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Abstract— In this paper, a control scheme that combines
trajectory planning and gaze direction control for robotic
exploration is presented. The objective is to calculate the
gaze direction and simultaneously plan the trajectory of the
robot over a given time horizon, so that localization and map
estimation errors are minimized while the unknown environ-
ment is explored. Most existing approaches perform a greedy
optimization for the trajectory generation only over the next
time step and usually neglect the limited field of view of visual
sensors and consequently the need for gaze direction control. In
the proposed approach an information-based objective function
is used, in order to perform multiple step planning of robot
motion, which quantifies a trade-off between localization, map
accuracy and exploration. Relative entropy is used as an
information metric for the gaze direction control. The result
is an intelligent exploring mobile robot, which produces an
accurate model of the environment and can cope with very
uncertain robot models and sensor measurements.

I. INTRODUCTION

In order to enable mobile robots to be used in practical
application fields such as entertainment, human care, indus-
try, etc. their cognitive capabilities must be extended. One
such fundamental capability, is the autonomous acquisition
of accurate models of unknown environments. To achieve
that, a robot must be able to control its movement and
its perception system so that it collects the highest amount
of information possible, allowing it to localize itself in its
environment and at the same time create a representation
of this environment. Especially for robots with vision-based,
active perceptual systems, such as most service, industrial
and humanoid robots, this becomes equivalent to combining
their motion trajectory planning with gaze direction control
in order to autonomously solve a Simultaneous Localization
and Mapping (SLAM) problem.

In this paper, an algorithm for combining trajectory plan-
ning and gaze direction control for SLAM is presented. The
objective of the algorithm is to calculate the gaze direction
and simultaneously plan the trajectory of the robot over a
given time horizon, so that estimation errors are minimized
while the unknown environment is explored. Most existing
approaches perform an optimization only over the next time
step for the trajectory generation. This is a purely local,
greedy optimization. The limited field of view of visual
sensors and consequently the need for gaze direction control
is usually neglected. In this approach an information-based
objective function is used, in order to perform multiple

step planning of robot motion, which quantifies a trade-
off between localization, map accuracy and exploration.
Relative entropy is used as an information metric for the gaze
direction control. The result is an intelligent exploring mobile
robot, which produces an accurate model of the environment.

Through this novel algorithm the robot with its active sen-
sor system anticipates all possible trajectories and viewing
angles over a specific time horizon. Therefore it can cope
with very uncertain robot models, such as those of humanoid
robots. Moreover the algorithm performs better than other
existing approaches when it comes to sensors which have a
limited field of view.

Simulation results presented in Section V show, that
controlling a mobile robot and its active vision system
with the proposed approach, significantly increases SLAM
accuracy in comparison with existing greedy approaches.
The algorithm is shown to keep uncertainty under control in
open-loop scenarios. A more accurate environmental model
increases robot independence, therefore allowing the robot
to perform more complex autonomous tasks.

The remainer of this paper is organized as follows: In
Section II related work done in the fields of active vision,
SLAM and robot exploration is reviewed. In Section III the
Extended Kalman Filter (EKF) SLAM algorithm is briefly
presented. The proposed trajectory and gaze direction control
scheme is analyzed in Section IV and based on simulation
results, in Section V, its performance is demonstrated and
compared with greedy approaches and others that neglect
gaze direction control. Finally a conclusion is given and
directions of future work are discussed.

II. RELATED WORK

The problem of SLAM is one of the fundamental problems
in robotics and has been studied extensively over the last
years. Many solutions exist [1]–[3], only to mention some
popular ones. However this work focuses on the aspects of
state estimation, belief representation and belief update using
prerecorded sensor data, without dealing with how such data
can autonomously be gathered by the robot.

The field of robotic exploration deals with this challenge.
As mentioned before, most existing approaches choose the
next position of the robot based on a greedy optimization of
information gain [4]–[6], ignoring the need for planning the



trajectory of the robot over longer time horizons. An inter-
esting planning approach which introduces a new measure of
map quality is described in [7], but it assumes some initial
state estimate of all the landmarks and the limited field of
view of the sensors is not taken into account. Active sensor
control is also not considered. Another multi-step planning
algorithm for SLAM is described in [8] which makes use of
concepts from the field of model predictive control, including
a discussion about the necessity of trajectory planning. But
again the aim is at steering the robot, without an active sensor
system and only very few simulation results are presented.
In [9] simulated results are presented which demonstrate
the effect of different actions to information gain, while
unmanned aerial vehicles perform SLAM based on cameras.

Very interesting work has also been done in the field of
active vision. In [10] and [11] the SLAM problem has been
solved with active visual sensing, but the main focus of
these works was on feature selection. A control strategy for
performing SLAM with a single camera carried by a human
has been analyzed in [12]. Finally [13] introduces a gaze
direction strategy for localization and obstacle avoidance for
humanoid robots but once again this is a greedy approach
and mapping is not taken into account. In all of these works,
controlling the visual sensors is decoupled from motion
control.

III. EXTENDED KALMAN FILTER SLAM

As mentioned before, several SLAM algorithms have been
introduced over the last years. Although more computation-
ally efficient algorithms exist, a Kalman filter-based approach
was chosen as a basis for the proposed algorithm, because
of its representational ability and approximation quality. It
provides a recursive solution to the navigation problem and
at the same time consistent uncertainty estimates for robot
and landmark positions, which can be used to infer how the
model estimate can be improved by different actions. A brief
overview of the EKF SLAM algorithm will be given in this
section, more detailed analysis can be found in [1], [5].

The state of the robot is xr = [xr, yr, φr]
T , with xr, yr

denoting its position and φr its orientation. The control input
of the vehicle is given by u = [ux, uy, uφ]. The motion
model of the robot is described by

xrk+1
= f(xk,uk) + G(uk)dx, (1)

where G(uk) scales the process noise dx as a function of
the distance traveled. The process noise is Gaussian with
covariance Q and function f depends on the robot type.

The location of each environmental feature is denoted by
pi and they are assumed stationary. The augmented state
vector containing both the state of the robot and the state of
all landmarks can be written as:

xk = [xT
rk

pT
1 . . . pT

N ]T . (2)

The active sensor observations are described by

zk = h(xk, sk) + dz, (3)
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Fig. 1. Proposed motion and gaze direction control scheme

with zk the observation vector of range and bearing mea-
surements. The observation matrix, h, relates the output
of the sensors to the state vector xk, when observing the
features. With sk the control input of the active visual sensor
is denoted, which in this paper is supposed to consist of
turning angles for the active cameras and dz is the Gaussian
observation noise with covariance Rk.

The Kalman filter algorithm begins with a prediction
step. The knowledge of estimate x̂k|k of the state and
the state covariance matrix P k|k at time tk, are assumed.
Now, a prediction for the state, the state covariance and the
observations at time k + 1 can be generated as

x̂k+1|k = f(xk|k,uk) (4)

ẑk+1|k = h(xk|k, sk) (5)

P k+1|k = F xP k|kF T
x + F dQF T

d (6)

where F x = ∇xf |(x̂k+1|k,uk) is the Jacobian of the state
transition function and F d = ∇dx

G(uk)dx is the Jacobian
of the noise input dx.

Following the prediction, an observation is being made ac-
cording to (3). Correct landmark association is assumed. The
difference between the actual and the predicted observation
can be calculated, which is called innovation, from

vk+1 = zk+1 − ẑk+1|k (7)

The innovation covariance is

Sk+1 = HxP k+1|kHT
x + Rk+1 (8)

with Hx = ∇xh|(x̂k+1|k,sk).
Finally the state estimate is updated

x̂k+1|k+1 = x̂k+1|k + W vk+1, (9)



as well as the state estimate covariance

P k+1|k+1 = P k+1|k − WSk+1W
T (10)

with W = P k+1|kHT S−1
k+1 being the Kalman gain matrix.

Using the SLAM algorithm described in this section,
allows a robot to build a map from sensor data and localize
itself in it. The challenge is to find a way to collect the nec-
essary sensor data autonomously in order to build the most
precise map and at the same time explore the environment
as actively as possible. In the next section this challenge will
be analyzed and a solution will be proposed.

IV. EXPLORATION STRATEGY
Fig. 1 illustrates the proposed motion and gaze direction

control scheme. The robot and its active vision system are
controlled by two modules which use a common model
of the environment. For the trajectory planning a multi-
step estimation algorithm is used to evaluate all possible
positions that can be reached by the robot over a finite, given
time horizon. This estimation forms a multi-attribute function
which is used to decide where the robot should move next. A
trade-off is made between localization, map accuracy and the
proactivity of the exploration. For the gaze direction control
a greedy information-based optimization is used to choose
the view that minimizes position and map uncertainties. All
the components of the proposed approach will be examined
in detail.

A. Gaze Direction Control

In the case of vision guided robots optimal use of the
sensory resources, means correctly deciding the next view
direction, so that measurements are obtained which are most
informative about the state of the environment. This raises
the question of how to measure information gain.

1) Measuring Information: A commonly used measure of
uncertainty is entropy which has been introduced by Shannon
[14]. The entropy of a discrete random variable x, on a
finite set X and with probability distribution function p(x)
is defined as:

H(p(x)) = −
∑

X

p(x) log p(x) (11)

which in the case of a multivariate Gaussian distribution
p(x) with covariance P , can be shown [15] that is equal
to H(p(x)) = 1

2 log((2πe)n|P |). Since the determinant of a
matrix is a measure for its volume, the entropy measures the
compactness and thus the informativeness of a distribution.

In order to measure the utility of a gaze direction which
will result to an observation z, the mutual information gain
I[x,z] will be used. The gain in information between any
two distributions can be computed as the change in entropy.
Here, these are the state estimates before and after making
an observation, which are both multivariate Gaussians with
covariances P k+1|k and P k+1|k+1. Therefore it is equal to

I[x, z] = H(x) − H(x|z)

=
1

2
log |P k+1|k| −

1

2
log |P k+1|k+1|. (12)

N-1 steps N-1 steps

N-1 steps N-1 steps

Fig. 2. Region covered while planning over a horizon of N steps. The
arrows indicate which predicted states and covariances are used in each step
in order to calculate the values for the next step of the planning algorithm.
Highlighted grid cells show which cells are taken into account for gaze
direction control

Information gain can be calculated only as a function of
the state covariance matrix. Maximizing information gain is
equivalent to choosing actions that reduce the uncertainty of
the state estimate, due to the measurements that are received.
From (12) it is obvious that I[x,z] becomes maximum, when
the determinant of P k+1|k+1 is minimized.

2) Deciding the Gaze Direction: At each time step the
number of features that are visible by the robot depends on
the field of view of the perceptual system and their relative
locations to the robot, at the time of observation. Since no
knowledge of future movements is assumed, all the positions
that can be reached by the robot over the next time step
have to be taken into account. Starting from the currently
estimated state the first eight neighboring states that can be
observed by the vision sensors and their covariances are
predicted, according to (4)-(6). In Fig. 2 these states are
illustrated gray. After all state covariances are estimated,
the most informative state can be calculated, which as can
be seen from (12) is the one that minimizes |P k+1|k+1|.
The control input of the active visual sensors sk+1 is then
computed so that the active vision system is directed towards
this position. Next, the motion planning component of the
proposed control scheme will be introduced.

B. Motion Planning

As mentioned before, the first step for choosing the
next destination for the robot is to predict the states and
covariances of all possible positions that can be reached over
its planning horizon. A discretized grid environment is used,
where each grid represents a position that can be reached
by the robot over future time steps. The size of the grid
cells depends on the maximum distance that the robot can
travel until the next motion control arrives. Based on this



discretized environment, the most informative location that
can be reached over the planning horizon is calculated. The
robot is then called to reach this position. While the robot
moves, observations are made and they are used to update
the state estimate. This way all available information is being
used.

More specifically, based on an initial state estimate x̂0|0

and covariance matrix P 0|0 all possible robot states and their
covariance after N time steps are predicted. To achieve that
the extended Kalman filter is used, which was presented
in Section III. A mathematical description of the algorithm
follows, where the same mathematical formalism with the
previous section is kept.

For each step k = 1 to N do
For each possible state i = 1 to 8k calculate

x̂
i
k|k = f(x̂j

k−1|k−1,u
j
i,k)

P i
k|k−1 = F xj

P
j

k−1|k−1F
T
xj

+ F dQF T
d

Si
k = H

j
kP i

k|k−1H
jT
k + Rk

W i
k = P i

k|k−1H
jT
k S

(i)−1
k

P i
k|k = P i

k|k−1 − W i
kSi

kW iT
k (13)

End of inner loop
End of outer loop

The prediction procedure evolves in a square-like manner,
as can be seen in Fig. 2. Starting from the currently estimated
state the first eight neighboring states and covariances are
calculated. It must be noted here, that the first step of the
planning algorithm is equivalent with the greedy approach.
During the following steps the predicted state x̂

j

k−1|k−1

and covariances P
j

k−1|k−1 of the neighboring grid cells are
used to infer the next ones x̂

i
k|k, P i

k|k until step N . By
always using the nearest neighbor in the estimation process,
estimation error is kept minimal. Over each time step k, 8k
new states are calculated. The control signal in order to drive
the robot from state j to state i, at step k is denoted by u

j
i,k

and is chosen as indicated by the arrows in Fig. 2.
The covariance matrix P i

k|k of a possible target position,
as estimated by the multi-step prediction algorithm, can be
written as [1]

P i
k|k =

(

P i
uu P i

um

P i
mu P i

mm

)

.

P i
uu is the error covariance matrix of the robot state

estimate, P i
mm is the map covariance matrix of the land-

mark state estimates and P i
um is a cross-covariance matrix

between vehicle and landmark states.
Using these matrices and the concept of relative entropy

mentioned in Section IV-A.1, each possible future position of
the robot can be evaluated, in order to choose the appropriate
target position. The destination that maximizes the function

Vi =
1

2
log(

|P i
uu|

|P 0
uu|

) − γ
1

2
log(

|P i
mm|

|P 0
mm|

) (14)

must be found.
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Fig. 3. Absolute position error as a function of time for a one-step planning
horizon without gaze direction control and one-step, three-step planning
horizons with gaze direction control

The first part of the function is a measure of the position
uncertainty the robot will encounter in the future position
and the second part is a measure of map quality. The
constant γ can be used to adjust the behavior of the robotic
explorer. Setting γ to values smaller than one, will result
in a conservative exploration policy, since the robot will
stay near to well-localized features giving more attention to
localization. Large values of γ increase the proactivity of
the explorer, in the sense that it moves to unknown areas
neglecting the lower localization accuracy.

After selecting the target position that maximizes (14), the
robot moves making observations which are used to update
the estimated state and covariance. Each time a new state
estimate is available, a recalculation of the gaze direction is
made. This way all new information that become available
during robot motion are used. Replanning takes place after
N time steps when the target position is reached.

V. SIMULATION RESULTS

The gaze direction and motion planning scheme has been
described in the previous section theoretically. In order to
evaluate its performance several simulations were conducted.
Some results from these simulations will be presented and
analysed here.

A. Simulation Description
The simulated environment consists of an area of size

40x40 meters, with randomly allocated features. The sim-



ulated active head which is mounted on top of the robot is
assumed to have a field of view of 60◦ and a maximum
viewing range of 6 meters. No initial knowledge of the
environment is assumed. Feature association is considered
known and all observed features are used. A harsh odometry
error of 10% is chosen, since the scope of the proposed
algorithm is to be able to cope with very inaccurate robot
models. A sensor model with a variance proportional to the
distance for bearing and range measurements is also used,
with the same high noise level. The active head can be moved
with high angular velocities, so that saccadic movements
are simulated. Finally, γ in (14) was chosen so that the
robot balances between keeping good pose estimates and
exploring the environment. During simulation the robot is
called to explore the area around it for 60sec based on noisy
measurements received by the active sensor system.

B. Evaluation of Results

At first the visual sensors were assumed passive, directed
always straight ahead of the robot, and the motion of the
robot was controlled by a policy which considers only the
eight neighboring states that can be reached over the next
time step. This kind of policy is characterized as greedy
in the literature. As can be seen in Fig. 4, only 7 features
were observed and localization uncertainty is very high. So
it becomes obvious that a gaze direction control strategy is
necessary in this scenario.

Next, simulations were conducted with the proposed gaze
direction control and again a greedy policy, followed by a
simulation with a three-step planning horizon for the robot
motion. In Fig. 3 the absolute position error is depicted, for
all three cases. It is evident that error reduces significantly
as the planning horizon for the motion of the robot grows
and gaze direction control is used.

Map accuracy is illustrated in Fig. 4 through the error
ellipsoids for each observed feature, for the final map. Once
again it is clear that map accuracy grows as the planning
horizon becomes larger. Also more features are observed
when gaze direction control is used. From the final map,
acquired in the case of a three-step planning horizon with
gaze direction control, it becomes clear that the proposed
approach balances well by observing a large number of
features and also building an accurate map.

Fig. 5 shows how entropy is reduced as a function of time.
Each time a new feature is observed, entropy reduces. For
that reason it is step-formed. The greedy approaches need
more time to reduce entropy and the larger the planning
horizon is, the more entropy is reduced. Furthermore when
the planning horizon is small, more time is needed to observe
the same number of features. Without gaze direction control
entropy is not satisfactorily reduced. This results from the
fact, that the gaze direction control module chooses to direct
the sensor system mostly towards already observed and more
certain features when the environment is known. Therefore
localization error and feature position uncertainties are kept
to a minimum. From the simulations it becomes clear
that the proposed approach which combines gaze direction
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Fig. 4. Map accuracy is illustrated through the error ellipsoids of each
observed feature for the final map, in the cases of (a) a one-step planning
horizon without gaze direction control, (b) a one-step and (c) a three-step
planning horizon. The estimated robot trajectory is illustrated by the black
lines, while the red triangle on-top of the robot represents the active head
and its gaze direction.
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control and motion planning, based on information theoretic
concepts, for the exploration task, gives superior results in
comparison to greedy approaches and others that neglect
active sensor control.

VI. CONCLUSIONS AND FUTURE WORK

A combined gaze direction control and motion planning
scheme for robotic exploration was presented. It has been
shown that this combination significantly improves the ac-
curacy of the autonomously produced model of the unknown
environment, even in the presence of large uncertainties in
the robot and sensor models. All possible trajectories and
viewing angles are evaluated over a specific time horizon and
the robot controls its movement and its perception system so
that the highest amount of information is collected.

Experiments with real robots will give a better idea of
how well the proposed approach can deal with uncertainties
which are introduced by the use of active vision and are
difficult to model in simulation. For example erroneous
measurements of the orientation of the vision system, errors
due to the effects of motion and calibration errors. An open
issue remains to find a way to adjust the planning horizon
so that accurate results are produced and at the same time
computational complexity is kept low.

The algorithm can be extended so that it is applicable
to more complex perceptual systems that comprise several
visual sensors of different resolutions. Using appropriate
focal lengths and camera resolutions according to the
viewing angle or even using combinations of different
camera systems can dramatically improve performance.
Such a multi-focal high-performance vision system has been
introduced recently [16].
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