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Methods for Trend Estimation from Summarized Dose-
Response Data, with Applications to Meta-Analysis

Sander Greenland and Matthew P. Longnecker

Meta-analysis often requires pooling of correlated estimates to compute regression
slopes (trends) across different exposure or treatment levels. The authors propose two
methods that account for the correlations but require only the summary estimates and
marginal data from the studies. These methods provide more efficient estimates of
regression slope, more accurate variance estimates, and more valid heterogeneity tests
than those previously available. One method also allows estimation of nonlinear trend
components, such as quadratic effects. The authors illustrate these methods in a meta-
analysis of alcohol use and breast cancer. Am J Epidemiol 1992;135:1301-9.

epidemiotagic methods; logistic models; meta-analysis; risk assessment

Meta-analytic methods for clinical trial
data often assume that sufficient data are
available from each study to allow use of
ordinary analytic methods. Nevertheless,
meta-analyses of observational studies often
have to rely on the limited data available
from research reports, and they may have to
reconstruct the more complete data required
for regression analysis (1).

To obtain a regression slope from a re-
search report, one may have to pool esti-
mates for responses at different levels of

exposure or treatment. Current methods for
pooling estimates assume independence of
the estimates, an assumption that is never
true because the estimates for separate ex-
posure levels depend on the same reference
(unexposed) group. We present two new
methods of pooling that account for the
correlation between estimates, and we com-
pare the results of applying these methods
with the results from methods that assume
independence.

TREND ESTIMATION FROM A SINGLE REPORT

As a motivating example, consider the case-control data in table 1 on alcohol and breast
cancer, first presented by Rohan and McMichael (2). From these data, we wish to estimate
the coefficient /S in the logit-linear (linear-logistic) model

\(x, z) = a + /3x + 5'Z,

where x is alcohol intake, z is the vector of covariates, and X is the log odds of being a case
in the study versus being a control. We do not have access to the original data, nor did the
published article present enough data to allow us to fit the model to the data. Nevertheless,
we can construct an estimate of 0 by using weighted least squares to regress the adjusted log
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165
74
90
122

172
93
96
90

337
167
186
212

1.0
0.83
0.98
1.41

1.0*
0.80 (0.51-1.27)§
1.16(0.73-1.85)
1.57(0.99-2.51)

TABLE 1. Case-control data on alcohol use and breast cancer, as presented by Rohan and McMichael (2)

Alcohol Assigned dose No. of No. of T , . Crude AH, , ^ -.„.
(g/day) %/day) cases controls T o t a l OR' Adjusted ORf

0 0
<2.5 2

2.5-9.3 6
>9.3 11

Total 451 451 902

• OR, odds ratio.
t Odds ratio from age-matched conditional logistic regression including variables for history of benign breast

disease, bilateral oophorectomy, smoking, education, family history of breast cancer, ages at first and last menstrual
period, age at first live birth, ever use of oral contraceptives, ever use of replacement estrogens, and practice of
breast setf-examination.

t Referent.
§ Numbers in parentheses, 95% confidence interval.

odds ratios from table 1 on the exposure doses listed in column 1 of the table (1). Doing so
yields an estimated /3 of b = 0.0334, with an estimated variance for b of v = 0.0003494.

Given the logistic model, the estimator b of 0 obtained using the preceding method is
consistent for £. Nevertheless, b is inefficient; worse, the variance estimate v obtained from
this regression underestimates the true variance of/? (see Appendix 1). In effect, the variance
estimator for b assumes that the log odds ratios are uncorrelated, an assumption that is never
satisfied in practice and is often grossly violated. We have therefore developed a new
approach that yields an efficient point estimator and a consistent variance estimator under
assumptions more likely to be approximated in practice. Our approach is based on con-
structing an approximate covariance estimate for the adjusted log odds ratios from a fitted
table that conforms to the adjusted log odds ratios.

For case-control and cumulative cohort data, our estimates are computed as follows:
1) Let the reference exposure level be coded zero;

Nx = the total number of subjects at exposure level x;
N = the vector of Nx;
Mi = the total number of cases;
Lx = the adjusted log odds ratio estimate for exposure level x (x ^ 0) versus the reference

level (JC = 0);
L = the vector of Lx (x ^ 0);
vx = the estimated variance for Lx (see Greenland (1) for methods of computing vv

from published reports);
v = the vector of vx (x ^ 0).

2) Fit cell counts to the interior of the total data table (which has margins Nx and M{) such
that AxB0/(AoBx) = exp(Lx), where Ax and Bx = Nx - Ax are the fitted numbers of cases
and noncases at exposure level x. (See Appendix 2 for a simple fitting algorithm.)

3) For x T4 z, estimate the asymptotic correlation of Lx and Lz by

^ = (1/^0+ l/Bo)/sxsz,

where s/ = crude variance estimate = \/Ax + \/Bx + \/A0 + \/B0.
4) Estimate the asymptotic covariance of Lx, L_- by
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Trend Estimation from Summarized Dose-Response Data 1303

5) Estimate fi by weighted least squares for correlated outcomes:

b* = vA*x'C-'L,

vb* = ^b*) = (x'C-'x)"1,

where x is the vector of observed nonzero exposure levels and C = cov(L) has diagonal
elements vx and off-diagonal elements C&.

Step 5 is easily carried out using a matrix programming language such as GAUSS, SC, APL,
S-PLUS, or SAS IML.

Consistency of b* under the logit model follows immediately from consistency of L. As
Appendix 3 shows, b* is more efficient than b, and vb* is consistent for var(6*) under the
assumptions that
1) the crude odds ratio parameters approximately equal the adjusted odds ratio parameters,

i.e., the sampling distribution is strictly collapsible (3);
2) the correlation matrices of the crude and adjusted odds ratios are approximately equal;
3) the variances of the crude odds ratios can be approximated by the usual formulas based

on the multinomial or Poisson distributions.
Assumption 3 is a standard assumption for unmatched studies. When assumption 3 is
violated, it is usually because matching has been employed; nevertheless, numerous studies
indicate that the impact of matching on variances is usually small (e.g., see reference 4).
Assumptions 1 and 2 will be satisfied when the adjustment factors are only weakly related
to the exposure and outcome. Assumption 1 can be checked by comparing the crude odds
ratios with the adjusted odds ratios. In any case, some set of externally specified constraints
is necessary in order to allow estimation to proceed when the covariate-specific data are
unreported, and assumptions 1-3 are far more reasonable than assuming that the Lx's are
uncorrelated (which has, up until now, been the only recourse in dose-response meta-
analyses). We also note that assumptions 1-3 are sufficient but not necessary for b* and v*
to outperform b and v.

For the Rohan and McMichael (2) data, we applied the above steps as follows:
1) The exposure categories were assigned levels of 0, 2, 6, and 11 g/day; N = (337, 167, 186,

212)'; Mi = 451; L = (log 0.80, log 1.16, log 1.57)' = (-0.223, 0.148, 0.451)'; and v =
(0.0542, 0.0563, 0.0563)'.

2) The fitted cell values were 160.5, 70.3, 95.5, and 124.7 for cases and 176.5, 96.7, 90.5,
and 87.3 for controls at exposure levels 0, 2, 6, and 11. As a numerical check on the
computations, note that these reproduce the adjusted odds ratios, e.g., 70.3(176.5)/
160.5(96.7) = 0.80.

3) s2 = (1/70.3 + 1/96.7 + 1/160.5 + 1/176.5)* = 0.19095; similarly, s6 = 0.18280 and
Su = 0.17711. Thus, r w = (1/160.5 + 1/176.5)/0.19095(0.18280) = 0.3408; similarly,
rm = 0.3518 and r6,, = 0.3674.

4) c26 = 0.3408[0.0542(0.0563)f = 0.0188; similarly, cxn = 0.0194 and c* „ = 0.0207.
5) x = (2,6, 11)',

fo.0542 0.0188 0.0194]
C= 0.0188 0.0563 0.0207,

Lo.0194 0.0207 0.0563 J

vb* = 0.0004270, and b* = 0.0454.
The last two numbers should be contrasted with the uncorrected results, b = 0.0334 and
vb = 0.0003494. The regression-fitted odds ratio for the highest alcohol level (11 g/day)
versus no alcohol is exp[l 1(0.0454)] = 1.65 for the corrected results but exp[l 1(0.0334)] =
1.44 for the uncorrected results. The inverse-variance weight assigned to this study in a meta-
analysis of the type discussed below would be 1/0.0004270 = 2,342 using the covariance-
corrected variance but 1/0.0003494 = 2,862 using the uncorrected variance.
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1304 Greenland and Longnecker

Because Rohan and McMichael (2) reported the crude data, we may check assumption I
by comparing the crude odds ratios with the adjusted odds ratios. All of the crude odds
ratios are within 20 percent of the adjusted odds ratios, which indicates that there is no
major violation of assumption I.

The above method extends to analyses of person-time rate ratios, upon appropriate
redefinition of terms. Beta becomes the coefficient in a log-linear (exponential) Poisson
regression; Nx becomes the total person-time observed at exposure level x; the L.v's become
adjusted log rate ratios; cell counts are fitted such that AxNo/(AoNx) = exp(LA-); and rxz

becomes l/(AoSxS:), where sx
2 = M\/AXAO. For the analysis of risk ratios (as in a cohort study

with Nx persons, rather than person-time), these formulas may be applied with s.x
2 = M,/

AXAO - I/No - 1/JV*and r« = (\/A0 - l/N0)/sxsz.

EMPIRICAL COMPARISONS OF THE
ESTIMATORS

The objective of the above method is to
approximate the logistic coefficient that
would have been obtained had either more
complete study data or the estimated logistic
coefficient been reported, and to provide a
less biased variance estimate than was pre-
viously available. To compare and evaluate
the uncorrected and corrected estimators, we
analyzed 10 published data sets (5-14) for
which there were enough data reported to
compute the maximum likelihood estimate
of the logistic coefficient, /3.

The results are summarized in table 2. As
expected, both b and b* are fairly close to
the logistic coefficient from the full data.
Also as expected, the variance estimator v
for b appears to underestimate the true vari-
ance of b, for it provides values below the
estimated variance for /? in 9 out of 10 of
the data sets.

The variance estimates for b* tend to
equal or exceed the variance estimates for /3;
this is somewhat reassuring, given that /3 is
fully efficient and b* is generally not unless
assumptions 1-3 hold. One large discrep-
ancy occurs for the alcohol-esophageal can-
cer study (10). This study shows considera-
ble heterogeneity of the alcohol slope across
age categories; in such cases, the ordinary
(inverse-information) variance estimate for
the maximum likelihood estimate is suspect,
and some authors recommend refitting the
model with a dispersion parameter or with
random effects to account for the apparent
overdispersion (15). With a random-effect
term added to the full-data model, the vari-

ance estimate for /3 is much closer to that
for b*. We also applied b* to data sets in
which there was statistically significant het-
erogeneity of the slope across strata (not
shown), and found its variance estimate to
be much larger than the variance estimate
for /J in those cases; this result is again reas-
suring, since the conventional variance esti-
mate for j8 would be an underestimate in
such cases (15).

APPLICATION TO META-ANALYSIS

The coefficient and variance estimates ob-
tained from research reports often form the
primary data for meta-analysis. Differences
among the coefficients may be analyzed us-
ing techniques analogous to the standard
inverse-variance weighting techniques used
in contingency table analysis (1); if there is
no evidence of important differences among
the coefficients, one may conveniently sum-
marize the meta-analytic results by comput-
ing a pooled (overall) coefficient estimate.
The ' primary impact of our correction
method on such meta-analyses will be to
alter the relative weighting of the study-
specific coefficients and to produce a more
accurate variance estimate for the pooled
coefficient estimate.

We recomputed the meta-analysis of al-
cohol use and breast cancer by Longnecker
et al. (16) using both our covariance-
corrected method and the uncorrected
method (1). The results are given in table 3.
The change in weight produced by the cor-
rection ranged from —30 percent to 10 per-
cent. Letting k index the listed studies {k =
1 , . . . , 16), the fixed-effects corrected pooled
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Trend Estimation from Summarized Dose-Response Data 1305

TABLE 2. Estimated regression coefficients and weights from full-data maximum Ifteiihood estimation 0)
and from weighted least squares regression on adjusted log relative risks, with (b*) and without (b)
correction for covarlance of log relative risks, for 10 data sets*

Description of study (ref.) Method Estimate SEt
Weight
(1/SE")

% weight is
above or below
MLEf weight

Arsenic exposure and
lung cancer in men (5)

Alcohol consumption and
cokxectal cancer in
men (6)

Alcohol consumption and
breast cancer in
women (7)

Coffee consumption and
myocanSal infarction In
women (8)t

Cigarette smoking and
myocardial Infarction In
women (9)

Alcohol consumption and
esophageal cancer in
men (10)

Cigarette smoking and
lung cancer In men
(11)

Cigarette smoking and
lung cancer In men
(12)

Passive smoking and
lung cancer in women
(13)

Sunlight exposure and
basal ceo skin cancer
(14)

Full data ((3)
Corrected (b*)
Uncorrected (b)

Full data 0)
Corrected (b*)
Uncorrected (b)

Full data 0)
Corrected (b«)
Uncorrected (b)

Fid data 0)
Corrected (b*)
Uncorrected (b)

FuD data 0)
Corrected (b*)
Uncorrected (b)

Full data 0)
Full data with random

effects
Corrected (b*)
Uncorrected (b)

Ful data 0)
Corrected (b*)
Uncorrected (b)

Full data 0)
Corrected (b*)
Uncorrected (b)

Full data 0)
Corrected (b*)
Uncorrected (b)

Ful data 0)
Corrected (b«)
Uncorrected (b)

0.336
0.311
0322

0.102
0.101
0.091

0.116
0.115
0.090

0.123
0.131
0.088

1 08
1.06
1.09

1 09

1 10
1.03
1.13

0.740
0.707
0.902

0.472
0.454
0.668

0.311
0.309
0.326

0.479
0.478
0.480

0.0524
0.0510
0.0480

0.0373
0.0400
0.0316

0.0279
0 0275
0.0222

0.0814
0.0846
0.0734

0.100
0.103
0.098

0.103

0.117
0.122
0 097

0.0257
0.0292
0 0246

0.0499
0.0598
0.0634

0.109
0109
0.0987

0.127
0.125
0.119

364
384
434

719
625

1,000

1,280
1,320
2,030

151
140
186

100
94.3

104

94.3

73.1
67

106

1,510
1,170
1,650

402
280
249

84.2
84.2

103

62.0
64.0
70.6

5.5
19.2

-13.1
39.0

3.1
58.6

-7.3
23.2

-5.7
4.0

-28 .7 ; -8 1§
12.4; 45.0

-22.5
9.3

-30.3
-38.1

0
22.3

3.2
13.9

* AS full-data regressions Included age; weighted least squares regressions were on tog relative risks adjusted for age, with age
treated categorically in both types of analyses. Exposure levels were coded as 0 , 1 , 2 etc., In all analyses.

t SE, standard error, MLE, maximum likefiiood estimate.
£ In this data set, the covanate was smoking (treated categorically), not age.
§ Second set of numbers Is for random-effects estimate

coefficient estimate for these data is b* =
C2kbk*/vk*)/C2kl/vk*) = 0.00823, with esti-
mated standard error sp* = (2k\/vk*)~[/' =
0.00132; for comparison, the uncorrected
pooled estimate is bp = (I,kbk/vk)/(I,kl/vk) =
0.00789, with estimated standard error sp =
(2*1 M)~* = 0.00121. The small difference
in point estimates is unsurprising, given the
high precision of the results and the fact that
both estimators are consistent, but the un-
corrected summary somewhat overstates the
precision of the pooled results.

With any pooling technique, it is impor-
tant to check for between-study heteroge-
neity of the estimated parameters (1). Given
K studies to be pooled, the corrected heter-
ogeneity test statistic is

xj = 2 (V - V)7v**,
k

which has an approximate AT — 1 df chi-
squared distribution if the study-specific
slopes are homogeneous and the VA*'S are
consistent for the variances of the bk*'s. If

 at Pennsylvania State U
niversity on M

ay 10, 2016
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


1306 Greenland and Longnecker

TABLE 3. Estimated regression coefficients, standard errors, and weights, corrected and uncorrected for
covariance of log relative risks, for 16 studies of alcohol use and breast cancer reviewed by Longnecker et
al.

Article m Longnecker et al. (16)

Watt end Bawol, 1984 (1)$
Hiatt eta)., 1988(2)
WHlett et al., 1987(3)
Schatzklneta!., 1987(4)
Harvey et al., 1987(5)
Rosenberg et al., 1982 (6)
Webster etal., 1983(7)
PaganlnWHiB and Ross, 1983 (8)
Byers and Funch, 1982 (9)
Rohan and McMlchael, 1988 (10)
Tatamlrt et al., 1984(11)
O'Comel et al., 1987(12)
Harris and Wynder, 1988 (13)
Le et al.. 1984(14)
La Vecchla et al., 1985(15)
Begg etal., 1983(16)

Pooled estimate

b*

0.00434
0.0109
0.0284
0.118
0.0121
0.0870
0.00311
0.00000
0.00597
0.0479
0.0389
0.2O3

-0.00673
0.0111
0.0148

-0.000787

0.00823

Corrected

SEt

0 00247
0.00410
000564
0.0476
0.00429
0.0232
0.0O373
0.00940
0.00658
0.0205
0.00768
0.0946
0.0O419
0.00481
0.00635
0.0O867

0.00132

Weight
(1/SE1)

164,000
59,600
31,400

441
54,200

1,860
71,800
11,300
23,100
2,378

16,900
112

56,900
43,300
24,800
13,300

b

0.00385
0.0122
0.0248
0.129
0.0137
0.0902
0.000625
0.000000
0.00810
0.0367
0.0394
0.203

-0.00674
0.0107
0 0146
0 000128

0.00789

Uncorrected

SE

0.00230
0.00379
0.00537
0.0457
0.00408
0.0202
0.00333
0.00965
0.00687
0.0188
0.00725
0.0946
0.00403
0.00418
0.00530
0.00794

0.00121

Weight
(1/SE»)

207,000
65,600
34,700

478
60,000
2,440

90,000
10,700
21,030
2,837

19,000
112

61,500
57,300
35,600
15,900

* Coefficients are the increase In log relative risk of breast cancer associated with average dally alcohol consumption of 1 g.
O'Cormefl et al. (12) reported only two categories of alcohol intake; thus, the correction had no effect,

t SE, standard error.
t Numbers in parentheses, Longnecker et al.'s (16) reference no.

the full-data coefficient /3* and its variance
estimate v* are available for study k, these
may be substituted for bk* and v** in the
formulas for bp*, vp*, and Xh

2.
Because the uncorrected variances tend to

underestimate the variances of the uncor-
rected estimators, the uncorrected heteroge-
neity statistic

Xh
2 = I (bk - bp)

2/vk
k

will tend to be inflated above its nominal
K - 1 df chi-squared distribution, and so it
will produce an invalid (supranominal) het-
erogeneity test. For the data in table 3, how-
ever, both statistics are so large (A^2 = 75.3
and Xh

2 = 87.2 on 16 - 1 = 15 df) that the
homogeneity hypothesis is untenable. Thus,
in this example, the pooled slope estimates
are inappropriate summaries of the studies,
and further heterogeneity analysis (such as
"meta-regression" (1)) is needed.

ANALYSIS OF NONLINEAR TRENDS IN
POOLED DATA

The methods discussed so far are useful
when one's goal is to pool slope estimates

from several reports (1). A more flexible
method for meta-analysis of trend involves
pooling of study data before trend analysis.
We will refer to this as the "pool-first"
method. Let x* and L* be the vectors of
nonzero exposure levels and log odds ratios
or log rate ratios observed in study k; let Ck

be the estimated covariance matrix for L*;
letx = (x,', . . . , x * ' ) ' andL = (L,', . . . .
L*')'; and let G be the block-diagonal matrix
with k'th diagonal block CV"1. A pooled
estimate /3 of the common slope £ is given
by vx'GL, with variance estimate v =
(x'Gx)"1; assuming each Ck is a consistent
estimator of COV(LA), and the slope is in fact
constant across studies, v will be consistent
for varftj).

For linear-logistic estimation, the "pool-
first" method is algebraically equivalent to
the method of pooling the corrected coeffi-
cient estimates from each study. The advan-
tage of the "pool-first" method is that it is
easily extended to fitting and testing nonlin-
ear logistic models. For example, suppose
we wish to estimate £, and ft in the quadra-
tic logit model

, z) = ak
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Trend Estimation from Summarized Dose-Response Data 1307

To do so, we let X be the matrix with the
first column equal to x and the second col-
umn equal to the vector with elements that
are the square of the corresponding elements
of x. A pooled estimate of 0 = (fr, (92)' is
0 = VX'GL, with covariance-matrix esti-
mate V= (X'GX)~\ and a chi-squared sta-
tistic for model fit is e'Ge, where e is the
residual vector L — X$. The degrees-of-
freedom is equal to the length of e minus 2.
The chief limitation of this method is that it
cannot incorporate studies that report only
a slope estimate: A study must report dose-
specific odds ratios or rate ratios to be in-
cluded; fortunately, such reporting is stan-
dard practice.

For illustration, we applied the preceding
method to the studies reported in table 3
and obtained £, = 0.00934 for the linear
term and ft = -0.0000258 for the quadratic
term, with standard errors of 0.00229 and
0.0000429, respectively. The goodness-of-fit
statistic is 99.9 on 49 - 2 = 47 df, very
significant. The results thus indicate that the
pooled quadratic effect is small compared
with the pooled linear effect (at least within
the range of alcohol use reported by most
women in these studies), and that a quadra-
tic term explains little of the heterogeneity
of trend across studies. As was demonstrated
by the large value of X^ given above, non-
significance of the quadratic term does not
imply that the homogeneous linear model is
adequate.

DISCUSSION

The methods given here are readily mod-
ified to allow more general model forms
than logistic or exponential. We have not
pursued this generalization, however, be-
cause empirical studies indicate that the
asymptotic theory used here (17) may be
unreliable as a practical guide for models
with parameters that are not linear in
the logit or log scales; see the paper by
Moolgavkar and Venzon (18) for some strik-
ing examples and further references.

Because the corrected estimates involve
somewhat more computation than the un-

corrected estimates, it seems natural to ask
under what conditions the correction will be
worth the effort. From the structure of the
correlation formulas, it appears that the im-
pact of the correction on individual study
weights depends in part on the percentage
of subjects who are in the reference category
of exposure. Nevertheless, knowledge of the
proportion of subjects in the reference group
does not reliably identify studies for which
the correction will make an important dif-
ference.

Because the relative weighting of the stud-
ies will not change as dramatically as the
absolute weighting, we would not expect a
large impact of the correction on overall
pooled estimates of effect. Nevertheless, the
correction could have substantial impact on
heterogeneity analyses, especially when ap-
parent "outlier" studies are based on limited
numbers in the reference category of expo-
sure.

We wish to emphasize that the correction
we have discussed here is concerned only
with improving the statistical properties of
the slope estimators. It cannot compensate
for biases in the pooled studies, publication
bias in identification of studies, noncompar-
ability of exposure or outcome measure-
ments across studies, or any of the other
problems that should be addressed in a care-
ful meta-analysis.
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APPENDIX 1

Inefficiency of the Unconnected Point Estimator and
Inconsistency of the Uncorrected Variance Estimator

Let n be the total sample size. The uncorrected estimator b may be written

6 = (\'W*x)-]\'W*L

where W is the diagonal matrix with diagonal elements wx = l/vx and s = ZWxX2; the
uncorrected variance estimator for b obtained from a weighted least squares regression
program (after division by the computed residual mean square) will be l/s. The asymptotic
variance of Vn(b — /3) is, however, consistently estimated by

nx'WCaWx/s2 = n/s + nx'WCoWx/s2,

= n/s + n (Al)

where Ca = [cwk] is the covariance-matrix estimator for L from the complete data and Co =
Ca - W~\ Since the second term of expression Al is positive, n/s must underestimate the
asymptotic variance of Jn(b — P) by an amount proportional to the covariances of the Lv's.

An efficient estimator for /? is the complete-data estimator

(x'CV'xr'x'CV'L = %uxLx.

The weights wxx/s used for b are generally not proportional to the optimal weights ux unless
the covariances are zero; hence, b is inefficient.
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APPENDIX 2

Iterative Fitting Algorithm for the Crude Table

The algorithm is based on Newton's method (19) for solving the following system for A,
the vector of fitted numbers of cases at each nonzero exposure level. We have an equation
for each observed exposure level,

Lx + log(M, - \og(Nx -A,)- logAx - \og(N0 - M, = 0,

where A+ is the sum of the elements of A (note that Ao is not in A, since Ao = Mx - A+). An
initial value A(0) may be the crude observed totals, if available, or the null expected value
M]N/n, where N is the vector of Nx for A' ¥= 0 and n is the total number of subjects in the
data. The algorithm may diverge from poor starting values; in our experience, convergence
was always achieved by starting with the crude observed totals rather than the null expected
values.

At iteration /, define

cx
U) = 1 /AX

U) + 1 /(N - AX
U)) for all x (including x = 0),

ex
U) = Lx+ \ogA0

U) + log(A^ ~ Ax
i0) - l o g ^ 0 - log(N0 - A0

U)) for x ^ 0,

e<0 = the vector of ex
U),

Z^" = the matrix with cx
u) + c0

(/) for on-diagonal elements and Co(l> for all off-diagonal
elements, and

Convergence is achieved when the increments become negligible relative to the Ax
u) and

N - Ax
(i) for all x. For person-time data, the equations become

Lx + log(A/i - A+) + \ogNx - log/l.v - logA ,̂ = 0;

the expression for ex
(l) is similarly modified; and cx

u) becomes \/A}'\

APPENDIX 3

Properties of the Corrected Variance
Estimator

The asymptotic variance of yfn(b* - /S)
is consistently estimated by

n\'C~lC C~[x<vu*V (A?1

where C = cov(L) is as defined in step 5 in the
text, and Ca is the (unobserved) covariance-
matrix estimator for L from the complete
data. Note that C for a single study may be
written C = W~XRW~\ where W~x is the
diagonal matrix with the variance estimators
of the adjusted log odds ratios on the diag-
onal, and R is the estimated correlation

matrix of the crude log odds ratios derived
under assumptions 1-3 given in the text
using the delta method (17) applied to the
crude cross-classification of exposure and
outcome. Under assumptions 1-3 in the
text, nC converges to nCa, and so nvb* con-
verges to expression A2; hence, nvb* is con-
sistent for varA[y/n(b* - P)] under assump-
tions 1-3. The assumptions also imply that
nvb* converges to

which in turn converges to the asymptotic
variance of the maximum likelihood esti-
mator based on the full data; hence, under
assumptions 1-3, b* will be more efficient
than the uncorrected estimator b.
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