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Abstract

We argue that there is a need for automated verification of absence of dead-
locks in concurrent, programs. We briefly describe how absence of deadlocks can
be showed, in general, for a program, how the necessary information can be
gathered, and the use of formal methods. We discuss timeouts as a method of
run-time deadlock detection, and why they remain necessary in some situations,
and we suggest a strategy for modular verification of subsystems of concurrent
programs.

We then give an overview of the area of process communication, nondeter-
minism, and synchronization problems, with focus on the semantics of ERLANG,
and give a quick introduction to the ERLANG language. We give detailed mod-
els of the semantics of the ERLANG messaging system and its synchronization
primitives both in terms of synchronously communicating sequential processes
and of Concurrent Constraint Programming.

Lastly, we review a deadlock analysis method which we have found likely
to be able to fulfil our requrements, and discuss the particular problems with
adapting it to ERLANG.
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Chapter 1

Introduction

ERLANG is a functional programming language that supports lightweight con-
current processes without being dependent on the operating system it runs
under. Concurrency is explicit in the language, and processes communicate via
the single, uniform method of asynchronous message passing. This work ad-
dresses the problem of process communication deadlocks in programs written in
ERLANG, or languages with similar properties.

1.1 Overview

In the following sections of this chapter, we describe the problems of deadlock
and other communication anomalies in reactive systems, deadlock detection and
recovery, and static verification of absence of deadlocks. We give requirements
on a development tool for static checking of possible deadlocks, and suggest
a strategy for modular verification of absence of deadlocks. Lastly, we discuss
related work, present a summary of our results and suggest future work.

In chapter 2 we briefly describe how absence of deadlock can be shown in
general, how to gather the necessary information, and how to identify deadlocked
program states. We also discuss formal methods.

Chapter 3 discusses the asynchronous and synchronous variants of process
communication, and the sources of nondeterminism in concurrent (and sequen-
tial) programs, such as process scheduling and data streams attached to more
than one producer.

In chapter 4 we give an introduction to the ERLANG language, including some
of its background.

In chapter 5 we show how the asynchronous inter-process communication sys-
tem of ERLANG can be modelled using synchronous communication primitives,
and Concurrent Constraint Programming, respectively, in order to see to what
extent analyses developed for these latter concurrency models apply to ERLANG
programs.

Chapter 6, lastly, discusses those analysis methods we consider as likely to be
useful for deadlock analysis of ERLANG programs, and in particular describes the
method developed by Masticola [19], our extension of that method [4], and the

primary problems expected in implementing this method for ERLANG programs.



1.2 The deadlock problem

ERLANG is very suitable for constructing large reactive systems containing any
number of processes, such as telephone exchanges or similar control systems,
server applications, and simulations. A problem with these kinds of systems
is that the communication pattern between processes can often be extremely
complex and difficult to predict. Even in simple cases with a small number of
processes, an error can be very hard for a human to discover without actually
running the program — and once detected, it is not necessarily a simpler task to
find its cause.

Deadlock and starvation

Apart from the type of errors where messages are sent to the wrong destina-
tions (which are usually comparatively easy to discover by examining the pro-
gram), there are, informally speaking and following the common terminology,
two classes of synchronization anomalies where expected messages never arrive:
starvation, where no potential sender process can exist, and deadlock, where one
or more processes are all simultaneously waiting for a message from some other
process involved in the same deadlock, forming at least one dependency cycle.
Deadlocks, and in particular how they can be detected, are the main focus of
interest of this work.

The types of programming errors causing starvation and deadlock, respec-
tively, are (again, informally) of quite different character. Starvation occurs
when a process is waiting to synchronise, and no other process is able to reach
a program point which could complete the synchronization, for reasons such as
processes terminating abnormally, loss of information (e.g. if no other process
has access to the communication channel), or an error in the flow of control
or data. Deadlock, on the other hand, is due to misjudgement of the commu-
nication pattern between processes, ending in an unexpected combination of

individual process states, and is by far the more difficult to foresee or detect.

Suspension and deadlock

A process is said to be suspended while it is waiting to synchronise, and often a
distinction is made between suspension (of a machine state), where no process
in the state is able to proceed, and local suspension, where at least one process in
the state may execute, but for some subset of processes, all members of that set
are suspended and cannot synchronise with any other process in any reachable
state. Typically, a message from an input device will allow the computation to
continue. One example of local suspension is a terminal program waiting for
input in a multitasking system where other processes are executing meanwhile.

Deadlock can be seen as a special case of suspension, where no input from
external devices can enable any process to proceed. Local deadlock, more com-
monly known as livelock, is the corresponding case for a set of locally suspended
processes. In real-world systems, the local form is largely the more common, and
thus we want to be able to cover all such cases as well as any global deadlocks.
In the following, the term “deadlock” will be used to denote local as well as
global deadlock, except where stated otherwise.



Deadlock detection

There are two approaches to the problem of verifying that there are no occur-
rences of deadlock in a program: the usually more straightforward is dynamic
detection, where the running program is examined at intervals by the system,
looking for possible deadlocks. The other approach is static detection, where the
program code is analysed beforehand in order to verify that no deadlocks can
arise in any possible execution of the program.

Traditionally, deadlocks are a matter of operating systems studies, and are
commonly described in terms of resource allocation: a deadlock occurs when
each in a set of processes has allocated one or more resources, and is waiting for
access to one or more further resources that are held by some other process or
processes in the same set. Here, also, there is at least one circular dependency. In
general, a cycle in the corresponding dependency graph is a necessary condition
for a resource allocation deadlock, and as we have shown [4], this is also true
for process communication deadlocks in the cases that are of interest to this
work. Therefore, dependency cycles appear to be a better characteristic than
any particular description in terms of communication or resource allocation.

Dynamic detection is the generally used method of handling deadlocks in op-
erating systems, for several resons. First, static analysis is usually not even an
option in this case, because of the ad hoc manner in which new executing pro-
gram code is generally added to the system, and of the high frequency of such
additions: each time program code has been added, a new analysis is required
of the interaction between the added program and those programs it could com-
municate with or compete with for shared resources. Secondly, it is easy to track
resource ownership and demands of processes, and there are fast standard algo-
rithms for finding cycles in the dependency graph. Third, a resource allocation
deadlock can often be remedied by forcing some processes to release their held
resources, so that other processes may complete.

Recovering from deadlocks

In the case of process communication, however, dynamic detection is not much
good for anything other than discovering the possible existence of a deadlock.
The description in terms of resources is not suitable in this case, because signals
or messages can be seen as parts of the computation performed by the processes.
If process p suspends when trying to receive a message from process g, it is not
because ¢ currently “owns” the message (and could possibly be forced to release
it), but because the message has not actually been computed yet (including
it being sent), and nothing less than completing that computation could give
another process access to it.

Thus, even if the program execution could be rolled back arbitrarily far, there
is no general solution for avoiding the deadlock, once discovered. Another process
scheduling might work, but finding such a scheduling if one exists cannot be
done without some form of advanced program analysis. (Even though run-time
information could be used which would not be available to a fully static analysis,
it is hardly practical to apply program analysis once a deadlock has actually
occurred.) It can also be argued that a program that depends on the process
scheduling for behaving as intended is an incorrect program, or at least a flawed
one.



The method of handling deadlocks generally adopted in application program-
ming is to use timeouts — equipping process suspensions with an upper time
limit, after which some fixed action is taken — to detect possibly deadlocked
processes, and e. g. having a supervising system kill and restart them (and pos-
sibly others associated with them) under the conservative assumption that the
expected data cannot be produced. The obvious drawbacks are the risk of losing
information, the time spent shutting down, restarting and resynchronising pro-
cesses, and the possibility of avalanche effects causing large parts of the system
to be restarted. Also, this strategy is of no help in locating the actual error, and
does not guarantee that the deadlock does not reoccur, even immediately.

A tool for static verification

We therefore assert that the only way of consistently handling process communi-
cation deadlocks, which is potentially powerful enough to avoid such drawbacks,
is static program analysis and verification if this can be done with sufficient
precision to prove, for a significant subset of all correct programs, that there is
no possibility of deadlock. As the general problem of checking whether a pro-
gram will deadlock or not is, of course, undecidable, a safe approximation is the
best that can be done, i.e., a program will be regarded as having the potential
to deadlock unless the opposite can be proved.

In systems where hot code loading, i.e., the loading of new program modules,
or new versions of previously loaded modules, is possible, the situation becomes
similar to that in an operating system. However, software modules are seldom
loaded which communicate with previously loaded ones in such a way that
a deadlock might ensue. The modular verification strategy discussed further
below should keep the frequency and extent of necessary deadlock analyses on
a practical level, even in this case.

It is important that a deadlock analysis have very good precision in order for
it to be a useful tool. If false cases of deadlocks are reported too often, it will
confuse more than help the programmer, and possibly force her to rewrite the
program in an overly explicit way, to allow the analysis to verify it. Preferably,
the analysis should also, for the cases it cannot verify, give good indication of
what parts of the program could possibly cause a deadlock, and under which
conditions.

The aim of this work has been to seek out a static analysis method for ERLANG
programs, which could realistically be developed into a useful programming tool
as we have described; or at least specify the requirements on such a method.

1.3 Fail-safe systems and
run-time deadlock recovery

In many real-world, real-time control systems, it is imperative that the system
remains active no matter what errors may occur. Any subsystem that terminates
abnormally, hangs, or deadlocks, must be restarted within the shortest time
possible. It can be noted that the higher the level of abstraction, the more
important it gets that each subsystem can be restarted with as little disturbance
as possible in the other subsystems. For example, when recovering from an
error in a hardware controller process, it might be allowable to restart several



associated processes, if it is the easiest way to recover, and any errors induced
by this are negligible. In comparison, an error in a file server in an operating
system should not cause other major parts of the system to be restarted, if
avoidable.

As outlined above, the common programming practice for handling possible
deadlocks in ERLANG applications programming is to include a timeout limit
(see section 4.3) in attempts to receive a message. If the expected message does
not arrive within this time limit (on the scale of ten seconds, or less in very time-
critical systems), it is assumed that it never will. The timed-out process then
terminates, usually informing some controlling instance of this, so it may be
restarted if necessary for the functioning of the system. Effectively, the timeout
is transformed into a proper error, causing the process to terminate abnormally.
(More advanced schemes may be thought of, where resynchronization is first
attempted, but they must ultimately rely on this mechanism.)

Why timeouts are necessary

All this is a relatively simple matter, but it is tedious and clutters the program.
However, it appears that this mechanism must necessarily be included in all
mission-critical programs. If an error is detected in some process (e.g. if it
signals abnormal termination), it is in general not possible to decide which other
processes were depending on it. If suitable, all possibly depending processes may
be killed, and the whole subsystem restarted; otherwise, it has to be trusted that
all depending processes will time out eventually (and relatively soon).
Reversely, given that a message is missing, it cannot in general be decided
which process was supposed to supply the message, unless the correspondence
between receivers and possible senders in the program is of a simple nature.
In particular, if the error lies in the flow of control or data in such a way that
the intended sender does not raise an exception in some way, then the timeout
may be the only indication of the error that will ever appear during run-time.
A process attempting to receive a message is effectively left on its own.
Apparently, unless the program is proven to be fully correct, we cannot be rid
of these timeouts if we want our program to be fail-safe. Also, if messages may
be transferred over a communication link, it can never be guaranteed that they
will eventually reach their destinations, and so even software verification is not
sufficient for removing the timeouts. It would however be desirable to automatise
the adding of timeouts to the program, either as a source-level transformation
or as a feature of the run-time system, e. g. by equipping all possibly suspending
program statements with a default timeout limit and handler except where such
have already been explicitly specified by the programmer. For important special
cases, such as server processes, software packages already exist (e. g. the ERLANG
gen_server module) which hide most of the error handling involved.

1.4 Program verification — why and when?

If, as we argued above, the timeouts and recovery mechanisms cannot be re-
moved from mission-critical systems, for what reason would we want to go
through the trouble of verifying that such a system is free or partially free
from deadlocks?



As previously mentioned, recovering from deadlocks and other errors obvi-
ously causes a temporary drop in the system throughput. If deadlocks occur
often, the impact on the general efficiency can be great. As the probability of
synchronization errors is a lot higher than that of other errors, it can be expected
that a system which is at least partially verified to be free from deadlocks will
have better performance than a more ad hoc-constructed system, and naturally
be less likely to lose information.

Also, deadlocks are different from other programming errors, in that they are
in general significantly more difficult to reason about. The program code for
the internal work of any process concerns “only” the incoming data and the
corresponding production of output data. In contrast, the code handling the
intercommunication of a number of processes is distributed over all those pro-
cesses. To the programmer, this is the only part of the code where concurrency
really makes a difference, because parts of a system may change state more or
less independently. Traditional debugging tools are of little help in finding er-
rors in the communication pattern, because they do not regard the interaction
of processes, beyond straightforward data flow.

It can therefore be expected that of any undiscovered serious errors in a well
tested system, the majority have to do with synchronization. When such errors
appear in a running system, they are hard to locate, and when attempting to
correct the program it can be very difficult to avoid introducing new errors. An
efficient verification tool could lower the probability of deadlocks to the same as
that of other software errors, or even less.

Non-critical applications

Nor is it the case that every real-world program is mission-critical. For most
program tools, we are more or less satisfied to know that the likelihood of
software errors is small; even non-concurrent programs are in practice never
verified to be error-free. In contrast, speed usually remains important whatever
the application, and the handling of timeouts is somewhat time-expensive — in
particular when several may be pending simultaneously: both the maintaining
and the handling of those which are triggered. For such non-critical programs, we
want to avoid using timeouts in as many places as possible, without inordinately
increasing the risk of unrecoverable errors occurring. For achieving this, static
verification is necessary.

So, if we can ignore the possibility of lost messages, and are not particularly
concerned with quick detection and recovery of any and all errors, where can
timeouts be omitted? To see this, we list the different cases of sender anomalies:

o Abnormal termination.

e Control or data flow errors. (The sender does not terminate, but will never
send the expected message.)

e Starvation. If the sender is starved (not deadlocked) it is not really an
error in the sender itself, but in the processes upon which it is depending.
Inductively, starvation is never the actual source of the error.

e Deadlock. (The sender is involved in a deadlock, that might or might not
include the receiving process of this discussion.)



Of these, deadlock is then the only case where timeouts are a necessary pre-
caution, since the remaining actual error sources do not pertain to the syn-
chronization itself. Timeouts can thus be omitted for all possibly suspending
program points which can never be involved in a deadlock; also, for all possible
deadlocks (circular waits) it is sufficient to assure that at least one involved
synchronization statement is always able to time out and break the deadlock.

1.5 A modular strategy for verification

Verifying absence of deadlocks for a large program will of course, like any difficult
program analysis, take relatively long time to perform. If the program is very
large — on the order of a hundred thousand lines of code, as in many important
industrial applications — the time needed might well be forbiddingly long. Also,
even if the verification would finish in reasonable time, it would be impractical
to be forced to reanalyse the whole program each time a (possibly quite small)
part of it has been modified.

What we would like to be able to do, is to build larger systems from smaller
subsystems of intercommunicating processes that can be treated as independent
modules' with well-defined interfaces, and verify for each individual module that
no deadlock can occur in which all involved processes are part of that module
only. In other words, if a deadlock occurs which includes processes that are part
of the module, then at least one process in the deadlock lies outside the module.

Obviously, when a system is constructed from internally deadlock-free mod-
ules, we want to verify that the composed system is itself free from internal dead-
locks, so that it can be treated as a new module. Such deadlocks can then only
occur in the communication between the modules forming the composed system.
This fact should allow analysis of a complex system to be simplified, by first
recursively analysing its component modules in isolation, and then analysing
only the interaction between these modules. In addition, when the program
is modified, only those modules containing a changed component need to be
reanalysed.

1.6 Related Work

Masticola gives in [19, Chapter 10] a thorough survey of the field of deadlock
analysis and detection methods up until 1993, covering both formal and more
practically oriented methods. We discuss Masticola’s own work in depth in chap-
ter 6.

Cheung and Kramer [5] give an unsafe analysis (i. e., one that underestimates
the actual behaviour) for distributed systems, which is computationally cheap
and could be used in a development tool, especially since the underestimation
assures that the programmer is not bothered with false alarms. Particularly, the
authors suggest, such a tool would be useful in the early, tentative stages of
protocol specification.

Many data dependency analyses for concurrent logic programs, eg. Debray
et al. (1996) [11] assume a fixed scheduling of processes (goals), or are in other

IThe term “module” used here in a general sense, and not specifically referring to the
module system in ERLANG.



ways too restricted to be used for deadlock analysis of general ERLANG pro-
grams. Debray (1994) [12] gives a framework for data flow analysis of concurrent
logic programs, but as it depends on the use of a substitution-closed domain, it
cannot be used to reason about dependencies between variables (messages).

Codish, Falaschi and Marriott give in [6] (published 1994) a suspension anal-
ysis for concurrent logic programs, based on confluence of reduction orders, and
in [7] (conference proceedings, 1993) together with Winsborough extend this to
a confluent semantics for concurrent constraint programs. The method can be
extended to a deadlock analysis, but is not applicable in practice to ERLANG
programs because of the nondeterministic merging of message streams; see sec-
tion 5.2.2.

More lately, Matthews [20] (1995) showed that absence of deadlock in data
flow networks with lazy pipes can be proved without referring to an opera-
tional semantics an “extensional” proof. Stoller and Schneider [23] (1995) give
a Hoare-style proof system for programs using causally-ordered [18] message-
passing.

Colby [9] gives an analysis of the communication topology of concurrent pro-
grams, using abstract interpretation [10]. The analysis is non-uniform, meaning
that it distinguishes between iterations in infinite recursive patterns [13], and
works by relating pairs of processes. The results can be very precise even for
programs that have a recursive structure with dynamic creation of processes and
channels, and precision is not necessarily reduced when channels are passed in
messages. The method is not immediately applicable to the problem of deadlock
analysis, because it does not relate processes in a wider context, but could play
an important part in demonstrating and/or eliminating possible dependencies
between processes.

In [8] (unpublished), Colby gives a framework for determining both synchro-
nization and aliasing properties for a concurrent functional language, using
Deutsch’s [14] lattice of prefix relations on strings, where the strings are taken
from regular languages for control paths and data. The method can be said to
generalise that in [9], from the observation that aliasing and synchronization
are mutually dependent, and can be used to show a large variety of difficult
synchronization properties of programs, apparently with very good precision.
Colby gives an example showing that advanced communication-topology anal-
ysis can be done in polynomial time, but no results from automated analysis of
real programs have been reported as of this writing. It is unclear whether the
method can realistically be used on large programs for the purpose of verifying
absence of deadlocks.

Over the last decade, much work has been done in the field of distributed data
bases, trading systems, operating systems, and similar, regarding the reliability
of such systems. The concept of process groups (see e. g. [3]) has a lot in common
with the modular verification of subsystems we suggested in section 1.5.

1.7 Summary of results

In this thesis, we have first argumented for the need of automated verification of
absence of deadlocks in concurrent programs, discussed when and where time-
outs remain a necessity even if such verification has taken place, and suggested
a strategy for modular verification of subsystems of concurrent programs.
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Generally, we have given a wide overview of the area of process communica-
tion and synchronization problems with focus on the semantics of ERLANG, and
we have given models of the semantics of the ERLANG messaging system and its
synchronization primitives both in terms of synchronously communicating se-
quential processes and of Concurrent Constraint Programming. This work has
pointed out interesting particularities of the different concurrency and synchro-
nization models, and showed upon the non-applicability to ERLANG programs
of analyses designed for these specific concurrency models.

Lastly, we have reviewed Masticola’s method [19] of verifying absence of dead-
lock by detecting and excluding possible deadlock cycles, discussing its appli-
cability to ERLANG programs. As a side-effect of this work, we have extended
Masticola’s method so as to make its application to programs in ERLANG and
similar languages theoretically sound, and giving it a more abstract shape [4].

1.8 Future work

Of most interest to us would be the implementation of our extension [4] of Mas-
ticola’s method [19], for programs in ERLANG or a similar language, and the
practical application of the modular approach to verification of reactive systems
we suggested in section 1.5. It would then be very interesting to see if Colby’s
communication topology analysis [9] could be used to improve the precision of
the deadlock analysis, and in particular, if the problem of dynamic process cre-
ation in the program to be verified can be efficiently and automatically handled
using the information yielded by such a topology analysis.

Of particular interest would also be to see a practical implementation of
Colby’s synchronization analysis [8], to see if it is realistic for large, real-world
programs.
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Chapter 2

Showing absence of
deadlocks

Any conservative information regarding where a program might deadlock, can
be viewed as a description of a set of machine states, containing at least all
reachable states which may contain a (local) deadlock. If the described set can be
shown to be empty, the program is free from deadlocks. Ideally, only reachable
deadlocked states would be included by the description, but for programs in
general the problem is not decidable.

2.1 Finding reachable program states

The “traditional” and straightforward way of finding the above set is to induc-
tively generate it from the base set of possible initial states for the program.
For any state already in the set, those states reachable from that particular
state (given the program text and the language semantics), called the succes-
sors of the state, are added to the set, until no new states can be added. Then,
any states which can be shown to definitely not contain any deadlocks may be
removed. (See [24] for one of the earliest examples of this method applied to
concurrent programs.)

For certain limited types of systems this approach, called state enumeration, is
practical, but for concurrent programs in general it quickly becomes intractable.
The set of reachable states for a program is often infinite, in which case the
above procedure will not terminate. Also, experience has shown (see e.g. [19,
Section 7.6]) that for large programs, even if the number of reachable states is
finite, it is commonly much too great to be handled directly.

Instead of the actual program states, the enumeration is therefore in the gen-
eral case performed over abstract descriptions of states, or rather, sets of states.
If the abstraction is chosen suitably, the process will terminate in reasonably
short time, at the cost of a loss in precision, i. e., more states will (in general) be
described by the generated set of abstract states than can actually be reached
by the program.

In connection with the above, we take the opportunity to mention a widely
used, very general method of program analysis, called abstract interpretation [10],
which we will not describe in more detail, but which can be used to gather any

12



kind of (finite) information regarding properties of the different points of ex-
ecution of a program, such as the possible (abstract) machine states at each
program point. Abstract interpretation can be seen as an extreme abstraction
of state enumeration, tracing every execution of the program over abstract de-
scriptions of its states.

2.2 Identifying deadlocked states

To identify globally deadlocked machine states is not difficult they are precisely
those which have no successors, but do not represent the termination of the
program. In order to identify a locally deadlocked subset of processes, however,
it must be shown that from a certain state on, all of the processes in the subset
will remain suspended indefinitely. More to the point, to show for any particular
suspended process that it is not locally deadlocked, it must be shown that the
process will necessarily be enabled to continue its execution in some subsequent,
state (assuming process scheduling is fair), something which is very difficult to
do in practice.

For useful application to real-world programs, a deadlock analysis must be
able to verify absence of local deadlocks, but the apparent problem is that of
finding an abstraction which guarantees finiteness without losing too much in
precision. The wider the approximation, the more difficult it becomes to rule
out the possibility of deadlock in the described states.

2.3 Formal methods

With a “formal method” is generally meant the proving of some specific prop-
erty of a particular program, by means of mathematical-logical deduction, either
by hand or automatically. The results are, of course, neither more nor less for-
mally valid than those of e. g. a state enumeration method, and the distinction
between formal and other methods is not defined. Often, though, it is implied
that a formal method yields exact solutions in those cases where it terminates
with a solution. Usually, automatised proof methods require the user to supply
information such as loop invariants, which makes the application of analysis to
a program a non-trivial task.

Formal proof methods for concurrent programs is a quite young field, even
within computing science. Most existing methods are effectively built on state
enumerations, verifying formally for each state that it cannot contain a deadlock,
and thus have the same practical limitations as state enumeration methods,
apart from generally being an order of magnitude more time-consuming than
these.

See also section 1.6 for related work on formal methods.
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Chapter 3

Process communication

The different strategies for process communication in concurrent languages can
be divided into two classes: asynchronous communication and synchronous com-
munication. Each can easily be described in terms of the other, and there is no
general consensus as to which is the more basic of the two.

3.1 Asynchronous communication

When information (anything from an arbitrary message to a simple signal) is
transferred asynchronously, the sender does not wait for the information to
be accepted by the receiver, but immediately continues execution, which might
include the sending of further messages. The receiver will independently attempt
to accept a message when it needs the information, often entering a waiting
state which could last for any length of time, until suitable data is delivered.
In a completely general implementation of asynchronous communication, any
number of messages may be sent regardless of whether previous messages have
been accepted or not, the only limitation being the amount of space available
in practice for message buffering.

The most studied form of asynchronous communication is that of Concurrent
Logic Programming, or in more modern terminology, Concurrent Constraint
Programming (CCP). For a short introduction to CCP, see section 5.2.1.

3.2 Synchronous communication

When two processes communicate synchronously, each independently enters a
state where it is waiting for the other to become ready to exchange information.
Usually, the data is transferred in a single direction, where one process is specif-
ically attempting to send and the other to receive. Synchronous communication
is used in several concurrent imperative languages such as Ada, Concurrent C
and Concurrent ML, its main advantage being that no implicit buffering needs
to be done by the run-time system. In fact, asynchronous communication can
be seen as buffered synchronous (unidirected) communication, where the sender
only suspends if there is no room in the receiver’s message buffer. (In the com-
pletely general case, the buffer is assumed to be infinite).
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On the other hand, synchronous communication can be seen as two-way asyn-
chronous communication in two steps. First, the sender dispatches its message
and enters a waiting state. When the receiver has accepted the message, it dis-
patches an acknowledge signal and proceeds with its own execution. Lastly, the
sender receives the acknowledge signal, and can itself proceed.

The description of this procedure displays the largest drawback of synchronous
communication, namely, that almost twice as much housekeeping needs to be
done by the run-time system, which slows down execution. Furthermore, and
more importantly in practice, if the communication takes place between pro-
cesses which exist on different nodes in a network, twice as many messages need
to be transferred over the comparatively very slow communication links, where
in a majority of the cases a one-way, asynchronous transfer would have sufficed.

Also, synchronously communicating concurrent programs can be said to be
twice as sensitive to deadlocks and starvation, compared to asynchronously
communicating ones, because there are twice as many opportunities for pro-
cesses to become indefinitely suspended, if either of the sending or the receiving
processes should be malfunctioning, or messages be lost.! Generally speaking,
synchronusly communicating programs are much tighter coupled than asyn-
chronously communicating ones, and this is an additional drawback when con-
structing large programs, since it makes them not only sensitive to errors, but
also difficult to modify.

Furthermore, it is apparent that in synchronous communication, additional
data must be associated with each sent message, in order to tell how to properly
return the acknowledge signal.

3.3 Nondeterminism and process scheduling

There are two basic sources of nondeterminism in the semantics of concurrent
programs: first, versions of the nondeterministic choice construct, and secondly,
nondeterministic process scheduling (reduction order) in situations where pro-
cesses exchange data.

Actual implementations of course always make deterministic choices, but they
are free to choose any strategy that falls within the space of nondeterministic
behaviour in the language specification. (Often, fairness is a requirement; see
section 4.2.)

Nondeterministic choice

A choice construct consist of a fixed, finite, set of condition action pairs, or
clauses. The conditions are in practice tests on variable data, and the corre-
sponding action may be executed/computed only if the condition evaluates to
true. The evaluation of a condition should not change the program store/variable
bindings. In the general case, conditions may overlap, i.e., more than one may
evaluate to true, but only one action may be selected for evaluation. If all con-
ditions evaluate to false, the evaluation of the construct itself fails.

In some implementations, the system will either return the acknowledge signal to the
sender, or cause it to fail, if it is the case that the message cannot be transferred, i.e., if
effectively the communication channel is closed.
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The following is the ”canonical” example of how a nondeterministic choice
construct can be used, expressed in the syntax of ERLANG:

max (P) ->
case P of
{X, Y} when X <= Y -> VY;
{X, Y} when X >= Y -> X;
end;

max (P) yields the maximum of a pair P of numbers. If the numbers are equal,
any clause matches (and in this example, they yield the same result if that is
the case). Note, however, that in ERLANG, the semantics of the case construct
(and its variant, the if) is not actually nondeterministic — the clauses are tried
in the textual order.

A nondeterministic choice could be used to select any message currently in
the receive-buffer, which matches a specific pattern, thus making the order of ac-
cepted messages nondeterministic. In ERLANG, however, the receive construct
matches the buffered messages in order of delivery; see section 4.3.

Nondeterministic process scheduling

When more than one process can affect the value of a data item, the result of the
program execution may depend on the order in which processes are executed.
The program semantics is then said to be non-confluent.

For instance, suppose that two processes A and B exist, such that both are
ready to execute, where A will eventually reach a program point where it sets
a global variable X to the value 1, and similarly, B will eventually set X to 2.
Suppose ready processes may be selected for execution in any order. A third
process C, also ready to execute, which will read X and take its action depending
on the found value, can then receive any of three values: 0, 1 or 2, assuming that
X initially had the value 0. Basically the same situation occurs with multiple-
writer streams, if more than one process is ready to send on a single channel,
when some process is ready to receive on that channel.

In addition, whether processes are executed atomically from the point when
they are selected by the scheduler, until they explicitly enter a suspended state
or terminate, or their execution may be interleaved with that of others (which is
of course the more general case), can further affect the outcome of the program
execution.

In ERLANG, since there are no global variables, and all variables must be
bound before they are referenced (i. e., unbound variables may not be passed as
arguments), the message-passing system is the only place where process schedul-
ing may affect the semantics of a program (not considering real-time effects).
We can modify the above example so that process C is waiting for a message,
while both A and B are ready to execute, and will eventually send messages 1
and 2, respectively, to C. Which message is actually received by C depends on
the scheduling, and on the implementation of the message-passing system.

However, it turns out that the scheduling of processes in ERLANG (assuming
it meets the fairness requirement) is basically irrelevant to the semantics of
ERLANG programs. The reason for this is that the message buffering and the
possibility of transfer delays completely hides all and any effects of process
scheduling (see chapter 5 for details). Thus, unless we study a model in which
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we have placed additional restrictions on the behaviour of the message-passing
system, we need not consider the effects of different process schedulings.
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Chapter 4

Introduction to
the Erlang language

ERLANG was originally invented as a programming notation to be automat-
ically translated into a concurrent logic language. The first implementations
used Parlog [16] as the target language; this was then changed to Strand [15] for
efficiency reasons. (Section 5.2.2 discusses the translation from ERLANG to lan-
guages such as these.) Both of the latter languages inherit most of their syntax
and terminology from Prolog [22] and CSP [17], and a lot of that has carried
over also to ERLANG. Later implementations of ERLANG are however built on
abstract machine models designed specifically for its own particular semantics.

Unlike Parlog and Strand, ERLANG is a functional language. It has constructs
for explicit sequentialization of evaluations (as is common in practical functional
languages), and it is strict, i.e., all parameters to a function call are evaluated
before the call is performed. Variables are single-assignment only and must be
bound before they are used in an expression. There is no destructive updating
in the language.

It should be noted that as of this writing, ERLANG is still under much de-
velopment, and that what is stated here applies primarily to the language as
described in the 1996 edition of “Concurrent Programming in ERLANG” [2].
Still, for the purposes of this work, we are only concerned with the core of the
language, which is not likely to change in any significant way.

4.1 The functional core

The basic syntax is similar to Prolog. Identifiers whose first character is a cap-
ital letter are automatically interpreted as variables, and each occurrence of a
single ‘_’ (underscore) character represents a distinct and anonymous variable.
Atom names can be surrounded by single quotes in order to contain other-
wise unallowed characters. A character sequence surrounded by double-quotes
is shorthand notation for the corresponding list of character code integers. Nu-
meric literals have the expected syntax.

ERLANG is dynamically typed. This implies that the type of the value assigned
to a certain variable in some function is not necessarily the same over all possible
invocations of that function. There are four types of primitive values:
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Atoms (“terms” in the terminology of mathematical logic)

Numbers (integer or floating-point)

Process identifiers (or “Pids”)
e References (automatically generated system-unique objects)

In addition, there are two forms of compound data types: tuples {X1, X2,

. Xn} and lists [X1, X2, ... Xn | Remainder], where it should be noted
that Remainder need not be another list (although it usually is). The form [X1,
X2, ... Xn] denotes the list [X1, X2, ... Xn | [1]. Such lists, terminated
by the empty list [1, are called proper or well-formed. In ERLANG terminology,
a term is a data element, i.e., an element of a primitive or a compound data
type.

There is no functional type. Function references can be passed around and
used by giving the name of the function as an atom, together with its arity. In
general, two functions with the same name are considered distinct if they have
different arity, so it is no error to define, say, £ (X) and f(A, B) in the same
program.

Variable binding and function evaluation

Pattern matching is the basic way in which variables become bound. An assign-
ment X = Expression is just a special case of the pattern matching primitive
Pattern = Expression. Its result, assuming the match succeeds, is the value
of Expression, allowing constructs like X = {A, B} = E, the ‘=’ operator being
right-associative.

Together with guards, pattern matching also provides the means for case selec-
tion in the language. A function is defined by a sequence of clauses, whose heads
specify patterns to be matched with the passed arguments, optionally qualified
by guards. Guards are sets of tests (arithmetic and elementwise comparisons and
built-in test functions) on terms. Such terms may contain arithmetic operations
and calls to a small set of built-in functions, but not e. g. calls to user-defined
functions, since a guard test may not cause a side-effect in any way.

The arguments of a function call are matched sequentially against the clause
heads that define the function, and if a match succeeds, the guard tests (if
any) of that clause are evaluated; these normally involve variables occurring in
the argument patterns, but may not introduce new variables. The evaluation
order of a set of tests is not defined. If the guard succeeds (or is empty), the
clause is selected and its body is evaluated. Otherwise the next clause in turn
is attempted. There is no backtracking; if no clause matches, the program fails.

A clause body consists of an expression to be evaluated. Comma is used as
a left-associative infix sequencing operator which evaluates its left argument
before its right; its result is that of the right argument. In all other cases, the
evaluation order of arguments is not defined.

An example

Figure 4.1 shows a simple example of a program in ERLANG (Armstrong et al. [2,
program 1.1]). Only explicitly exported names can be referenced from outside
the module; such a reference would be written math1:factorial (N).
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-module (mathl) .
-export([factorial/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N - 1).

Figure 4.1: ERLANG program example.

In their most primitive form, clause-matching languages require a new func-
tion (or predicate, as it be) to be written for each situation where different
cases are handled. To simplify programming, ERLANG provides the case and
if primitives, where case offers the full pattern matching with optional guards,
and if is a shorter form with guards only. These can be viewed as anonymous
functions with a solitary definition and use. It should be noted that there is no
boolean data type, and that the use of the keyword true for catch-all (empty)
guards in if constructs is merely a syntactical convention.

This is then an alternative way of defining the factorial function in figure 4.1:

factorial(N) ->
if
=0 -> 1;
> 0 -> N * factorial(N - 1)
end.

(Actually, this version is stricter, since it uses the guard N > 0 in the second
case. To be equivalent to the first definition, this guard should be true.)

4.2 Concurrency

The built-in function spawn causes the evaluation of a function as a separate
process, yielding the Pid for the new process. The originating process does not
wait for its completion (but can be informed of this via signals, where desired).
When the top-level function of a process has been evaluated, the process termi-
nates. The result computed by the function is lost. Data are transferred between
processes using the message mechanism described below.

The scheduling of processes in an ERLANG implementation is not fixed, but
must fulfill two requirements. It must be fair, i.e., a process that is ready to run
must eventually become scheduled, and, secondly, no process may run for more
than a short period of time if there are other processes ready to run. This latter
requirement exists for practical purposes only (wviz., for short response times
in real-time systems), and holds no importance to our discussion. The period,
known as a time slice, is typically in the range of a few milliseconds or less.

4.3 Inter-process communication

Communication in ERLANG is asynchronous. The primitive ‘!’ (send) is an infix
operator whose left argument is the Pid of the receiver process and whose right
argument is the message to be sent. A message is any constant value (term).
The result of the expression Pid ! Message is the value that was sent.
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receive
<pattern 1> [when <guard 1>] ->
<actions 1>;

<pattern N> [when <guard N>] ->
<actions N>;
[after <timeout-expression> ->
<timeout-actions>]
end

Figure 4.2: The syntax of the receive primitive.

The send operation proceeds immediately without even waiting for the mes-
sage to be delivered to its destination (which could be on another computer).
If the receiver process has terminated when the message is sent, this does not
affect the sender in any way, and the message is simply lost. Otherwise, the
message is stored in the mailbox of the receiver process.

The order in which messages are delivered is not necessarily the same as the
order in which they were sent, taken over time. (In particular, this is noticeable
when messages are transferred over a network, in distributed implementations.)
The language only guarantees that messages with the same sender and receiver
processes will be delivered in the same relative order as that in which they were
sent (often referred to as first-in-first-out, or FIFO, ordering). Primarily, this
implies that message passing cannot be interpreted as an atomic operation, and
may be preempted before the message is delivered to the receiver’s mailbox.
Just as the process scheduling is required to be fair, it is also required of im-
plementations that sent messages will eventually be delivered (or be lost, e.g.
if the receiver has terminated).

Receiving messages

Delivered messages are kept in the mailbox in incoming order, and are not
removed until explicitly received by the process. To receive a message, a set of
pattern/expression pairs is specified, and the mailbox is searched in order from
older to newer for messages that match one of the patterns. Each message is
matched against all patterns in sequence before the next message is tried. If a
message is found to match a pattern, it is removed from the mailbox and the
corresponding expression is evaluated. If no message in the mailbox matches
any of the patterns, the process will suspend until such a message is delivered
or a timeout occurs.

All this is handled by the primitive receive. Its full syntax is shown in
figure 4.2, where <timeout-expression> evaluates to an integer or the atom
infinity. An integer value represents a time measured in milliseconds. A value
of zero causes the timeout to occur immediately after the current contents of the
mailbox have been searched, while infinity inhibits the timeout completely.
Leaving out the after part is equivalent to specifying infinity, so the receive
will then terminate only when a matching message is received. If no patterns
are specified, no message can be matched, effectively turning the construct into
a delay. Like the similar case primitive, the “actions” are the expressions which
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will be evaluated depending on the selected case, and the value of the primitive
itself is the same as that of the last expression evaluated within it.

Message priorities can be implemented by nesting one receive primitive
within the after part of another with a zero timeout value, causing a complete
search of the mailbox for a certain set of patterns before any other patterns are
attempted or new messages waited for.

4.4 Other features

ERLANG includes several other features, not important in principle to our dis-
cussion. The most significant of these are the module system, which allows pro-
gram modules to be loaded or updated dynamically, the global Pid registration
database, process dictionaries, links and signals, error handling, run-time code
replacement, and ports.
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Chapter 5

Translational semantics
of Erlang

Most work on analysing process synchronization behaviour (in fact, almost all)
has been directed at synchronously communicating processes and at Concur-
rent Constraint Programming (Concurrent Logic Programming). In order to see
where such results and methods can be applied to systems of ERLANG processes,
we need to describe the semantics of ERLANG programs, and in particular the
asynchronous inter-process communication, in terms of these concurrency mod-
els. In such a description, there is not necessarily a one-to-one correspondence
between the ERLANG processes and processes in the target model.

5.1 Synchronously communicating processes

A central property of a system of (individually deterministic) processes com-
municating by synchronous message passing only, is that it restricts all nonde-
terminism to the choices of sender and receiver in synchronizations. It is thus
not dependent on, e. g., the scheduling of processes in the same way as a system
where processes test and assign values to shared variables. (Usually in message-
based systems, processes do not in general share data, and messages are regarded
as copied upon sending, as in ERLANG itself.) This property allows communi-
cation analyses to focus on the spawning (and termination) of processes, and
on the synchronization events. At all times, every data item in the system is
locally stored in some process, and common data flow analysis methods can be
used for most of the part.

5.1.1 Synchronous communication primitives

For the purpose of this chapter, we will assume the existence of two primitives
for synchronous communication: send(c, M) and receive(c), where ¢ is a channel
and M a message (any value). A process executing send or receive over a channel
¢ will suspend until it can be synchronised with another process. If two processes
exist in the same state such that one executes send(c, M) and the other receive(c)
for the same ¢, both processes will be able to proceed, M being the result of
the receive primitive. For our discussion, we can leave the result of the send
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primitive undefined at all times. If the channel is closed, we assume that both
primitives proceed immediately, the result of a receive undefined.

Note that we do not make any assumptions about the uniqueness of sending
and receiving processes here; it is possible that for a specific channel, several
processes may be waiting simultaneously to send or receive. The semantics of
these primitives are nondeterministic in this respect, and any send/receive pair
may be chosen for reduction. In a model of an ERLANG system, however, there
will be at most one receiving process for any channel.

5.1.2 Modeling the semantics of the message passing

For communication analyses to be conservative (safe), the model being used
must correspond to the most general interpretation possible of the language
semantics. From the description in section 4.3 of message passing in ERLANG,

we extract the following central facts:

e An ERLANG process must never be blocked unless it explicitly executes a
receive. In particular, execution of the asynchronous send (‘!’) primitive
must always be able to complete, regardless of whether any earlier sent
messages have been delivered or not.

e The transferring of a message from its sender to the mailbox of the receiver
cannot be assumed to be an atomic operation; all program execution may
proceed for arbitrarily long while a particular message is in transfer, with
the exception that any subsequent messages having the same sender and
destination as that message will not be delivered before it (so-called FIFO
ordering).

From the first point, it is apparent that a message, once sent, must be de-
scribed as being carried by a process separate from the sender and receiver
processes, in a synchronous model. To see this, suppose the receiver process is
involved in an arbitrarily long (or nonterminating) computation containing no
receive call. It cannot then for any reason execute a receive, since this would
cause it to suspend indefinitely if no sender existed. (We assume that there is
no possibility of “polling”.) Thus, any attempt to transfer a message to that
process (executing a send) would block until the process reached a receive, or
possibly forever. To allow the asynchronous send to complete immediately, the
message must be handed over to a carrier process, which can synchronise with
the receiver at a later time.

From the second point above, it can be deduced that there must be at least
one carrier process for each pair of source and destination processes. Consider
the program in Figure 5.1. (The result of the call self() is the Pid of the
executing process. Also, recall that the result from a spawn() call is the Pid of
the new process.) The result from evaluating the call nondet:a() may be either
of t1 or t2, since there is a possibility (in particular if the processes are running
on distinct nodes in a distributed implementation) that t1 is delayed during
transfer, so that meanwhile, t2 is transferred to B via C. Eventually, B will then
receive t1 and pass t2 back to A.

This example shows that there must be a separate carrier process for each
source—destination pair, or otherwise t2 could not be transferred to C, nor for-
warded to B, before t1 has been delivered.
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-module (nondet) .

-export ([a/0]).
a() —>
A = self(),
B = spawn(nondet, b, [A]),
C = spawn(nondet, c, [B]),
B ! ti1, % Send one message to B
C ! t2, % ... and one to C

receive M -> M end.

b(Pid) ->
receive M1 -> M1 end, % Receive two messages
receive M2 -> M2 end,
Pid ! M1. % Forward the first received

c(Pid) ->
receive
M ->Pid ' M % Forward the message
end.

Figure 5.1: Nondeterministic ordering of two messages

Furthermore, consider the changes in Figure 5.2 to the previous program
(process C remains as before). The possible orderings in which the (now three)
messages can be delivered at B are, in order of likelihood: t1, t2, t3; t1, t3, t2;
and t3, t1, t2. Since t1 and t2 have the same sender and destination processes,
their relative order is fixed. Obviously, it is necessary that the sending of t2 can
be completed even if t1 has not yet been delivered, if the model is to describe
all possibilities allowed by the language semantics.

Since we assumed that the only source of nondeterminism in the language
is the choice of sender and receiver in synchronizations, the nondeterministic
selection of the next message to be delivered must be modelled by processes
performing send operations over the same channel. This implies that carrier
processes, once handled a message, will be unconditionally suspended until the
message has been delivered. Thus, the last example shows that apart from a
carrier process, at least one other process is necessary for each source—destination
pair.

Letting this other process be an (unbounded) buffer server, acting on re-
quests from the sender and carrier processes (see [17] for an early example of
a bounded buffer process using synchronous communication), our model of the
asynchronous messaging system is complete, as illustrated in Figure 5.3. The
full model of ERLANG inter-process communication is described in more detail
below.

5.1.3 Timeout

The timout mechanism can be easily modelled in the following way: a separate
(externally defined) timer process is spawned by the receive, whose task it is to
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-module (nondet_2).
-export ([a/0]).

a() —>
A = self(),
= spawn(nondet_2, b, [A]),
= spawn(nondet, c, [B]),
! t1,
' t2, % Send a second message to B
1 £3,
receive M -> M end.

QW waow

b(Pid) —>
receive M1 -> M1 end, % Receive three messages
receive M2 -> M2 end,
receive M3 -> M3 end,
Pid ! M2. % Forward the second

Figure 5.2: Nondeterminism and relative ordering of messages

Figure 5.3: A synchronous model of the ERLANG messaging system
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Hm, M) =
¢ = bufferchan(self(), ),
send(c,write(M)),
M

Figure 5.4: Asynchronous send (‘!’)

send a timeout message when the specified period has passed. This message may
not be detected immediately by the receiving process, but will eventually (like
all messages) be delivered. Thus it cannot be assumed that no other message
will be received after the specified time has elapsed; it only guarantees that the
process executing the receive will not suspend indefinitely. This follows the
Strand implementation [1] of ERLANG, and should be true for the language in
general.

We want to keep the protocol between the receiver and the timer processes
minimal, so we do not include any acknowledging of messages sent between
them. Therefore, when a receive which has spawned a timer finds a matching
(normal) message, it cannot know whether the timer process is still waiting, or
has dispatched a timeout message and terminated. In order to eliminate false
timeouts, each new timer and the receive call which spawned it must therefore
be associated with a unique key, to be used to authenticate the timeout message.
Timeout messages whose keys do not match that of the active receive call may
then simply be discarded.

5.1.4 The complete model

We give here a full description of a synchronous model of the inter-process
communication in ERLANG, using a pseudo-functional notation with semantics
similar to ERLANG itself; in particular, ¢, (comma) denotes the sequencing op-
erator. While the model has not been formally verified, it should be regarded
as nothing more than a sketch.

With each ERLANG process, we associate a channel for synchronous commu-
nication, which is identified throughout the system via the Pid of the owner
process, and let the function input(w) yield the channel identified by Pid .

Asynchronous Send

The definition of the ‘!’ (asynchronous send) primitive is given in Figure 5.4,
in accordance with the discussion in section 5.1.2. The call bufferchan(rmy,ms)
yields the channel for sending to the process which is buffering messages from
the ERLANG process with Pid m to that with Pid w5. We may assume that if
such a buffer process did not exist previous to the call then it will be spawned,
together with a carrier process, both given in Figure 5.5. These processes must
remain active at least until either the sender has terminated and no messages
remain to be delivered, or the receiver terminates; for clarity, however, we leave
out such details from the model. self(), as before, yields the Pid of the executing
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carrier(b, c,d) =
send(b, read)
msg(M) = receive(c),
send(d, msg(M)),

carrier(b, ¢, d)

3

buffer(c,d, Q) =
x = receive(c),
buffer(c, d, append(M,Q)) if x = write(M)
{ transfer(c, d, Q) if z = read

where transfer(c,d, Q) =
write(M) = receive(c),
send(d,msg(M)),
buffer(c,d, Q) it @ =11
send(d, msg(head(Q))),
buffer(c, d, tail(Q))

otherwise

Figure 5.5: The carrier and buffer server processes

ERLANG process, append(z, L) appends element x to list L, and head(L) and
tail(L) select the head and tail parts respectively of list L.

Asynchronous Receive

The model of the asynchronous receive primitive is divided into two stages: the
initial stage where the buffer holding already delivered messages is searched, and
a waiting stage where new messages are accepted one at a time, until a match
is found or a timeout occurs.

For the following, we have assumed the existence of a primitive match(®,z),
where ® is a sequence ¢1,...¢, of patterns (with guards), which yields an
integer i > 0 if ¢; is the first pattern in ® that is valid for z, or zero if no match
is found. The representation of patterns and guards is left out of this discussion.

We have also assumed that each ERLANG process has an associated buffer of
terms stored in incoming order, with the operators store(z), which adds a term
z to the buffer, delete(z), which removes the oldest occurrence of term z from
the buffer, and lookup(®), which yields msg(x) if x is the first term in the buffer
such that match(®,z) > 0, or the unit tuple () if no such = exists,

Let receive be defined as shown in Figure 5.6, where the parameter ® is a
sequence @1, ... ¢, of patterns, and F = ey, ...e, a sequence of corresponding
expressions, for any number n > 0. The parameter ¢ is a timeout limit (which is
either a nonnegative integer or infinity) and T is the corresponding expression.
case is simply the ERLANG case primitive, taking the obvious parameters.

The primitive timer(t, ¢) is assumed to spawn a timer process, given a positive
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receive(®, E,t,T) =
x = search(input(self()), @, 1)

T ifz=)
{ case(M,®, E) if x =msg(M)

where search(c, ®,t) =
x = lookup(®),
delete(M), x if 2 = msg(M)

0 ifz=()andt=0
waiting(c, ®,()) if z = () and ¢t = infinity

)
7 = timer(t, ¢),
waiting(c, ®,w) otherwise

and waiting(c, ®,7) =
x = receive(c),
( () ifx=mandnw # ()
x if £ = msg(M) and
match(®, M) > 0
if 2 = msg(M) and
,m)  match(®, M) =0

P
¢, ®,m) otherwise

store(M

),
waiting(c,
(

waiting

Figure 5.6: Asynchronous receive
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integer ¢ and a channel ¢ for synchronous communication, and yield the (unique)
Pid of the new timer as its return value. Following the discussion in section 5.1.3,
we use this Pid to authenticate the timeout message. The timer will then simply
send its own Pid on channel ¢ after time ¢ (measured in milliseconds), and then
terminate.

5.1.5 Summary

Expressing the semantics of ERLANG message passing in terms of synchronous
communication primitives is a more complicated matter than it would appear
at a first glance. Apart from the processes executing the ERLANG code, there
must be an extensive structure of buffer and carrier processes one of each per
pair of sender and receiver processes.

The model as detailed above is interesting in its own right, while it makes
apparent several aspects of the ERLANG semantics. It should be obvious, though,
that it is inadequate as a direct means to facilitate communication analyses,
mainly because of the combinatorial explosion in the state space, caused by the
extra processes, the buffering, and the nondeterminism.

Analyses for systems using synchronous communication all exploit the fact
that such systems are (generally) constructed so that there is a tight coupling
between the producing/sending and the receiving/using of data — processes in
such systems often proceed in lock-step. ERLANG programs, however, are not
typically written in this way, because the asynchronous messaging system en-
courages the programmer to write more “relaxed” code.

Apparently, on top of the above model is required an abstraction which treats
the message buffering processes separately from the processes executing ERLANG
code, and so nothing is gained from basing an analysis on a synchronous model.
However, where a communication analysis can decide that an ERLANG program
displays synchronous behaviour, methods from that area may be successfully
applied.

5.2 Concurrent Constraint Programming

Concurrent Constraint Programming, or as it is often known, Concurrent Logic
Programming, is basically logic programming extended with (or rather, gener-
alised to) concurrency. Since there is much natural parallellism in most logic
programs, this is quite a straightforward generalization — much more so than
the concurrent extensions of imperative or functional languages. In the lat-
ter, concurrency is primarily explicit!, i.e., separate processes are created only
through execution of instructions such as the spawn in ERLANG. In Concurrent
Constraint Programming, on the other hand, all computations are implicitly
concurrent, and instead, any data dependencies must be given explicitly. The
closeness to logic programming and mathematical logic has made it an attrac-
tive field of research, and much work has been done in this area in the last years
regarding static analysis of data dependencies.

TExplicit at least for communicating processes. Isolated subcomputations may be executed
concurrently in so-called threads, and this is sometimes done implicitly.
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5.2.1 Introduction to CCP

From a simplistic view, the Concurrent Constraint Programming, or CCP, para-
digm reduces all computational concepts to the execution of a simplest form of
processes usually called “atoms”. The term “constraint programming” refers
to the view of variable bindings as a global, monotonically growing set of con-
straints on variables. A process (an atom) executes atomically once scheduled,
terminating in constant (and very short) time. The actions an atom can per-
form are limited to the instantiation of variables and the spawning of new atoms.
(The parent atom always terminates before any of its children are scheduled.)
Atom execution is usually referred to as reduction, and is performed much as a
function call in ERLANG, with the modification that any matching clause may
be selected — not necessarily the topmost. We say that a computational state o;
reduces to state o; with selected atom A (i.e., the atom reduced at that step)
in 0, and selected clause C in the program, and write 0; — ¢;. Each atom
spawned in a reduction is considered distinct from all atoms occurring in some
previous state (and all variables introduced in the selected clause are renamed
away from any previously occurring variables).

The main difference from ERLANG and other functional languages is that in
CCP, variables can be passed around without being bound. Instead of calling a
function and wait for it to return a value, an unbound variable can be passed
to the subcomputation, as a slot to place the result in. (Any number of un-
bound variables can be passed, so the code for an atom does often not denote
a unique mathematical function). Unbound variables can also be made part of
data structures, which are then referred to as incomplete.

Data dependencies

Synchronization in CCP is handled solely by use of clause guards, demanding
that certain input variables be bound (at least partially) to certain values be-
fore the clause may be selected. An atom remains suspended until some clause
matches (or until no clause is consistent with the variable bindings, in which
case the atom fails). Thus, an atom can be made to wait until another atom
instantiates a variable shared between them. Commonly, CCP languages are so-
called committed choice languages, implying that there is no backtracking, and
consequently, atom failure either causes the program execution to fail (being
the “proper” action), or suspends the atom forever (a robust solution used e. g.
by Strand, but less correct).

In the most general, still monotonic form of CCP, a program clause (or rule)
can be written on the following form (see e.g. Yardeni et al. 1990 [25]):

Head <- Ask : Tell | Body

where Head is the clause head as in ERLANG, Ask is a sequence of guards,
Tell is a sequence of variable bindings and Body a sequence of atoms to be
spawned. The clause cannot be selected unless the Tell bindings are consistent
with the current state, and if it is selected, the bindings are performed as part
of the (atomic) reduction. In languages like Strand [15], there is no Tell part,
and bindings are instead performed by externally defined atoms included in the
body. This does in fact reduce their expressiveness somewhat; see [25].

Lastly, unlike ERLANG, where the comma-separated expressions in a clause

body are evaluated in textual order, those atoms spawned by a reduction in
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CCP may be scheduled in any order, unless they explicitly synchronise via
shared variables, as described. In other words, the sequence of atoms in the
body of a CCP clause should be regarded as unordered. (Generally, this is also
true for the Ask and Tell sequences, but e.g. Strand guarantees left-to-right
execution of the guard tests.)

5.2.2 Translating Erlang into CCP

Leaving out the handling of process failure and error recovery, system calls, etc.,
there are three primary problems to be addressed in translating an ERLANG
program into CCP code. (A detailed description of the translation into Strand
is given by Armstrong and Virding in [1].) The first problem is to implement
the functional semantics of ERLANG; this is simply handled by adding an extra
argument to the ERLANG clauses, to hold the result. The second problem is to
sequentialise the execution of the calls in the ERLANG clause bodies. This can
be done by chaining a variable through all atoms, using two extra arguments
— one to be waited on until it becomes bound, and another which is bound to
the value of the first by the execution of the atom. (The actual value bound to
the variables is not important to the method, but typically the current process
state information would be passed along this chain.)

The third primary problem is to make sure that the clauses defining a function
are tried in textual order. This however calls for a nonstandard extension to
CCP, such as the otherwise guard test found in FCP(:,?) [25] and Strand, and
can not be implemented otherwise.

Translating the case construct (including the simpler if form  see sec-
tion 4.1) is straightforward, since as mentioned earlier it can be seen as short-
hand for a call to an anonymous function, and all occurrences may simply be
transformed into calls to unique “lifted” functions. E. g.,

f(X) ->
if
=0 -> 1;
> 0 >X*x f(X - 1)
end.

can be rewritten as

f(X) -> f_case_1(X).

f case_1(X1) when X1 == -> 1;
f_case_1(X1) when X1 > 0 -> X1 % £(X1 - 1).

Message streams

The only real problem left to do with the ERLANG semantics is then that of
message passing between processes. First of all, we need to define what an
ERLANG process corresponds to in an execution of the translated program.

An atom A occurring in one or more states in a reduction sequence g3 —
09 — -+ is a descendant of an atom B in the sequence if and only if A was
spawned as the result of reducing B, or reducing a descendant of B.

An ERLANG process, then, can be identified with the set of all atoms in the
sequence that are descendants of some atom A = spawn(...), and which are
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write(Pid, M, X, X1) <- X = [{Q, M1} | Xs] : true |
write(Pid, M, Xs, X1).

write(Pid, M, X, X1) <- true : X = [{Pid, M} | X1] |
true.

Figure 5.7: Writing to a shared stream

not descendants of a spawn that is a descendant of A. (For simplicity, we can
assume that the initial state contains exactly one atom, which is a spawn.)

It is not obvious how shared streams with an unbounded and arbitrary number
of producers (so-called multiple writer streams), like the message streams of
the ERLANG semantics, can be implemented in CCP  at least not without
resorting to built-in extensions in the target language (thus removing all reasons
for attempting to use a CCP model for analysing the communication in ERLANG
programs): the Strand implementation used built-in stream merger operators.

It turns out that the problem is equivalent to that of assigning each producer
a unique ID?. Given a unique identifier, each producer can write to the shared
stream using the definition in figure 5.7, where X1 should be unbound before the
call, and afterwards replaces X as the stream reference. The unique Pid guar-
antees that no tuple {Pid, M} already exists in X. (A last stage can easily be
added between writers and consumers which transforms the stream [{P1, M1},
{P2, M2}, ...] into [M1, M2, ...].) Note that Q and M1 are merely place-
holders in the above, and that Q is never equal to Pid if the first clause matches.

(Also note that a direct Strand implementation would have to use a “trick”
in the second clause, requiring that the head of the stream be unbound, since
Strand clauses have no Tell part. Such tests make a program lose certain math-
ematical properties, e. g. stability of non-delay, which are central to much of the
reasoning about CCP programs; in fact, such properties are one of the main
things that make CCP interesting, it being rather different from concurrent im-
perative or functional languages. This point is not of importance to us, though,
since we are not restricted to the Strand subset of CCP.)

Reversely, given multiple writer streams, a separate process can be created to
receive requests for unique identifiers, and hand them out one at a time, e. g. in
an unbound variable sent as part of the request. One consequence of all this is
that the mechanism for assigning Pids does not need to be explicitly specified
in the translation, but can be invisibly incorporated in the execution of spawns,
knowing that it does not violate the semantics of monotonic CCP.

Stream mergers

As it turns out, in a generic CCP model of ERLANG, a sending process will
not directly write the message into the input stream of the receiver. As the
discussion in section 5.1.2 showed, to cover all possible interpretations of the
ERLANG semantics, there must be a separate stream between each pair of sender

2Unique process identifiers can be implemented directly in a fairly straightforward manner,
using strings such that Pid 7 of process p is a proper prefix of Pid ' of process q if and only if
q is a descendant of p, and such that no two processes spawned from the same parent have the
same Pid. (Using binary strings, the child’s Pid can e.g. be formed from that of the parent
by appending one zero for each previous spawn performed by the parent, followed by a one.)
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Figure 5.8: A CCP model of the ERLANG messaging system

and receiver processes, and the input stream of a single ERLANG process must be
described as the nondeterministic merge of all its incoming message streams. (In
the Strand implementation, all outgoing messages and most system requests
were written to a single out-stream read by the kernel process, which in its turn
distributed them to their respective destinations, but such a centralised model
is not general enough for our purposes, and would unnecessarily complicate
program analysis.) The generalised structure of processes and streams in a CCP
model is shown in Figure 5.8. (Note the close similarity to Figure 5.3.)

A generic stream merger can be written in such a way that for each in-stream
that is to be included in the merge, a separate sub-process is spawned which
takes one message at a time from the in-stream and tries to write it to the
shared outgoing stream, similarly to the carrier processes of section 5.1.4. (An
order to add or remove a stream can be passed as a message in any in-stream
already being read, and acted upon by a filtering stage in the merger.)

However, a merger for ERLANG message streams should be fair, in the sense
that in any state, the probability should be equal for all in-streams containing
accessible messages, that the next message written to the out-stream is read
from any particular one of them. A merger constructed using the write opera-
tion defined in figure 5.7 will not satisfy this requirement, even if the scheduling
of processes (atoms) in itself is fair. To see this, consider a case where two
in-streams, of which at least one is infinite, are being merged via two writer
processes by use of this definition. There is then at least one fair, infinite, reduc-
tion sequence (namely, that which alternates between the two writer processes)
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where one infinite stream is copied to the out-stream, while the other stream is
blocked indefinitely because its writer process is “wasting” its reductions trying
to find an empty slot for the next message. For instance, in [21] Shapiro and
Safra use a built-in operator, which places a message in the first uninstantiated
slot of a stream as an atomic operation, to implement a fair multiway merge.
It would seem that such a merger cannot be achieved in pure monotonic CCP
without such built-in extensions, but since the set of all fair mergings is a subset
of all possible mergings, as expressed by the above model, any analysis using it
as a model of message stream merging in ERLANG would still be conservative
(safe).

Reading from a stream

The procedure for receiving a message from the input stream of an ERLANG
process can actually be expressed somewhat simpler in CCP than in imperative
or functional concurrent programming languages (such as Concurrent C and
Concurrent ML), because it does not have to be divided into the two stages
of first searching the buffer, and then attempting to receive further messages,
should the first stage fail. (The handling of timeouts remains equivalent to that
described in section 5.1.3.)

Since the input stream is an incomplete data structure a list whose tail
remains partially undefined until the stream is closed the buffering of uncon-
sumed messages can be handled simply by not removing them from the stream.
Each attempt to receive a message will search the present stream from the begin-
ning, not making any difference between messages that were accessible during
a previous search, and messages that have appeared since then. If no match is
found before the unbound part of the stream is reached, the search will simply
suspend until more of the stream becomes defined. When a matching message
is found (be it a timeout message or otherwise), the new stream used for later
searches will be that composed of (a copy of) the old stream up to but not
including the matched message, followed by that (actual) part of the old stream
which followed the message.

5.2.3 Conclusions

It is apparent that a CCP model of the sequential execution of ERLANG processes
is not helpful for analysis purposes; if anything, the introduced execution order
dependencies between atoms will blur distinctions between any abstract state
descriptions. Nor are the actual data dependencies via the message streams made
more obvious in a CCP model than in e. g. the synchronous model described in
section 5.1.

What has been shown here of main interest are the difficulties in modeling the
merging of ERLANG message streams in monotonic CCP, and how the structure
of streams and merger processes is laid out. We note that the latter is quite sim-
ilar to how queues of message carrying processes are formed in the synchronous
model, and conclude that an abstraction of the message passing in ERLANG
should be based on this structure.
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5.3 Summary

We have expressed the semantics of the ERLANG messaging system in the con-
currency models of synchronously communicating sequential processes (with dy-
namic creation of processes and channels) and Concurrent Constraint Program-
ming, demonstrating that neither is a useful basis for the analysis of ERLANG
programs. However, the construction of both the respective models has showed
upon several interesting details regarding the semantics of ERLANG message
passing, and has pointed out the common basic structure of the messaging sys-
tem in its most general form, as shown by figures 5.8 and 5.3.
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Chapter 6

Deadlock analysis
of Erlang programs

We have identified only two existing analyses of synchronization and communi-
cation as being powerful enough for the purposes we specified in section 1.2, and
specifically, for the verification of absence of deadlocks in concurrent ERLANG
programs. These are, respectively, the synchronization and aliasing analysis of
Colby [8], and Masticola’s method of locating and eliminating possible depen-
dency cycles [19]. We described the former in section 1.6, and, although we deem
that it would be quite interesting to see it applied to ERLANG programs, its ap-
parent computational expensiveness and the lack of practical test results so far
has prompted us here to focus instead on the latter method, which we believe
could give results that satisfy our requirements — in particular if combined with
the modular verification strategy suggested in section 1.5.

6.1 Masticola’s method

The intuitive idea behind this method of verifying absence of deadlocks in a
program, is that corresponding to any deadlock (but not to pure cases of star-
vation) there is a circular waits-on dependency over the involved processes. If
we can build a dependency graph over the program, which contains at least
all such dependencies between program points that are actually possible, and
then show that no dependency cycle in the graph (there will usually be many)
can exist in an actual execution of the program, we will have shown that the
program cannot deadlock. (Although the possibility remains that its processes
can become starved.)

The synch graph

To do this, Masticola lets the flow graph over the program text represent all
possible machine states (sets of processes with current program points in the
graph). This graph is abstracted away from instructions other than those of
synchronization, so that a node in the graph actually represents all execution
path segments from previous synchronization instructions to that particular
instruction, which do not pass through another synchronization instruction.
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Directed synch edges are then added to the graph, from sender S to receiver
R, for all program points S, R such that it may be possible for a process at S to
enable a process concurrently at R to proceed. Since the approximation must
be safe, a synch edge can only be left out where it can be shown that such a
synchronization cannot occur. For synchronization schemes such as rendezvous,
synch edges may be bidirected or undirected. We further discuss how the set of
synch edges is determined in section 6.2.

In its basic form, then, no distinction is made between process instances when
this extended synch graph is built. However, to handle programs with dynamic
process creation, Masticola suggests that the relevant parts of the program text
be duplicated, possibly several times, so that different classes of process instances
may be described by separate parts of the synch graph. This method, applied
by Masticola to Concurrent C programs, appears to be quite limited, though,
and tends to need the programmer’s help in deciding how to suitably partition
the processes.

Deadlock cycles

Any possible waits-on dependency between two processes of the program is now
represented by a path from the waited-on node to the waiting node, consisting
of zero or more control flow edges followed by exactly one synch edge. The
path represents the possibility that if the waited-on process is able to continue
execution, it may reach a program point where it can enable the waiting process
to proceed. Obviously, both nodes must represent synchronization instructions
that may suspend process execution, and it must be possible for these program
points to be executed by distinct processes, or no actual dependency can exist
(if we assume that no process can be dependent on itself).

Intuitively, a deadlock in an execution of the program must be represented by
two or more such waits-on dependency path segments, connected so as to form
at least one cycle. (There are problems with formalising this intuition, which we
discuss in section 6.2.) The algorithm for verifying absence of deadlock, then, is
to locate every such cycle in the synch graph, and show for each found cycle
using any available additional information about the program — that it cannot
represent a deadlock in an actual execution of the program.

Apart from the previously mentioned necessary characteristics of these so-
called deadlock cycles, Masticola identifies the following:

e There must be a reachable program state in which the waited-on program
points are executed concurrently by distinct processes.

e There must be a reachable program state such that the waited-on nodes
in the cycle are all simultaneously unable to proceed, given the current
state of the program store, signals, messages, etc.

e In any program state for which the above criteria hold, no process in the
system must necessarily be able to enable a process within the cycle to
proceed (breaking the cyclic wait).

If any of these constraints can be shown not to hold for a cycle in the graph,
that cycle cannot represent a possible deadlock of the program. (The last con-
straint is generally very difficult to prove false, but it can be done in special
cases.)
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Cycle pruning information

The kind of information necessary to efficiently prune possible deadlock cycles
generally involves the particularities of the semantics of synchronization in the
source language, but most important is the estimation of a Can’t Happen To-
gether relation (Masticola’s term) which describes the non-concurrency of pairs
(or sets) of process states. It may for instance be possible to decide, for processes
p and q, that p is never executing a suspending synchronization instruction when
q is, and thus no actual deadlock cycle can contain both p and ¢g. The details
of CHT analysis are complicated an important ingredient is a previous stage
of analysis determining a “must have completed before”-relation on program
points — see [19] for mathematical models and examples of analyses of Ada,
binary semaphores, and Concurrent C.

6.2 OQOur extension

Masticola however fails to recognise that the concept of a “waits-on” dependency
between processes is more complicated than our first intuition gives at hand.
In the case of Ada programs, senders and receivers are statically and explicitly
matched by the program text, and the synch graph can be built during parsing.
The synch edge representation of possible synchronizations is obviously safe in
this case — we can be sure that all possible dependencies have been included
by the construction algorithm — but it is not obvious how this process can be
generalised to other languages and concurrency models.

A program verified free from deadlock cycles with Masticola’s method is not
necessarily free from cases of starvation, and whether a process is regarded
as starved or not depends on the rule used for determining possible process
dependencies. If this rule is too conservative, there may be cases of indefinitely
suspended processes which we would want to describe as deadlocked, but which
will not be regarded as cyclically dependent under the rule in question. On the
other hand, if the rule includes unnecessarily many suspected dependencies, it
will be very difficult to show for all ensuing cycles that they cannot correspond
to actual deadlocks.

It is also far from obvious what the absence of deadlock cycles implies regard-
ing the existence of local deadlocks (livelocks) — particularly in the case when
processes can be dynamically created by the program. In [4], we give a thorough
treatment of all the above questions, defining the class of weak process depen-
dency relations, together with a basic set of rules for determining when such
dependencies can safely be excluded between pairs of processes, and showing
how Masticola’s method can be extended using these dependency relations to
verify absence of local deadlock. In particular, we show under which conditions
absence of deadlock cycles implies absence of local deadlocks, even for programs
with dynamic process creation.

6.3 Precision problems
In applying this extended method to ERLANG programs, there are some prob-

lems with the precision of the analysis that do not occur for programs in Ada
(although some do for Concurrent C). The probably most important of these is
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the difficulty in matching sender and receiver processes. Not only do ERLANG
programs use dynamically created channels (one for each new process), and use
local variables to hold the process identifiers (Pids) that are used as channel des-
ignators in send (‘!’) instructions, but they also regularly pass Pids between pro-
cesses (often referred to as channel migration), and in several applications store
Pids deeply embedded in large data structures. This is not an insurmountable
problem, though — recently, Sven-Olof Nystrom has achieved promising results
with such a communication topology analysis even for large ERLANG programs
(personal communication, March 1997).

The problem of finding a generic approach to handling dynamic creation of
processes is less straightforward. The subgraph duplication method applied by
Masticola for analysing Concurrent C programs requires a good characteristic
for separating process instances. (A simple example would be by the values of
the initial arguments to the process.) Masticola suggests using the chain of pro-
cess creation instructions that precede a particular process creation to separate
instances, but this has the drawback that the synch graph is then no longer
polynomially bounded in size. Colby’s trace-based analysis of the communi-
cation topology [9] of concurrent programs seems to be a good candidate for
improving this situation.

Lastly, the need for a representation in any analysis of the contents of message
buffers in the asynchronous inter-process communication system of ERLANG
(see chapter 5) is likely to blur many data dependencies. There is however
some statistical indication that in a majority of the synchronizations in actual
ERLANG programs, the message buffer of the receiving process is empty when the
receive statement is executed, and also that many synchronizations in practice
display synchronous behaviour. An analysis which can identify such cases could
probably be used to both simplify the analysis and increase its precision.

6.4 Conclusions

Cycle detection and elimination, as opposed to most other suggested methods for
verifying absence of deadlocks, has been shown (by Masticola) to be applicable
in practice to large real-world programs, and with quite good results (see [19]).
It also has the advantage over most other methods that it can locate possible
local deadlocks as well as global, and give meaningful information about their
causes. The method is shown fast enough to be practical, and generally has
better time behaviour than other analyses. (See section 1.6 for related work.)

We believe that our extension of Masticola’s method, described in detail in [4],
could give useful results if applied to ERLANG programs, given that the precision
problems described above can be solved satisfactorily, and we hope that in the
future, an attempt will be made to do this.
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