as shown in
Fig. 12.

For each image position x, y, we then compute the
edge intensity E(x, y):

E(x, y) = max(A(x, y), B(x, y), C(x, y), D(x, y))

From this we use a low-pass filter to produce a gradi-
ent density image EI(x, y), where w is the window width
in the horizontal direction:

EI(x, y) =
w/2∑

i=−w/2

E(x + i, y)

Then we threshold the gradient density image by the
method proposed in [18, 30] to produce a binarised im-
age. We experimented with the training set and found a
gradient density window size of 9 gave the best results.

To reduce noise and connect strokes in the binarised
image, we use two morphological operators: a 7-pixel
closing operation followed by a 15-pixel opening opera-
tion. The closing operation is to eliminate the connected

strokes, and the opening operation is to remove the iso-
lated regions. Additionally, we use a conditional morpho-
logical operation on the connected components which is
based on a CCA (connected component analysis) algo-
rithm [10].

Figure 13 illustrates this: a is the original image, b
is the binary (thresholded) result of the gradient density
image of a, which contains some background noise, c
is the result of the first-turn morphological operation
(closing), in which noise has been reduced greatly, and
d is the result of a second-turn morphological operation
(opening), where we see that the noise around the text
blocks has been removed.

By applying geometrical constraints such as block
height, width and ratio of white to black dots in a
block, we get the candidate text block. In our pro-
gramme, the white dots correspond to character strokes
and black dots to background. As shown in Fig. 13d,
some noise blocks should be candidate text blocks, so
post-processing is essential.

In order to qualify as a text block, a candidate
block must simultaneously satisfy the following three
constraints:

– The number of humps or valleys of candidate blocks’
colour histogram should be larger than a fixed con-
stant. To be recognised, text can always be discrim-
inated from background, and character colour and
background colour in the same text string often form
distinct clusters. In other words, the colour histogram
of text should have at least one main valley.

– For the characters of a text string, the height h,
width w and ratio r of white to black dots of their
corresponding connected components should satisfy
some constraints. We label the connected compo-
nents which do not satisfy this constraint NonCC.
Scanning the candidate block (CB) from left to right,
we count the width of NonCCs, and if the width of
a single NonCC or the sum of consecutive NonCC
widths exceeds the height of the CB, we separate the
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CB into two parts, namely the left CB and the right
CB.
If the sum of the left CB’s NonCC widths is less than
half its width, it is saved, otherwise it is discarded,
and the right CB is treated as a new CB. In our pro-
gramme, we use the following constraint to determine
which CBs can be connected:

r ∈ [0.1, 0.9] ∨
r > 0.8 ∧ hcc > 0.6hcb ∧ wcc < 0.5hcc ∨
r > 0.8 ∧ hcc < 0.3hcb ∧ wcc > 2hcb

where the subscripts cc and cb refer to connected
component and candidate block respectively. The
first line states that the stroke area should be medium
in a connected component. The second line handles
the case of a single vertical stroke in a character such
as ‘1’or ‘I’, and the third line corresponds to a single
horizontal stroke as ‘-’.

– For x-axis projection profiles, the number of humps
should be in proportion to the ratio of a candidate
block’s width to height, and the variance of hump
width should be small. In an x-axis projection profile,
humps often correspond to vertical strong strokes,
for example character ‘H’ should have two humps in
the x profile. So the number of humps corresponds
to the number of vertical strokes, and the width of
the humps corresponds to the width of the vertical
strokes.

Secondly, the combination strategy of text blocks in
each level of the image pyramid is designed as follows.
Because there are overlapping text blocks at different
levels in the image pyramid, to improve the detection
precision, we must combine these overlapping blocks.
Simple union or intersection does not work well. Union
makes the text blocks too fat and reduces the precision,
while intersection makes the text blocks too thin and
reduces the precision rate as well as the recall rate. So
we use a strategy of conditional union: when two blocks
from different levels of the image pyramid are similar
enough, we join them, i.e. return the rectangle that ex-
actly bounds both of them. Otherwise, we treat them
as different text blocks of different resolution and return
the two rectangles independently.

5.3 Wolf (by Wolf and Jolion)

We call our method: Learning Contrast and Geometrical
Features with Support Vector Machines.

The method we submitted is one of the text detec-
tion algorithms we have developed with different philoso-
phies.2 The first algorithm [28, 31] assumes that there
is text present in the image and tries to separate the
text from the non-text pixels. The second algorithm,
which participated at the ICDAR competition, employs

2 Both algorithms have been developed in collaboration
between INSA Lyon and France Télécom in the framework
of contracts ECAV 1 and ECAV 2 with respective numbers
001B575 and 0011BA66.

an SVM in order to learn a model consisting of con-
trast and geometrical features from training data. It is
described briefly in this section; for more details refer
to [29] or forthcoming publications. Among other differ-
ences, the choice between the two methods controls a
trade-off between detection recall and precision.

The existing text detection algorithms can be clas-
sified into two categories: those based on character seg-
mentation, which are less suited for low-resolution text,
and those based on edge or texture features. Our system
has been designed to detect text in video sequences and
therefore has been optimized for low-resolution images.
Consequently, our text model contains contrast and tex-
ture features, completed by geometrical features.

Existing methods for low-resolution text enforce geo-
metrical constraints in a post-processing step only, i.e. by
using mathematical morphology after the detection step.
The disadvantage of this procedure is evident: a bad de-
tection cannot be corrected even by sophisticated post-
processing. We integrated the calculation of the geomet-
rical features directly into the detection phase. To over-
come the chicken-egg problem (to calculate geometrical
features we need to detect the text first), we adopted a
two-step approach:

1. Perform a coarse detection without taking into ac-
count geometrical features. This is done using a filter
accumulating the Sobel gradients [31], resulting in a
‘text probability’ image.

2. For each pixel, calculate the geometrical features of
its neighborhood based on the detection results from
step 1. Use these features together with the features
calculated in step 1 and perform a refined detection.

The features calculated in step 2 are, among others, the
text height and its regularity in a local neighborhood.
We obtain the height from the ‘text probability image’
calculated in step 1, estimating the peak of the vertical
profile centred at the pixel to classify, and the borders of
the mode containing the peak. The vertical profile may
contain a single peak in the case of a single text box,
or several peaks in the case of several vertically stacked
text boxes, or no peak at all or a very flat peak if the box
does not contain text. We pose peak detection as an op-
timization problem over the space of possible peak bor-
ders, maximizing a criterion which consists of the peak
height (the contrast between text and background), its
mean (the text probability according to step 1) and its
width (the text height). The criterion favors high peaks
with high contrast and low width.

The properties of the estimated peak, together with
the local regularity of its width (i.e. of the text height)
and the features from step 1, are learned from training
data using an SVM. Figure 14 shows the coarse detec-
tion result and the text height regularity image for an
example image.

In the detection phase, the classified pixels are post-
processed, enforcing morphological and further geomet-
rical constraints [31]. This is in order to reduce noise, to
correct classification errors and to connect loose charac-
ters to form complete words. In order to adapt the algo-
rithm to different text sizes, the detection is performed in
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Fig. 14. a Original image.
b Coarse detection. c Geometri-
cal features (text height regular-
ity)

a hierarchical framework. The pyramid is collapsed after
the post-processing of each level is complete. Addition-
ally, the classification step for each level of the pyramid
contains the features for the respective level as well as its
parent level. The purpose of doing so is to incorporate
as much information as possible very early in the detec-
tion process and to facilitate the process of collapsing
the pyramid.

We participated in the competition, although the im-
age dataset it used was clearly different from the image
dataset we had in mind when we designed our systems:
the ICDAR image dataset consisted of images taken
with digital photo cameras, mostly with a resolution of
1600×1200 pixels. In these images, the text characters
are very large, hence algorithms performing full charac-
ter segmentation before detection are favored. Our hi-
erarchical processing system tended to produce 5 to 6
pyramid levels for these big images. Since our detection
system was designed to detect small and noisy text, we
went so far as to ignore the base level of the pyramid in
order to increase the precision of the algorithm. In other
words, we did not take into account valuable informa-
tion. As a last handicap, we did not have enough time to
train the system on the ICDAR test dataset. Instead, we
submitted a model trained with our own test dataset.

Applied to video data, the algorithm achieves a recall
of 88.2% of the text rectangles with a precision of 75%,
measured on a test database containing 40 min of video
(newscasts, commercials, cartoons).

5.4 Todoran (by Todoran and Worring)

Our text localisation system uses multiscale texture and
edge analysis and was inspired by the system described
in Wu et al. [26] but extended with more features and
an improved grouping algorithm. First, a texture filter
is applied to extract the candidate text regions. For tex-
ture filtering we compute a local energy estimate for each
colour channel at three different scales using second or-
der derivative filters. The filters used in estimation are
Gaussian kernels at scale σ = (1,

√
2, 2). The local energy

values are clustered in the 9-dimensional space using the
K-means algorithm. We expect that the cluster corre-
sponding to the lowest energy comprises the text region.
A morphological closing fills up holes in text regions.

Vertical edges are extracted from the original image
masked with text regions provided by the texture filter
step. The vertical edges representing small portions of
candidate characters are merged by morphological clos-
ing in the horizontal direction. From the image of filtered
vertical edges we extract the blobs (connected compo-
nents).

These blobs represent characters and word parts. Us-
ing geometric features we filter the set of blobs and com-
bine them into text lines. For filtering and grouping we
use the following features of the blobs: colour, area, as-
pect ratio, height, horizontal distance to the closest blob,
and amount of vertical overlapping between blobs.

To make the method scale, invariant parameters are
chosen proportional to the most common value of the
blob height H. The H is determined from the histogram
of blob heights over the image. We make the assumption
that only one font size is present in the candidate text
region. Thus, candidate blobs are accepted if:
0.01 ∗ ImageArea < BlobArea < 0.50 ∗ ImageArea ∧
Width > Height ∧
Width > 2 ∗ H ∧
0.9H < Height < 1.1 ∗ H

Two blobs are merged in the horizontal direction if:
AverageColor1 = AverageColor2 ∧
HorizontalDistance < 1.2 ∗ H ∧
V erticalOverlap > 0.4 ∗ H ∧
|Height1 − Height2| < 0.85 ∗ H

After the merging step one might get overlapping text
regions due to blobs representing holes inside characters.
If two text regions overlap, then the smaller one is re-
moved.

The above processing steps are applied at each scale
of an image pyramid. Due to good image quality and
large image size, for the ICDAR 2003 competition we
used only two scales in the pyramid: one-eighth and one-
fourth of the original image size.

In the task of detecting characters, words or text
blocks from an image, many errors are generated by
splitting the desired target objects into small parts or
merging two or more target objects into one. Therefore,
in evaluating such systems, it is better to detect these
special situations of ‘split’ and ‘merge’ rather than to
treat them as false alarms or misdetections.

Our system was designed for detection of text images,
at a block level. Rather than trying to locate isolated
characters or words, we are looking for text lines and
text blocks. Therefore, the evaluation measure used at
the ICDAR 2003 competition did not show our system in
a favourable light. We have tested this implementation
and other systems from the literature on a large dataset,
using different evaluation measures [22] which are more
appropriate for text blocks. There, the merge and split
situations of evaluated text regions relative to the ground
truth can be detected, and they are not severely pun-
ished, and consequently the system achieved better re-
sults.
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Table 2. Text-locating competition results.

System Precision Recall f t (s)
Ashida 0.55 0.46 0.50 8.7
HWDavid 0.44 0.46 0.45 0.3
Wolf 0.30 0.44 0.35 17.0
Todoran 0.19 0.18 0.18 0.3
Full 0.1 0.06 0.08 0.2

6 Results

The text-locating competition had five entries by the 30
April 2003 deadline; the other contests all had zero en-
tries. Many of the originally supplied entries were miss-
ing DLL or other library files – contestants were invited
to supply any missing files, which they all did. Some of
the originally supplied systems were buggy and would
crash after processing several images, perhaps due to
memory leaks. Again, contestants were invited to sup-
ply fixed versions, which they mostly did. In the case of
one of the submissions, the patched version still crashed
frequently and had such a low score (f = 0.01) on a set
of sample images that we did not run it on the full set,
and hence did not include it in the results table.

In future it would require much less effort if we could
run these competitions by using an alternative mode of
entry, where each competitor exposes their system as
a Web service [4, 15] which they would be responsible
for maintaining. The evaluation programme would then
work by supplying images to the service, which would
return its estimated set of rectangles for each image in
XML. We aim to foster this approach by supplying some
skeleton software and examples of how to do this.

The text-locating results on the competition data are
shown in Table 2. The entries are identified by the user
name of the person submitting each one, and each system
is described in Sect. 5.

The column labelled t(s) gives the average time in
seconds to process each image for each system under
test. This is the elapsed time when running on a 2.4-GHz
Pentium 4 PC. Note that the Full system is the score ob-
tained by returning a single rectangle for each image that
covers the entire image. This could have been computed
from the resolution information in the XML input file,
but to give a baseline measure of the time, we computed
this by retrieving and decompressing each JPEG image,
then measuring the image size.

Note that poor performance under our evaluation
scheme does not necessarily mean that the algorithms
are poor at finding text. For example, in some of the
results of Todoran that we studied, the algorithm had
tagged a large block of text consisting of multiple words
with a single rectangle. Our evaluator gives some credit
for this, but not nearly as much as a locater that identi-
fies individual words, which was the performance objec-
tive.

Table 3. Text-locating results of the two leading algorithms
on grey-level versions of the competition images

System Precision Recall f
Ashida 0.53 0.44 0.46
HWDavid 0.45 0.46 0.42

6.1 Results on grey-level images

An interesting aspect of evaluating these text-locating
systems is the extent to which they exploit colour in-
formation. In order to explore this further, we ran the
best performing algorithms, Ashida and HWDavid, on
grey-scale versions of the competition images. We pro-
duced the grey-scale images by averaging the red, green
and blue components of the colour images. A significant
subset of the grey-level images were inspected visually,
and in all cases the text was still legible.

The results are shown in Fig. 3. The processing time
was approximately the same for each algorithm as be-
fore, so this information is omitted. The results indicate
a slight deterioration in performance for each algorithm.
In the case of Ashida, we had expected a far more drastic
reduction in accuracy, since from the description of the
algorithm it is clear that colour clustering plays an im-
portant part in its operation. The explanation for why
it still performs rather well lies in the fact that even
monochrome ‘colours’ can be clustered based on their
intensity.

6.2 Results with an alternative metric

Inevitably, the choice of performance metric creates a
bias in the results that will typically favour one algo-
rithm over another. This is especially true in the case of
evaluating text-locating algorithms. There are two main
aspects of evaluation in which different choices are possi-
ble: allowing for imprecise matches and dealing with the
correspondence problem (one-to-many etc.).

Since estimated rectangles are unlikely to exactly
match ground-truth rectangles, we need some way to
cope with this. A continuous measure based on area
of overlap was used for the competition metric. How-
ever, this means that the score is non-intuitive, with
no distinction between the number of rectangles impre-
cisely matched and the number of rectangles completely
missed. In other words, a recall score of 0.5 for a par-
ticular image could mean that one out of two rectangles
in the image was identified perfectly (and the other one
missed completely) or that the only rectangle in an im-
age was identified with an overlap score of 0.5.

We used the evaluation method proposed by Wolf
[27], which was inspired by the rectangle-matching al-
gorithm presented in [12]. This takes into account one-
to-one as well as many-to-one and one-to-many matches.
However, the algorithm aims to determine, controlled by
thresholds on the amount of overlap, whether a ground-
truth rectangle has been detected or not. The perfor-
mance of the detection method is intuitively presented
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as a graph, which displays the precision and recall for
different overlap thresholds. The changed precision and
recall measures are given by:

pw =

∑
j MatchE(Ej)

|E| rw =
∑

i MatchT (Ti)
|T | (1)

where MatchT and MatchE are functions which take
into account the different types of matches described
above and which evaluate to the quality of the match:

MatchT (Ti) =




1 if Ti matches against a single
detected rectangle

0 if Ti does not match against any
detected rectangle

0.8 if Ti matches against several
detected rectangles

The function MatchE is defined accordingly.
The decision on whether a ground-truth rectangle Ti

is matched against a detected rectangle Ej is taken based
on the overlap information stored in two matrices σ and
τ , which corresponds intuitively to the ‘surface recall’
and ‘surface precision’:

σij =
a(Ti ∩ Ej)

a(Ti)
and τij =

a(Ti ∩ Ej)
a(Ej)

A ground-truth rectangle Ti is matched with a rect-
angle Ej if its surface recall σij is above a threshold tr
and its surface precision τij is above a given threshold tp.
In the case of a one-to-many match, each single rectan-
gle must satisfy this constraint, as well as the combined
(scattered) area.

We chose this evaluation technique because the pre-
cision and recall values share their intuitive meaning
with the original measures introduced in the domain
of content-based image retrieval. The measures repre-
sent, respectively, the amount of items (text rectangles)
retrieved from the ‘database’ and the amount of items
correctly detected among all items detected.

Table 4 shows the results of running this alternative
performance metric. We chose the threshold values of
tr = 0.8 and tp = 0.4 as they gave perceptually rea-
sonable results. This also highlights an advantage of the
more simplistic metric used for the competition results,
in that the simplistic metric has no parameters to set.

Note that the precision, recall and combined f mea-
sures are similar to the preceding ones, despite the fact
that the performance measure is rather different. The
order of the two leading algorithms, which continue to
return similar f scores, has now changed, but otherwise
the ranking remains the same.

The ‘Detected’ column shows a comparison of the
total number of rectangles that were detected. To put
these figures in perspective, the total number of ground-
truth rectangles in these images is 2261.

Table 4. Alternative text-locating results using the Wolf
performance metric

System Precision Recall f Detected
HWDavid 0.43 0.52 0.47 1916
Ashida 0.53 0.41 0.46 1515
Wolf 0.21 0.52 0.30 3477
Todoran 0.14 0.18 0.16 1368
Full 0.02 0.02 0.02 501

Fig. 15. An image on which both leading algorithms score
poorly

6.3 Results on sample images

We viewed many of the results of each programme, es-
pecially the two leaders, to gain an impression of the
strengths and weaknesses of each system. In each of the
following images, the ground-truth rectangles are indi-
cated by long-dashed red lines,3 while the estimated rect-
angles are indicated by white dotted lines.

Figure 15 shows the output of HWDavid on an image
where both HWDavid and Ashida performed poorly. On
this test HWDavid identified lots of false text rectangles,
while Ashida returned just one rectangle that had no
intersection with the ground-truth rectangle (‘TAXI’).
The reason for HWDavid’s false detections appears to be
the strong edge features present in the windows of the
building. Note that the heuristics have partially filtered
out the vertical run of windows on the left of Fig. 15 but
not the horizontal run of windows close to the centre of
the image.

All the algorithms under test were somewhat incon-
sistent in their ability to locate text. In some cases they
detected noisy, hard-to-read text, while in other cases
they missed text that to the naked eye is very clear. For
example, HWDavid detected some of the text in Fig. 16
while missing other parts such as SV that were in the
same font and appeared equally clear. HWDavid had an

3 Light grey, if you are reading a monochrome version of
this paper.
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Fig. 16. An image where HWDavid beats Ashida

Fig. 17. A hard-to-read image that Ashida does well on,
while HWDavid scores zero

f score of 0.65 for this image, while Ashida returned no
rectangles and scored 0.0.

Figure 17 shows a case where Ashida correctly lo-
cated the text (‘15’) in the image and achieved an f
score of 0.88, but HWDavid returned no rectangles and
scored 0.0. Incidentally, we also tried running Ashida on
a grey-scale version of this image, with the result that it
scored 0.0, having failed to identify any rectangles.

Figure 18 shows a case where HWDavid found a
valid text character that the human tagger had either
missed or considered not worthy of tagging. While HW-
David was unfairly punished here, it still achieved an
f score of 0.65 on this image, and the effect this miss-
ing tag had on the overall performance score of HW-
David was minuscule. Todoran returned a rectangle cov-
ering the entire image for this example and scored 0.04.
Ashida returned a only single rectangle, for the middle
text line, and scored 0.28. Wolf, on the other hand, re-
turned a rectangle for each of the three main lines of

Fig. 18. An image in which HWDavid found a text character
that the human tagger had missed (top left ‘H’)

text and scored 0.51. Unfortunately, each rectangle was
slightly oversized, a phenomenon we observed in many
cases with Wolf, which certainly had a detrimental ef-
fect on its score. Also note that HWDavid cuts ‘Lan-
guage’ in half with the larger rectangle. This behaviour
is certainly undesirable for subsequent OCR, but it is
not adequately punished with our somewhat simplistic
performance measure.

7 Combining the individual text locaters
(by Lin)

As shown in the testing results in Table 2, the best indi-
vidual text locator only achieved a precision rate of 0.55
and recall rate of 0.46. Obviously, it is still a very difficult
problem. This fact prompted us to look into the com-
bination of the text locators, since combination proves
to be very effective in pushing the envelope in character
recognition [21]. However, there is little existing research
on the combination methods for text locating. Equipped
with four state-of-the-art systems, we were able to ex-
plore this area with initial success.

7.1 Problem definition

The combination of text locators can be formulated as
follows: Each text locator outputs a set of detected rect-
angles Ri(i = 1, 2, . . . , m), where m is the number of text
locators. The combination algorithm will generate a new
set of rectangles R, which is a function of R1, R2, . . . Rm:

R = f(R1, R2, . . . , Rm)

However, designing combination functions for text lo-
cating is a complex problem. Many widely used combi-
nation methods such as voting cannot be directly used
for text locating because there can be various cases of
two-dimensional relationships of two rectangles, as illus-
trated in Fig. 19:
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Fig. 19. Different positional relationships between two rect-
angles

– Two rectangles are identical (Fig. 19a)
– Two rectangles are very similar (Fig. 19b)
– Two rectangles partly overlap (Fig. 19c)
– One rectangle falls into the other one (Fig. 19d)
– Two rectangles do not overlap at all (Fig. 19e)

7.2 Solution

We have proposed a combination system specifically tar-
geting the four submitted text-locating systems. We di-
vided the 500 testing images into two subsets: the first
250 images are for used for designing and tuning the
combination algorithm (combination training set), and
the remaining 250 images are kept exclusively for testing
(combination test set). The combination algorithm was
designed to exploit the relative merits of the individual
algorithms as observed on the training subset. The basic
idea is weighted voting of results from different text lo-
cators. On the other hand, the actual algorithm is much
more complicated due to the different 2D relationships
of rectangles mentioned above. It has the following key
elements:

– Only Ashida, HWDavid and Wolf were used in the fi-
nal combination strategy. For an image X, let R1, R2
and R3 be the sets of text word bounding boxes gen-
erated by Ashida, HWDavid and Wolf respectively.
The result set R is initialised to be equal to R1, and
each rectangle in R is assigned a score of w1.

– Then, each rectangle r ∈ R2 is compared with rect-
angles in R. If r is ‘substantially similar’ to an ex-
isting rectangle s ∈ R, the score of s is increased
by w2. Two rectangles r and s are considered to
be substantially similar when both of the following
two conditions are satisfied: Overlap in X axis/ min
(Width(r), Width(s)) > Th1 AND overlap in Y axis/
min (Height(r), Height(s)) > Th2. Otherwise, r is
added to R with an initial score of w2.

– If r covers most of the area of an existing rectangle p
in R, the score of rectangle p will be increased by w2.
Similarly, if most area of r is covered by an existing
rectangle p in R, the score of r will be increased by
the score of p.

Table 5. Text locating results on the 250 image combination
test set.

System Precision Recall f
Combined 0.53 0.53 0.50
Ashida 0.51 0.43 0.45
HWDavid 0.43 0.47 0.42
Wolf 0.27 0.49 0.30
Todoran 0.17 0.19 0.16

– Next, each rectangle in R3 goes through the same
process as R2. The only difference is that the weight
of R3 is w3 instead of w2.

Now we have a set of rectangles in R as candidates.
In order to increase the precision rate, they are passed
through several filters:

– Basic filter: This filter will delete rectangles whose
scores are less than Th3.

– Big block filter: If one rectangle p in R is essentially
the sum of several other rectangles in R, p is removed
from R. This filter targets the situation in which one
algorithm correctly detects a text region but fails to
segment the region of individual words.

– Wolf filter: If one rectangle p in R originates from a
Wolf text locator, it is deleted. This filter is based
on the observation that, although Wolf is good at
supporting the regions detected by the other locators,
the regions detected by it are less accurate compared
with the two other locators.

7.3 Combination results

As shown in the above algorithm, there are a few param-
eters, weights and thresholds to be set. These parame-
ters were tuned one by one to achieve the best average
f -value on the combination training set. The final com-
bination weights are 1, 0.8 and 0.7 for Ashida, HWDavid
and Wolf respectively, roughly proportional to their in-
dividual f -values.

On the combination training set, the combination
scheme scores 0.60, 0.57 and 0.57 for precision, recall
and f respectively.

The more interesting result is how well the combina-
tion scheme performs on the combination test set, shown
in Table 5. Compared to Ashida, the best individual al-
gorithm, the combination scheme improves the precision
by 0.02, the recall by 0.10 and the f -measure by 0.05.

The computational cost of applying the combination
rules is negligible, but the extra cost of running all the
individual algorithms (as compared with just running
the single best one) could be significant; refer to Ta-
ble 2 for timing information. If the algorithms were run
in parallel on different machines, however, then this ob-
jection would be overcome. The Web service model offers
a straightforward and entirely platform- and language-
independent way of achieving this.

Figure 20 shows an example of how the combination
scheme improved the text-locating result on a particular
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Fig. 20. An example where the combination scheme gives
significantly better results than any of the individual algo-
rithms

image. In this case, the precision, recall and f scores
were as follows: Ashida: (0.0, 0.0, 0.0); HWDavid: (0.29,
0.68, 0.41) Wolf: (0.13, 0.45, 0.20); combined: (0.49, 0.68,
0.57).

Although the proposed method has significantly im-
proved the f -value over the best individual text locator,
the heuristic rules are based on the three text locators.
With other text locators we would have to discover new
combination rules. An interesting but difficult future re-
search direction would be to investigate ways of auto-
matically discovering the rules. One way to approach this
would be to define a suitable rule space and then use an
evolutionary algorithm to search both the space of possi-
ble rules and rule parameters. This kind of approach has
been used successfully when using genetic programming
for symbolic regression, for example.

8 Future competitions

We plan to run similar text-in-scene reading competi-
tions for ICDAR 2005. One difficulty in running the
contests is gathering and ground-truthing the data. An
interesting approach that could be pursued in parallel
would be to generate synthetic images that pose simi-
lar challenges to the camera-captured images. This has
been done successfully for more conventional document
images [2]. Synthetic text image generation programmes
such as Captcha [24] have recently been developed as a
reliable way to tell humans apart from machines. Such
methods are termed Human Interactive Proofs (HIPS)
[1]. Figure 21 shows an image4 from the Captcha sys-
tem that is currently beyond machine reading abilities.
Clearly, such images could form the basis of an inter-
esting future contest and are already being used as a
benchmark by computer vision researchers.

4 Reproduced with kind permission of the Captcha team
[24]

Fig. 21. A sample image from the Captcha system

The details of data formats for these contests are cur-
rently under review. For example, one point that arises
in the text-locating contest is that the algorithms should
give a confidence rating to each rectangle that they re-
turn. This would allow more direct tuning of the trade-
off between precision and recall and would also be useful
information for any combination scheme.

We believe that there is still scope for improved per-
formance measures. Although we also ran the perfor-
mance measure defined by Wolf [27], this still leaves
room for improvement towards measures that more di-
rectly reflect the usefulness of the extracted rectangles
for subsequent OCR, without being tied to the perfor-
mance of a particular OCR engine. For example, since
we have both the ground-truth rectangles for each word
image and the associated segmentation information, it
should be possible to define a measure that strongly pe-
nalises cutting a word in half while offering some leeway
for algorithms to return a small border around a word
without any penalty.

A disappointing aspect of the competitions as a whole
was the failure to convert the expressions of interest in
the character and word recognition contests into actual
entries. This may be explained partly by the difficulty
of the data and partly by the effort involved in adapt-
ing one’s algorithms to the specific problems at hand. In
response to the latter point, we shall offer the character
recognition data in a simple fixed-size monochrome for-
mat (such as the one used for MNIST.5 While there is a
risk of discarding important information in the normal-
isation process, the advantage of using a standard for-
mat perhaps outweighs this, and doing this would not
preclude also offering the full image datasets.

9 Conclusions

Our main intention in running these competitions was to
gain a clear picture of the state of the art of reading text
in scenes. This has so far been partially successful for the
text-locating problem, but not for the other problems.
The public datasets we captured and tagged should make
a useful contribution to research in this area.

5 Y. LeCun, MNIST Database of Handwritten Digits,
http://yann.lecun.com/exdb/mnist/
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Some of the text-locating entries shared certain com-
mon characteristics, such as the use of an image pyra-
mid to achieve some degree of scale invariance. In fact,
the only system not to use an image pyramid was the
winning method of Ashida. Even when the methods are
broadly similar, there are significant differences in the
details, however, such as the image processing opera-
tors used to extract candidate text blocks and the fea-
tures used to subsequently classify them. Some of the
systems (such as Ashida and Wolf) can be directly de-
ployed as trainable object detectors (e.g. to detect faces
in an image), while others (such as HWDavid) have hard-
coded features specifically designed for text detection.
Each system involves a significant degree of tuning to
the type of data it is likely to encounter. While it is a
difficult notion to quantity, it appears that the amount
of tuning used was a significant factor in the success of
each method, with the two leading methods being better
tuned than the trailing two. In particular, the HWDavid
and Wolf systems are very similar, and we believe the
wide disparity in their respective performances is largely
due to the extent to which each system was tuned.

Note, however, that all tuning was done on the train-
ing set, and the entrants were not given the test data
until after the competition had finished.

Where systems were tuned to the task at hand (in
particular, the leading entries, Ashida and HWDavid),
all tuning was done by hand, based on human intuition
and empirical evidence of training set performance. This
is a labour-intensive process, and it would be interesting
to investigate making these or indeed other text-locating
methods self-tuning.

Whether tuning is done by hand or by an automated
optimisation algorithm, the number of evaluations of the
objective function limits the extent to which a system
can be optimised. A good choice of objective function
would be the overall f score on the training set, f(T ).
Since there are 500 images in the training set, each eval-
uation of f(T ) takes a few minutes for HWDavid, ver-
sus a few hours for Wolf, making HWDavid much more
amenable to tuning. All of the systems under test are
complex and have multiple stages. The extent to which
the various stages in each system could be independently
(and therefore more quickly) tuned is unclear, and worth
further investigation.

Running the text-locating contest has given us some
tentative insights into the general strengths and weak-
nesses of the submitted systems. These can be sum-
marised as follows:

– Even the best-performing systems are inconsistent,
detecting some text while missing apparently very
similar text in the same image.

– There are major differences in the speed of the sub-
mitted systems. For example, Ashida was nearly 30
times slower than HWDavid, though a little more ac-
curate.

– Variations in illumination, such as reflections from
light sources, cause significant problems.

– Variations in scale cause significant problems, in that
the same image presented to a system at a different,

but equally readable, scale to the human eye causes
different regions to be identified by the algorithms.

The combination scheme presented in Sect. 7 has sig-
nificantly improved on the best individual text locator
and raises the interesting possibility of developing train-
able combination schemes whose parameters can be di-
rectly estimated from the data.

Reading text in scenes, and other noisy images, is still
very much a challenging problem. We believe that the
results of the ICDAR 2003 text-locating contest give an
idea of the state of the art in this particular subproblem.
We would like to encourage researchers to use our freely
available datasets to test their systems.
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détection de zones de texte dans une image vidéo. Patent
France Télécom, Ref. No. FR 01 06776, June 2001

29. Wolf C, Jolion J, Laurent C (2003) Extraction
d’informations textuelles contenues dans les images et
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