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Comp. Sci. Dept., Eötvös Loránd University,
Muzeum krt. 6-8, H-1088 Budapest, Hungary

e-mail: rfuller@ra.abo.fi

Abstract

R. Yager [6] introduced a new aggregation technique based on the ordered
weighted averaging (OWA) operators. In this article we illustrate the applicability
of OWA operators to a doctoral student selection problem at the Graduate School
of Turku Centre for Computer Science.

1 OWA Operators

Ronald R. Yager [6] introduced a new aggregation technique based on the ordered weighted
averaging operators.

Definition 1.1 An OWA operator of dimension n is a mapping F :Rn → R, that has an

associated n vector w = (w1, w2, . . . , wn)
T such as wi ∈ [0, 1], 1 ≤ i ≤ n, and

w1 + · · · + wn = 1.

Furthermore

F (a1, . . . , an) = w1b1 + · · · + wnbn

where bj is the j-th largest element of the bag < a1, . . . , an >.

A fundamental aspect of this operator is the re-ordering step, in particular an aggregate
ai is not associated with a particular weight wi but rather a weight is associated with a
particular ordered position of aggregate. In order to classify OWA operators in regard to
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their location between and and or, Yager [6] introduced a measure of orness, associated
with any vector w as follows

orness(w) =
1

n− 1

n∑
i=1

(n− i)wi

It is easy to see that for any w the orness(w) is always in the unit interval. Furthermore,
note that the nearer w is to an or, the closer its measure is to one; while the nearer it is to
an and, the closer is to zero. Generally, an OWA operator with much of nonzero weights
near the top will be an orlike operator, (orness(w) ≥ 0.5), and when much of the weights
are nonzero near the bottom, the OWA operator will be andlike. The standard degree of
orness associated with a Regular Increasing Monotone (RIM) linguistic quantifier Q

orness(Q) =
∫

1

0

Q(r) dr

is equal to the area under the quantifier [9]. Consider the family of RIM quantifiers

Qα(r) = rα, α ≥ 0. (1)

It is clear that

orness(Qα) =
∫

1

0

rα dr =
1

α + 1

and orness(Qα) < 0.5 for α > 1, orness(Qα) = 0.5 for α = 1 and orness(Qα) > 0.5
for α < 1. In [6] Yager suggested an approach to the aggregation of criteria satisfactions
guided by a regular non-decreasing quintifier Q. If Q is RIM quantifier then we measure
the overall success of the alternative x = (a1, . . . , an) by FQ(a1, . . . , an), where FQ is an
OWA operator derived from Q, i.e. the weights associated with this quantified guided
aggregation are obtained as follows

wi = Q(
i

n
) −Q(

i− 1

n
) (2)

for i = 1, . . . , n.

2 The case

The Graduate School of Turku Centre for Computer Science (TUCS) offers a programme
for gaining the Doctoral (PhD) degree in Computer Science and Information Systems. It
is open for students from everywhere. The teaching language of the school is English.
Prerequisites are either a Master’s or a Bachelor’s degree in Computer Science or in a
closely related field. Study time is expected to be 4 years when starting from Master’s
level and 6 years from Bachelor’s level. Since the number of applicants (usually between
20 and 40) is much greater than the number of available scholarhips (around 6) we have to
rank the candidates based on their performances. It can also happen that only a part of
available scholarships will be awarded, because the number of good candidates is smaller
than the number of available places.

The problem of selecting young promising doctoral researchers can be seen to consist
of three components. The first component is a collection

X = {x1, . . . , xp}
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of applicants for the Ph.D. program. The second component is a collection of 6 criteria
(see Table 1) which are considered relevant in the ranking process.

For simplicity we suppose that all applicants are young and have Master’s degree
acquired more than one year before. In this case all the criteria are meaningful, and are
of approximately the same importance.

Research interests (excellent) (average) (weak)

- Fit in research groups © © ©

- On the frontier of research © © ©

- Contributions © © ©

Academic background

- University © © ©

- Grade average © © ©

- Time for acquiring degree © © ©

Letters of recommendation Y N

Knowledge of English Y N

Table 1 Evaluation sheet.

For applicants with Bachelor’s degree the first three criteria Fit in research groups,
Contributions and On the frontier of research are meaningless, because we have an un-
dergraduate student without any research record. An applicant with Bachelor’s degree or
just acquired Master’s degree should have excellent university record from a good univer-
sity to be competitive. For old applicants we encounter the problem of trade-offs between
the age and the research record, and in this case their ratings on the last three criteria
University, Grade average and Time for acquiring degree do not really matter. An old

applicant should have a very good research record and a history of scientific cooperation
with a TUCS research group to be competitive.

The third component is a group of 11 experts whose opinions are solicited in ranking
the alternatives. The experts are selected from 9 research groups.

So we have a Multi Expert-Multi Criteria Decision Making (ME-MCDM) problem.
The ranking system described in the following is a two stage process. In the first stage,
individual experts are asked to provide an evaluation of the alternatives. This evaluation
consists of a rating for each alternative on each of the criteria, where the ratings are chosen
from the scale {1, 2, 3}, where 3 stands for excellent, 2 stands for average and 1 means
weak performance. Each expert provides a 6-tuple (a1, . . . , a6) for each applicant, where
ai ∈ {1, 2, 3}, i = 1, . . . , 6. The next step in the process is to find the overall evaluation
for an alternative by a given expert.
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In the second stage we aggregate the individual experts evaluations to obtain an overall
value for each applicant. Taking into consideration that we have 6 criteria (see Table 1) the
weights derived from Qα are determined by (2). Furthermore, whatever is the linguistic
quantifier, Qα, representing the statement most criteria are satisfied by x, we see that

1 ≤ Fα(a1, . . . , a6) ≤ 3

holds for each alternative x = (a1, . . . , a6) since ai ∈ {1, 2, 3}, i = 1, . . . , 6.
We search for an index α ≥ 0 such that the associated linguistic quantifier Qα from the

family (1) approximates the experts’ preferences as much as possible. After interviewing
the experts we found that all of them agreed on the following principles

(i) if an applicant has more than two weak performances then his overall performance
should be less than two,

(ii) if an applicant has maximum two weak performances then his overall performance
should be more than two,

(iii) if an applicant has all but one excellent performances then his overall performance
should be about 2.75,

(iv) if an applicant has three weak performances and one of them is on the criterion on

the frontier of research then his overall performance should not be above 1.5,

From (i) and (ii) we find
1 < α ≤ 1.293,

which means that Qα should be andlike (or risk averse) quantifier with a degree of com-
pensation just below the arithmetic average. It is easy to verify that (iii) and (iv) can
not be satisfied by any quantifier Qα, 1 < α ≤ 1.293, from the family (1). In fact, (iii)
requires that α ≈ 0.732 which is smaller than 1 and (iv) can be satisfied if α ≥ 2 which
is bigger than 1.293. Rules (iii) and (iv) have priority whenever they are applicable.

In the second stage the technique for combining the expert’s evaluation to obtain an
overall evaluation for each alternative is based upon the OWA operators. Each applicant
is represented by an 11-tuple

(b1, . . . , b11)

where bi ∈ [1, 3] is the unit score derived from the i-th expert’s ratings. We suppose that
the bi’s are organized in descending order, i.e. bi can be seen as the worst of the i-th top
scores.

Taking into consideration that the experts are selected from 9 different research groups
there exists no applicant that scores overall well on the first criterion ”Fit in research
group”. After a series of negotiations all experts agreed that the support of at least four
experts is needed for qualification of the applicant.

Since we have 11 experts, applicants are evaluated based on their top four scores
(b1, . . . , b4) and if at least three experts agree that the applicant is excellent then his final
score should be 2.75 which is a cut-off value for the best student. That is

Fα(3, 3, 3, 1) = 3 × (w1 + w2 + w3) + w4 = 2.75 ⇐⇒ α ≈ 0.464
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So in the second stage we should choose an orlike OWA operator with α ≈ 0.464 for
aggregating the top six scores of the applicant to find the final score.

If the final score is less than 2 then the applicant is disqualified and if the final score is
at least 2.5 then the scholarship should be awarded to him. If the final score is between 2
and 2.5 then the scholarship can be awarded to the applicant pending on the total number
of scholarships available.

Example 1 Let us choose α = 1.2 for the aggregation of the ratings in the first stage.

Consider some applicant with the following scores

Criteria C1 C2 C3 C4 C5 C6

Expert 1 3 2 3 2 3 1

Expert 2 2 3 3 2 3 2

Expert 3 2 2 3 2 2 1

Expert 4 3 2 3 3 3 2

Expert 5 2 2 3 2 3 1

Expert 6 3 2 3 2 3 1

Expert 7 1 2 3 2 3 2

Expert 8 1 2 3 2 3 1

Expert 9 1 2 2 2 3 2

Expert 10 1 2 2 3 3 1

Expert 11 1 2 2 2 2 1

The weights associated with this linguistic quantifier are

(0.116, 0.151, 0.168, 0.180, 0.189, 0.196)

After re-ordering the scores in descending order we get the following table

Unit score

Expert 1 3 3 3 2 2 1 2.239

Expert 2 3 3 3 2 2 2 2.435

Expert 3 3 2 2 2 2 1 1.920

Expert 4 3 3 3 3 2 2 2.615

Expert 5 3 3 2 2 2 1 2.071

Expert 6 3 3 3 2 2 1 2.239

Expert 7 3 3 2 2 2 1 2.071

Expert 8 3 3 2 2 1 1 1.882

Expert 9 3 2 2 2 2 1 1.920

Expert 10 3 3 2 2 1 1 1.882

Expert 11 2 2 2 2 1 1 1.615

In the second stage we choose α = 0.464 and obtain the following weights

(0.526, 0.199, 0.150, 0.125).
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The best four scores of the applicant are

(2.615, 2.435, 2.239, 2.239).

The final score is computed as

Fα(2.615, 2.435, 2.239, 2.239) = 2.475.

So the applicant has good chances to get the scholarship.

3 Summary and Conclusions

We have presented a two stage process for doctoral student selection problem. In the
first stage we have used an andlike OWA operator to implement some basic rules derived
from certain (extremal) situations. In the second stage we have applied an orlike OWA
operator, because the final score of applicants should be high if at least three experts find
his record attractive (we do not require support from all experts).

It can happen (and it really happened) that some experts (a minority) forms a coali-
tion and deliberately overrate some candidates in order to qualify them even though the
majority of experts finds these candidates overall weak. We can resolve this problem
by adding an extra criterion to the set of criteria measuring the competency of individ-
ual experts, or we issue an alarm message about the attempted cheating. To determine
the most appropriate linguistic quantifier in the first stage we can also try to identify

interdependences between criteria [1, 2, 3].
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