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AbstractWe argue that there is a need for automated veri�cation of absence of dead-locks in concurrent programs. We briey describe how absence of deadlocks canbe showed, in general, for a program, how the necessary information can begathered, and the use of formal methods. We discuss timeouts as a method ofrun-time deadlock detection, and why they remain necessary in some situations,and we suggest a strategy for modular veri�cation of subsystems of concurrentprograms.We then give an overview of the area of process communication, nondeter-minism, and synchronization problems, with focus on the semantics of Erlang,and give a quick introduction to the Erlang language. We give detailed mod-els of the semantics of the Erlang messaging system and its synchronizationprimitives both in terms of synchronously communicating sequential processesand of Concurrent Constraint Programming.Lastly, we review a deadlock analysis method which we have found likelyto be able to ful�l our requrements, and discuss the particular problems withadapting it to Erlang.
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Chapter 1IntroductionErlang is a functional programming language that supports lightweight con-current processes without being dependent on the operating system it runsunder. Concurrency is explicit in the language, and processes communicate viathe single, uniform method of asynchronous message passing. This work ad-dresses the problem of process communication deadlocks in programs written inErlang, or languages with similar properties.1.1 OverviewIn the following sections of this chapter, we describe the problems of deadlockand other communication anomalies in reactive systems, deadlock detection andrecovery, and static veri�cation of absence of deadlocks. We give requirementson a development tool for static checking of possible deadlocks, and suggesta strategy for modular veri�cation of absence of deadlocks. Lastly, we discussrelated work, present a summary of our results and suggest future work.In chapter 2 we briey describe how absence of deadlock can be shown ingeneral, how to gather the necessary information, and how to identify deadlockedprogram states. We also discuss formal methods.Chapter 3 discusses the asynchronous and synchronous variants of processcommunication, and the sources of nondeterminism in concurrent (and sequen-tial) programs, such as process scheduling and data streams attached to morethan one producer.In chapter 4 we give an introduction to the Erlang language, including someof its background.In chapter 5 we show how the asynchronous inter-process communication sys-tem of Erlang can be modelled using synchronous communication primitives,and Concurrent Constraint Programming, respectively, in order to see to whatextent analyses developed for these latter concurrency models apply to Erlangprograms.Chapter 6, lastly, discusses those analysis methods we consider as likely to beuseful for deadlock analysis of Erlang programs, and in particular describes themethod developed by Masticola [19], our extension of that method [4], and theprimary problems expected in implementing this method for Erlang programs.3



1.2 The deadlock problemErlang is very suitable for constructing large reactive systems containing anynumber of processes, such as telephone exchanges or similar control systems,server applications, and simulations. A problem with these kinds of systemsis that the communication pattern between processes can often be extremelycomplex and di�cult to predict. Even in simple cases with a small number ofprocesses, an error can be very hard for a human to discover without actuallyrunning the program { and once detected, it is not necessarily a simpler task to�nd its cause.Deadlock and starvationApart from the type of errors where messages are sent to the wrong destina-tions (which are usually comparatively easy to discover by examining the pro-gram), there are, informally speaking and following the common terminology,two classes of synchronization anomalies where expected messages never arrive:starvation, where no potential sender process can exist, and deadlock, where oneor more processes are all simultaneously waiting for a message from some otherprocess involved in the same deadlock, forming at least one dependency cycle.Deadlocks, and in particular how they can be detected, are the main focus ofinterest of this work.The types of programming errors causing starvation and deadlock, respec-tively, are (again, informally) of quite di�erent character. Starvation occurswhen a process is waiting to synchronise, and no other process is able to reacha program point which could complete the synchronization, for reasons such asprocesses terminating abnormally, loss of information (e. g. if no other processhas access to the communication channel), or an error in the ow of controlor data. Deadlock, on the other hand, is due to misjudgement of the commu-nication pattern between processes, ending in an unexpected combination ofindividual process states, and is by far the more di�cult to foresee or detect.Suspension and deadlockA process is said to be suspended while it is waiting to synchronise, and often adistinction is made between suspension (of a machine state), where no processin the state is able to proceed, and local suspension, where at least one process inthe state may execute, but for some subset of processes, all members of that setare suspended and cannot synchronise with any other process in any reachablestate. Typically, a message from an input device will allow the computation tocontinue. One example of local suspension is a terminal program waiting forinput in a multitasking system where other processes are executing meanwhile.Deadlock can be seen as a special case of suspension, where no input fromexternal devices can enable any process to proceed. Local deadlock, more com-monly known as livelock, is the corresponding case for a set of locally suspendedprocesses. In real-world systems, the local form is largely the more common, andthus we want to be able to cover all such cases as well as any global deadlocks.In the following, the term \deadlock" will be used to denote local as well asglobal deadlock, except where stated otherwise.4



Deadlock detectionThere are two approaches to the problem of verifying that there are no occur-rences of deadlock in a program: the usually more straightforward is dynamicdetection, where the running program is examined at intervals by the system,looking for possible deadlocks. The other approach is static detection, where theprogram code is analysed beforehand in order to verify that no deadlocks canarise in any possible execution of the program.Traditionally, deadlocks are a matter of operating systems studies, and arecommonly described in terms of resource allocation: a deadlock occurs wheneach in a set of processes has allocated one or more resources, and is waiting foraccess to one or more further resources that are held by some other process orprocesses in the same set. Here, also, there is at least one circular dependency. Ingeneral, a cycle in the corresponding dependency graph is a necessary conditionfor a resource allocation deadlock, and as we have shown [4], this is also truefor process communication deadlocks in the cases that are of interest to thiswork. Therefore, dependency cycles appear to be a better characteristic thanany particular description in terms of communication or resource allocation.Dynamic detection is the generally used method of handling deadlocks in op-erating systems, for several resons. First, static analysis is usually not even anoption in this case, because of the ad hoc manner in which new executing pro-gram code is generally added to the system, and of the high frequency of suchadditions: each time program code has been added, a new analysis is requiredof the interaction between the added program and those programs it could com-municate with or compete with for shared resources. Secondly, it is easy to trackresource ownership and demands of processes, and there are fast standard algo-rithms for �nding cycles in the dependency graph. Third, a resource allocationdeadlock can often be remedied by forcing some processes to release their heldresources, so that other processes may complete.Recovering from deadlocksIn the case of process communication, however, dynamic detection is not muchgood for anything other than discovering the possible existence of a deadlock.The description in terms of resources is not suitable in this case, because signalsor messages can be seen as parts of the computation performed by the processes.If process p suspends when trying to receive a message from process q, it is notbecause q currently \owns" the message (and could possibly be forced to releaseit), but because the message has not actually been computed yet (includingit being sent), and nothing less than completing that computation could giveanother process access to it.Thus, even if the program execution could be rolled back arbitrarily far, thereis no general solution for avoiding the deadlock, once discovered. Another processscheduling might work, but �nding such a scheduling { if one exists { cannot bedone without some form of advanced program analysis. (Even though run-timeinformation could be used which would not be available to a fully static analysis,it is hardly practical to apply program analysis once a deadlock has actuallyoccurred.) It can also be argued that a program that depends on the processscheduling for behaving as intended is an incorrect program, or at least a awedone. 5



The method of handling deadlocks generally adopted in application program-ming is to use timeouts { equipping process suspensions with an upper timelimit, after which some �xed action is taken { to detect possibly deadlockedprocesses, and e. g. having a supervising system kill and restart them (and pos-sibly others associated with them) under the conservative assumption that theexpected data cannot be produced. The obvious drawbacks are the risk of losinginformation, the time spent shutting down, restarting and resynchronising pro-cesses, and the possibility of avalanche e�ects causing large parts of the systemto be restarted. Also, this strategy is of no help in locating the actual error, anddoes not guarantee that the deadlock does not reoccur, even immediately.A tool for static veri�cationWe therefore assert that the only way of consistently handling process communi-cation deadlocks, which is potentially powerful enough to avoid such drawbacks,is static program analysis and veri�cation { if this can be done with su�cientprecision to prove, for a signi�cant subset of all correct programs, that there isno possibility of deadlock. As the general problem of checking whether a pro-gram will deadlock or not is, of course, undecidable, a safe approximation is thebest that can be done, i. e., a program will be regarded as having the potentialto deadlock unless the opposite can be proved.In systems where hot code loading, i. e., the loading of new program modules,or new versions of previously loaded modules, is possible, the situation becomessimilar to that in an operating system. However, software modules are seldomloaded which communicate with previously loaded ones in such a way thata deadlock might ensue. The modular veri�cation strategy discussed furtherbelow should keep the frequency and extent of necessary deadlock analyses ona practical level, even in this case.It is important that a deadlock analysis have very good precision in order forit to be a useful tool. If false cases of deadlocks are reported too often, it willconfuse more than help the programmer, and possibly force her to rewrite theprogram in an overly explicit way, to allow the analysis to verify it. Preferably,the analysis should also, for the cases it cannot verify, give good indication ofwhat parts of the program could possibly cause a deadlock, and under whichconditions.The aim of this work has been to seek out a static analysis method for Erlangprograms, which could realistically be developed into a useful programming toolas we have described; or at least specify the requirements on such a method.1.3 Fail-safe systems andrun-time deadlock recoveryIn many real-world, real-time control systems, it is imperative that the systemremains active no matter what errors may occur. Any subsystem that terminatesabnormally, hangs, or deadlocks, must be restarted within the shortest timepossible. It can be noted that the higher the level of abstraction, the moreimportant it gets that each subsystem can be restarted with as little disturbanceas possible in the other subsystems. For example, when recovering from anerror in a hardware controller process, it might be allowable to restart several6



associated processes, if it is the easiest way to recover, and any errors inducedby this are negligible. In comparison, an error in a �le server in an operatingsystem should not cause other major parts of the system to be restarted, ifavoidable.As outlined above, the common programming practice for handling possibledeadlocks in Erlang applications programming is to include a timeout limit(see section 4.3) in attempts to receive a message. If the expected message doesnot arrive within this time limit (on the scale of ten seconds, or less in very time-critical systems), it is assumed that it never will. The timed-out process thenterminates, usually informing some controlling instance of this, so it may berestarted if necessary for the functioning of the system. E�ectively, the timeoutis transformed into a proper error, causing the process to terminate abnormally.(More advanced schemes may be thought of, where resynchronization is �rstattempted, but they must ultimately rely on this mechanism.)Why timeouts are necessaryAll this is a relatively simple matter, but it is tedious and clutters the program.However, it appears that this mechanism must necessarily be included in allmission-critical programs. If an error is detected in some process (e. g. if itsignals abnormal termination), it is in general not possible to decide which otherprocesses were depending on it. If suitable, all possibly depending processes maybe killed, and the whole subsystem restarted; otherwise, it has to be trusted thatall depending processes will time out eventually (and relatively soon).Reversely, given that a message is missing, it cannot in general be decidedwhich process was supposed to supply the message, unless the correspondencebetween receivers and possible senders in the program is of a simple nature.In particular, if the error lies in the ow of control or data in such a way thatthe intended sender does not raise an exception in some way, then the timeoutmay be the only indication of the error that will ever appear during run-time.A process attempting to receive a message is e�ectively left on its own.Apparently, unless the program is proven to be fully correct, we cannot be ridof these timeouts if we want our program to be fail-safe. Also, if messages maybe transferred over a communication link, it can never be guaranteed that theywill eventually reach their destinations, and so even software veri�cation is notsu�cient for removing the timeouts. It would however be desirable to automatisethe adding of timeouts to the program, either as a source-level transformationor as a feature of the run-time system, e. g. by equipping all possibly suspendingprogram statements with a default timeout limit and handler except where suchhave already been explicitly speci�ed by the programmer. For important specialcases, such as server processes, software packages already exist (e. g. the Erlanggen server module) which hide most of the error handling involved.1.4 Program veri�cation { why and when?If, as we argued above, the timeouts and recovery mechanisms cannot be re-moved from mission-critical systems, for what reason would we want to gothrough the trouble of verifying that such a system is free { or partially free {from deadlocks? 7



As previously mentioned, recovering from deadlocks and other errors obvi-ously causes a temporary drop in the system throughput. If deadlocks occuroften, the impact on the general e�ciency can be great. As the probability ofsynchronization errors is a lot higher than that of other errors, it can be expectedthat a system which is at least partially veri�ed to be free from deadlocks willhave better performance than a more ad hoc-constructed system, and naturallybe less likely to lose information.Also, deadlocks are di�erent from other programming errors, in that they arein general signi�cantly more di�cult to reason about. The program code forthe internal work of any process concerns \only" the incoming data and thecorresponding production of output data. In contrast, the code handling theintercommunication of a number of processes is distributed over all those pro-cesses. To the programmer, this is the only part of the code where concurrencyreally makes a di�erence, because parts of a system may change state more orless independently. Traditional debugging tools are of little help in �nding er-rors in the communication pattern, because they do not regard the interactionof processes, beyond straightforward data ow.It can therefore be expected that of any undiscovered serious errors in a welltested system, the majority have to do with synchronization. When such errorsappear in a running system, they are hard to locate, and when attempting tocorrect the program it can be very di�cult to avoid introducing new errors. Ane�cient veri�cation tool could lower the probability of deadlocks to the same asthat of other software errors, or even less.Non-critical applicationsNor is it the case that every real-world program is mission-critical. For mostprogram tools, we are more or less satis�ed to know that the likelihood ofsoftware errors is small; even non-concurrent programs are in practice neververi�ed to be error-free. In contrast, speed usually remains important whateverthe application, and the handling of timeouts is somewhat time-expensive { inparticular when several may be pending simultaneously: both the maintainingand the handling of those which are triggered. For such non-critical programs, wewant to avoid using timeouts in as many places as possible, without inordinatelyincreasing the risk of unrecoverable errors occurring. For achieving this, staticveri�cation is necessary.So, if we can ignore the possibility of lost messages, and are not particularlyconcerned with quick detection and recovery of any and all errors, where cantimeouts be omitted? To see this, we list the di�erent cases of sender anomalies:� Abnormal termination.� Control or data ow errors. (The sender does not terminate, but will neversend the expected message.)� Starvation. If the sender is starved (not deadlocked) it is not really anerror in the sender itself, but in the processes upon which it is depending.Inductively, starvation is never the actual source of the error.� Deadlock. (The sender is involved in a deadlock, that might or might notinclude the receiving process of this discussion.)8



Of these, deadlock is then the only case where timeouts are a necessary pre-caution, since the remaining actual error sources do not pertain to the syn-chronization itself. Timeouts can thus be omitted for all possibly suspendingprogram points which can never be involved in a deadlock; also, for all possibledeadlocks (circular waits) it is su�cient to assure that at least one involvedsynchronization statement is always able to time out and break the deadlock.1.5 A modular strategy for veri�cationVerifying absence of deadlocks for a large programwill of course, like any di�cultprogram analysis, take relatively long time to perform. If the program is verylarge { on the order of a hundred thousand lines of code, as in many importantindustrial applications { the time needed might well be forbiddingly long. Also,even if the veri�cation would �nish in reasonable time, it would be impracticalto be forced to reanalyse the whole program each time a (possibly quite small)part of it has been modi�ed.What we would like to be able to do, is to build larger systems from smallersubsystems of intercommunicating processes that can be treated as independentmodules1 with well-de�ned interfaces, and verify for each individual module thatno deadlock can occur in which all involved processes are part of that moduleonly. In other words, if a deadlock occurs which includes processes that are partof the module, then at least one process in the deadlock lies outside the module.Obviously, when a system is constructed from internally deadlock-free mod-ules, we want to verify that the composed system is itself free from internal dead-locks, so that it can be treated as a new module. Such deadlocks can then onlyoccur in the communication between the modules forming the composed system.This fact should allow analysis of a complex system to be simpli�ed, by �rstrecursively analysing its component modules in isolation, and then analysingonly the interaction between these modules. In addition, when the programis modi�ed, only those modules containing a changed component need to bereanalysed.1.6 Related WorkMasticola gives in [19, Chapter 10] a thorough survey of the �eld of deadlockanalysis and detection methods up until 1993, covering both formal and morepractically oriented methods. We discuss Masticola's own work in depth in chap-ter 6.Cheung and Kramer [5] give an unsafe analysis (i. e., one that underestimatesthe actual behaviour) for distributed systems, which is computationally cheapand could be used in a development tool, especially since the underestimationassures that the programmer is not bothered with false alarms. Particularly, theauthors suggest, such a tool would be useful in the early, tentative stages ofprotocol speci�cation.Many data dependency analyses for concurrent logic programs, e _g. Debrayet al. (1996) [11] assume a �xed scheduling of processes (goals), or are in other1The term \module" used here in a general sense, and not speci�cally referring to themodule system in Erlang. 9



ways too restricted to be used for deadlock analysis of general Erlang pro-grams. Debray (1994) [12] gives a framework for data ow analysis of concurrentlogic programs, but as it depends on the use of a substitution-closed domain, itcannot be used to reason about dependencies between variables (messages).Codish, Falaschi and Marriott give in [6] (published 1994) a suspension anal-ysis for concurrent logic programs, based on conuence of reduction orders, andin [7] (conference proceedings, 1993) together with Winsborough extend this toa conuent semantics for concurrent constraint programs. The method can beextended to a deadlock analysis, but is not applicable in practice to Erlangprograms because of the nondeterministic merging of message streams; see sec-tion 5.2.2.More lately, Matthews [20] (1995) showed that absence of deadlock in dataow networks with lazy pipes can be proved without referring to an opera-tional semantics { an \extensional" proof. Stoller and Schneider [23] (1995) givea Hoare-style proof system for programs using causally-ordered [18] message-passing.Colby [9] gives an analysis of the communication topology of concurrent pro-grams, using abstract interpretation [10]. The analysis is non-uniform, meaningthat it distinguishes between iterations in in�nite recursive patterns [13], andworks by relating pairs of processes. The results can be very precise even forprograms that have a recursive structure with dynamic creation of processes andchannels, and precision is not necessarily reduced when channels are passed inmessages. The method is not immediately applicable to the problem of deadlockanalysis, because it does not relate processes in a wider context, but could playan important part in demonstrating and/or eliminating possible dependenciesbetween processes.In [8] (unpublished), Colby gives a framework for determining both synchro-nization and aliasing properties for a concurrent functional language, usingDeutsch's [14] lattice of pre�x relations on strings, where the strings are takenfrom regular languages for control paths and data. The method can be said togeneralise that in [9], from the observation that aliasing and synchronizationare mutually dependent, and can be used to show a large variety of di�cultsynchronization properties of programs, apparently with very good precision.Colby gives an example showing that advanced communication-topology anal-ysis can be done in polynomial time, but no results from automated analysis ofreal programs have been reported as of this writing. It is unclear whether themethod can realistically be used on large programs for the purpose of verifyingabsence of deadlocks.Over the last decade, much work has been done in the �eld of distributed databases, trading systems, operating systems, and similar, regarding the reliabilityof such systems. The concept of process groups (see e. g. [3]) has a lot in commonwith the modular veri�cation of subsystems we suggested in section 1.5.1.7 Summary of resultsIn this thesis, we have �rst argumented for the need of automated veri�cation ofabsence of deadlocks in concurrent programs, discussed when and where time-outs remain a necessity even if such veri�cation has taken place, and suggesteda strategy for modular veri�cation of subsystems of concurrent programs.10



Generally, we have given a wide overview of the area of process communica-tion and synchronization problems with focus on the semantics of Erlang, andwe have given models of the semantics of the Erlang messaging system and itssynchronization primitives both in terms of synchronously communicating se-quential processes and of Concurrent Constraint Programming. This work haspointed out interesting particularities of the di�erent concurrency and synchro-nization models, and showed upon the non-applicability to Erlang programsof analyses designed for these speci�c concurrency models.Lastly, we have reviewed Masticola's method [19] of verifying absence of dead-lock by detecting and excluding possible deadlock cycles, discussing its appli-cability to Erlang programs. As a side-e�ect of this work, we have extendedMasticola's method so as to make its application to programs in Erlang andsimilar languages theoretically sound, and giving it a more abstract shape [4].1.8 Future workOf most interest to us would be the implementation of our extension [4] of Mas-ticola's method [19], for programs in Erlang or a similar language, and thepractical application of the modular approach to veri�cation of reactive systemswe suggested in section 1.5. It would then be very interesting to see if Colby'scommunication topology analysis [9] could be used to improve the precision ofthe deadlock analysis, and in particular, if the problem of dynamic process cre-ation in the program to be veri�ed can be e�ciently and automatically handledusing the information yielded by such a topology analysis.Of particular interest would also be to see a practical implementation ofColby's synchronization analysis [8], to see if it is realistic for large, real-worldprograms.1.9 AcknowledgementsMany thanks to: my parents for all their support, my tutor H�akan Millroth forbeing patient2, and my sister and my friends { Marcus in particular { for puttingup with my lugubriousness and keeping me going, basically.No thanks to: the system.

2Hofstadter's Law: It will always take more time than you expect, even when Hofstadter'sLaw has been accounted for. 11



Chapter 2Showing absence ofdeadlocksAny conservative information regarding where a program might deadlock, canbe viewed as a description of a set of machine states, containing at least allreachable states which may contain a (local) deadlock. If the described set can beshown to be empty, the program is free from deadlocks. Ideally, only reachabledeadlocked states would be included by the description, but for programs ingeneral the problem is not decidable.2.1 Finding reachable program statesThe \traditional" and straightforward way of �nding the above set is to induc-tively generate it from the base set of possible initial states for the program.For any state already in the set, those states reachable from that particularstate (given the program text and the language semantics), called the succes-sors of the state, are added to the set, until no new states can be added. Then,any states which can be shown to de�nitely not contain any deadlocks may beremoved. (See [24] for one of the earliest examples of this method applied toconcurrent programs.)For certain limited types of systems this approach, called state enumeration, ispractical, but for concurrent programs in general it quickly becomes intractable.The set of reachable states for a program is often in�nite, in which case theabove procedure will not terminate. Also, experience has shown (see e. g. [19,Section 7.6]) that for large programs, even if the number of reachable states is�nite, it is commonly much too great to be handled directly.Instead of the actual program states, the enumeration is therefore in the gen-eral case performed over abstract descriptions of states, or rather, sets of states.If the abstraction is chosen suitably, the process will terminate in reasonablyshort time, at the cost of a loss in precision, i. e., more states will (in general) bedescribed by the generated set of abstract states than can actually be reachedby the program.In connection with the above, we take the opportunity to mention a widelyused, very general method of program analysis, called abstract interpretation [10],which we will not describe in more detail, but which can be used to gather any12



kind of (�nite) information regarding properties of the di�erent points of ex-ecution of a program, such as the possible (abstract) machine states at eachprogram point. Abstract interpretation can be seen as an extreme abstractionof state enumeration, tracing every execution of the program over abstract de-scriptions of its states.2.2 Identifying deadlocked statesTo identify globally deadlocked machine states is not di�cult { they are preciselythose which have no successors, but do not represent the termination of theprogram. In order to identify a locally deadlocked subset of processes, however,it must be shown that from a certain state on, all of the processes in the subsetwill remain suspended inde�nitely. More to the point, to show for any particularsuspended process that it is not locally deadlocked, it must be shown that theprocess will necessarily be enabled to continue its execution in some subsequentstate (assuming process scheduling is fair), something which is very di�cult todo in practice.For useful application to real-world programs, a deadlock analysis must beable to verify absence of local deadlocks, but the apparent problem is that of�nding an abstraction which guarantees �niteness without losing too much inprecision. The wider the approximation, the more di�cult it becomes to ruleout the possibility of deadlock in the described states.2.3 Formal methodsWith a \formal method" is generally meant the proving of some speci�c prop-erty of a particular program, by means of mathematical-logical deduction, eitherby hand or automatically. The results are, of course, neither more nor less for-mally valid than those of e. g. a state enumeration method, and the distinctionbetween formal and other methods is not de�ned. Often, though, it is impliedthat a formal method yields exact solutions in those cases where it terminateswith a solution. Usually, automatised proof methods require the user to supplyinformation such as loop invariants, which makes the application of analysis toa program a non-trivial task.Formal proof methods for concurrent programs is a quite young �eld, evenwithin computing science. Most existing methods are e�ectively built on stateenumerations, verifying formally for each state that it cannot contain a deadlock,and thus have the same practical limitations as state enumeration methods,apart from generally being an order of magnitude more time-consuming thanthese.See also section 1.6 for related work on formal methods.
13



Chapter 3Process communicationThe di�erent strategies for process communication in concurrent languages canbe divided into two classes: asynchronous communication and synchronous com-munication. Each can easily be described in terms of the other, and there is nogeneral consensus as to which is the more basic of the two.3.1 Asynchronous communicationWhen information (anything from an arbitrary message to a simple signal) istransferred asynchronously, the sender does not wait for the information tobe accepted by the receiver, but immediately continues execution, which mightinclude the sending of further messages. The receiver will independently attemptto accept a message when it needs the information, often entering a waitingstate which could last for any length of time, until suitable data is delivered.In a completely general implementation of asynchronous communication, anynumber of messages may be sent regardless of whether previous messages havebeen accepted or not, the only limitation being the amount of space availablein practice for message bu�ering.The most studied form of asynchronous communication is that of ConcurrentLogic Programming, or in more modern terminology, Concurrent ConstraintProgramming (CCP). For a short introduction to CCP, see section 5.2.1.3.2 Synchronous communicationWhen two processes communicate synchronously, each independently enters astate where it is waiting for the other to become ready to exchange information.Usually, the data is transferred in a single direction, where one process is specif-ically attempting to send and the other to receive. Synchronous communicationis used in several concurrent imperative languages such as Ada, Concurrent Cand Concurrent ML, its main advantage being that no implicit bu�ering needsto be done by the run-time system. In fact, asynchronous communication canbe seen as bu�ered synchronous (unidirected) communication, where the senderonly suspends if there is no room in the receiver's message bu�er. (In the com-pletely general case, the bu�er is assumed to be in�nite).14



On the other hand, synchronous communication can be seen as two-way asyn-chronous communication in two steps. First, the sender dispatches its messageand enters a waiting state. When the receiver has accepted the message, it dis-patches an acknowledge signal and proceeds with its own execution. Lastly, thesender receives the acknowledge signal, and can itself proceed.The description of this procedure displays the largest drawback of synchronouscommunication, namely, that almost twice as much housekeeping needs to bedone by the run-time system, which slows down execution. Furthermore, andmore importantly in practice, if the communication takes place between pro-cesses which exist on di�erent nodes in a network, twice as many messages needto be transferred over the comparatively very slow communication links, wherein a majority of the cases a one-way, asynchronous transfer would have su�ced.Also, synchronously communicating concurrent programs can be said to betwice as sensitive to deadlocks and starvation, compared to asynchronouslycommunicating ones, because there are twice as many opportunities for pro-cesses to become inde�nitely suspended, if either of the sending or the receivingprocesses should be malfunctioning, or messages be lost.1 Generally speaking,synchronusly communicating programs are much tighter coupled than asyn-chronously communicating ones, and this is an additional drawback when con-structing large programs, since it makes them not only sensitive to errors, butalso di�cult to modify.Furthermore, it is apparent that in synchronous communication, additionaldata must be associated with each sent message, in order to tell how to properlyreturn the acknowledge signal.3.3 Nondeterminism and process schedulingThere are two basic sources of nondeterminism in the semantics of concurrentprograms: �rst, versions of the nondeterministic choice construct, and secondly,nondeterministic process scheduling (reduction order) in situations where pro-cesses exchange data.Actual implementations of course always make deterministic choices, but theyare free to choose any strategy that falls within the space of nondeterministicbehaviour in the language speci�cation. (Often, fairness is a requirement; seesection 4.2.)Nondeterministic choiceA choice construct consist of a �xed, �nite, set of condition{action pairs, orclauses. The conditions are in practice tests on variable data, and the corre-sponding action may be executed/computed only if the condition evaluates totrue. The evaluation of a condition should not change the program store/variablebindings. In the general case, conditions may overlap, i. e., more than one mayevaluate to true, but only one action may be selected for evaluation. If all con-ditions evaluate to false, the evaluation of the construct itself fails.1In some implementations, the system will either return the acknowledge signal to thesender, or cause it to fail, if it is the case that the message cannot be transferred, i. e., ife�ectively the communication channel is closed.15



The following is the "canonical" example of how a nondeterministic choiceconstruct can be used, expressed in the syntax of Erlang:max(P) ->case P of{X, Y} when X <= Y -> Y;{X, Y} when X >= Y -> X;end;max(P) yields the maximum of a pair P of numbers. If the numbers are equal,any clause matches (and in this example, they yield the same result if that isthe case). Note, however, that in Erlang, the semantics of the case construct(and its variant, the if) is not actually nondeterministic { the clauses are triedin the textual order.A nondeterministic choice could be used to select any message currently inthe receive-bu�er, which matches a speci�c pattern, thus making the order of ac-cepted messages nondeterministic. In Erlang, however, the receive constructmatches the bu�ered messages in order of delivery; see section 4.3.Nondeterministic process schedulingWhen more than one process can a�ect the value of a data item, the result of theprogram execution may depend on the order in which processes are executed.The program semantics is then said to be non-conuent.For instance, suppose that two processes A and B exist, such that both areready to execute, where A will eventually reach a program point where it setsa global variable X to the value 1, and similarly, B will eventually set X to 2.Suppose ready processes may be selected for execution in any order. A thirdprocess C, also ready to execute, which will read X and take its action dependingon the found value, can then receive any of three values: 0, 1 or 2, assuming thatX initially had the value 0. Basically the same situation occurs with multiple-writer streams, if more than one process is ready to send on a single channel,when some process is ready to receive on that channel.In addition, whether processes are executed atomically from the point whenthey are selected by the scheduler, until they explicitly enter a suspended stateor terminate, or their execution may be interleaved with that of others (which isof course the more general case), can further a�ect the outcome of the programexecution.In Erlang, since there are no global variables, and all variables must bebound before they are referenced (i. e., unbound variables may not be passed asarguments), the message-passing system is the only place where process schedul-ing may a�ect the semantics of a program (not considering real-time e�ects).We can modify the above example so that process C is waiting for a message,while both A and B are ready to execute, and will eventually send messages 1and 2, respectively, to C. Which message is actually received by C depends onthe scheduling, and on the implementation of the message-passing system.However, it turns out that the scheduling of processes in Erlang (assumingit meets the fairness requirement) is basically irrelevant to the semantics ofErlang programs. The reason for this is that the message bu�ering and thepossibility of transfer delays completely hides all and any e�ects of processscheduling (see chapter 5 for details). Thus, unless we study a model in which16



we have placed additional restrictions on the behaviour of the message-passingsystem, we need not consider the e�ects of di�erent process schedulings.
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Chapter 4Introduction tothe Erlang languageErlang was originally invented as a programming notation to be automat-ically translated into a concurrent logic language. The �rst implementationsused Parlog [16] as the target language; this was then changed to Strand [15] fore�ciency reasons. (Section 5.2.2 discusses the translation from Erlang to lan-guages such as these.) Both of the latter languages inherit most of their syntaxand terminology from Prolog [22] and CSP [17], and a lot of that has carriedover also to Erlang. Later implementations of Erlang are however built onabstract machine models designed speci�cally for its own particular semantics.Unlike Parlog and Strand, Erlang is a functional language. It has constructsfor explicit sequentialization of evaluations (as is common in practical functionallanguages), and it is strict, i. e., all parameters to a function call are evaluatedbefore the call is performed. Variables are single-assignment only and must bebound before they are used in an expression. There is no destructive updatingin the language.It should be noted that as of this writing, Erlang is still under much de-velopment, and that what is stated here applies primarily to the language asdescribed in the 1996 edition of \Concurrent Programming in Erlang" [2].Still, for the purposes of this work, we are only concerned with the core of thelanguage, which is not likely to change in any signi�cant way.4.1 The functional coreThe basic syntax is similar to Prolog. Identi�ers whose �rst character is a cap-ital letter are automatically interpreted as variables, and each occurrence of asingle ` ' (underscore) character represents a distinct and anonymous variable.Atom names can be surrounded by single quotes in order to contain other-wise unallowed characters. A character sequence surrounded by double-quotesis shorthand notation for the corresponding list of character code integers. Nu-meric literals have the expected syntax.Erlang is dynamically typed. This implies that the type of the value assignedto a certain variable in some function is not necessarily the same over all possibleinvocations of that function. There are four types of primitive values:18



� Atoms (\terms" in the terminology of mathematical logic)� Numbers (integer or oating-point)� Process identi�ers (or \Pids")� References (automatically generated system-unique objects)In addition, there are two forms of compound data types: tuples fX1, X2,... Xng and lists [X1, X2, ... Xn | Remainder], where it should be notedthat Remainder need not be another list (although it usually is). The form [X1,X2, ... Xn] denotes the list [X1, X2, ... Xn | []]. Such lists, terminatedby the empty list [], are called proper or well-formed. In Erlang terminology,a term is a data element, i. e., an element of a primitive or a compound datatype.There is no functional type. Function references can be passed around andused by giving the name of the function as an atom, together with its arity. Ingeneral, two functions with the same name are considered distinct if they havedi�erent arity, so it is no error to de�ne, say, f(X) and f(A, B) in the sameprogram.Variable binding and function evaluationPattern matching is the basic way in which variables become bound. An assign-ment X = Expression is just a special case of the pattern matching primitivePattern = Expression. Its result, assuming the match succeeds, is the valueof Expression, allowing constructs like X = fA, Bg = E, the `=' operator beingright-associative.Together with guards, pattern matching also provides the means for case selec-tion in the language. A function is de�ned by a sequence of clauses, whose headsspecify patterns to be matched with the passed arguments, optionally quali�edby guards. Guards are sets of tests (arithmetic and elementwise comparisons andbuilt-in test functions) on terms. Such terms may contain arithmetic operationsand calls to a small set of built-in functions, but not e. g. calls to user-de�nedfunctions, since a guard test may not cause a side-e�ect in any way.The arguments of a function call are matched sequentially against the clauseheads that de�ne the function, and if a match succeeds, the guard tests (ifany) of that clause are evaluated; these normally involve variables occurring inthe argument patterns, but may not introduce new variables. The evaluationorder of a set of tests is not de�ned. If the guard succeeds (or is empty), theclause is selected and its body is evaluated. Otherwise the next clause in turnis attempted. There is no backtracking; if no clause matches, the program fails.A clause body consists of an expression to be evaluated. Comma is used asa left-associative in�x sequencing operator which evaluates its left argumentbefore its right; its result is that of the right argument. In all other cases, theevaluation order of arguments is not de�ned.An exampleFigure 4.1 shows a simple example of a program in Erlang (Armstrong et al. [2,program 1.1]). Only explicitly exported names can be referenced from outsidethe module; such a reference would be written math1:factorial(N).19



-module(math1).-export([factorial/1]).factorial(0) -> 1;factorial(N) -> N * factorial(N - 1).Figure 4.1: Erlang program example.In their most primitive form, clause-matching languages require a new func-tion (or predicate, as it be) to be written for each situation where di�erentcases are handled. To simplify programming, Erlang provides the case andif primitives, where case o�ers the full pattern matching with optional guards,and if is a shorter form with guards only. These can be viewed as anonymousfunctions with a solitary de�nition and use. It should be noted that there is noboolean data type, and that the use of the keyword true for catch-all (empty)guards in if constructs is merely a syntactical convention.This is then an alternative way of de�ning the factorial function in �gure 4.1:factorial(N) ->if N == 0 -> 1;N > 0 -> N * factorial(N - 1)end.(Actually, this version is stricter, since it uses the guard N > 0 in the secondcase. To be equivalent to the �rst de�nition, this guard should be true.)4.2 ConcurrencyThe built-in function spawn causes the evaluation of a function as a separateprocess, yielding the Pid for the new process. The originating process does notwait for its completion (but can be informed of this via signals, where desired).When the top-level function of a process has been evaluated, the process termi-nates. The result computed by the function is lost. Data are transferred betweenprocesses using the message mechanism described below.The scheduling of processes in an Erlang implementation is not �xed, butmust ful�ll two requirements. It must be fair, i. e., a process that is ready to runmust eventually become scheduled, and, secondly, no process may run for morethan a short period of time if there are other processes ready to run. This latterrequirement exists for practical purposes only (viz., for short response timesin real-time systems), and holds no importance to our discussion. The period,known as a time slice, is typically in the range of a few milliseconds or less.4.3 Inter-process communicationCommunication in Erlang is asynchronous. The primitive `!' (send) is an in�xoperator whose left argument is the Pid of the receiver process and whose rightargument is the message to be sent. A message is any constant value (term).The result of the expression Pid ! Message is the value that was sent.20



receive<pattern 1> [when <guard 1>] -><actions 1>;...<pattern N> [when <guard N>] -><actions N>;[after <timeout-expression> -><timeout-actions>]end Figure 4.2: The syntax of the receive primitive.The send operation proceeds immediately without even waiting for the mes-sage to be delivered to its destination (which could be on another computer).If the receiver process has terminated when the message is sent, this does nota�ect the sender in any way, and the message is simply lost. Otherwise, themessage is stored in the mailbox of the receiver process.The order in which messages are delivered is not necessarily the same as theorder in which they were sent, taken over time. (In particular, this is noticeablewhen messages are transferred over a network, in distributed implementations.)The language only guarantees that messages with the same sender and receiverprocesses will be delivered in the same relative order as that in which they weresent (often referred to as �rst-in-�rst-out, or FIFO, ordering). Primarily, thisimplies that message passing cannot be interpreted as an atomic operation, andmay be preempted before the message is delivered to the receiver's mailbox.Just as the process scheduling is required to be fair, it is also required of im-plementations that sent messages will eventually be delivered (or be lost, e. g.if the receiver has terminated).Receiving messagesDelivered messages are kept in the mailbox in incoming order, and are notremoved until explicitly received by the process. To receive a message, a set ofpattern/expression pairs is speci�ed, and the mailbox is searched in order fromolder to newer for messages that match one of the patterns. Each message ismatched against all patterns in sequence before the next message is tried. If amessage is found to match a pattern, it is removed from the mailbox and thecorresponding expression is evaluated. If no message in the mailbox matchesany of the patterns, the process will suspend until such a message is deliveredor a timeout occurs.All this is handled by the primitive receive. Its full syntax is shown in�gure 4.2, where <timeout-expression> evaluates to an integer or the atominfinity. An integer value represents a time measured in milliseconds. A valueof zero causes the timeout to occur immediately after the current contents of themailbox have been searched, while infinity inhibits the timeout completely.Leaving out the after part is equivalent to specifying infinity, so the receivewill then terminate only when a matching message is received. If no patternsare speci�ed, no message can be matched, e�ectively turning the construct intoa delay. Like the similar case primitive, the \actions" are the expressions which21



will be evaluated depending on the selected case, and the value of the primitiveitself is the same as that of the last expression evaluated within it.Message priorities can be implemented by nesting one receive primitivewithin the after part of another with a zero timeout value, causing a completesearch of the mailbox for a certain set of patterns before any other patterns areattempted or new messages waited for.4.4 Other featuresErlang includes several other features, not important in principle to our dis-cussion. The most signi�cant of these are the module system, which allows pro-gram modules to be loaded or updated dynamically, the global Pid registrationdatabase, process dictionaries, links and signals, error handling, run-time codereplacement, and ports.
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Chapter 5Translational semanticsof ErlangMost work on analysing process synchronization behaviour (in fact, almost all)has been directed at synchronously communicating processes and at Concur-rent Constraint Programming (Concurrent Logic Programming). In order to seewhere such results and methods can be applied to systems of Erlang processes,we need to describe the semantics of Erlang programs, and in particular theasynchronous inter-process communication, in terms of these concurrency mod-els. In such a description, there is not necessarily a one-to-one correspondencebetween the Erlang processes and processes in the target model.5.1 Synchronously communicating processesA central property of a system of (individually deterministic) processes com-municating by synchronous message passing only, is that it restricts all nonde-terminism to the choices of sender and receiver in synchronizations. It is thusnot dependent on, e. g., the scheduling of processes in the same way as a systemwhere processes test and assign values to shared variables. (Usually in message-based systems, processes do not in general share data, and messages are regardedas copied upon sending, as in Erlang itself.) This property allows communi-cation analyses to focus on the spawning (and termination) of processes, andon the synchronization events. At all times, every data item in the system islocally stored in some process, and common data ow analysis methods can beused for most of the part.5.1.1 Synchronous communication primitivesFor the purpose of this chapter, we will assume the existence of two primitivesfor synchronous communication: send(c;M) and receive(c), where c is a channelandM a message (any value). A process executing send or receive over a channelc will suspend until it can be synchronised with another process. If two processesexist in the same state such that one executes send(c;M) and the other receive(c)for the same c, both processes will be able to proceed, M being the result ofthe receive primitive. For our discussion, we can leave the result of the send23



primitive unde�ned at all times. If the channel is closed, we assume that bothprimitives proceed immediately, the result of a receive unde�ned.Note that we do not make any assumptions about the uniqueness of sendingand receiving processes here; it is possible that for a speci�c channel, severalprocesses may be waiting simultaneously to send or receive. The semantics ofthese primitives are nondeterministic in this respect, and any send/receive pairmay be chosen for reduction. In a model of an Erlang system, however, therewill be at most one receiving process for any channel.5.1.2 Modeling the semantics of the message passingFor communication analyses to be conservative (safe), the model being usedmust correspond to the most general interpretation possible of the languagesemantics. From the description in section 4.3 of message passing in Erlang,we extract the following central facts:� An Erlang process must never be blocked unless it explicitly executes areceive. In particular, execution of the asynchronous send (`!') primitivemust always be able to complete, regardless of whether any earlier sentmessages have been delivered or not.� The transferring of a message from its sender to the mailbox of the receivercannot be assumed to be an atomic operation; all program execution mayproceed for arbitrarily long while a particular message is in transfer, withthe exception that any subsequent messages having the same sender anddestination as that message will not be delivered before it (so-called FIFOordering).From the �rst point, it is apparent that a message, once sent, must be de-scribed as being carried by a process separate from the sender and receiverprocesses, in a synchronous model. To see this, suppose the receiver process isinvolved in an arbitrarily long (or nonterminating) computation containing noreceive call. It cannot then for any reason execute a receive, since this wouldcause it to suspend inde�nitely if no sender existed. (We assume that there isno possibility of \polling".) Thus, any attempt to transfer a message to thatprocess (executing a send) would block until the process reached a receive, orpossibly forever. To allow the asynchronous send to complete immediately, themessage must be handed over to a carrier process, which can synchronise withthe receiver at a later time.From the second point above, it can be deduced that there must be at leastone carrier process for each pair of source and destination processes. Considerthe program in Figure 5.1. (The result of the call self() is the Pid of theexecuting process. Also, recall that the result from a spawn() call is the Pid ofthe new process.) The result from evaluating the call nondet:a()may be eitherof t1 or t2, since there is a possibility (in particular if the processes are runningon distinct nodes in a distributed implementation) that t1 is delayed duringtransfer, so that meanwhile, t2 is transferred to B via C. Eventually, B will thenreceive t1 and pass t2 back to A.This example shows that there must be a separate carrier process for eachsource{destination pair, or otherwise t2 could not be transferred to C, nor for-warded to B, before t1 has been delivered.24



-module(nondet).-export([a/0]).a() ->A = self(),B = spawn(nondet, b, [A]),C = spawn(nondet, c, [B]),B ! t1, % Send one message to BC ! t2, % ... and one to Creceive M -> M end.b(Pid) ->receive M1 -> M1 end, % Receive two messagesreceive M2 -> M2 end,Pid ! M1. % Forward the first receivedc(Pid) ->receiveM -> Pid ! M % Forward the messageend.Figure 5.1: Nondeterministic ordering of two messagesFurthermore, consider the changes in Figure 5.2 to the previous program(process C remains as before). The possible orderings in which the (now three)messages can be delivered at B are, in order of likelihood: t1, t2, t3; t1, t3, t2;and t3, t1, t2. Since t1 and t2 have the same sender and destination processes,their relative order is �xed. Obviously, it is necessary that the sending of t2 canbe completed even if t1 has not yet been delivered, if the model is to describeall possibilities allowed by the language semantics.Since we assumed that the only source of nondeterminism in the languageis the choice of sender and receiver in synchronizations, the nondeterministicselection of the next message to be delivered must be modelled by processesperforming send operations over the same channel. This implies that carrierprocesses, once handled a message, will be unconditionally suspended until themessage has been delivered. Thus, the last example shows that apart from acarrier process, at least one other process is necessary for each source{destinationpair.Letting this other process be an (unbounded) bu�er server, acting on re-quests from the sender and carrier processes (see [17] for an early example ofa bounded bu�er process using synchronous communication), our model of theasynchronous messaging system is complete, as illustrated in Figure 5.3. Thefull model of Erlang inter-process communication is described in more detailbelow.5.1.3 TimeoutThe timout mechanism can be easily modelled in the following way: a separate(externally de�ned) timer process is spawned by the receive, whose task it is to25



-module(nondet_2).-export([a/0]).a() ->A = self(),B = spawn(nondet_2, b, [A]),C = spawn(nondet, c, [B]),B ! t1,B ! t2, % Send a second message to BC ! t3,receive M -> M end.b(Pid) ->receive M1 -> M1 end, % Receive three messagesreceive M2 -> M2 end,receive M3 -> M3 end,Pid ! M2. % Forward the secondFigure 5.2: Nondeterminism and relative ordering of messages
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!(�;M) =c = bu�erchan(self(); �);send(c; write(M));M Figure 5.4: Asynchronous send (`!')send a timeout message when the speci�ed period has passed. This message maynot be detected immediately by the receiving process, but will eventually (likeall messages) be delivered. Thus it cannot be assumed that no other messagewill be received after the speci�ed time has elapsed; it only guarantees that theprocess executing the receive will not suspend inde�nitely. This follows theStrand implementation [1] of Erlang, and should be true for the language ingeneral.We want to keep the protocol between the receiver and the timer processesminimal, so we do not include any acknowledging of messages sent betweenthem. Therefore, when a receive which has spawned a timer �nds a matching(normal) message, it cannot know whether the timer process is still waiting, orhas dispatched a timeout message and terminated. In order to eliminate falsetimeouts, each new timer and the receive call which spawned it must thereforebe associated with a unique key, to be used to authenticate the timeout message.Timeout messages whose keys do not match that of the active receive call maythen simply be discarded.5.1.4 The complete modelWe give here a full description of a synchronous model of the inter-processcommunication in Erlang, using a pseudo-functional notation with semanticssimilar to Erlang itself; in particular, `;' (comma) denotes the sequencing op-erator. While the model has not been formally veri�ed, it should be regardedas nothing more than a sketch.With each Erlang process, we associate a channel for synchronous commu-nication, which is identi�ed throughout the system via the Pid of the ownerprocess, and let the function input(�) yield the channel identi�ed by Pid �.Asynchronous SendThe de�nition of the `!' (asynchronous send) primitive is given in Figure 5.4,in accordance with the discussion in section 5.1.2. The call bu�erchan(�1; �2)yields the channel for sending to the process which is bu�ering messages fromthe Erlang process with Pid �1 to that with Pid �2. We may assume that ifsuch a bu�er process did not exist previous to the call then it will be spawned,together with a carrier process, both given in Figure 5.5. These processes mustremain active at least until either the sender has terminated and no messagesremain to be delivered, or the receiver terminates; for clarity, however, we leaveout such details from the model. self(), as before, yields the Pid of the executing27



carrier(b; c; d) =send(b; read);msg(M) = receive(c);send(d; msg(M));carrier(b; c; d)bu�er(c; d;Q) =x = receive(c);( bu�er(c; d; append(M;Q)) if x = write(M)transfer(c; d;Q) if x = readwhere transfer(c; d;Q) =8>>>><>>>>: write(M) = receive(c);send(d; msg(M));bu�er(c; d;Q) if Q = []send(d; msg(head(Q)));bu�er(c; d; tail(Q)) otherwiseFigure 5.5: The carrier and bu�er server processesErlang process, append(x; L) appends element x to list L, and head(L) andtail(L) select the head and tail parts respectively of list L.Asynchronous ReceiveThe model of the asynchronous receive primitive is divided into two stages: theinitial stage where the bu�er holding already delivered messages is searched, anda waiting stage where new messages are accepted one at a time, until a matchis found or a timeout occurs.For the following, we have assumed the existence of a primitive match(�; x),where � is a sequence �1; : : : �n of patterns (with guards), which yields aninteger i > 0 if �i is the �rst pattern in � that is valid for x, or zero if no matchis found. The representation of patterns and guards is left out of this discussion.We have also assumed that each Erlang process has an associated bu�er ofterms stored in incoming order, with the operators store(x), which adds a termx to the bu�er, delete(x), which removes the oldest occurrence of term x fromthe bu�er, and lookup(�), which yields msg(x) if x is the �rst term in the bu�ersuch that match(�; x) > 0, or the unit tuple () if no such x exists,Let receive be de�ned as shown in Figure 5.6, where the parameter � is asequence �1; : : : �n of patterns, and E = e1; : : : en a sequence of correspondingexpressions, for any number n > 0. The parameter t is a timeout limit (which iseither a nonnegative integer or infinity) and T is the corresponding expression.case is simply the Erlang case primitive, taking the obvious parameters.The primitive timer(t; c) is assumed to spawn a timer process, given a positive28



receive(�; E; t; T ) =x = search(input(self());�; t);� T if x = ()case(M;�; E) if x = msg(M)where search(c;�; t) =x = lookup(�);8>>>>>><>>>>>>: delete(M); x if x = msg(M)() if x = () and t = 0waiting(c;�; ()) if x = () and t = infinity� = timer(t; c);waiting(c;�; �) otherwiseand waiting(c;�; �) =x = receive(c);8>>>>>>>><>>>>>>>>:
() if x = � and � 6= ()x if x = msg(M) andmatch(�;M) > 0store(M); if x = msg(M) andwaiting(c;�; �) match(�;M) = 0waiting(c;�; �) otherwiseFigure 5.6: Asynchronous receive
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integer t and a channel c for synchronous communication, and yield the (unique)Pid of the new timer as its return value. Following the discussion in section 5.1.3,we use this Pid to authenticate the timeout message. The timer will then simplysend its own Pid on channel c after time t (measured in milliseconds), and thenterminate.5.1.5 SummaryExpressing the semantics of Erlang message passing in terms of synchronouscommunication primitives is a more complicated matter than it would appearat a �rst glance. Apart from the processes executing the Erlang code, theremust be an extensive structure of bu�er and carrier processes { one of each perpair of sender and receiver processes.The model as detailed above is interesting in its own right, while it makesapparent several aspects of the Erlang semantics. It should be obvious, though,that it is inadequate as a direct means to facilitate communication analyses,mainly because of the combinatorial explosion in the state space, caused by theextra processes, the bu�ering, and the nondeterminism.Analyses for systems using synchronous communication all exploit the factthat such systems are (generally) constructed so that there is a tight couplingbetween the producing/sending and the receiving/using of data { processes insuch systems often proceed in lock-step. Erlang programs, however, are nottypically written in this way, because the asynchronous messaging system en-courages the programmer to write more \relaxed" code.Apparently, on top of the above model is required an abstraction which treatsthe message bu�ering processes separately from the processes executingErlangcode, and so nothing is gained from basing an analysis on a synchronous model.However, where a communication analysis can decide that an Erlang programdisplays synchronous behaviour, methods from that area may be successfullyapplied.5.2 Concurrent Constraint ProgrammingConcurrent Constraint Programming, or as it is often known, Concurrent LogicProgramming, is basically logic programming extended with (or rather, gener-alised to) concurrency. Since there is much natural parallellism in most logicprograms, this is quite a straightforward generalization { much more so thanthe concurrent extensions of imperative or functional languages. In the lat-ter, concurrency is primarily explicit1, i. e., separate processes are created onlythrough execution of instructions such as the spawn in Erlang. In ConcurrentConstraint Programming, on the other hand, all computations are implicitlyconcurrent, and instead, any data dependencies must be given explicitly. Thecloseness to logic programming and mathematical logic has made it an attrac-tive �eld of research, and much work has been done in this area in the last yearsregarding static analysis of data dependencies.1Explicit at least for communicating processes. Isolated subcomputations may be executedconcurrently in so-called threads, and this is sometimes done implicitly.30



5.2.1 Introduction to CCPFrom a simplistic view, the Concurrent Constraint Programming, or CCP, para-digm reduces all computational concepts to the execution of a simplest form ofprocesses usually called \atoms". The term \constraint programming" refersto the view of variable bindings as a global, monotonically growing set of con-straints on variables. A process (an atom) executes atomically once scheduled,terminating in constant (and very short) time. The actions an atom can per-form are limited to the instantiation of variables and the spawning of new atoms.(The parent atom always terminates before any of its children are scheduled.)Atom execution is usually referred to as reduction, and is performed much as afunction call in Erlang, with the modi�cation that any matching clause maybe selected { not necessarily the topmost. We say that a computational state �ireduces to state �j with selected atom A (i. e., the atom reduced at that step)in �j , and selected clause C in the program, and write �i �! �j . Each atomspawned in a reduction is considered distinct from all atoms occurring in someprevious state (and all variables introduced in the selected clause are renamedaway from any previously occurring variables).The main di�erence from Erlang and other functional languages is that inCCP, variables can be passed around without being bound. Instead of calling afunction and wait for it to return a value, an unbound variable can be passedto the subcomputation, as a slot to place the result in. (Any number of un-bound variables can be passed, so the code for an atom does often not denotea unique mathematical function). Unbound variables can also be made part ofdata structures, which are then referred to as incomplete.Data dependenciesSynchronization in CCP is handled solely by use of clause guards, demandingthat certain input variables be bound (at least partially) to certain values be-fore the clause may be selected. An atom remains suspended until some clausematches (or until no clause is consistent with the variable bindings, in whichcase the atom fails). Thus, an atom can be made to wait until another atominstantiates a variable shared between them. Commonly, CCP languages are so-called committed choice languages, implying that there is no backtracking, andconsequently, atom failure either causes the program execution to fail (beingthe \proper" action), or suspends the atom forever (a robust solution used e. g.by Strand, but less correct).In the most general, still monotonic form of CCP, a program clause (or rule)can be written on the following form (see e. g. Yardeni et al. 1990 [25]):Head <- Ask : Tell | Bodywhere Head is the clause head as in Erlang, Ask is a sequence of guards,Tell is a sequence of variable bindings and Body a sequence of atoms to bespawned. The clause cannot be selected unless the Tell bindings are consistentwith the current state, and if it is selected, the bindings are performed as partof the (atomic) reduction. In languages like Strand [15], there is no Tell part,and bindings are instead performed by externally de�ned atoms included in thebody. This does in fact reduce their expressiveness somewhat; see [25].Lastly, unlike Erlang, where the comma-separated expressions in a clausebody are evaluated in textual order, those atoms spawned by a reduction in31



CCP may be scheduled in any order, unless they explicitly synchronise viashared variables, as described. In other words, the sequence of atoms in thebody of a CCP clause should be regarded as unordered. (Generally, this is alsotrue for the Ask and Tell sequences, but e. g. Strand guarantees left-to-rightexecution of the guard tests.)5.2.2 Translating Erlang into CCPLeaving out the handling of process failure and error recovery, system calls, etc.,there are three primary problems to be addressed in translating an Erlangprogram into CCP code. (A detailed description of the translation into Strandis given by Armstrong and Virding in [1].) The �rst problem is to implementthe functional semantics of Erlang; this is simply handled by adding an extraargument to the Erlang clauses, to hold the result. The second problem is tosequentialise the execution of the calls in the Erlang clause bodies. This canbe done by chaining a variable through all atoms, using two extra arguments{ one to be waited on until it becomes bound, and another which is bound tothe value of the �rst by the execution of the atom. (The actual value bound tothe variables is not important to the method, but typically the current processstate information would be passed along this chain.)The third primary problem is to make sure that the clauses de�ning a functionare tried in textual order. This however calls for a nonstandard extension toCCP, such as the otherwise guard test found in FCP(:,?) [25] and Strand, andcan not be implemented otherwise.Translating the case construct (including the simpler if form { see sec-tion 4.1) is straightforward, since as mentioned earlier it can be seen as short-hand for a call to an anonymous function, and all occurrences may simply betransformed into calls to unique \lifted" functions. E. g.,f(X) ->if X == 0 -> 1;X > 0 -> X * f(X - 1)end.can be rewritten asf(X) -> f_case_1(X).f_case_1(X1) when X1 == 0 -> 1;f_case_1(X1) when X1 > 0 -> X1 * f(X1 - 1).Message streamsThe only real problem left to do with the Erlang semantics is then that ofmessage passing between processes. First of all, we need to de�ne what anErlang process corresponds to in an execution of the translated program.An atom A occurring in one or more states in a reduction sequence �1 �!�2 �! � � � is a descendant of an atom B in the sequence if and only if A wasspawned as the result of reducing B, or reducing a descendant of B.An Erlang process, then, can be identi�ed with the set of all atoms in thesequence that are descendants of some atom A = spawn(: : :), and which are32



write(Pid, M, X, X1) <- X = [{Q, M1} | Xs] : true |write(Pid, M, Xs, X1).write(Pid, M, X, X1) <- true : X = [{Pid, M} | X1] |true.Figure 5.7: Writing to a shared streamnot descendants of a spawn that is a descendant of A. (For simplicity, we canassume that the initial state contains exactly one atom, which is a spawn.)It is not obvious how shared streams with an unbounded and arbitrary numberof producers (so-called multiple writer streams), like the message streams ofthe Erlang semantics, can be implemented in CCP { at least not withoutresorting to built-in extensions in the target language (thus removing all reasonsfor attempting to use a CCP model for analysing the communication in Erlangprograms): the Strand implementation used built-in stream merger operators.It turns out that the problem is equivalent to that of assigning each producera unique ID2. Given a unique identi�er, each producer can write to the sharedstream using the de�nition in �gure 5.7, where X1 should be unbound before thecall, and afterwards replaces X as the stream reference. The unique Pid guar-antees that no tuple fPid, Mg already exists in X. (A last stage can easily beadded between writers and consumers which transforms the stream [fP1, M1g,fP2, M2g, ...] into [M1, M2, ...].) Note that Q and M1 are merely place-holders in the above, and that Q is never equal to Pid if the �rst clause matches.(Also note that a direct Strand implementation would have to use a \trick"in the second clause, requiring that the head of the stream be unbound, sinceStrand clauses have no Tell part. Such tests make a program lose certain math-ematical properties, e. g. stability of non-delay, which are central to much of thereasoning about CCP programs; in fact, such properties are one of the mainthings that make CCP interesting, it being rather di�erent from concurrent im-perative or functional languages. This point is not of importance to us, though,since we are not restricted to the Strand subset of CCP.)Reversely, given multiple writer streams, a separate process can be created toreceive requests for unique identi�ers, and hand them out one at a time, e. g. inan unbound variable sent as part of the request. One consequence of all this isthat the mechanism for assigning Pids does not need to be explicitly speci�edin the translation, but can be invisibly incorporated in the execution of spawns,knowing that it does not violate the semantics of monotonic CCP.Stream mergersAs it turns out, in a generic CCP model of Erlang, a sending process willnot directly write the message into the input stream of the receiver. As thediscussion in section 5.1.2 showed, to cover all possible interpretations of theErlang semantics, there must be a separate stream between each pair of sender2Unique process identi�ers can be implemented directly in a fairly straightforward manner,using strings such that Pid � of process p is a proper pre�x of Pid �0 of process q if and only ifq is a descendant of p, and such that no two processes spawned from the same parent have thesame Pid. (Using binary strings, the child's Pid can e. g. be formed from that of the parentby appending one zero for each previous spawn performed by the parent, followed by a one.)33
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Figure 5.8: A CCP model of the Erlang messaging systemand receiver processes, and the input stream of a single Erlang process must bedescribed as the nondeterministic merge of all its incoming message streams. (Inthe Strand implementation, all outgoing messages { and most system requests {were written to a single out-stream read by the kernel process, which in its turndistributed them to their respective destinations, but such a centralised modelis not general enough for our purposes, and would unnecessarily complicateprogram analysis.) The generalised structure of processes and streams in a CCPmodel is shown in Figure 5.8. (Note the close similarity to Figure 5.3.)A generic stream merger can be written in such a way that for each in-streamthat is to be included in the merge, a separate sub-process is spawned whichtakes one message at a time from the in-stream and tries to write it to theshared outgoing stream, similarly to the carrier processes of section 5.1.4. (Anorder to add or remove a stream can be passed as a message in any in-streamalready being read, and acted upon by a �ltering stage in the merger.)However, a merger for Erlang message streams should be fair, in the sensethat in any state, the probability should be equal for all in-streams containingaccessible messages, that the next message written to the out-stream is readfrom any particular one of them. A merger constructed using the write opera-tion de�ned in �gure 5.7 will not satisfy this requirement, even if the schedulingof processes (atoms) in itself is fair. To see this, consider a case where twoin-streams, of which at least one is in�nite, are being merged via two writerprocesses by use of this de�nition. There is then at least one fair, in�nite, reduc-tion sequence (namely, that which alternates between the two writer processes)34



where one in�nite stream is copied to the out-stream, while the other stream isblocked inde�nitely because its writer process is \wasting" its reductions tryingto �nd an empty slot for the next message. For instance, in [21] Shapiro andSafra use a built-in operator, which places a message in the �rst uninstantiatedslot of a stream as an atomic operation, to implement a fair multiway merge.It would seem that such a merger cannot be achieved in pure monotonic CCPwithout such built-in extensions, but since the set of all fair mergings is a subsetof all possible mergings, as expressed by the above model, any analysis using itas a model of message stream merging in Erlang would still be conservative(safe).Reading from a streamThe procedure for receiving a message from the input stream of an Erlangprocess can actually be expressed somewhat simpler in CCP than in imperativeor functional concurrent programming languages (such as Concurrent C andConcurrent ML), because it does not have to be divided into the two stagesof �rst searching the bu�er, and then attempting to receive further messages,should the �rst stage fail. (The handling of timeouts remains equivalent to thatdescribed in section 5.1.3.)Since the input stream is an incomplete data structure { a list whose tailremains partially unde�ned until the stream is closed { the bu�ering of uncon-sumed messages can be handled simply by not removing them from the stream.Each attempt to receive a message will search the present stream from the begin-ning, not making any di�erence between messages that were accessible duringa previous search, and messages that have appeared since then. If no match isfound before the unbound part of the stream is reached, the search will simplysuspend until more of the stream becomes de�ned. When a matching messageis found (be it a timeout message or otherwise), the new stream used for latersearches will be that composed of (a copy of) the old stream up to but notincluding the matched message, followed by that (actual) part of the old streamwhich followed the message.5.2.3 ConclusionsIt is apparent that a CCPmodel of the sequential execution of Erlang processesis not helpful for analysis purposes; if anything, the introduced execution orderdependencies between atoms will blur distinctions between any abstract statedescriptions. Nor are the actual data dependencies via the message streams mademore obvious in a CCP model than in e. g. the synchronous model described insection 5.1.What has been shown here of main interest are the di�culties in modeling themerging of Erlang message streams in monotonic CCP, and how the structureof streams and merger processes is laid out. We note that the latter is quite sim-ilar to how queues of message carrying processes are formed in the synchronousmodel, and conclude that an abstraction of the message passing in Erlangshould be based on this structure.
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5.3 SummaryWe have expressed the semantics of the Erlang messaging system in the con-currency models of synchronously communicating sequential processes (with dy-namic creation of processes and channels) and Concurrent Constraint Program-ming, demonstrating that neither is a useful basis for the analysis of Erlangprograms. However, the construction of both the respective models has showedupon several interesting details regarding the semantics of Erlang messagepassing, and has pointed out the common basic structure of the messaging sys-tem in its most general form, as shown by �gures 5.8 and 5.3.
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Chapter 6Deadlock analysisof Erlang programsWe have identi�ed only two existing analyses of synchronization and communi-cation as being powerful enough for the purposes we speci�ed in section 1.2, andspeci�cally, for the veri�cation of absence of deadlocks in concurrent Erlangprograms. These are, respectively, the synchronization and aliasing analysis ofColby [8], and Masticola's method of locating and eliminating possible depen-dency cycles [19]. We described the former in section 1.6, and, although we deemthat it would be quite interesting to see it applied to Erlang programs, its ap-parent computational expensiveness and the lack of practical test results so farhas prompted us here to focus instead on the latter method, which we believecould give results that satisfy our requirements { in particular if combined withthe modular veri�cation strategy suggested in section 1.5.6.1 Masticola's methodThe intuitive idea behind this method of verifying absence of deadlocks in aprogram, is that corresponding to any deadlock (but not to pure cases of star-vation) there is a circular waits-on dependency over the involved processes. Ifwe can build a dependency graph over the program, which contains at leastall such dependencies between program points that are actually possible, andthen show that no dependency cycle in the graph (there will usually be many)can exist in an actual execution of the program, we will have shown that theprogram cannot deadlock. (Although the possibility remains that its processescan become starved.)The synch graphTo do this, Masticola lets the ow graph over the program text represent allpossible machine states (sets of processes with current program points in thegraph). This graph is abstracted away from instructions other than those ofsynchronization, so that a node in the graph actually represents all executionpath segments from previous synchronization instructions to that particularinstruction, which do not pass through another synchronization instruction.37



Directed synch edges are then added to the graph, from sender S to receiverR, for all program points S;R such that it may be possible for a process at S toenable a process concurrently at R to proceed. Since the approximation mustbe safe, a synch edge can only be left out where it can be shown that such asynchronization cannot occur. For synchronization schemes such as rendezvous,synch edges may be bidirected or undirected. We further discuss how the set ofsynch edges is determined in section 6.2.In its basic form, then, no distinction is made between process instances whenthis extended synch graph is built. However, to handle programs with dynamicprocess creation, Masticola suggests that the relevant parts of the program textbe duplicated, possibly several times, so that di�erent classes of process instancesmay be described by separate parts of the synch graph. This method, appliedby Masticola to Concurrent C programs, appears to be quite limited, though,and tends to need the programmer's help in deciding how to suitably partitionthe processes.Deadlock cyclesAny possible waits-on dependency between two processes of the program is nowrepresented by a path from the waited-on node to the waiting node, consistingof zero or more control ow edges followed by exactly one synch edge. Thepath represents the possibility that if the waited-on process is able to continueexecution, it may reach a program point where it can enable the waiting processto proceed. Obviously, both nodes must represent synchronization instructionsthat may suspend process execution, and it must be possible for these programpoints to be executed by distinct processes, or no actual dependency can exist(if we assume that no process can be dependent on itself).Intuitively, a deadlock in an execution of the program must be represented bytwo or more such waits-on dependency path segments, connected so as to format least one cycle. (There are problems with formalising this intuition, which wediscuss in section 6.2.) The algorithm for verifying absence of deadlock, then, isto locate every such cycle in the synch graph, and show for each found cycle {using any available additional information about the program { that it cannotrepresent a deadlock in an actual execution of the program.Apart from the previously mentioned necessary characteristics of these so-called deadlock cycles, Masticola identi�es the following:� There must be a reachable program state in which the waited-on programpoints are executed concurrently by distinct processes.� There must be a reachable program state such that the waited-on nodesin the cycle are all simultaneously unable to proceed, given the currentstate of the program store, signals, messages, etc.� In any program state for which the above criteria hold, no process in thesystem must necessarily be able to enable a process within the cycle toproceed (breaking the cyclic wait).If any of these constraints can be shown not to hold for a cycle in the graph,that cycle cannot represent a possible deadlock of the program. (The last con-straint is generally very di�cult to prove false, but it can be done in specialcases.) 38



Cycle pruning informationThe kind of information necessary to e�ciently prune possible deadlock cyclesgenerally involves the particularities of the semantics of synchronization in thesource language, but most important is the estimation of a Can't Happen To-gether relation (Masticola's term) which describes the non-concurrency of pairs(or sets) of process states. It may for instance be possible to decide, for processesp and q, that p is never executing a suspending synchronization instruction whenq is, and thus no actual deadlock cycle can contain both p and q. The detailsof CHT analysis are complicated { an important ingredient is a previous stageof analysis determining a \must have completed before"-relation on programpoints { see [19] for mathematical models and examples of analyses of Ada,binary semaphores, and Concurrent C.6.2 Our extensionMasticola however fails to recognise that the concept of a \waits-on" dependencybetween processes is more complicated than our �rst intuition gives at hand.In the case of Ada programs, senders and receivers are statically and explicitlymatched by the program text, and the synch graph can be built during parsing.The synch edge representation of possible synchronizations is obviously safe inthis case { we can be sure that all possible dependencies have been includedby the construction algorithm { but it is not obvious how this process can begeneralised to other languages and concurrency models.A program veri�ed free from deadlock cycles with Masticola's method is notnecessarily free from cases of starvation, and whether a process is regardedas starved or not depends on the rule used for determining possible processdependencies. If this rule is too conservative, there may be cases of inde�nitelysuspended processes which we would want to describe as deadlocked, but whichwill not be regarded as cyclically dependent under the rule in question. On theother hand, if the rule includes unnecessarily many suspected dependencies, itwill be very di�cult to show for all ensuing cycles that they cannot correspondto actual deadlocks.It is also far from obvious what the absence of deadlock cycles implies regard-ing the existence of local deadlocks (livelocks) { particularly in the case whenprocesses can be dynamically created by the program. In [4], we give a thoroughtreatment of all the above questions, de�ning the class of weak process depen-dency relations, together with a basic set of rules for determining when suchdependencies can safely be excluded between pairs of processes, and showinghow Masticola's method can be extended using these dependency relations toverify absence of local deadlock. In particular, we show under which conditionsabsence of deadlock cycles implies absence of local deadlocks, even for programswith dynamic process creation.6.3 Precision problemsIn applying this extended method to Erlang programs, there are some prob-lems with the precision of the analysis that do not occur for programs in Ada(although some do for Concurrent C). The probably most important of these is39



the di�culty in matching sender and receiver processes. Not only do Erlangprograms use dynamically created channels (one for each new process), and uselocal variables to hold the process identi�ers (Pids) that are used as channel des-ignators in send (`!') instructions, but they also regularly pass Pids between pro-cesses (often referred to as channel migration), and in several applications storePids deeply embedded in large data structures. This is not an insurmountableproblem, though { recently, Sven-Olof Nystr�om has achieved promising resultswith such a communication topology analysis even for large Erlang programs(personal communication, March 1997).The problem of �nding a generic approach to handling dynamic creation ofprocesses is less straightforward. The subgraph duplication method applied byMasticola for analysing Concurrent C programs requires a good characteristicfor separating process instances. (A simple example would be by the values ofthe initial arguments to the process.) Masticola suggests using the chain of pro-cess creation instructions that precede a particular process creation to separateinstances, but this has the drawback that the synch graph is then no longerpolynomially bounded in size. Colby's trace-based analysis of the communi-cation topology [9] of concurrent programs seems to be a good candidate forimproving this situation.Lastly, the need for a representation in any analysis of the contents of messagebu�ers in the asynchronous inter-process communication system of Erlang(see chapter 5) is likely to blur many data dependencies. There is howeversome statistical indication that in a majority of the synchronizations in actualErlang programs, the message bu�er of the receiving process is empty when thereceive statement is executed, and also that many synchronizations in practicedisplay synchronous behaviour. An analysis which can identify such cases couldprobably be used to both simplify the analysis and increase its precision.6.4 ConclusionsCycle detection and elimination, as opposed to most other suggested methods forverifying absence of deadlocks, has been shown (by Masticola) to be applicablein practice to large real-world programs, and with quite good results (see [19]).It also has the advantage over most other methods that it can locate possiblelocal deadlocks as well as global, and give meaningful information about theircauses. The method is shown fast enough to be practical, and generally hasbetter time behaviour than other analyses. (See section 1.6 for related work.)We believe that our extension of Masticola's method, described in detail in [4],could give useful results if applied to Erlang programs, given that the precisionproblems described above can be solved satisfactorily, and we hope that in thefuture, an attempt will be made to do this.
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