A TIMED SEMANTICS FOR A
HIERARCHICAL DESIGN NOTATION

Phillip James Brooke

A thesis submitted in partial fulfilment of the requirements
for the Degree of Doctor of Philosophy

University of York
Department of Computer Science

April 1999

Abstract

The software control systems that are embedded in many products are
increasingly complex. There are many stages in the typical software de-
sign life cycle, and these include testing, and sometimes use formal meth-
ods.

This thesis aims to strengthen the design life cycle by demonstrating
a pragmatic use of formal methods for an industrially-applicable design
method.

We take a design method and notation called DORIS (which is used by
British Aerospace), and give a formal syntax for the notation. This then
forms the structure into which we place activities (the active processing
parts of the system), and intercommunication data areas (IDAs, the ‘pas-
sive’ parts of the system through which activities communicate).

We aim to give an industrially useful semantics for this notation, so we
use several models of Timed CSP as the underlying semantic domain. This
allows us to represent the many timed and liveness requirements in BAe's
work using the well-understood theory for Timed CSP.

For a given system design, we can generate a Timed CSP representation
of the system from its DORIS design. This representation is an abstraction
of the behaviour of the system modelling the interactions between com-
ponents in that system. This Timed CSP model can be analyzed and asser-
tions tested against it. However, because of the size of these systems, tool
support is necessary.

The final part of this thesis concerns the construction of such tool-
supported proofs, using both a bespoke tool for generating Timed CSP
from the DORIS design, and two industrial-strength tools, PVS and FDR.
We illustrate this with two case studies, one of them a significant model
based on a real system.

This work demonstrates that even when using current state-of-the-art
tools, it is difficult to apply these methods in practice. We conclude that
without significant advances in tool technology, it will continue to be dif-
ficult to prove non-trivial properties about large systems at the level of
abstraction presented in this thesis.

Contents

Acknowledgements

Author’s Declaration

I Introduction and Survey

1 Introduction

1.1 Motivation e
1.1.1 Problem Domain
1.1.2 General Approach
1.1.3 MASCOTand DORIS
1.1.4 Reasoning about Designs
1.1.5 Application of Formal Methods
1.2 Contribution of thisThesis
1.3 DevelopmentoflIdeas
14 Overview o o i e e e

Background Survey

21 Critical Systems o L

22 FormalMethods

23 MASCOTandDORIS.
231 MASCOT
232 DORIS o

2.4 Communicating Sequential Processes
241 Model of Computation.
242 UntimedCSP
243 TmedCSP.,

15

17

CONTENTS

244 Hierarchy and Refinement. 41

245 Summaryand Remarks 43

24.6 OtherNotations. 43

2.5 NotationalIssues, 45
2.6 Mechanical Proving 0oL 47
261 FDR. 47

262 PVS . .. 48

263 MADGE 48

264 OtherTools 49

2.7 SummaryofSurvey L. 49
Theoretical Semantics 51
Denotational Semantics for DORIS 53
3.1 Rationale 53
3.1.1 Denotational Semantics 54

312 TimedCSP 54

3.2 Informal Descriptionof DORIS 55
3.2.1 Data Interaction Architecture 55

3.22 Entitiesof a DORISSystem 57

33 Syntax 58
331 Tags 61

3.3.2 BNF-styleNotation 62

3.3.3 ComplexConstructs 62

3.34 BasicConstructs 63

34 TheSystemTuple 65
3.5 StaticSemantics o 66
3.6 Semantics 66
3.6.1 BasicComponents 67

3.6.2 ComplexConstructs 69

3.6.3 Semantics of theSystem 70

37 Example 71
3.8 Contextual Information. 72
3.8.1 PathResolution 73

3.8.2 Allocation to Transputers and Links 74

39 Refinement 74

CONTENTS

4 Specification of IDAs

4.1

42

4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

4.11

Overview e e e
411 GeneralModel
4.1.2 DistributionlIssues
Types of Shared Variable
421 Lamport’s Variables
422 Simpson’s Variables
Untimed Two-PointModels
Fixing the Two-PointPool
Three-Point IDA Specifications
451 Preliminaries
452 Constant e
453 Pool.
454 ChannelFamily
455 SignalFamily
45.6 VoidProtocols,
45.7 Integral and Separate Response Protocols
IDA Semantics
Composition L o
Multiplexing o oo
Forwarding
Implementation
4.10.1 Lamport’s Safe Variable
4.10.2 Lamport’s Regular Variable
4.10.3 Lamport’s Atomic Variable
4.10.4 Four-slot Implementation of the Pool
TimedIDAso
4.11.1 Specifications L.
411.2 Implementations

5 Language for Activities

51

52
53
54
5.5

Overview e
5.1.1 Activity Description Language
5.1.2 Graphical Notations
Alphabetsand Events
Syntax
Semantics e
Example

8 CONTENTS

5.6 Support for Modelling a Scheduler 124
5.6.1 Why Model A Scheduler? 124

5.6.2 Abstraction 124

5.6.3 Initial Approach 125

564 Descheduling 126

565 Example 0 oL 127

56.6 Deadlines, 128

5.6.7 Untimed Scheduler Predicates 129

III' Mechanical Implementation 131
6 Mechanical Support 133
6.1 Overview 133
6.2 Rationale 133
6.2.1 RelatedWork 134

6.2.2 Choiceof PVSand FDR 134

623 OtherTools 135

6.3 Summary of Mechanical Support 136
6.4 PVS . . 137
641 TimedCSP. 137

6.4.2 Timed CSP Theory Construction 139

643 DORIS 144

644 TCCProofs 144

6.4.5 Time and Effort Required 152

65 FDR 153
651 Time 154

652 DORIS 154

6.5.3 Program Definitionsof IDAs 154

6.5.4 Time and Effort Required 155

6.6 Bespoke Tool for Translating DORIS to Timed CSP 155
7 IDA Analysis 159
7.1 Predicate and Program Specifications: The Pool 159
71.1 Untimed TracesModel 160

712 Timed FailuresModel 166

713 TimeandEffort 167

72 FDRandTime i 167

CONTENTS 9
7.3 Four-slot Implementation of thePool 168
74 CompositionofIDAs, 169
75 PVSLemmas. e 171
7.6 CommentsonResults. 174

8 Case Studies 175
8.1 Introduction toCaseStudies 175
82 SmallCaseStudy 175

8.2.1 Translation of the Design 176
8.2.2 Required Properties 178
8.3 Small Case Study: Safety Condition Analysis 181
83.1 SketchProof 181
832 PVSProof 182
833 FDRCheck 182
8.4 Small Case Study: Liveness Condition Analysis 182
84.1 SketchProof 182
842 PVSProof 183
843 FDRCheck 185
85 LargeCaseStudy 185
8.5.1 Summary of theDesign 185
852 CodeStubs 186
8.5.3 Machine Assistance 186
854 Required Property 187
8.6 Large CaseStudy Analysis 187
8.6.1 FDR. 187
8.62 PVS 187
87 CommentsonResults. 188

IV Discussion and Conclusions 191

9 Discussion 193
9.1 DORISSemantics 193

911 WhyTimedCSP? 194
9.12 Overall syntax and semantics 194
913 IDAs e 195
914 Activities. 197
915 Tming 198

10

10

CONTENTS

9.2 Mechanical Translation of DORIS to Timed CSP
9.3 Mechanical Support. 0L
9.3.1 Timed CSP, DORIS,and PVS
9.3.2 DORIS, Timed CSP,and FDR
94 Remarks
9.4.1 Correctnessof Designs
94.2 IndustrialScale, ..
943 PCIMetric o
944 Alternative Approaches
95 FutureWork
9.5.1 General Formal Methods Tool Support
9.5.2 Improved Proof Interfaces
9.5.3 More Investigation of IDAs and General Lemmas . .
9.54 Code Generation and Animation

Conclusions

10.1 TheProblem
10.2 TheSolution e
10.3 FinalRemarks

Appendices, Glossaries, and Bibliography

Semantics for DORIS
A.1 Static Semantics for DORIS
A.2 Path Resolution Algorithm

Prototype DORIS Tool
B.1 ASCII Syntax for DORIS Systems

B2 Example o
B3 Algorithm

PVS Model of Timed CSP

C1 BasicConcepts.
C.1.1 Eventsand Alphabets
C.1.2 Observations: Untimed Traces
C.1.3 Observations: Untimed Failures
C.1.4 Observations: Timed Traces

CONTENTS 11

C.1.5 Observations: Timed Failures 231

C.1.6 Useful Functions 231

C.2 Interface 232
C.2.1 BaseProcesses. e 232

C.2.2 Derived Processes 234

D IDA Programs 237
Glossary 243
Glossary of Symbols 251

Bibliography 255

12

CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

51
52

6.1
6.2
6.3
6.4
6.5

Structure of thetheory 26
An example MASCOT-3system 32
Syntax for untimed CSPo 35
Syntax for Timed CSP 38
Models of Timed CSP 42
Layers of the Data Interaction Architecture 56
A simple example of the DORIS notation 59
A more complex example of the DORIS notation 60
[llustration of path resolution algorithm 76
Textual statement of path resolution example 77
Lamport’s shared variables (Figure 5[59]) 82
DORIS protocol symbols 84
DORIS basic protocols 85
Fresh data: shortreads 86
Fresh data: alongread 87
‘Unbounded buffer’ composition of routes 100
State machine for the unbounded buffer 101
Simple forwarding across transputer links 103
Atarget trackerin ADL 113
Statechart for part of an avionics system 115
PVS theory hierarchy for the TCSP semantic models 138
PVS theory hierarchy for DORIS 145
Base element proof tree for LFPUT 149
Prefix closure proof tree for LFPUT 150
Success closure proof tree for LFPUT 151

13

14

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Al
A2

D.1
D.2
D.3
D4

LIST OF FIGURES

Results of composition of untimed IDAs 170
Proof tree for induction over traces 173
A target trackerin ADL 176
DORIS version of the target tracker 177
Textual statement of small casestudy 177
Code stub for Identify Target 178
Code stub for Calculate_Target Vector 178
dt input file for the small casestudy 180
Counter-example for small case study (liveness condition) . 184
Breakdown of large case study by DORIS type 186
[llustration of path resolution algorithm 220
Textual statement of path resolution example 221
State machine for Constant 238
State machine for Pool 239
State machine for ChannelFamily 240

State machine for SignalFamily 241

Acknowledgements

I would like to thank many people, in particular:

Professor John McDermid, Stephen Paynter (my industrial supervi-
sor), Jim Armstrong, Hugo Simpson, Richard Paige, and Dave Stringer-
Calvert, who have offered me much advice and critical feedback on
my work.

The examiners, Steve Schneider and Alan Wood.
My supervisor, Jeremy Jacob.

Darren Buttle, Simon Fowler, and Darren Priddin, for being happy to
talk about anything not to do with this work.

EPSRC and British Aerospace for funding this work under the ROPA
and CASE schemes.

16

LIST OF FIGURES

Author’s Declaration

This thesis is the result of my own original work (except where ex-
plicitly noted), and has not been submitted for any other qualification
at any other university.

An earlier version of the work on the pool IDA contained in Chap-
ters 4 and 7 has been presented at the Northern Formal Methods
Workshop, and subsequently published in the proceedings of that
workshop [9].

18

LIST OF FIGURES

Part 1

Introduction and Survey

19

Chapter 1

Introduction

1.1 Motivation

1.1.1 Problem Domain

British Aerospace (BAe) embed large, complex, concurrent computer sys-
tems in some of their products. Many of these systems are safety critical:
a failure could lead to loss of life or other undesirable consequences. The
particular computer systems that BAe are immediately concerned with are
the embedded applications which control aircraft, both piloted and pilotless.

These applications interact with the real world in a complex way, and
so they are often very complex systems themselves.

1.1.2 General Approach

When building computer systems, one general problem is to minimise the
likelihood of a failure of these systems.

One approach to minimise the failure rate is ‘testing’. Testing is an
important part of the software engineering process, but cannot find all
errors, since it would take an infeasible amount of effort to test every set of
inputs to the system.1 These systems, moreover, are often reactive, i.e. they
respond to events from the environment in which they are embedded. The
generation of responses to these events is often required to be within a

Here, we take ‘a set of inputs’ to mean the entire history of a particular execution.
This means that every possible input at each possible state of the system should be tested.

21

22 CHAPTER 1. INTRODUCTION

deadline. This makes the testing problem worse; a complex test harness
needs to be constructed for these systems.

The problem of building complex computer systems is recognised, and
careful design can help reduce the number of faults. As Drew Hamilton
has stated, ‘'no one intentionally writes bad code’ [37]. Despite this, faults
do occur in practice, so many (defence) contractors are required to con-
form to a specific software engineering standard (e.g. Defence Standard
00-55 [17]). These standards often involve formal methods (techniques
and tools based on mathematical modeling and formal logic), in addition
to testing.

1.1.3 MASCOT and DORIS

We now turn our attention to the methods for designing such systems.
There are a large number of notations and methods available. In this the-
sis, we concentrate on those methods used by BAe,? which include the
Modular Approach to Software Construction, Operation, and Test (MAS-
COT) [67,107], the Data Oriented Requirements Implementation Scheme
(DORIS) [110,112], and Statecharts [39]. All of these notations are ‘hierar-
chical’; i.e. some constructs can be decomposed hierarchically: they can be
refined to other constructs which may themselves be decomposed.

The design notation within DORIS (which is very similar to MASCOT-
3’s design notation) deals with the architectural structure of the system,
and consists of activities (processes) communicating with each other and
their environment via ‘inter-communication data areas’ (IDAs, a.k.a. routes
or protocols). The MASCOT notation has been studied (Paynter produced
an abstract formalisation of MASCOT in his thesis [84]), although not in
the timed domain.

1.1.4 Reasoning about Designs

The notations mentioned above (MASCOT and Statecharts) use diagrams.
When such a diagram is drawn to denote a system, we have some idea of
what it means: we understand the semantics of the system, even if only
informally. Importantly, the writer may have intended a different meaning

?British Aerospace and EPSRC funded the work in this thesis: the overall problem
that this thesis addresses is broadly constrained by these interests.

1.1. MOTIVATION 23

to the meaning that a particular reader infers. If we want to reason more
precisely about the system, we need to use mathematical reasoning. To do
this, we need to define the semantics of the notation more formally.

It is not trivial to define such a semantics. For instance, over 20 at-
tempts to give a semantics to Harel’s Statecharts have been published (von
der Beeck has surveyed a number of these [6]), and none of these are en-
tirely satisfactory. Other graphical notations also have problems of ambi-
guity, illustrated by both Leveson [64] and Baresi [3]. As discussed in an
earlier literature survey [10], there are persistent problems.

Many applications must satisfy timing requirements for their functional
output to be useful. For example, a fly-by-wire flight control system that
generates the correct commands to the control surfaces of an aircraft ten
minutes after the pilot’s input will result in the loss of the aircraft. The
timing requirements, e.g. the commands will be generated within (say) 10
milliseconds of input, are an important part of the specification.

This explicit introduction of time presents much of the complication in
producing useful models of systems. State machines can be constructed
to model systems, but modelling time introduces a very large (or even
infinite) state space.

A separate problem concerns the interaction of concurrent processes.
Such processes often communicate through shared variables. This inter-
action complicates analysis of the functional and timing properties of a
given system. This is the motivation for the DORIS IDAs ‘decoupling” of
concurrent processes (i.e. separating the description of how and when data
is transferred between the processes from the description of what data is
transferred).

There is other work on the behaviour of concurrent variables. For in-
stance, Lamport has described three types of shared variable, safe, regular
and atomic, which can be considered as particular types of IDAs [59]. In
this thesis, we use Lamport’s variables as the primitive components out of
which we implement the DORIS IDAs.

1.1.5 Application of Formal Methods

As well as defining the semantics of a system, we need to be able to apply
these semantics productively. Formal methods addresses this by using
specific tools and techniques to determine properties of the system from

24 CHAPTER 1. INTRODUCTION

the semantics.

There is an increasingly wide range of tools. Some are theorem provers
(they assist a human user in performing a traditional proof); others are
state space exploration tools (they attempt to search the entire state space
of the system). Others simulate, or animate, systems — this is especially
useful for design prototyping, since a system can only be formally checked
against a formal set of requirements.

Finally, we note that formal methods are still not widely accepted in
industry [48]. We suggest the following analogy: that the formal notations
currently used (say, in Timed CSP [20]), are still at the level of machine
code, whereas system designers need more abstract notations, at the level
of high-level programming languages.

1.2 Contribution of this Thesis

The aim of the work described in this thesis is to produce a semantics for a
hierarchical design notation in such a manner that it is acceptable to a wide
range of software engineers, e.g. those working on systems like the large
case study in this thesis (Section 8.5, Page 185). This must allow the con-
struction of larger components that reflect the application domains where
the notation is used, thus enabling functional decomposition of systems.
Finally, the semantics should also be effectively machine supported.

1.3 Development of Ideas

This thesis describes the design notation within the DORIS method — it is
a hierarchical design notation used in industry.

We give this notation a BNF-style grammar, and outline a Timed CSP-
based semantics for the syntax that allows systems to be constructed hi-
erarchically. Each component of a system either includes other compo-
nents (using a Timed CSP parallel composition operator) , or is a primitive
component that can be represented by carefully constructed Timed CSP
expressions.

The two types of primitive components in DORIS are the IDAs (shared
variables) and activities.

1.4. OVERVIEW 25

The IDAs are defined by specifying their behaviour. This is not trivial,
as the IDAs can have writes and reads occurring concurrently. We investi-
gate the IDAs further by exploring how they can be implemented in terms
of Lamport’s shared variables, and how compositions of IDAs behave.

Activities are abstractions of the ‘processing’ parts of a system. In the
semantic model, they are Timed CSP expressions that interact with the
activity’s environment, and represent the passing of time spent calculat-
ing results. To aid the modelling of real systems, we define a simple lan-
guage containing loops, termination, choice, input, output, and ‘calcula-
tion’, which translates into Timed CSP.

At this point, we can take a DORIS design, and translate it into Timed
CSP. This is detailed work, and is aided by a tool specifically written for
the purpose, named dt. This tool generates output intended to be used
with a PVS [15,79, 80,96, 105] embedding of Timed CSP semantic models,
or for input to FDR [28]. Using these tools, we can attempt to show, by
machine proof, or state space exploration, that particular properties hold.
These two tools are used as complementary approaches to applying our
semantics for DORIS.

1.4 Overview

The thesis is in four parts. The first part contains this introduction, and a
brief background survey. More details of relevant literature are given in
each chapter as needed.

The second part presents the theoretical semantics for DORIS: Chap-
ter 3 presents an overview of DORIS, and provides the overall frame-
work for the following two chapters, which concern the definition of IDAs
(Chapter 4) and activities (Chapter 5).

We then turn our attention to the mechanical support of this work in
the third part. This starts with Chapter 6, where our method is described.
The mechanical methods devised are then used in Chapter 7 to prove
properties about IDAs.

Chapter 8 sets out two case studies. The first is based on a small exam-
ple by Paynter et al. [83]. The second concerns a large design from British
Aerospace. Subsequently, we report the analysis of these case studies.

The final part of the thesis consists of Chapters 9 and 10, which sum-
marise this work, and discuss future possibilities.

26 CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of the theory

Figure 1.1 illustrates the structure of the theory in this thesis: DORIS
consists of two major parts, the IDAs and activities, both of which are
given a semantics in terms of Timed CSP. Finally, mechanical support is
provided by the PVS and FDR tools.

A glossary of terms, definitions and abbreviations, a glossary of sym-
bols, and an annotated bibliography conclude the thesis.

Chapter 2

Background Survey

In this chapter, we provide a general introduction and overview to the
domain of critical systems engineering and formal methods (FM). We also
introduce MASCOT and DORIS, and a process algebra, Timed CSP.

Throughout the rest of the thesis, further material is introduced where
it is needed. An annotated bibliography is also provided (Page 255).

2.1 Critical Systems

The systems that BAe typically use DORIS to design are safety or mission
critical. The failure of a safety critical system could result in the loss of life.
A mission critical system failing will probably not result in loss of life, but
could cause severe difficulties. For example, a weapon system failing to
hit a target is mission critical, but the flight control system of a manned
aircraft is safety critical.

A system which could potentially damage the wider environment can
be considered safety critical: oil distribution systems could pollute a large
area quickly; they are dependent on computer control of pumps and valves.
Nuclear power plants are heavily dependent on their control systems to
ensure safe operation.

Other systems can be described as critical systems: a company may de-
pend on its computers to ensure that orders go to the right place on time:
they are business critical. If such a system fails, it could cause the company
to go out of business. A security critical system may allow information into

27

28 CHAPTER 2. BACKGROUND SURVEY

the possession of unauthorised people, which could cause severe reper-
cussions.

We can see that the concept of a critical system can encompass many
domains and types of failure. However, they all have one common theme:
they must operate reliably and robustly.

In many circumstances, it is impractical to test a critical system in its
‘final” environment, e.g. an ambulance control system. Then how do we
tell whether the system will work?

There are already many software engineering methods aimed at de-
signing systems, e.g. SSADM. What is lacking in many of these methods
is a way to reliably determine that the final system does exactly what it
is meant to. Once designed and built, a system can be tested; however,
testing cannot cover all possible circumstances (except for trivial systems).

More can be done: formal methods are still relatively under-used in
industry, although defence contractors are often required to conform to
safety standards that mandate formal methods.

2.2 Formal Methods

A NASA guidebook states that formal methods consist
“...of aset of techniques and tools based on mathematical mod-
eling and formal logic that are used to specify and verify re-
quirements and designs for computer systems and software.” [75]

There are several important points here:

e formal methods are based on mathematical and logical techniques;

e formal methods consist of techniques and tools (otherwise they are
of no use);

e computer systems as well as software are (sometimes) amenable to
such analysis; and

e formal analysis of a computer system (or software) is based on a
model of that computer system.

2.2. FORMAL METHODS 29

It is the last point that is particularly important: if a formal model of a
washing machine concludes that the washing machine will always com-
plete a programme that has been started, then is the analysis invalidated
if the user disconnects the power supply during the programme? In this
case, there would be an explicit or (more likely) an implicit assumption
that the power supply always remains connected.

The issue here is that we must understand clearly what assumptions
are made during the construction of a model: the analysis is not about the
‘real” system. Barwise discusses this subject in some depth in a refutation
of Fetzer’s argument [29]. In his conclusions, Barwise says

“[Articles critical about computer system correctness] will help
to generate an improved understanding among professionals
and the public of what such proofs show and what they do not
show about the correctness of physical computers operating in
the real world.” [4]

Jackson makes some similar points in his short articles [52].

Much of the rationale for formal methods in software engineering re-
lies on the distinction between traditional engineering disciplines and the
problems with writing software. These problems are twofold:

1. Software is discrete and discontinuous. A small change to source
code or system input can have a large effect on the behaviour of the
overall system. Most engineering systems (e.g. bridges) have a range
of tolerances that can be exploited to give a margin of safety.

2. The sheer complexity of software and the bespoke approach to the
construction of software allows design flaws to be easily missed.
The interaction of even a moderate number of complex components
vastly increases the overall complexity of the system.

The reader is recommended to read Rushby’s introduction where these
issues are more fully discussed [97].

Another useful reference is the two-volume NASA guidebook [75,76].
This is a wide-ranging, thorough, and quite readable guidebook. It serves
well as an overall reference into formal methods techniques.

Although formal methods are not widely used, there is no reason why
they should not be used in the development of all software, except for the

30 CHAPTER 2. BACKGROUND SURVEY

(perceived) cost of using FM for a system that simply does not warrant the
level of assurance required.!

2.3 MASCOT and DORIS

Since DORIS draws much of its notation and methodology from MASCOT,
it is appropriate to first introduce MASCOT.

2.3.1 MASCOT

The Modular Approach to Software Construction, Operation, and Test
(MASCOT) incorporates:

e a means of design representation,
¢ a method for deriving the design,
e a way of constructing software so that it is consistent with the design,

e a means of executing the constructed software so that the design
structure remains visible at run-time, and

e facilities for testing the software in terms of the design structure [67].

MASCOT originated during the early 1970s, with an ‘Official Definition
of MASCOT (a.k.a. MASCOT-1) being produced in 1978. This came about
through work on embedded real-time systems. MASCOT-2 followed in
the early 1980s, with the current standard (MASCOT-3) issued in 1987.

One of the motivations for MASCOT is the intangibility of (large) soft-
ware systems. This causes difficulty in understanding how a particular
system works. To address this, MASCOT, in common with many struc-
tured methods, approaches the problem top-down; i.e. the overall struc-
ture of the system is set out, with further refinements as more detail is
required. The lowest level of design (in this context) is the source code in
the target language.

MASCOT is not just a notation; it is a method. The MASCOT process
has three distinct phases:

1Of course, this does not prevent people using such software for critical purposes. For
example, consider Wiener’s example of a surgeon who used a spreadsheet to analyze
data from a patient during open-heart surgery [119, Page 128].

2.3. MASCOT AND DORIS 31

Network Design An iterative process which creates a hierarchy of sub-
systems, IDAs and servers (all described below). This phase identi-
fies the purpose of each component.

Component Design Each of these components is (if necessary) refined
into more components (activities). The bottom-level activities are
then designed and coded.

Integration and Test Each component is tested individually, then with its
neighbours, and so on, until the whole system has been constructed.

There are a number of component types referred to above:
System This is the “‘product” which the method aims to produce.

Subsystem The system is broken down into functionally separate compo-
nents called subsystems.

Server The system interacts with its environment through sensors and ac-
tuators via servers (a specialised subsystem).

Activities These are the parts of the system which perform the bulk of the
‘work’, e.g. calculations.

IDAs Intercommunication Data Areas (IDAs) link the activities and servers
together by allowing data to flow around the system in a controlled
manner.

An example MASCOT-3 system is given in Figure 2.1, taken from Page 2-3
of the MASCOT-3 manual [67]. This example contains a system called ‘ex-
ample_sys’, which contains three subsystems (with round cornered boxes)
and two IDAs (the square cornered boxes inside example_sys). There are
three devices through which the system communicates with its environ-
ment.

An important feature to note is the distinction between ports and win-
dows. The ports are represented by the small disks on the edge of an activ-
ity at the end of a path (e.g. ap2 in subsys_2). A window is represented by
a small filled-in rectangle (e.g. aw in sida_2). The action associated with a
window is considered to be passive, and is driven by the active end, indi-
cated by the port. In MASCOT and DORIS, paths may only connect a port

32

CHAPTER 2. BACKGROUND SURVEY

(example_sys siL 2.)
: sida_1 subsys_2
pw SW =2 Sp2
sig
tw ap2
trans ack
s3 si2
tp3 aw
subsys_3 sida_2
gw3 (03
P , recl w

Figure 2.1: An example MASCOT-3 system

2.4. COMMUNICATING SEQUENTIAL PROCESSES 33

to a window or vice versa. Similarly, each port and window has a direction
of data flow associated with it, which is indicated by the arrow heads.?

2.3.2 DORIS

The primary reference for the Data Orientated Requirements Implemen-
tation Scheme (DORIS) is Simpson’s Methodological and Notational Conven-
tions in DORIS Real Time Networks [110].

DORIS is a wide-ranging method primarily intended for applications
using real-time networks, and is itself a British Aerospace product. It in-
cludes concepts drawn from MASCOT-2 and MASCOT-3, (DORIS is very
closely related to MASCOT-3) as well as the Controlled Requirements Ex-
pression (CORE) method [16]. DORIS covers a wide span of the computer
system and software development process.

This chapter does not describe DORIS any further. Instead, Chapter 3
describes the DORIS notation itself (Page 53).

The IDAs (which can be treated as shared variables) are discussed in
Chapter 4. Two broad classes of shared variables are discussed, in Sec-
tion 4.2 (Page 81): Simpson’s (DORIS) IDAs [112] and Lamport’s safe, reg-
ular and atomic variables [59].

Part of the DORIS notation includes MASCOT-3-like activities. We in-
troduce a simple language to describe these activities in Chapter 5. Sec-
tion 5.1 (Page 111) describes two alternative approaches: the Activity De-
scription Language (ADL) [83] and Statecharts [40].

2.4 Communicating Sequential Processes

This thesis uses Hoare’s Communicating Sequential Processes (CSP) [46]
as the semantic domain for the DORIS notation (see Chapter 3, Page 53
for the rationale). CSP is a mathematical approach to the study of concur-
rency and communication. It has been extended to incorporate real-time
in Timed CSP (TCSP) by Reed and Roscoe [92], and further developed by
Schneider [100], and Davies [23].

ZStrictly, path fragments from a port to another port (or one window to another) are
allowed. This occurs when hierarchical constructs are involved. Similarly, bidirectional
paths are permitted: in this thesis, they are represented as two unidirectional paths.

34 CHAPTER 2. BACKGROUND SURVEY

Davies and Schneider’s paper A Brief History of Timed CSP [20] de-
scribes the untimed and timed models. (Other summaries have also been

produced [18].) Roscoe has recently published a text covering untimed
CSP [95], and Schneider’s forthcoming book covers Timed CSP [102].

2.4.1 Model of Computation

A program is a term in the syntax of CSP, and a process is an element of a
semantic model. There are a number of different models, corresponding
to different types of observations.

An observation is a record of the entire history of a particular execution
of a process. In one of the simplest CSP models,® a CSP process interacts
with its environment via synchronisations called events. They are consid-
ered to occur at a specific point in time, and have no duration. They occur
only with the agreement of both the process and the environment that it is
placed in.

The sequence of events that occur is known as a trace, and traces are the
observations in the untimed traces semantic model. (We will use several
semantic models of CSP in this thesis.)

There are several assumptions underlying this model of computation:

Maximal progress A program will execute as many internal (hidden) events
as possible.

Maximal parallelism We assume that there are no restrictions such as
scheduling limits. (Later in the thesis, we will restrict the amount

of work each activity can do by explicitly modelling a scheduler.)

Finite variability A program may only undergo finitely many state changes
in a finite amount of time.

Synchronous communication Each communication event requires the si-
multaneous participation of all involved programs.

Instantaneous events The events have no duration.

3There are simpler CSP models, but this (untimed traces) model is the simplest com-
monly used.

2.4. COMMUNICATING SEQUENTIAL PROCESSES 35

P == Stop| Skip| a—P| P;P| PJP| PNP
| a:A= P f(P)] PAA| P|P| PlIP
| PllaP | [[4 B | pX o F(X)

Figure 2.2: Syntax for untimed CSP

Our definition of CSP will be drawn primarily from the paper cited
above by Davies and Schneider [20], Schneider’s more recent description [101],
and the two books by Roscoe and Schneider [95,102].

2.4.2 Untimed CSP

The language of untimed CSP has the syntax in Figure 2.2. We briefly
describe this notation.

‘Stop’ is the program which will do nothing; it will never interact with
its environment. Stop can model a broken printer: it will never accept any
jobs; it can do nothing at all.

‘—’1is called “prefix’; ‘a — P’ is the program which engages in the event
a, and then behaves as P. For example, coin — Stop is the process which
engages in a coin event, and then does nothing.

‘Skip” does nothing, except terminate successfully by engaging in the
special termination event ‘v’ (pronounced ‘tick” or ‘success’). Sequential
composition is denoted by “;’. The sequential composition of two pro-
cesses, P and @), (‘P; Q)") behaves at first as P. If P terminates successfully
(i.e. P engagesin ‘v’), the composed process then behaves as (). Thus the
process coin — Skip; coin — Stop can engage in two coin events before
behaving as Stop again.

‘P [] () means that the environment may choose between P and @)
(external choice), whereas ‘P 1M Q" results in P or () being chosen non-
deterministically (internal choice). The distinction here is important when
considering liveness properties of a process: external choice will offer both
possible processes; internal choice does not have to.

‘a : A — P, (general, or menu choice) offers a first event from the
(possibly infinite) set A. The environment can choose any of the events in
A: suppose it chooses a. Once the event a has occurred, the process a :

36 CHAPTER 2. BACKGROUND SURVEY

A — P, then behaves as P,. This allows the parameterisation of processes
based on the particular event.

This permits the modelling of communication along channels with ad-
ditional syntax. If a data channel ¢ can pass values from a set D, then for
any d € D, c!d means ‘write the value d on channel ¢, and is defined as c.d,
where c.d is a compound event. (Compound events are simply events with
additional structure: they have no special meaning, except for simplying
descriptions. For instance, if we are only interested that some event, c.d
occurs, but are not worried what the specific d is, we may write c.)

Similarly, reading from the channel c is written ¢’z : D — P, ,, and is
defined as e : {z : D|c.x} — P.,. This use of structured syntax can be
useful for structuring models of systems.

‘f(P)"is a program P, but with the events relabelled as dictated by f.
This has a similar purpose to ‘generic instantiation” in high-level program-
ming languages.

‘P\ A’ is the program P, but with the events in the set A hidden from
the environment. Such hidden events do not need the cooperation of the
environment, and occur as soon as P can perform them.

The program ‘P|| 4@’ is the parallel combination in which P and @ syn-
chronise on the events in A U {/}, and interleave all other events. / is in-
cluded in the set of events to synchronise on because both processes must
agree to terminate successfully. (This particular variant of parallel compo-
sition is often known as ‘hybrid parallel”.)

The program “P||Q’ denotes ‘synchronising parallel’, where P and Q)
cooperate on all events in the intersection of the alphabets of P and Q.
The asynchronous (shuffle) parallel operator, ‘P|||()" is the program where
events of P and () are interleaved, except for v, which P and) must
cooperate on. Both of these parallel operators can be defined in terms of
the hybrid parallel operator.

The final parallel operator is the ‘network parallel” (a.k.a. general(ised),
or interface parallel): ‘||i,iP7;’. This takes a number of processes, P;, each of
which has an associated alphabet A;, called the “interface’. For a particular
event to occur, then every process P; which has that event in its interface
must agree on that occurrence. |’ P; is sometimes written in the form
(P, A7) or [{(P, A7)}

Recursive programs, such as ‘u.X e F(X)’, uniquely satisfy P = F'(P)
(in the untimed models) if F' is guarded. (X e F/(X) always has a well-
defined semantics in the untimed models.) F'is guarded in untimed CSP if

2.4. COMMUNICATING SEQUENTIAL PROCESSES 37

every free occurrence of X is preceded by at least one observable (i.e. non-
hidden) event.

There are a number of semantic models for (untimed) CSP. The sim-
plest presented here is based on observations of events engaged in by the
program with its environment. This is known as the traces model. For
a program P, Traces(P) is the set of all possible sequences of observable
events that P may engage in.

By using trace specifications, we can capture safety properties.* For
example,

Vir € Traces(P) o tr =)

requires that P never performs any observable event. (This entire expres-
sion is often abbreviated to tr = (), where it is understood that tr is the
typical trace.) The relation P sat S means

Vtr € Traces(P) o S(tr)

where S is a predicate, i.e. every trace in P satisfies the specification S.
A clock that ticks has a specification with an infinite set of traces.

tr e {(), (tick), (tick, tick), ...}
This can be satisfied by the recursive program
uX e tick - X

We can use refusal sets to capture liveness (readiness) properties. A re-
fusal set records the events that the process will not engage in. This allows
us to define specifications that state that under certain circumstances, the
process is not allowed to refuse an event. Even if the environment is not
prepared to engage in that event, the process cannot itself refuse it.

The typical refusal set is denoted by rf. A failure is a pair (¢r, rf), which
means that the program has been observed to engage in the trace ¢r, and
will deadlock if only the events in 7f are offered by the environment. For
example, we may specify a machine that cannot refuse to produce a choco-
late, if the last event engaged in was accepting a token:

last(tr) = token = chocolate ¢ rf

*In this context, ‘safety properties’ are not necessarily related to ‘safety” in the sense of
‘safety critical’. Here, safety properties constrain which traces may occur.

38 CHAPTER 2. BACKGROUND SURVEY

P == Stop| Skip| Waitt| a— P| P;P| P[] P

PPl a:A=P | P5P| P/, P
(P PAAL PP [PIIIP] PllaP
| P | pX e F(X)

Figure 2.3: Syntax for Timed CSP

The semantic model can be extended to include divergences. Diver-
gences can model livelock. In Hoare’s text [46], a divergence of a program
P is a trace after which the program behaves as the Chaos process — the
most nondeterministic process possible. An alternative treatment (origi-
nally due to Reed [93]) associates a stability value (0 or co) with each trace
or failure. If the stability value is oo, then the program diverges after per-
forming tr.

2.4.3 Timed CSP

In the untimed traces model, the interval between two consecutive events
could be from one millisecond to several million years: we simply do not
have that information available. Sometimes, we might want to know ex-
actly how long a particular interval was between two such events. Timed
CSP (TCSP) is an extension of untimed CSP to include this timing infor-
mation.

There are a number of variants of Timed CSP. CSP was originally ex-
tended by Reed and Roscoe [92,93]. Schneider’s and Davies” doctoral the-
ses build on this work [23,100]. As noted above, Schneider has a forth-
coming book on the subject [102].

Timed CSP has the syntax in Figure 2.3 (similar to the syntax in Fig-
ure 2.2). Times, t, are non-negative real numbers. No lower bound is
placed on the interval between consecutive events.

t
There are three new constructs: Wait (delay), > (timeout), and
(timed interrupt):
‘Wait t” does nothing for time ¢, and then behaves as Skip.

2.4. COMMUNICATING SEQUENTIAL PROCESSES 39

The program ‘P > ()’ is a timeout: if P engages in no events before
time 7 has passed, then the program behaves as (). If the first event of P
occurs at precisely time ¢, then the outcome (P or () is nondeterministic.
Otherwise, the program behaves as P.

‘P /; () is the timed interrupt program. It behaves as P until time ¢,
after which it behaves as ().

Recursive definitions are considered to be guarded (and thus well-
defined) if every free occurrence of X in F'(X) is preceded by a uniform
non-zero delay.

The untimed notions of trace, refusal, and divergence (stability) can be
extended to incorporate time. A timed event is a pair (¢,a), where t €
Time = [0,00), and a € ¥ (where ¥ is the set of all observable events.) A
timed trace is then a sequence of timed events.

Conceptually, timed refusals are sets of timed events, ie. (t,a) € X
(where R is the typical timed refusal set) indicates that event a was refused
at time 7.

Usually, timed refusal sets are finite unions of refusal tokens. Each
refusal token is of the form I x A, where [is a half-open subset of Time,
(say, I = [l,u) C Time) and A is a subset of ¥. The meaning of such a
token is that all the events A are refused throughout the interval /. (Davies
requires that such intervals are finite, so that if two programs have distinct
meanings, then this can be determined in finite time by observations.)

A timed failure is a pair (7, R) consisting of a timed trace (7), and the
union of a finite set of refusal tokens (X).>

Finally, stability values in the timed model are not restricted to only 0
or co. The stability value is the earliest time by which all internal activity
is certain to have ceased.

The much larger amount of information in timed observations results
in more complicated expressions for specification. To address this, spec-
ification ‘macros’ are used as a shorthand. Schneider lists several such
idioms [101, Page 156]. But first, we need to define the symbols used in
those definitions:

°In much of the literature, an untimed failure is represented by (t¢r, rf), and a timed
failure by (s, R). 7 has been chosen for the timed trace in this thesis to prevent confusion
when s is used in other contexts.

40

CHAPTER 2. BACKGROUND SURVEY

concatenation of (timed) traces

subtrace
prefix of a trace

number of occurrences of members of A in s

first event in a (timed) trace

last event in a (timed) trace

first time in a timed trace

last time in a timed trace

first (timed) event in a (timed) trace
last (timed) event in a (timed) trace

subtrace of a (timed) trace whose events occur in A
subtrace of a timed trace where the times lie in the in-
terval 1

timed refusal set containing only events in A

Some useful specification macros are:

aat t(r,R) = ((t,a)) <1
aopent(r,N) = aattV (t,a) €N
aclosed t(1,X) = -aatt

a at tis true if (¢, a) appears in 7. a open t and a closed ¢ indicate whether
or not the environment of the process was prepared to engage in event a

at time ¢.

= dt:]eqgatt
da: Aeqgat]
= Vt:Ieaopent

= -—gat/

2.4. COMMUNICATING SEQUENTIAL PROCESSES 41

aat I, a open I, and a closed I are generalisations to time intervals, and
A at [is a generalisation to sets of events and time intervals together.

alivet(r,R) = aattV(t,a) ¢
a live from ¢ until A(7,R) = [t begin(r 1 [t,00) | A)) x {a} NN =10
a live within 6 of t until A = Aat [t,t +0)
vV alive from ¢ + § until A
B live from ¢t until A(7,R) = [t begin(T 1 [t,00) } A)) x BNR =)
B live within ¢ of t until A = Aat [t t+9)

V Blive from ¢t + § until A

a live t indicates that the process is prepared to perform the event a at time
t, and a live from ¢ until A indicates that a is ‘live” until some event in A
occurs (usually, a € A, otherwise the specification is unsatisfiable). The
formulation «a live within ¢ of ¢ until A allows for the case when there is
some uncertainty about when the event becomes live: it gives a time inter-
val. The last two formulee are again generalisations to sets of events.

2.4.4 Hierarchy and Refinement

Reed presents a hierarchy of models for (Timed) CSP [93]. Figure 2.4 il-
lustrates the hierarchy, and contains 9 models. The first four are untimed:
the most basic model here is M — the traces model. M and Mg are the
trace-failures and trace-stability (divergence) models, which are combined
in Mrg. The four models TMy, TMy, T Mg, and T Mg are the timed ana-
logues of the four untimed models. 7'M}, ¢ bridges a gap for the time-wise
refinement in Schneider’s work [100].

This hierarchy of models within a uniform theory is a major advantage
of CSP. For a given system, the model most appropriate to the properties
that we wish to study can be chosen.

Within each semantic model, we can use the notion of satisfaction (us-
ing sat — Page 37) to determine whether or not a a process satisfies a
specification predicate.

An alternative is to use a (simple, obviously correct) program as a spec-
ification. This is approach is used in the FDR tool [28]. We say that the

42 CHAPTER 2. BACKGROUND SURVEY

T Mps
FS TM}*?S’
TMF—> MF <—TMS

\\//

Figure 2.4: Models of Timed CSP

2.4. COMMUNICATING SEQUENTIAL PROCESSES 43

program P is refined by the program (), written
PCQ
if and only if every possible observation of () is an observation of P:
PCQ@ < O[Q]cCO[P]

(In this expression, O P | means the set of observations of P in the seman-
tic model used for the problem.) This could also be described, ‘() refines
P’,’Q) implements P’, or ‘() is an implementation of the specification P’.

2.4.5 Summary and Remarks

The theory behind the various models of CSP is well-understood [18].
Hoare’s text includes a proof theory for untimed CSP [46]. Schneider has
described an operational semantics for TCSP [103], and a further paper
describes the timed trace-failures model with both an algebraic (denota-
tional) and behavioural requirements specification [104].

Examples of CSP and TCSP in use can be found in any of the cited
references. Two further papers by Davies and Schneider [21,22] describe
Timed CSP with well-presented examples.

Section 3.1 (Page 53) gives the rationale for using Timed CSP as the
semantic domain in this thesis.

2.4.6 Other Notations

There are so many other notations, methods and tools that it is impractical
to list them here. Instead, the reader could profitably reference the two
NASA manuals [75,76], and McDermid’s text [70].

Some other interesting notations are very briefly described below.

CCS

Milner’s Calculus of Communicating Systems (CCS) [73,74] was a major
breakthrough in the mathematical modelling of concurrency. Agents (pro-
cesses) are denoted by mathematical expressions, and a series of equiv-
alences are defined between those expressions. There are (as expected)

44 CHAPTER 2. BACKGROUND SURVEY

notational differences between CCS and CSP, for instance, ‘a.P’ in CCS
corresponds to ‘a — P’ in CSP.

An important difference between CSP and CCS concerns the treatment
of hiding. Hidden events in CSP leave no trace; CCS hidden events are
replaced with the internal transition symbol ‘7’. This can be used to dis-
tinguish between divergent processes.

Timed variants of CCS have been developed, and Hennessey has de-
scribed a variant based on ‘actions” with a strictly positive duration [43].
Gurr has combined CCS and Statecharts [35].

Petri Nets

Petri’s doctoral thesis in 1962 is the origin of net theory [89]. Reisig’s
book [94] is a comprehensive introduction to the subject.

Hesketh is currently developing methods for the synthesis of expres-
sions from ‘Petri boxes’ (labelled Petri nets) [44]. There are many variants
and derivatives of Petri nets and net theory.

Methods for translating CCS and TCSP to Petri nets are the concern
of Taubner’s doctoral thesis [116]. Similarly, the Duration Calculus, (an
extension of the Interval Temporal Logic,) has been used by Hansen et al. to
give an operational semantics to a timed variant of CSP [38]. However,
when a ‘native’ definition of Timed CSP is available (as is the case for this
thesis), there is no need to perform further translations.

TLA

Lamport’s Temporal Logic of Actions (TLA) [60] is a small logic for spec-
ifying and reasoning about concurrent systems. It incorporates a proof
theory for refinement. A later text describes “predicate-action diagrams’
which have a meaning in terms of TLA [61]. There are a number of further
reports concerning TLA, including Abadi and Lamport’s work on conjoin-
ing specifications [1], and on proving safety and liveness properties [62].

Other Models

Shaw’s Communicating Real-Time State Machines are a “new, complete,
and executable notation for specifying concurrent real-time systems” [106].

2.5. NOTATIONAL ISSUES 45

CRSMs are a graphical notation with an operational semantics and provi-
sion for pre- and post-conditions on transitions. However, it is not clear
that this notation will scale up to larger problems.

A more mathematical approach to concurrency is Pratt’s partially or-
dered multisets (pomsets) [91]. These are very abstract; however, one ex-
ample shows that this approach may provide extremely elegant descrip-
tions of some problems. In a similar vein, Goubault has described higher-
dimensional automata [31] (which are a generalisation of nondeterministic
finite dimensional automata).

2.5 Notational Issues

We briefly examine how formal languages are defined. Schmidt notes that
there are three main aspects to a programming language: syntax, seman-
tics and pragmatics [99]:

Syntax concerns the appearance and structure of sentences in the lan-
guage. Is a given term a member of the language (is it ‘legal’)? This
is usually defined in a notation known as Backus-Naur Form (BNEF),
which is described in many texts, including Schmidt'’s.

BNF is used in this thesis to define the syntax for the DORIS notation
(Page 62).

Semantics concerns the assignment of meanings to the sentences. There
are many methods for giving a language a semantics, including:

Operational semantics are a description of a language in terms of
an abstract machine, or an interpreter [99, 114]. Hennessy gives
a number of excellent examples [42]. Essentially, the descrip-
tion of the language is written in terms of a more primitive lan-
guage which is interpreted, for example, the step semantics of
some Statechart variants [6]. Milner uses another variant of op-
erational semantics for some definitions of CCS [74].

This raises the general point that syntax and semantics are for-
mulated in formal languages which themselves have a syntax
and semantics which must be defined somehow.

46

CHAPTER 2. BACKGROUND SURVEY

Denotational semantics Schmidt’s and Stoy’s texts provide fine de-
scriptions of denotational semantics [99, 114].

The idea behind denotational semantics is that a semantic func-
tion is applied to a legal term in the language, which provides
the meaning of the term as a mathematical object. Reasoning
about the language is then performed upon the resulting math-
ematical objects.

Axiomatic semantics take a more abstract view. A consistent collec-
tion of axioms are given for the language, and properties de-
rived from them. In particular, the properties of a given term
are derived by applying the axioms.

Algebraic semantics An example of an algebraic approach is given
in Hoare’s 1987 text [47]. The underlying model is based upon
an algebra, and provability coincides with equational reason-
ing.

It has been suggested that an adequate understanding of a language
is attained when it possesses several different types of semantics, and
that all are consistent with each other. For instance, Schneider notes
that

“in providing an operational semantics for a language [i.e. Timed
CSP] which is already endowed with a denotational se-
mantics, our intention is to provide an operational intu-
ition for the language constructs, and hence gain some in-
sight...” [103]

In Section 3.1.1 (Page 54), we give the rationale for our choice of se-
mantics.

Pragmatics concerns the usability of the language. Can it be implemented

relatively easily? Later in the thesis, this includes: ‘Can systems de-
scribed in this notation be reasoned about (relatively) easily?’

Stoy [114], Schmidt [99], and Dijkstra and Scholten’s [25] texts cover

these topics in considerable detail. Van Leeuwen’s text [63] too, covers
these issues, as well as a wide range of other topics in the formal methods
domain.

2.6. MECHANICAL PROVING 47

2.6 Mechanical Proving

A complaint often leveled against formal methods is the lack of adequate
tool support [8]. While this is to an extent a valid complaint, there is an
increasingly wide range of tools. Importantly, understanding of how to
exploit these tools is also improving.

The reader is referred once again to the text by Rushby [97] and the
NASA guidebooks [75,76] for a thorough coverage of available formal
methods tools.

Two contrasting tools, FDR and PVS, are briefly discussed here. We
also mention MADGE, a tool designed explicitly for use with MASCOT-3
by British Aerospace.

2.6.1 FDR

FDR is essentially a state exploration tool [28]. It can take two CSP pro-
cesses defined as programs, determine the state spaces of these two pro-
cesses, and then determine whether one refines the other in a given model
(see Section 2.4.4 for a short description of refinement in CSP). This can be
used for checking if a process satisfies a specification (itself defined as a
process). Currently, this does not extend to the timed models of CSP.

An example of its use is in the author’s analysis of the four-slot imple-
mentation of the pool [9]. The FDR model (see the cited paper for details
of the model) was checked against the specification below:

FDRAsyncReader = sr — <|—| d:Deerld— FDRAsyncReader>

FDRAsyncWriter = sw?d — ew — FDRAsyncWriter
FDRAsync = FDRAsyncReader||FDRAsyncWriter

This specification was coded in FDR

SAREADING = esr -> (|'| d : DATAVALUES

@ eer!d -> SAREADING)
SAWRITING(d) = esw?d -> eew -> SAWRITING(d)
SASYNC = SAREADING ||| SAWRITING(0)

48 CHAPTER 2. BACKGROUND SURVEY

and an assertion given to test this
assert SASYNC [F= FOURSLOT

(The assertion means: Check whether FOURSLOTrefines SASYNCin the
failures model.) In this instance, FOURSLOTefined SASYNC

FDR appears to be useful for fairly simple, easily defined processes,
and for these, is quite trouble-free. It would appear that it also handles
much larger processes. Like any other state-space checking tool, it has the
disadvantage of not being able to handle abstract programs that have very
large state machine representations.

2.6.2 PVS

PVS is a higher-order logic specification and verification system [79, 80,
105]. It is LISP-based, industrial-strength, and is very flexible, although
the Emacs interface and step-wise proof commands are not user-friendly.
It is not easy to learn to use this tool.

Dutertre and Schneider have recently carried out work on embedding
(the untimed traces model of) CSP in PVS [26,27]. This thesis includes
further work on embedding CSP in PVS, in Chapter 6 (Page 133).

2.6.3 MADGE

The MASCOT-3 Design Generator (MADGE) is a British Aerospace tool
to aid the MASCOT method [65,66]. It has specific extensions to handle
Simpson’s IDAs (see Chapter 4).

This tool has a graphical interface, version control, and file and project
management facilities. Systems can be constructed in the graphical edi-

tor. It can also generate source code for several languages, including the
SPARK subset of Ada.

This thesis refers to a prototype tool, dt (Appendix B). It is hoped that
this could be linked into MADGE as an alternative code generator: this
would result in CSP being generated, which could then be tested against
specifications.

2.7. SUMMARY OF SURVEY 49

2.6.4 Other Tools

The NASA guidebook referred to at the beginning of this chapter contains
a list of formal methods tools and techniques [75,76]. Although it is not
exhaustive (the field is expanding rapidly), it is reasonably thorough.

Once the choice of using Timed CSP as a semantic domain was made
(see Section 3.1 for this rationale), it is then relatively easy to choose the
tool support. Two tools were chosen to represent a complementary ap-
proach: it quickly became apparent that using only one approach (theo-
rem proving or state exploration) would not be sufficiently powerful for
the detail and properties examined.

FDR, as a CSP based state exploration tool, was an obvious choice. The
choice of theorem provers is slightly harder: HOL and IMPS have both
been used for embedding CSP. Chapter 6 contains further details about
the mechanical support employed in this thesis.

2.7 Summary of Survey

This survey has

e described the general problem domain (critical systems);

introduced formal methods;

described the specific notation for the problem;

outlined the untimed and timed variants of the language of CSP; and

introduced the tools used to support our work.

50

CHAPTER 2. BACKGROUND SURVEY

Part 11

Theoretical Semantics

51

Chapter 3

Denotational Semantics for
DORIS

MASCOT and DORIS were introduced in Sections 2.3.1 and 2.3.2 (Pages 30
and 33 respectively).

In this thesis, we are concerned only with the meaning of the design no-
tations and the Data Interaction Architecture (DIA). More generally, Simp-
son states that DORIS ‘provides the methodological framework in which
the notational conventions of DIA have been developed’ [110], i.e. the nota-
tion exists within a more general software engineering method (although,
as we will see in this thesis, it can easily stand apart as a separate entity).

This chapter describes DORIS informally, and introduces some of the
terminology that we use. We then give a denotational semantics using
Timed CSP as the semantic domain. This is significant because it permits
formalization and mechanization of proofs and checks about systems de-
signed using DORIS.

3.1 Rationale

Firstly, why give a denotational semantics (as opposed to a different form
of semantics — see Section 2.5, Page 45)? Why are we using a process
algebra as the semantic domain, and why Timed CSP in particular?

53

54 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

3.1.1 Denotational Semantics

A denotational semantics performs a translation from one notation to an-
other. In many ways, this is the simplest way to give a notation a consistent
semantics.

Operational semantics, although understandable (the concept of an im-
perative machine is well-understood), tend to be hard to reason with. An
axiomatic semantics, while ideal for reasoning, is harder to construct. In
particular, the construction of a consistent set of axioms is a non-trivial
problem. Our remaining choice, algebraic semantics, is also difficult to
construct.

Note that these arguments do not mean that we should never use an
alternative form of semantics: indeed, it would be useful to have different,
but consistent descriptions of the semantics of the DORIS notation (com-
pare with Hoare and He’s book [45]). However, we start with denotational
semantics as a compromise for simplicity of description, and for powerful
use.

3.1.2 Timed CSP

Process algebras are well-understood mathematical objects. Because they
are small, well-defined theories, they are well-suited as semantic domains.

(Timed) CSP is one of the best known of the process algebras, and has
the most well-developed timed variant. Since DORIS applications are typ-
ically real-time applications, we must be able to model time. Moreover,
we need more than just event ordering: we will sometimes need to know
exactly how much time passes between specific events.

Further, there is considerable effort being put into making Timed CSP
amenable to machine checking. Scattergood has developed a machine-
readable language (necessary because CSP has developed as a ‘blackboard’
language) [98]. The tool FDR uses such a language, and for many applica-
tions, is sufficient [28]. Dutertre and Schneider have adopted an approach
that is also used later in this thesis, where CSP is embedded in PVS [26, 27].

Timed CSP has a number of operators that are very useful in this type
of problem: network parallel allows a number of processes to agree on
some events, but not others. The hiding operator is particularly useful
for abstraction. The algebraic laws of Timed CSP allow some hope that a
usable theory can be developed for DORIS designs.

3.2. INFORMAL DESCRIPTION OF DORIS 55

Finally, Timed CSP has a notion of refinement that can be exploited for
different layers. Essentially, we can “fill in” further detail as we pursue the
development process of a system, and show that the more detailed Timed
CSP at each point refines the previous point.

3.2 Informal Description of DORIS

The DORIS notation
e is hierarchical;
e captures concurrency; and
e represents data flow.

DORIS does not attempt to describe the detailed behaviour of components
of the system: this is typically described in other design documentation.
(In later parts of the thesis, these components will be described in Timed
CSP, or a simpler language based upon Timed CSP.)

The system consists of components (including activities, servers, routes,
and paths), and can be viewed from any of the four layers of the Data In-
teraction Architecture.

3.2.1 Data Interaction Architecture

The four layers of DIA are given in Figure 3.1 (Figure 3 of Simpson’s pa-
per [112]).

The functional design describes the behaviour of the system: for in-
stance, a generator passes data to a user via a particular protocol. More
abstractly, this layer could be a specification of the system in terms of
transactions across the inputs and outputs of the system. The style of spec-
ification does not matter as long as the meaning is clear.

The next layer (the design layer) indicates that the generator writes to
a reader via a route (an implementation of a protocol). In the rest of the
design, the various activities and routes are connected via paths, and are
grouped into complex forms.

The design is then distributed (the distribution layer). This involves
placing the route on the processor where the reader resides; the writer may

56 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

Layer Representation Example Focus
Functional generator] user What
Design writer reader How

Where

y

Distribution (| \yriter ->|:|-IH:H>D'

writer -)IE»D» reader
Execution ? ? When

| kernel |<-->{ kernel |

reader

Figure 3.1: Layers of the Data Interaction Architecture

be on the same processor, or on a directly-linked processor, or even on a
processor which can only be linked indirectly through a third processor
on the network.

The execution layer is the final mapping onto processors running ker-
nels which communicate with each other. This introduces detailed timing
information into our model.

Figure 3.1 illustrates this development by starting with a ‘generator’
connected to a ‘user’ via a ‘pool” (a particular protocol) in the functional
layer. An implementation of the pool is chosen in the design layer, and
the implementation of the pool is split into three when the design is dis-
tributed across the network. Finally, the kernels and the communications
infrastructure are added at the execution layer.

This thesis concerns all the layers to some degree. The semantic func-
tions we develop are primarily concerned with the middle two layers, al-
though a notion of refinement between all the layers will be developed
towards the end of this chapter (Section 3.9, Page 74).

3.2. INFORMAL DESCRIPTION OF DORIS 57

3.2.2 Entities of a DORIS System

We can now introduce the terminology for the entities that make up a
DORIS design. Although this is similar to the MASCOT description (Sec-
tion 2.3.1, Page 30), it is not identical. Hence, this section serves as the first
step in giving a formal semantics to the DORIS notation.

A DORIS design consists of a number of entities. The first of these is the
system. This is the top of the hierarchy, and contains all the other entities.

At the bottom end of the tree, there are the activities, which carry out
the work of the system. Servers are specialized activities that interact with
hardware, such as sensors and actuators. This hides details of the actual
hardware interface from the rest of the design process.

The activities and servers are ‘active’ components and are never con-
nected to each other directly. Instead, they are connected via ‘passive’
components called routes.

A protocol defines the dynamic constraints (e.g. timing and blocking
constraints) on the data transfers. A route is an implementation of a par-
ticular protocol. Protocols and routes are jointly referred to as IDAs. How-
ever, the three terms are often used interchangeably; this is the case in this
thesis. Thus a route is a component of a system which transfers data: it
may be a channel (buffer), pool, or signal. There are others: Simpson has
described a wide range of protocols [112].

The various entities are connected by paths: these are the parts of the
system that glue the other components together. Paths connect ports to
windows: ports are at the active end of the path, and windows are at the
passive end. Activities have only ports; routes have only windows; servers
may have both.

These paths are one-way, and are from a window to a port, or from a
port to a window. Complex paths provide a means for paths to be grouped
together.

The system can be hierarchically decomposed into subsystems: these
are the complex servers, complex activities, and devices.! These complex forms
may contain other DORIS entities: they are distinguished by particular re-
strictions: a device may only contain passive elements and have windows
for an interface. Complex activities may have only ports. Complex servers
may have both ports and windows.

'Note that MASCOT terminology calls the complex forms ‘composite’.

58 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

3.3 Syntax

Beyond the syntax defined for MASCOT, there is no published syntax for
DORIS. Before we can give a semantics for DORIS, we must first give it a
syntax.

The syntax we define here is driven by both the informal description
given earlier in this chapter, and how the notation has been used in prac-
tice on a large system (in particular, the case study from Section 8.5). At
this point, we concentrate on the design and distribution layers only: the
design layer concentrates on what should be done when. The distribution
layer adds more concrete details: it says what should be done when, and
also where is should be done in the network.

We will illustrate the syntax more informally by way of two examples:
Figures 3.2 and 3.3. Both examples have a graphical and textual descrip-
tion (although the paths and IDAs are omitted from the second example
to avoid cluttering the diagram).

The graphical syntax, with components embedded in other compo-
nents, is a natural way of drawing hierarchically decomposed systems.
The textual notation, however, is based on a strict distinction between hi-
erarchies.

3.3. SYNTAX 59

r Controller \
4) 4)
Data
Process_A Process_B
pl p rl
\ J \ J

(
(sy, Controller,
(sa, Process_A),
(sa, Process_B),
(rt, Data, Pool),
(sp, , Process_A:pl, Data:wl),
(sp, , Data:w2, Process_B:pl)
)
)
Code stubs expected are: Process_A

Process_B

Figure 3.2: A simple example of the DORIS notation

60

CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

’ Complex_Controller ‘
Alpha!A_Client Bravo!A_Client
Process_A Process_A
Process_B Process_B
Server

(sy, Complex_Controller,
(ca, AlphalA_Client),
(ca, Bravo!A_Client),
(sa, Server)

),
(cc, A_Client,
(sa, Process_A),
(sa, Process_B)
)
)
Code stubs expected are: Process_A
Process_B
Server

(Routes and paths not included)

Figure 3.3: A more complex example of the DORIS notation

3.3. SYNTAX 61

3.3.1 Tags

Later in this chapter, we will need to identify the different types of com-
ponents. To do this, we introduce tags:

Entity Type Tag | Description

System sy | Top-level system: there should be ex-
actly one of these in each system.

Transputer tp | A single processor in a distributed
system.

Direct T-link td | A bidirectional link between two ad-
jacent transputers.

Indirect T-link ti | A bidirectional link between two

transputers via a third transputer.
Complex server | €s | A server that contains other entities.
Complex activity | ca | An activity that contains other enti-

ties.

Simple server ss | A server that contains no other enti-
ties.

Simple activity sa | An activity that contains no other en-
tities.

Device dv | A complex route: often contains sev-
eral routes and paths, or other de-
vices.

Route rt | A single IDA, with one writer win-
dow and one reader window.

Complex path cp | One or more one-way data paths from

a complex window to a complex win-
dow, or from a complex port to a com-
plex port.

Simple path sp | A single one-way data path from a
window to a port, or from a port to
a window.

Although the large case study is implemented on a transputer network,
this semantics is not limited to transputer architectures. However, the

62 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

word ‘transputer” will appear throughout the thesis to distinguish a piece
of hardware with processing capability. (‘“T-link” is an abbreviation for
‘transputer link”.)

3.3.2 BNF-style Notation

First, we need to identify the notation for defining our syntax. The context-
free syntax of the language is described using a simple variant of Backus-
Naur Form.

In particular,

| denotes choice;

{...}7 denotes one or more instances;
{...} denotes zero or more instances; and
[...] denotes zero or one instances.

Round brackets, (.. .)’, are used for grouping terms, and literal text is rep-

e "

resented by sans serif text in quotes, *“. ..

3.3.3 Complex Constructs

A DORIS textual design is a set of complex constructs. Each complex con-
struct is a tuple: the first element of each tuple is a tag, and the second
element is a name. The remaining elements of each complex construct
tuple are basic constructs, which are themselves also tuples. (The basic
constructs are described in the next section.)

The first complex construct is the top-level syntactic element, the ‘sys-

4

tem”:

(System) == ((System_Design') | (System_Distributed'))
{{(Complex_Server’)
| (Complex_Activity')
| (Device')}
(System_Design') == *“(sy,"(Name)

T ———

3.3. SYNTAX 63

(System_Distributed") == *“(sy,"(Name),
{“(Transputer) | “)(Direct_T_Link)
“"(Indirect_T_Link) | “)'{Component)}**)"

e A design-level system may not contain any transputers, nor any di-
rect or indirect transputer links. This type of system has been de-
composed functionally, but not across a network.

e A distribution-level system may contain transputers, and direct and
indirect transputer links. This is the result of a design-level system
being distributed across a network: thus the system requires infor-
mation about the network.

The remaining complex constructs are the complex server, complex activ-
ity, and device:

(Complex_Server’) == *“(cs,”(Name),{")(Component)})"
(Complex_Activity'y == “(ca,(Name),{“(Component)}**)”
(Deviee') = (@ (Name). {*(Passive)}**)

In turn, the definitions above refer to the components that they contain:

(Component) = (Active) | (Passive)
(Active) = (Complex_Server)
| (Complex_Activity)
| (Simple_Server)
| (Simple_Activity)
(Passive) = (Device)
| (Route)
| (Complex_Path)
| (Simple_Path)

We will define these in the next section.

3.3.4 Basic Constructs

The basic construct tuples also start with a tag and a name, and then hold
further information particular to that tag. Some instances of basic con-
structs refer to other complex constructs, e.g. “A_Client” in Figure 3.3.

64 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

The first constructs give information about the network (if applicable):

(Transputer) == “(tp,’(Name)")"
(Direct_T_Link) == *“(td,"(Name)"(T_Source)"
(T _Destination)")”
(Indirect T _Link) == *“(ti,"(Name)"(T _Source),

(T _Destination)"(T_Via)*)"

We can declare instances of the complex and simple forms of servers and
activities:

(Complex_Server) = *(cs,(Instance_Name)")”
(Complex_Activity) = *“(ca,{Instance_Name)")"
(Simple_Server) = *(ss,(Instance_Name)")"
(Simple_Activity) = “(sa,”(Instance_Name)")”

The definition of simple servers and activities will be discussed further
in Chapter 5. The passive components, the route and device (a complex
route), can also be instantiated here.

(Device) = *“(dv,"(Instance_Name)")”
(Route) = “(1t7(Name)“(Route_Type)"y

The routes will be discussed in the next chapter, Chapter 4. Finally, we
define paths, which link all the above components together.

(Complex_Path) == *(cp,’(Opt_Name)"{Path_Source)",”
(Path_Destination)")”
(Simple_Path) == “(sp,’(Opt_Name)"(Path_Source)",

(Path_Destination)")”

There are a number of smaller definitions used above, e.g. a single com-
ponent can be included within several other components by using the

3.4. THE SYSTEM TUPLE 65

(Instance)“!”(Target) notation: Figure 3.3 is such an example. (The same
consideration applies to using multiple instances of simple servers and
simple activities.)

(Opt_Name) == (Name) | (empty_string)
(Instance_Name) = (Target) | (Instance)*V"(Target)
(Target)y == (Name)
(Instance) = (Name)
(Name) == (string)

(Path_Source)
(Path_Destination)

(T_Source) == (string)
(T_Destination) = (string)
(T_Via) == (string)
(Route_Type) = (string)

The (Path_Source) and (Path_Destination) will be covered in detail in Sec-
tion 3.8.1 (Page 73).

It can be seen that this syntax is a set consisting of one system, and any
number of complex servers, complex activities and devices.

Section B.1 (Page 223) gives a complete definition of the plain text input
language that the DORIS-to-CSP tool, dt, manipulates, with an example in
Section B.2 (Page 225).

3.4 The System Tuple

The grammar in Section 3.3 (Page 58) defines a string. This string repre-
sents a tuple, which we name S. S is a tuple of complex constructs:

S =(SY,CS1,....CSN,.CA,,...,CAx,.DV1,...,DVy,)

66 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

where

SY isthe (System_Design') or (System_Distributed’) construct;
CS; istheith (Complex_Server');

CA; isthe ith (Complex_Activity');

DV; is theith (Device');

Ng is the number of (Complex_Server') tuples;

N4 is the number of (Complex_Activity') tuples; and

Np is the number of (Device’) tuples.

The syntax arranges that the structure of a particular system is reminiscent
of a block-structured programming language: it has a ‘main’ procedure
(8Y), and additional procedures (the other components of S). The seman-
tics continues this analogy by defining the meaning of the system in terms
of §Y, referring to the other components of S when further information is
required.

Each of SY, CS;, CA; and DV, is a tuple, and is known as a complex
component.

The elements within each complex component tuple are denoted by
subscripts, e.g. the jth element of the tuples SY and CS,; are SY; and CS, ;
respectively.

3.5 Static Semantics

There are a number of constraints to be applied to this system. For ex-
ample, if a complex activity is referred to in another complex component,
then it must be defined somewhere.

The static semantics for the DORIS notation are given in Appendix A
(Page 213). (We omit them here as they enforce some ‘reasonable” expec-
tations about the systems we might define.)

3.6 Semantics

We can now give a semantics for this notation by a number of semantic
functions on the syntax described above. These functions result in a Timed
CSP program for the particular system. (See Section 2.4 and Appendix C
for the description of Timed CSP used in this thesis.)

3.6. SEMANTICS 67

The semantics takes the tuple, S, which represents the whole design,
and extracts the single tuple describing the system component, SY. The
meaning of SY is the parallel composition of its own (basic) components’
Timed CSP meaning. Part of the calculation of these basic components
requires the analogous construction of the meaning of the other complex
components in the top-level tuple, S. These components are then linked
together using contextual information about ports and windows, which is
determined from the paths in the complex components.

3.6.1 Basic Components

The function, B, gives the meaning of a given basic component. It consists
of a tuple of three parts:

Blcl= (Belcl,Bil ¢, Bwlc])
where c is the basic component that we are interested in.
Bp[¢] is the CSP process representing c;
B;[¢] is the set of events concerned with IDA communications; and
Bw][c] is the set of events concerned with scheduling (work).

In the next section, we will see why we have these three-part tuples, rather
than just having a single element for the process: briefly, the complex com-
ponents are constructed by taking the CSP process for each basic compo-
nent within that complex component. These are composed together using
the CSP parallel operator, which also requires an alphabet: the set of IDA
communications events. The final part is collected together for the sched-
uler model.

We are nearly ready to give the definition of B for each tag. Before that,
we need to define several ‘helper’ functions which link in definitions from
later chapters.

We define the functions NS§S, N AS and N'RS to return the three-part
meaning for simple servers, simple activities, and simple routes respec-
tively in the next two chapters. Note that we do not define any events in
this chapter: the relevant events are also defined in the next two chapters.

68 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

The functions, NCS, NCA, and N DV are defined later in this chapter,
and return the three-part meaning for complex servers, complex activities,
and devices respectively.

We can summarise these six functions in the following table:

Function ...returns the meaning ofa defined on Page...
NCS complex server 70
NCA complex component 70
NDY device 70
NSS simple server 120
NAS simple activity 120
NRS route 98
The definition of B for each tag is as follows:
B[(tp,n)] = (Null,d,0)
B[(td,n,z,y)] = (Null,(,0)
B[(ti,n,z,y,2)] = (Null,0,0)
Bl (cs,n)] = NCS[n]
B[(ca,n)] = NCA[n]
Bl(ss,n)] = NSS[n]
Bl (sa.n)] = NAS[n]
B[(dv,n)] = NDV[n]
Bl (rt,n,t)] = NRS[n,t]
B[(cp,n,z,y)] = (Null,d,0)
B[(sp,n,z,y)] = (Null,d,0)

This matches up each component to a particular function depending on
its tag. Complex servers, complex activities, and devices are all handled
together: semantically, they are the composition of their own basic com-
ponents (defined in the next section).

The simple servers and simple activities are defined in Chapter 5 by
matching them to a ‘code stub’, which defines how that server or activity
interacts with its surroundings. Routes are described in Chapter 4.

Anything to do with transputers or paths is given a ‘null” entry: (Null, 0, 0).
The CSP process Null is defined as

Null = Rung

which results in a process that does not affect any other process, since it
is the Run process of the null alphabet. This is used in these constructs

3.6. SEMANTICS 69

because they only provide contextual information. Arguably, these con-
structs could be completely omitted from this section, but this would re-
sult in a more complicated expression for calculating the parallel compo-
sition of basic components in the next section.

3.6.2 Complex Constructs

The complex components each consist of a ‘tag’, a (Name), and a list of
basic components. We can define the function, C, to return the meaning of
a particular complex component:

The process associated with each complex component, Cp, is constructed
by taking the program associated with each basic component (Bp) of that
complex component, and composing them together with the CSP network
parallel operator, giving the set of IDA communication events (5;) as the
interface alphabet.

Finally, any communication events that can be hidden are hidden, be-
cause both the activity and route concerned are in the parallel construct. #
specifies the events that can be hidden at this level: it is those events that
appear in at least two distinct B; sets. (Due to the way that event names
are constructed and ports allocated to routes, a particular IDA event will
never be in more than two B, sets for a particular complex construct.?)

H[C] = | BIGINBIG]

i,j>3,i#]

CrlC] = (li=s(Brl Ci], B[Ci) \H[C']

(The "> 3’ indices select the basic components out of the complex con-
struct. The first element is the tag, and the second element is the (Name).)

The set of events that the particular complex component generates as
its own IDA interface are those which are not bound in the previous ex-
pression: i.e. it is the union of its own basic component IDA interfaces less

2The name of every route is unique. The path resolution algorithm ensures that a
port is connected to exactly one window and vice versa. Therefore, the combination name
of route-window appears in exactly two basic components, the route which owns the
window, and the server or activity connected to it.

70 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

those in H.

C[C] = (UBI[[Ci]]) \H[C]

i>3

The work events for C are simply the union of all its basic components’
work events. Thus the work events are collected together and propagated
upwards until they are composed with a scheduler process later in this
chapter.

cwlC] = [UBwlCil

i>3

Any complex components referred to in a particular complex compo-
nent are included by the use of B. This results in a structure for the seman-
tics that closely mirrors the hierarchical structure of the design.

We can now define the three functions, NCS, NCA, N DV, referred to
in the previous section.

NCS[n] = C[CS;] iffCS;s=n
NDV[n] = C[DV;] iff DV, =n

The conditional expression matches the name of the complex construct,
e.g. CS; 1, to the name required, i.e. n, of that type of complex construct.

By static constraint 2 (in Appendix A.1), there will be at most one
matching complex construct. Static constraints 4 to 6 ensure that there
will be at least one matching construct.

3.6.3 Semantics of the System

We can now define the meaning of the system, M[S |:

MIS] = (Crl8Y 1llew sy Scheduler) \Cw[SY]

This definition effectively ‘caps’ the complex component meaning for the
system. The purpose of Scheduler is to restrict when events in the set
of processing events, Cyy[SY |, may occur. The intention here is that

3.7. EXAMPLE 71

Scheduler can simulate the behaviour of the scheduler on the final hard-
ware: with limited processing resources, the individual components will
not progress simultaneously, instead being allocated resources by the sched-
uler. Since this could affect the timing of outputs, we need to have the
framework to model this action.

Finally, the processing events are hidden from the environment (other-
wise the environment could interfere with the events by refusing to engage
in them). This means that the only DORIS events visible are unresolved
IDA events, and extra events defined in activities and servers.

The definition of Scheduler will be given in Section 5.6 (Page 124).

3.7 Example

Recall the example in Figure 3.2 on Page 59. By simply working through
the previous definitions, we can see that

M[S] = (Cr[SY e syScheduler) \Cw[SY]

Cr[SY] = | { (Bp[(sa,ProcessA)],
B[(sa, Process_A)]),
(Bp[(sa, Process B) |,
B[(sa, Process B)]),
(Bp[(rt, Data, Pool)],
B[(rt, Data, Pool)]),
(Bp[(sp,, Process_A:pl, Data:wl) |,
B[(sp,,Process_A:pl, Data:wl) |),
(Bp[(sp, , Data:w2, Process _B:pl) |,
B[(sp,,Data:w2, Process_B:pl) |)

}AR[SY]
{ (NASp[Process A]
NAS,[Process_A |
(NASp[Process B |
N AS;[Process_B
[
[
)
)

),
D).
(NRSp[Data, Pool |,
NRS,[Data, Pool]),
(Null,

(Null,0) }\H[SY]

72 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

= || { (WASp[Process_A],
N AS;[Process A]),

(NASp[Process B,

NAS,[Process B),

(NRSp[Data, Pool |,

NRS,| Data, Pool |)

P \H[SY]

3

C[SY] = (UBI[[S%]])\H[[SJ’]]
=) NAS;[Process A]
U NAS;[Process B |

U NRS,[Data,Pool])

\H[SY]

ewl[SY] = |JBwlSyi]
i>3
= NASy [Process A]
U NASw[Process B]
U NRSw[Data, Pool |

This has simply rewritten the definitions into other expressions: we will
return to this example later in the thesis to illustrate how these definitions
eventually resolve into concrete statements.

3.8 Contextual Information

A considerable amount of contextual information is used in these seman-
tics — although so far, we have given none of it explicitly.

There are two parts: the transputer-scheduler part, and the path-interface
part. Firstly, (in the distributed layer) we can use the information in the
transputer link components to determine which route is allocated to which
transputer. Further, each simple activity and server resides on exactly one
transputer. This information can then be used for scheduler modelling. (A
further note on the use of transputer information is given in Section 3.8.2,
Page 74.) Secondly, the paths determine which port connects to which

3.8. CONTEXTUAL INFORMATION 73

window.

We consider that the semantic functions implicitly carry the appropri-
ate contextual information with them. This has been omitted to prevent
cluttering the previous definitions. However, access is required to this in-
formation in the next two chapters.

It is useful in the next two chapters to define the function F to return
a (fully-qualified) unique name (FQUN) for a particular instance of a con-
struct. For example, the two instances of Process_A in the example in
Figure 3.3 (Page 60) above may be given the FQUNs

Complex_Controller.Alpha_A_Client.Process_A
Complex_Controller.Bravo_A_Client.Process_A

Further information for the definition of N'SS and N AS is given by the
paths and routes. The paths define the ports and windows in the system.
When each path is traced through the simple and complex paths in the
network, then it can be replaced by a simple path from a path to a window
(or from a window to a path).

Ultimately, the references to ports within any simple server or activity
are replaced by the event within the route or server at the other end of
the path. This exploits the CSP event synchronizations: the components at
each end of the path must agree on that event occurring.

We define a function, R, which for a port of a server or activity, returns
the FQUN of the associated route (or server) and window number. This,
like F, is used in the next two chapters.

The next section describes path and interface resolution in further de-
tail.

3.8.1 Path Resolution

In the previous section, we identified a function, R, which hides the detail
of resolving which servers, activities, and routes are connected. Instead, R
simply identifies which window and which route or server that a partic-
ular port is connected to. This section briefly describes the rules used for
determining that information — Appendix A.2 (Page 216) gives further
details of the algorithm for path resolution.

Figures 3.4 and 3.5 (Pages 76 and 77) can be used to illustrate the prob-
lem. The simple interfaces defined by these paths (including the full hier-
archical names) are:

74 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

A.B.Cwl AB.Cpl A.G.H.lpl
A.D.F.wl A.D.Fw2 A.D.E:ppl

These are resolved thus:

ADFw2 — AD.E;pl because felinks them directly

A.B.C:pl — A.D.F:.wl wviacb, bd, and df

AGHIlpl — AB.Ciwl via ih, hg, gb, and bc on complex
channel a

Appendix A.2 repeats this example with further details.

3.8.2 Allocation to Transputers and Links

Although not explicitly included in the syntax, the mechanical implemen-
tation of the syntax includes a field for indicating which transputer a par-
ticular component resides on.

The rule in this case is that if a transputer is indicated, then the compo-
nent resides on that transputer. Otherwise (i.e. if the field is empty), then
the component resides on the same transputer as its parent. It is an error
(at the distribution level) if a simple server, simple activity or route does
not have a transputer indicated in this way.

Ideally, this information (along with the rest of the transputer infor-
mation) should be kept separate from the design level information. Other
information pertaining to scheduling can also be stored here, e.g. activity
priorities.

3.9 Refinement

Refinement® within this framework is easy to describe. The functional
level requirements can be defined as timed safety and liveness predicates
using the TCSP notation (see Chapter 8 for examples from the case stud-
ies). The TCSP meaning of the design and distribution levels has been
given above. Finally, the meaning of the execution layer is given by the
parallel composition of the distribution level meaning, and the scheduler
(see Section 5.6).

3This section is an aside. It is not used in the rest of this thesis, but is relevant for
future work and industrial use.

3.9. REFINEMENT 75

Since this means that all four layers are defined within the framework
of Timed CSP, then the Timed CSP notion of refinement can be used. Fur-
ther details on Timed CSP refinement can be found in the considerable
volume of literature on Timed CSP (see Section 2.4.4, Page 41).

76 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

Described on Page 73

Textual version in Figure 3.5 (Page 77)

Figure 3.4: Illustration of path resolution algorithm

3.9. REFINEMENT

77

((%A

(cs, B),

(cs, D),

(ca, G),

(cp, gb, G:p1, B:wl),

(sp, bd, B:p1, D:wl))
(cs, B,

(ss, C),

(sp, bc, wl:a, C:wl),

(sp, cb, C:p1, pl))
(cs, D,

(sa, E),

(rt, F, Channel),

(sp, df, wi, F:wl),

(sp, fe, F:w2, E:pl))
(ca, G,

(ca, H),

(cp, hg, H:pl, pl))
(ca, H,

(sa, 1),

(sp, ih, I:p1, pl:a)))

Code stubs expected are: simple server C
simple activity E
simple activity |
route type Channel

Described on Page 73

Graphical version in Figure 3.4 (Page 76)

Figure 3.5: Textual statement of path resolution example

78 CHAPTER 3. DENOTATIONAL SEMANTICS FOR DORIS

Chapter 4
Specification of IDAs

4.1 Overview

The previous chapter identified and described the overall structure of the
notation and semantics for describing a DORIS system. The next chapter
will describe the activities within a DORIS system. This leaves one major
part: the IDAs.

In this chapter, we will describe how to

e specify IDAs;
e compose IDAs; and
e implement IDAs.

We can then give the definition of the semantic function N'RS. In Chap-
ter 7, some assertions about IDAs will be tested using techniques intro-
duced in Chapter 6.

4.1.1 General Model

Although MASCOT-3 has a notion of general ‘access interfaces” (multi-
ple procedure-like interfaces), we adopt a simpler one reader-one writer
model in this thesis.

The simplification eases the basic modelling at the expense of requir-
ing more work to simulate access interfaces in this framework. The ac-
cess interfaces can be simulated by constructing devices (or even complex

79

80 CHAPTER 4. SPECIFICATION OF IDAS

servers if the object is particularly complex) to abstract away from the one
reader-one writer IDAs.

The CSP model is that each reader engages in one or more events in a
given order; the final event returns the value read. The writer engages in
one or more events in a given order; all the writer events carry the value
written. (It is easier to include the value written all the time, rather than
try to code up specification predicates to capture the value at a later stage.)

4.1.2 Distribution Issues

The distribution level of a DORIS design includes the allocation of activi-
ties to individual processors within a transputer network. The “processes’
implementing the activities are then distributed according to this scheme:

e IDAs written to and read from by activities allocated to the same pro-
cessor are known as private and are allocated to that same processor.
This is the simplest form.

e When the reading and writing activities are allocated to two differ-
ent processors that are directly linked, the IDA is known as a shared
IDA. It is allocated to the processor where the reading activity re-
sides, and an extra ‘process” added on the writing processor to ar-
range for writes to be forwarded across the link.

e The final case occurs when there is no direct link between the reading
and writing processors: this results in a remote IDA. Again, the IDA
is allocated to the reading processor, and forwarding processes are
placed on two or more processors. (In this thesis, we will only come
across the case where two forwarding processes are required. The
theory described in Section 4.9, Page 103, is easily extended to more
than two forwarding processors.)

This arrangement is described in more detail for the system modelled in
the large case study (Section 8.5) in Grigg’s technical report [34]. The for-
warding processes used in this thesis are described in Section 4.9.

4.2. TYPES OF SHARED VARIABLE 81

4.2 Types of Shared Variable

Two broad classes of shared variable concern us. Firstly, Lamport’s classi-
fication of shared variables into safe, reqular, and atomic is mathematically
elegant, and can be used to construct larger shared variables [59]. Sec-
ondly, Simpson’s definitions of routes are a more industrially motivated
concept [112].

4.2.1 Lamport’s Variables

It is particularly well-known in database systems that many operations
appear to be atomic, i.e. their interaction with the environment can be re-
garded as a single point in time. However, such operations really consist
of several atomic operations, e.g. the transfer of funds from one bank ac-
count to another; this involves the debit of one account, and the credit of
another.

Lamport defines three classes of shared variable [59]: safe, regular, and
atomic. All will return the ‘correct” value held in the register if no writes
overlap with the action of reading. Here, the correct value is the most
recently written value. The difference between them is the value returned
when there is a concurrent write:

e A safe register will return any type-correct value.

e A regular register will return the value held before any concurrent
writes, or the value written by any concurrent write.

e An atomic register behaves as if all reads and writes occur in some
definite, non-overlapping order.

The example on Page 20 (and Figure 5) of Lamport’s ‘On Interprocess
Communication’ illustrates these three types [59], and is repeated in Fig-
ure 4.1.

e If the variable is safe, then Read 1 will get the value 5. Reads 2 and 3
will nondeterministically get any possible value that the variable can
hold.

e Aregular variable will get the value 5 for Read 1. Reads 2 and 3 may
obtain either 5 or 6.

82 CHAPTER 4. SPECIFICATION OF IDAS

Read 1 Read 2 Read 3

———

Write 5 Write 6

Time

Figure 4.1: Lamport’s shared variables (Figure 5 [59])

e An atomic variable will again get value 5 for Read 1, and the other
two reads may read any of the following pairs:

Read 2 Read 3

5 5
5 6
6 6

but not the pair 6 then 5.

Lamport then continues to classify all single-writer variables as having
three ‘coordinates’:

e safe, regular, or atomic;
e boolean or multi-valued; and
e single-reader or multi-reader.

Further, Lamport asserts that the weakest type of variable, the safe boolean
single-reader variable, is easily implementable in hardware. He then notes
that all the other classes can be constructed from weaker classes, with the
exception of atomic multi-reader variables. (Lamport comments that re-
quiring mutual exclusion for some operations will, at some lower level,
require the problem of concurrent access to be addressed.)

Later in this chapter, we will implement one of Simpson’s routes with
Lamport’s variables.

4.2. TYPES OF SHARED VARIABLE 83

4.2.2 Simpson’s Variables

Simpson has defined a number of protocols for engineering purposes. For
instance, the “pool’ is an IDA where the writer can always write, and the
reader can always read. Conversely, both the reader or writer can be held
up when accessing a channel (respectively when there is no data to read,
and when there is no space in the channel). Figure 4.2 sets out the various
protocols and their symbols as defined by Simpson [112]. The basic proto-
cols can be given characteristics as in Figure 4.3. Simpson identifies these
four protocols with four ‘kinds” of data that may be passed in a real-time
system:

Event data is passed by a signal: data is overwritten if it isn’t first read by
the reader.

Reference data is written to a pool, and may be continuously overwritten
while the reader continuously reads. (This requires special mecha-
nisms to prevent timing interference — see the paper by Brooke et
al. [9].)

Message data is passed in a channel: this is the classic FIFO.

Configuration data is constant in the system. This is never written to (or
if it is, then it never affects the reader).

Each of the four basic protocols only ever ‘holds” one datum.

‘Flash data’ and ‘rendezvous’ are the two interlocked protocols, which
are variants of the signal and channel respectively. They require closer
synchronization of the reader and writer: they hold ‘zero” data in storage.
Similarly, queued protocols can hold more than one datum: the number
that may be held is given by the number n on the diagram. These defini-
tions will be discussed later in this chapter.

Void value protocols are derived from earlier protocols: they serve only
to pass a ‘null” message. Note that in the large case study, we ignore the
values passed regardless of protocol.

The integral response and separate response protocols are really two
instances of (derivatives of) channels connected together, and are not dis-
cussed further in this thesis.

84 CHAPTER 4. SPECIFICATION OF IDAS

Basic single value protocols

]] T I
L] 1 I

signal pool channel constant

Interlocked and queued protocols

: i il n,
L 1

flash data va‘z\;gtring rendezvous bounded buffer

Void value protocols

3|] J 3l | J
L L L 1 1 1

overwriting directional dataless bounded stim
stim buffer handshake channel buffer

prod stimulus

Integral response protocols

0‘ ‘0 0‘ IO 0 0 0 0

exchange rendezvous rendezvous handshake

Separate response protocols

—_— —_— —_—
——
= -
remote function remote data remote data remote thread
call send fetch invocation

Figure 4.2: DORIS protocol symbols

4.3. UNTIMED TWO-POINT MODELS 85

Destructive reads Non-destructive
reads
Reader CS“ be held Reader cannot be
P held up
Destructive writes -I
Writer is never I_
held up =
signal pool
Non-destructive T
writes
Writer can be held J—
up
channel constant

Figure 4.3: DORIS basic protocols

4.3 Untimed Two-Point Models

We now examine how to model the protocols used in DORIS. First, an
untimed ‘two-point’ model and the problem with it is given. In the next
section, possible solutions are enumerated.

A CSP process interacts with its environment via atomic events. These
events identify points in time. To model an interval, we use two events:
the start and end points of the interaction (hence the name “two-point’).

Reader Writer
Start ST S
End er ew

Thus, an activity reading from a route of FQUN R engages in the two
events [?.sr, and R.er in that order. Similarly, the writer engages in R.sw,
and R.ew in that order. (In the sequel, we will assume that IDA events are
constrained to occur in the specified order.) Three of these events (er, sw,
and ew) are really channels,! although this is often ignored when only the

Recall from Page 36 that channels allow data to be communicated in the form of CSP

86 CHAPTER 4. SPECIFICATION OF IDAS

Write 1 Write 2 Write 3
Read 1 Read 2

Time

Figure 4.4: Fresh data: short reads

synchronization matters.
We would then expect the following trace to be typical of a variable
(say, R):
(R.sw.5 — R.ew.5 — R.sr — R.er.5)

i.e. the value ‘5’ is written to (stored in) the variable; it is then read out.

In the paper, An Analysis of the Four-slot Mechanism [9], an implemen-
tation of one of the most interesting routes, the pool, is examined. This
mechanism is called the ‘four-slot mechanism” because it uses four data
‘slots’ to store data passing through the mechanism while allowing both
the reader and writer to work without timing constraints [110].

Essentially, this implementation uses some boolean-valued regular vari-
ables to direct the reader and writer to different slots within the mecha-
nism, so that a corrupt datum can never be returned to the reader. How-
ever, it is then necessary to prove that the data returned is “fresh’. This
leads to the philosophical (and necessary) point of how to identify fresh
data. Consider Figures 4.4 and 4.5. There are three reads: what value
does each obtain?

¢ Any variable should return the value of Write 2 for Read 1.

e Read 2 is less obvious: A Lamport-safe variable would return any
possible value for that type of variable; a regular variable would re-
turn the value of Write 2 or Write 3.

compound events.

4.4. FIXING THE TWO-POINT POOL 87

Write 4 Write 5 Write 6

Read 3

Time

Figure 4.5: Fresh data: a long read

e Read 3 is similar to Read 2. But what if Read 3 was taking a very
long time? Should it really return the value of Write 4? Surely we
should call such a value “stale’ (i.e. not fresh)?

Abstractly, there is no problem with returning stale values, since non-
determinism can be very helpful in specifying a system without giving too
much detail too early.

In ‘real’ systems, however, especially real-time systems (which is the
prime domain for DORIS), this approach is not acceptable. Data that is
‘too stale’ could adversely affect the performance of a system.

The work described in the four-slot analysis paper uses a two-point
model in untimed failures CSP? and concluded that the four-slot mech-
anism does not satisfy the formal formulation of freshness given in the

paper.

4.4 Fixing the Two-Point Pool

The conclusion above is not satisfactory: the counter-example traces given
in the paper were in some ways absurd, since they relied on very long
periods of work by (say) the writer without the reader engaging in a single
event. This was partially due to the particular semantic model chosen, but
mostly due to the formulation of freshness given under that model.

ZUntimed failures CSP has a sequential notion of time, i.e. event a happened before
event b, but it doesn’t say how long the interval was. The word ‘failures’ refers to the
model being able to express both safety and readiness properties.

88 CHAPTER 4. SPECIFICATION OF IDAS

In order to more satisfactorily model shared variables such as the four-
slot implementation of the pool we could

e use real-time (i.e. identify the time that events happen, and not just
the order that they occur in); or

e use more points in the model, say, a three-point model.

The first case is the most attractive at first impression: however, it could
interact poorly with scheduling. Consider a definition of a variable which
says, ‘“The value read will have been written within the last twenty seconds
if there is one, otherwise it will be the last value written’, and a scheduler
which regularly deschedules the writer (and hence the value written) for
thirty seconds at a time.

Of course, a method of counting the ‘scheduled time’ (like the sched-
uler in Section 5.6) could be used, but this so complicates accounting which
activities and routes have used time that it is simpler (and more elegant)
to consider the second case. Further, we would like to consider time in as
few places as possible in the semantics, to aid analysis. Therefore the best
place for timing is inside the activities.

The second case could be called the ‘inappropriate abstraction” argu-
ment: we could say that we have missed the essential point of the defi-
nition of the pool (and also of the four-slot mechanism), and that there is
some middle event that marks a change of phase between the start and
end points. It is this case that we develop.

So we then identify six events associated with a particular route of
FQUN R: R.sr, R.mr, R.er, R.sw, R.mw and R.ew. Again, some of these
events are really channels (er, sw, mw and ew).

Reader Writer

Start ST S
Middle mr muw
End er ew

The middle event can be identified with different types of ‘event” within
different IDAs. It simply gives an external synchronization. Generally, a
writer takes the steps

sw — write — mw — indicate — ew

4.5. THREE-POINT IDA SPECIFICATIONS 89

whereas the reader follows
st — indicate — mr — read — er

‘Indication’ is the process where, in the implementation, internal variables
are updated (which can, for example, be used as ‘advisory locks’). Again,
the IDA events should be constrained to occur in the given order.

4.5 Three-Point IDA Specifications

We now give the three-point specifications for each of the constant,® chan-
nel, signal and pool. These specifications will take the form of a number
of conjoined predicates over failures.

Note that these are untimed failures predicates: Section 4.11 addresses
the issue of timed failure specifications.

4,51 Preliminaries

Suppose that the (nonempty) set of possible data values of the variable is
D, and that a distinguished value d; € D is the initial value (if appropriate
for the particular IDA).

We define several sets to group the events:

ER(D) = {d:Deer.d}
SW(D) = {d:Desw.d}
MW (D) = {d:Demuw.d}
EW(D) = {d:Deeuw.d}

aR(D) = {sr,mr}UER(D)
aW(D) = SW(D)uUMW(D)uU EW (D)
alDA(D) = aR(D)UaW(D)

The first four sets refer to the events that carry data values. The fifth and
sixth sets are the events for readers and writers respectively. The final set
is the alphabet of any IDA with data values D.

3This is useful in real systems: it can be viewed as static configuration data.

90 CHAPTER 4. SPECIFICATION OF IDAS

We now define some simple predicates defining the state of the reader
and writer. In these predicates, “#r” is a free variable representing a trace of
a process. ‘s#A’, where s is a trace and A is a set of events, means ‘count
the number of occurrences of events in A in s’. A single event version,
‘s#a’ can be defined

s#a = s#{a}

The first predicates constrain the reader to be in exactly one of three states:

Readinga(D) = (trtsr — tr#tmr = 1) A (tr#tmr = tr# ER(D))

Readingp (D) = (tr#sr =tr#mr) A (tr#mr — tr##ER(D) = 1)
NotReading(D) = (trtsr = tr#tmr = tr#ER(D))

ReaderSequence(D) = NotReading(D) V Readings(D) V Readingp(D)

This constrains the reader so that there can only be one read in progress.

For example, the reader can be either not reading (NotReading), or a start-

read has occurred (Reading,), or a middle-read has occurred (Readingg).
The next predicates perform a similar function for the writer.

Writinga(D) = (tr##SW (D) — tr##MW (D) = 1)
A (trd MW (D) = tr#EW (D))
Writingg(D) = (tr#SW (D) = tr#MW (D))

(
A (tr MW (D) — tr EW (D) = 1)
NotWriting(D) = (tr#SW (D) = tr## MW (D) = tr# EW (D))
WriterSequence(D) = NotWriting(D) Vv Writinga(D) vV Writingg (D)

The writer is further constrained by Consistent Write so that the value writ-
ten is the same at each step of the same write. s is a pattern-matching trace:

for example, we write ‘tr = s” (ew.d)’ rather than further clutter the state-

ments by writing expressions like ‘3s, d e tr = 5™ (ew.d)’. (We will use this
approach often in the thesis.)

ConsistentWrite(D) = (tr L aW(D) = s (sw.dy, mw.dy) = d = dy)
A(tr L aW (D) = s (mw.dy, ew.ds) = dy = d3)

The “]” symbol is the restriction operator. s | A returns the trace s with
only the events in A: all other events are discarded.

4.5. THREE-POINT IDA SPECIFICATIONS 91

All IDAs have these basic properties, so they are combined into one
definition:
Basic(D) = ReaderSequence(D)
A WriterSequence(D)
A Consistent Write(D)

Sometimes, we require that one or more events cannot be refused. In
the following predicates, we introduce rf, the set of refusals for the pro-
cess. This is always a free variable (like tr). last(s) returns the last event in
a non-empty trace s — therefore, we have to be careful to only apply last
to non-empty traces.

The first six predicates are of the form ‘if the last event is this event’s
predecessor, then this event cannot be refused’.

May, (D) = (tr L aR(D) = () Vlast(tr | aR(D)) = er)
= sr¢rf

May,, (D) = (last(tr L aR(D))

May,, (D) = (last(tr | aR(D))

sr) = mr ¢ rf
mr) = ER(D)\ rf # 0

Mays, (D) = (tr L aW(D) = () V last(tr | aW(D)) = ew)
= SW(D)nrf =10

Maym, (D) = (last(tr | aW (D)) = sw.d) = mw.d ¢ rf

Maye, (D) = (last(tr L aW (D)) = mw.d) = ew.d ¢ rf

~— ~—

The first two are simple: these unadorned events cannot be refused. The
third states that there is at least one value that can be returned by the end-
read event. The start-write term states that no start-write event can be
refused (since the variable cannot dictate that a certain value may not be
written). The last two predicates state that the middle-write or end-write
event of the appropriate value cannot be refused.

Again, these are combined into two larger predicates (MayRead and
MayWrite).

MayRead (D) = Mays. (D) A Mayy,, (D) A May,, (D)
MayWrite(D) = Mays, (D) A Maymy, (D) A Maye, (D)

For some IDAs, further conditions apply to when an event can occur.
In this thesis, only the mr and ew events are constrained in this way. In the

92 CHAPTER 4. SPECIFICATION OF IDAS

following two predicates, c is a predicate with ¢r free. Note that some fur-
ther restrictions apply to c: the occurence of the constrained event should
not cause c to become false.

MayBlockpy, (D, c) = cAlast(tr | aR(D)) = sr) = mr ¢ rf

(
A (tr = s (mr)) = ¢
MayBlocke,(D,c) = (cAlast(tr L aW (D)) = mw.d) = ew.d ¢ rf
(

A (tr = s (ew.d)) = ¢

The interpretation of these predicates is that the event concerned should
only occur when the predicate c is true. Moreover, if ¢ is true, then the
event should not be refused (provided it is the next event in the sequence).

4.5.2 Constant

We are now in a position to define the Constant IDA. A constant is a route
which always returns the value dy, and is always prepared to allow the
reader to read.

Constant(D,dy) = Basic(D)
A MayRead (D)
A ConstantValue(dy)

where
ConstantValue(dy) = (last(tr) = er.d) = d = d,

This says nothing about what a writer can or cannot do: it simply implies
that the writer cannot affect the reader.

4.5.3 Pool

The pool is a particularly interesting IDA, since the definition of which
value should be returned is the motivation behind using three-point defi-
nitions, and not two-point definitions.

4.5. THREE-POINT IDA SPECIFICATIONS 93

A pool allows both the reader and writer to always read and write. So
we can write:

Pool(D,dy) = Basic(D)
A MayRead (D)
A MayWrite(D)
A PoolValue(D, dy)

It means that as well as having all the common properties of an IDA
(Basic), neither the reader nor the writer is ever blocked. PoolValue iden-
tifies which values may be returned by an end-read. The value returned is
any of the following:

e the value of the last ew before the sr if there is a complete write pre-
ceding the sr;

e d, if there is no complete write preceding the sr; or
e the value of any mw between the last ew before the sr, and the mr.

The first two cases cover the obvious possible value: the last completed
write before the read. The last case allows the implementation some slack
in the values that may be returned: the intention is that this is used to
allow the readers and writers to continue with less mutual interference.

PoolValue, in turn uses PoolValues, which returns a set of values rep-
resenting these legal values. The first half of the union (PoolValuesSR) cap-
tures those events from before the start-read, and the second half
(PoolValuesSMR) handles events between the start-read and the middle-
read.

PoolValue(D, dy) = last(tr) = er.d
= d € PoolValues(D, dy, tr)

PoolValues(D,dy,s) = PoolValuesSR(D, dy, s)
U PoolValuesSMR(D, dy,)

PoolValuesSR(D, dy, s) = {di,dy}

94 CHAPTER 4. SPECIFICATION OF IDAS

where last((mw.dy)” PoolSliceSR(s) | MW (D))

= muw.d;

A last({ew.dy)” PoolSliceSR(s) | EW (D))

= ew.dy

PoolValuesSMR (D, dy,s) = {d |
mw.d € o(PoolSliceSMR(s) | MW (D))}

In the expressions above, ‘0’ means ‘set of: it turns a trace into a set of the
values appearing in that trace.

The two final expressions are functions that take a trace, and return a
trace. They ’slice” up the trace concerned to return the interesting portions
of the trace to be manipulated further (above).

PoolSliceSR(s) = &'
where s=38""{sr)" s
A sr ¢ o(s)

PoolSliceSMR(s) = s"

SN /Ia

where s =89 (sr) 8" (mr) sy

A st g o(s"ss)
A mr ¢ o(s3)

Note that these expressions are only partially defined: there are traces
where they are not defined.

Although the internal choice operator (1) does not appear explicitly
(this is a predicate rather than a program), the specification uses nondeter-
minism to represent that as long as at least one ‘legal” value is offered for
an end-read, then all the legal values do not have to be offered (some may
be refused). This is represented by the conjunction of the MayRead clause,
and the safety condition that the value returned is legal.

An alternative, and arguably more understandable specification of
PoolValue is given on Page 161.

4.5. THREE-POINT IDA SPECIFICATIONS 95

4.54 Channel Family

The channel protocol has several derivatives, and it is more elegant to il-
lustrate how they relate to each other by giving a general definition.

A (derivative of a) channel may hold up both the writer and the reader.
Both the reader and writer may always start. However, the middle event
is not permitted for the reader until there is an item to read. The writer
cannot engage in an end-write until there is space to write the item.

The following predicate is given in terms of ChannelState, which takes
the trace, and returns a sequence of values representing the ‘current’ state
of the channel for that trace.

ChannelFamily(D,n) = Basic(D)
A Mayg (D)
A MayBlock,,, (D,
#(ChannelState(tr)) > 1)
A May,,(D)
A Mays, (D)
A Maymy, (D)
A MayBlocke, (D,
#(ChannelState(tr)) < n)
A ChannelValue
The ChannelFamily does not block except in two circumstances: the middle-
read and end-write events are not allowed to occur if there is no item, or
no space for an item respectively. (The choice of which event to block
has been taken from Simpson’s work on standardising the IDAs [112].)
However, these events have liveness conditions attached to them for when
space or items are available.

Note that the predicate given to the conditional refusal predicates
(MayBlock,,, and MayBlock,,) is true when the event may proceed: thus
there must be at least one event for the reader to continue.

ChannelValue, together with ChannelState, determines which value is
returned by a given read. ChannelState recursively constructs a list of data

values from the trace, and ChannelValue uses this to determine what value
a given end-read should return.

ChannelValue = tr = 5" (er.e)

96 CHAPTER 4. SPECIFICATION OF IDAS

= e = head(ChannelState(s))

ChannelState(()) = ()
ChannelState(s'” (mw.d)) = ChannelState(s')" {d)
) = tail(ChannelState(s'))
)

= ChannelState(s") when x 7 mw.d
AN T F#er.e

ChannelState(s'” (er.e)
ChannelState(s' (x)

where for s a sequence, and n a positive integer, s,, denotes the nth member
of the sequence s. tail returns all but the first element of a sequence.

The channel protocol is easily defined as a single instance of
ChannelFamily; the interlocked variant of the channel is the rendezvous,
and the queued variant is the bounded buffer:

Rendezvous(D) = ChannelFamily(D,0)
Channel(D) = ChannelFamily(D,1)
BoundedBuffer(D,n) = ChannelFamily(D,n) (n>1)

4.5.5 Signal Family

The signal protocol, like the channel, has several derivatives. A signal can
hold up the reader, but it never holds up the writer. If the signal runs out
of space for the writer, it overwrites old data.

SignalFamily(D,n) = Basic(D)
A May,, (D)
A MayBlock,,, (D,
#(SignalState(n, tr)) > 1)
A Maye, (D)
A MayWrite(D)
A SignalValue(D, n)

SignalFamily uses blocking and liveness conditions in a similar fashion to
ChannelFamily.

SignalValue is a slightly cumbersome definition because the value re-
turned by an end-read is the value at the front of the SignalState queue at

4.5. THREE-POINT IDA SPECIFICATIONS 97

the point of the middle-read event, i.e. the value to be returned by er is
indicated by mr.
SignalValue(D,n) = last(tr) = er.d
= d = head(SignalState(n, s'))

) 7]

where tr =s""(mr)"s
A mr ¢ o(s")

Because writes can overwrite unread values when there is no space,
SignalState has extra terms covering end-writes: if there is no space when
the ew event occurs, then the head of the list is discarded. Correspond-
ingly, the value returned by a read is determined, and removed from the
SignalState sequence, at the mr event.

SignalState(n, ()) = ()
SignalState(n, s’ (mr)) = tail(SignalState(n,s'))
SignalState(n, s’ (mw.d)) = SignalState(n,s")" (d)
SignalState(n, s’ (ew.d)) = SignalState(n, s')
when #(SignalState(n, s')) <n
SignalState(n, s’ (ew.d)) = tail(SignalState(n,s'))
when #(SignalState(n, s')) > n
SignalState(n, s’ (x)) = SignalState(n, s') when x # mr.d

AN T # muw.d
AN T # ew.d

The signal protocol is now defined as a single instance of SignalFamily;
the interlocked variant of the signal is the flash data protocol, and the
queued variant is the overwriting buffer:

FlashData(D) = SignalFamily(D,0)
Signal(D) = SignalFamily(D,1)
OverwritingBuffer(D,n) = SignalFamily(D,n) (n>1)

4.5.6 Void Protocols

The void protocols are variants of the previously defined protocols which
pass no information. An alternative view is that the set D contains exactly

98 CHAPTER 4. SPECIFICATION OF IDAS

one member, so this is the only value that may be written or read. We will
use the symbol ‘¢’ to denote this single value.

Prod = FlashData({Q})

Stimulus = Signal({0})
OverwritingStimBuffer(n) = OverwritingBuffer({O}, n) (n>1)
DirectionalHandshake = Rendezvous({Q})
DatalessChannel = Channel({0})

BoundedStimBuffer(n) = BoundedBuffer({0},n) (n>1)

4.5.7 Integral and Separate Response Protocols

The integral and separate response protocols are specific examples of de-
vices, or complex routes. We will not consider these particular instances
further in this thesis since the issues surrounding them are dealt with in
Section 4.7 (Composition).

4.6 IDA Semantics

In Section 3.6.1 (Page 67), we postponed the definition of N'RS[n,t |, the
semantic function for a route name n of type t. We are now able to give
that definition.

Like the function B (Page 67), N'RS is a three-tuple:

NRS[n,t] = NRSp[n,t , NRS;[n,t], NRSw[n,t])
which gives the CSP process, the IDA communication events, and the pro-
cessor scheduling events. Since in this model, we do not allow the sched-
uler to directly interfere with IDA events (see Section 4.4, Page 87):

NRSW[[n,f]]:@

i.e. the IDA events have no effect on the scheduler.
We now define ‘alphabet relabelling” for a name X and alphabet A:

XA={ele=X.eNe € A}

4.7. COMPOSITION 99

and relabel the IDA alphabet aIDA with the fully-qualified unique name,
F (Page 73), to define N'RS;:

NRS[n,t] = F.aIDA

i.e. that instance of the IDA is given a unique alphabet. (We will assume
that the set of IDA data values D is constant across a given system, and
thus ignore it here.)

Finally, we can define N'RSp to be any process that satisfies the speci-
fication of the indicated IDA type (e.g. Pool, Channel,...), and is renamed
to match the alphabet given by NRS;.

4.7 Composition

What would be the result of the connection of two or more routes?

To examine this, we use a composition process (a simple activity in the
DORIS syntax). Suppose the two routes are called A and B, where A has
alphabet D and B has an alphabet that is a superset of D. We use one of
two processes to connect the two routes:

Read in-write out This process accepts a full transaction from A (read-
ing), and then writes it out to B before accepting another start-read
from A:

ReadInWriteOut = Asr = Amr — A.er?d
— B.sw.d = B.mw.d — B.ew.d
— ReadInWriteOut

Unbounded buffer This process accepts values and writes them as fast as
it can, storing up values read as a sequence (Figure 4.6).

Figure 4.7 is a state machine for the unbounded buffer in Figure 4.6, and is
a clearer representation of the process. The annotations on the transitions
are of the form

g&e :a

where g is a guard condition; e is the CSP event; and « is an action on
variables. An absent guard condition is considered to be true. The inter-
pretation intended is that the event e can only be engaged in if g is true,
and when e occurs, the actions a are executed.

100 CHAPTER 4. SPECIFICATION OF IDAS
UnboundedBuffer Uss(())

Uss({d)"s) B.sw.d — Ups(s,d) [J A.st — Ugp(s)

Usmn({d)"5) B.sw.d = U (s,d) [Aomr — Use(s)

Use({d)"s) B.sw.d — Upe(s,d) [0 A.er?e — Ug(s™ (e))
UH(<>) A.sr— Uﬁm(<>)
Um(()) = Amr — Us(()
Use({)) A.er?e — Uss({e))

Unms (s, d) B.mw.d — Ugs(s,d) [] A.sr = U (s, d)

Upim (8, d) B.mw.d — Ugy(s,d) [0 Aomr — Upe(s, d)
Ume(s,d) B.mw.d — Up(s,d) [0 A.er?e — Upy(s™ {(€), d)
Ues(s,d) B.ew.d — Ug(s) [A.st — Uep (s, d)

Uem (s, d) B.ew.d = Ugp(s) [J Aomr — Uee(s, d)

Uee(s,d) B.ew.d — U, (s) [A.er?e — Ung(s™ (e), d)

Figure 4.6: “Unbounded buffer” composition of routes

Note that the unbounded buffer has an infinite state graph; the param-
eterization of the definition given above allows us to give a finite graph
representing the control flow.

In Chapter 7, we will see what properties, if any, are possessed by the
basic IDAs composed together.

4.7. COMPOSITION 101

UnboundedBuffer

AST fere s s (e)

gt .
A.er.e : s=d s &B.sw.d:s

s« s (e)

A.er.e:
s+ s (e)

\ s =d " s'&B.sw.d:s « s
Use

B.ew.d

Figure 4.7: State machine for the unbounded buffer

102 CHAPTER 4. SPECIFICATION OF IDAS

4.8 Multiplexing

Simpson and Paynter have suggested multiplexing operators for IDAs [110].
Instead of composing one IDA on each side, these multiplexing operators
have n IDAs on one side, and one on the other (although a generalisation
to m on one side and n on the other is possible).

An n-ary merge takes n IDAs, and merges them into one IDA output.
The only IDAs that can be merged are channels and signals: pools and
constants would continuously feed the same value, and are not generally
suitable for this type of merge.

Three possible strategies for collecting input are:

Round robin Each input IDA is polled, and waited for, until it has sup-
plied a value (or additionally, after a timeout, proceed to the next
IDA input).

Priority Each IDA is polled in a particular order using timeouts, until one
can supply a value, at which point return to the first IDA.

Random An IDA is chosen at random.

A fourth possibility is analogous to the Ada select statement, e.g. for n
input IDAs, A;,

Multipler = (|||Z~:{] _____ Np(puX e A;.sr — Apmr — A;er?d
— B.sw!d - B.mw.d — B.ew.d

— X))
I (,uX e B.sw?e = B.mw.e - B.ew.e — X)

The program above collects input from each IDA as soon as it is ready. The
value is then offered via the IDA B. The combination of interleaving the
input IDA reads with the synchronous parallel composition of the outputs
means that only one value is output at a time.

It is easy to devise variants on this theme, e.g. and-combinations:

and-combination Wait until every input IDA has supplied a value, then
output the values as a single tuple.

(The program Multiplez can be viewed as an or-combination.)
Similarly, the output could be distributed to all output IDAs (‘replica-
tion’) or to one (randomly chosen) IDA (‘split’).

4.9. FORWARDING 103

Writer IDA Reader

Private Processor

Forward IDA Reader

Shared Processor Processor

Link

| Writer |—>| Forward |—>| Forward |—>| IDA |—>| Reader |

Remote Processor Processor Processor
1 1

Link Link

Figure 4.8: Simple forwarding across transputer links

4.9 Forwarding

Section 4.1.2 described the situation where an IDA is located within the
transputer network, and therefore requires a forwarding process. Figure 4.8
illustrates the three cases that occur. In the shared and remote cases, a
process (marked ‘Forward’) arranges for the interaction to be carried out
across the transputer link.

A simple approach is to use the read in-write out process given on
Page 99 or the unbounded buffer (Figure 4.6).

A more complex approach involves using a CSP process at each for-
warding point, and then using the transputer link information to imple-
ment a transputer link mutual exclusion (mutex) scheme. This could op-
erate in the same fashion as the transputer scheduler described in the next
chapter (Section 5.6), or could use one of the strategies from the previous
section.

104 CHAPTER 4. SPECIFICATION OF IDAS

4.10 Implementation

The overall proof strategy for a large system would involve defining lem-
mas about smaller parts of the system to reduce the overall complexity of
the problem. Proofs about IDAs are useful for this: ordinarily, the predi-
cate definitions of the IDAs would be used, so that the underlying defini-
tions could be avoided.

This imposes the proof obligation that the implementation of an IDA
(say, as a Timed CSP program, using definitions of Lamport’s variables)
satisfies the specification.

We now define the two-point untimed programs for each of the three
types of Lamport’s variables with data domain D and initial value d,. In
each case, one reader and one writer is assumed. (See Section 4.2.1 for the
description of Lamport’s variables.) We are then able to ‘implement’ the
four-slot model.

4.10.1 Lamport’s Safe Variable

S(I,fe(D,do) = LS(D,do)

The safe variable can be represented as a parameterised state machine with
four states. The four states arise from the cross product of reading or not
reading, and writing or not writing.

LS(D,v) = sw?d: D — LSw(D,v,d)
[sr — LSg(D,v,{v})

LSw(D,v,d) = ew.d — LS(D,d)
[sr — LSwgr(D,v,d, D)

LSg(D,v,R) = sw?d: D — LSwgr(D,v,d, D)
[] Mz:{e:Reer.e} — LS(D,v)

LSWR(D,U,d, R) = ew.d — LSR(D,d, R)
[Mz:{e:Reer.e} - LSy (D,v,d)

The components of Safe have up to four parameters associated with them:

4.10. IMPLEMENTATION 105

D the alphabet;

v the ‘value’ of the variable, which is either the initial variable, or the
value of the last end-write;

d the value currently being written; and
R the set of values that can be returned to a read: either a singleton ele-
ment (for non-overlapped reads) or all of D (for overlapped reads).

4.10.2 Lamport’s Regular Variable

Regular(D,dy) = LR(D,{dy})
As for the safe variable, the regular variable has four states.

LR(D,v) = sw?d: D — LRy (D,v,d)
[0 sr — LRg(D,v,{v})

LRy (D,v,d) = ew.d — LR(D,d)
[0 sr — LRwg(D,v,d,{v,d})

LRg(D,v,R) = sw?d: D — LRwgr(D,v,d, RU{d})
[0 Naz:{e:Reer.e} - LR(D,v)

LRwp(D,v,d,R) = ew.d— LRy(D,d,R)
[0 MNz:{e:Reer.e} - LRy (D,v,d)

The components of Regular have up to four parameters associated with
them:

D the alphabet;

v the ‘value’ of the variable, which is either the initial variable, or the
value of the last end-write;

d the value currently being written; and

R the set of values that can be returned to a read.

106 CHAPTER 4. SPECIFICATION OF IDAS

4.10.3 Lamport’s Atomic Variable

Atomic(D,dy) = LA(D,dy)

LA(D,v) = sw.d = ew.d — LA(D,d)
0 sr — er.v — LA(D,v)

Atomic is the simplest of the three types of variable: we implement it here
with a simple mutual exclusion scheme. (This implementation is not the
most general process for the description of atomic variables given in Sec-
tion 4.2.1, Page 81.)

4.10.4 Four-slot Implementation of the Pool

We now take the four-slot implementation of the pool (with alphabet D
and initial value d;), and implement it using regular variables [9].

The implementation consists of the parallel composition of three groups
of components:

e the reader and writer;
e the shared data slots; and

e the bit-valued control variables.

Fourslot = Writer||Reader
||data.0.0 : DS||data.0.1 : DS||data.1.0 : DS||data.1.1 : DS
||reading : Bit||latest : Bit||slot.0 : Bit||slot.1 : Bit

where

DS = Regular(D,dy)
Bit = Regular({0,1},0)

(i.e. DS is a regular variable with initial value 0, and data domain D, and
Bit is a bit valued regular variable.)

Writer = sw?d

4.11. TIMED IDAS 107

— reading.sr — reading.er?p
— slot.p.sr — slot.p.er?i

— data.p.i.sw.d — data.p.i.ew.d
— mw.d

— slot.p.sw.1 — slot.p.ew.i

— latest.sw.p — latest.ew.p

— ew.d

— Writer

Reader = ST
— latest.sr — latest.er?p

— reading.sw.p — reading.ew.p
— slot.p.sr — slot.p.er?i

— mr

— data.p.i.sr — data.p.i.er?d
— er.d

— Reader

(b, where b is a bit value, returns the inverse of b.) In Chapter 7, we attempt
to demonstrate that this satisfies the specification of the pool.

411 Timed IDAs

4.11.1 Specifications

Section 4.5 described a number of untimed specifications for IDAs. The
previous section has illustrated how such untimed specifications can be
implemented. But interactions with IDAs can take time: how do we ex-
tend these definitions?

In the next chapter, we will explicitly model schedulers that could de-
schedule the activities that interact with the IDAs. In this section, we re-
quire that there is no (scheduler) interference with IDA timing.

Then, all that is required in the specifications is a change to the refusal

108 CHAPTER 4. SPECIFICATION OF IDAS

predicates on Page 91. We now make these changes*:

Maye(D) = (v LaR(D) =)
= sr live within #; of 0 until {sr}
A (foot(T | aR(D)) = (t, er)
= sr live within ¢ of ¢ until {sr}

Maym, (D) = (foot(r | aR(D)) = (1, sr)
= mr live within ¢ of ¢ until {mr}
May.,(D) = (foot(r | aR(D)) = (t, mr)

= JA:PYER(D) e A live within 7 of ¢ until A

Mays, (D) = (7L aW(D) = ()
= SW (D) live within #y of 0 until SW (D)
A (foot(t | aW (D)) = (t, ew)
= SW (D) live within # of ¢ until SW (D)

May,, (D) = (foot(T | aW(D)) = (t, sw.d)
= muw.d live within of ¢ until {mw.d}
Maye,(D) = (foot(T | aW(D)) = (t, mw.d)

= ew.d live within 7 of ¢ until {ew.d}

These first six predicates are for the six individual IDA events, and have
the form “if the last event precedes this event, then this event must be live
no later than a specified delay’.

In each case, ¢ is the maximum delay permitted before the event be-
comes live, except for the very first read and write, when #; (‘set-up time’)
is the maximum permitted delay.

MayRead(D) = Mays (D) A Mayy,, (D) A May,,(D)
MayWrite(D) = Mays, (D) A Maym, (D) A Maye, (D)

These two predicates conjoin each group of three predicates for the reader
and writer events. A more complex model could easily be formed by al-
lowing six different values of ¢, one for each predicate.

* Additional notations used in these predicates are ‘P’ for powerset, and ‘P*’ for pow-
erset excluding the empty set. Refer to Page 40 for further details on the Timed CSP
macros.

4.11. TIMED IDAS 109

We also need to modify the conditional refusal predicates from Page 92.
These have to allow for ¢ being true at some point in a timed trace, but then
being false before the event concerned has occurred — thus withdrawing
the offer to engage in that event. When this occurs, the delay ¢ is again
permitted. (Here, c is considered to be a predicate with the timed trace 7 a
free variable.)

This possibility of withdrawing the offer complicates this issue. It is
useful to define Livelntervals, which returns all half-open intervals after ¢
where c is true. MayBlock,,, and MayBlock.,, (below) exploit this by say-
ing that if the predecessor event has occurred at time ¢, then the IDA is
prepared to engage in the next event after a delay of no more than 7. The
“of t,” term allows for the offer to engage in the event to be withdrawn
at time t,. The final part of the conjunction requires that c was true if the
event concerned has just occurred.

So we can define the timed conditional refusal predicates:

Livelntervals(c,7) = {(t1,t2) € Time x Time |
V' € [ti,tz) e c(r 1[0,1))}

MayBlocky,, (D, c) = (foot(t | aR(D)) = (t, sr))
= Y(t1,t3) € Livelntervals(c,T) ®

mr live within of ¢, until {mr} or t,

A (T =s"{(t,mr))) = c

MayBlock,,(D,c) = (foot(t | aW(D)) = (t, mw.d))
= Y(t1,ts) € Livelntervals(c,7) ®

ew.d live within 7 of #, until {ew.d} or t,

AT =5"((t, ew.d)) = c

Much of the complexity in this definition is due to the difference be-
tween untimed and timed failures. An untimed failure (¢r, rf) means that
the events in the set rf were refused after the trace ¢r occurred. The corre-
sponding timed failure (7, X) means that while the timed trace 7 occurred,
various events were refused at the times indicated by the timed refusal set
N. This means that we have to give the constraints for the entire history
when considering a timed failure.

110 CHAPTER 4. SPECIFICATION OF IDAS

4.11.2 Implementations

The implementations are easier to handle: a simple way is to use the de-
layed prefix
a5 P=a— Wait t; P

and use this in place of ‘=’ in the definitions of the Lamport variables.
This results in a delay every time a ‘real’ variable (i.e. a variable at a lower
level of abstraction) is accessed.

The drawback to these definitions is that they have much more infor-
mation in them. It is not clear at the outset whether such specifications are
amenable to proof. This will be addressed in Chapter 7.

Chapter 5

Language for Activities

5.1 Overview

In the previous two chapters, the details of how a simple server or simple
activity is defined have been omitted. This chapter describes these details.
What is a simple activity? It is a “processing’ or ‘active’ node of the
DORIS network. At an implementation level, the activity may be (for ex-
ample) an Ada task. However, at the design and distribution levels, we
are only concerned with periods when the activity is working (i.e. when it
requires processor resources) and its interactions with its ports (which are
connected to routes when placed in context). This allows a large level of
abstraction, while capturing the interactions that we are interested in.

A simple server is a specialised simple activity that interacts with a
piece of external hardware. Conceptually, such a piece of hardware is al-
lowed to ‘store” data in a fashion similar to a route, so servers are allowed
windows as well as ports.

There are a number of requirements for a language to describe activi-
ties:

e It must be compact — a representation that unnecessarily uses many
pages is not useful.

e The assumptions must easily fit into the DORIS concepts described
in the previous chapter.

e It should be easy to translate into the semantic domain, i.e. Timed
CSP.

111

112 CHAPTER 5. LANGUAGE FOR ACTIVITIES

e Finally, and possibly most importantly, it must be easy to learn, read,
and write.

One possibility involves simply embedding Timed CSP programs. This
has the drawbacks that it can be confusing for non-specialists, and that in
any case, some degree of processing on the program is required to map
the ports to routes.

The second approach, which is adopted in this thesis, is to model an
activity’s important events by using a very simple language that is eas-
ily translatable to Timed CSP, while allowing for the interactions with the
scheduler and ports to be captured.

An_Example = Work(5, 10);
Write(pl, X);
Self

and

Another_Example = ExtChoice(Read(p1, y);
Work(10, 30);

Self,
Read(p2, y);
Work(6, 12);
Self)

are simple examples of this language, which is defined later in this chapter.
Both are loops: the first is very simple, and carries out between five and
ten time units worth of work, and writes out some value onto port ‘1". The
second has a choice of ports to read from, and then carries out a different
amount of work based on the port read.

The general point here is that the language only has to capture interac-
tions with the outside world, and indicate the times that it needs process-
ing resources (i.e. "Work’).

There are two other possible approaches which we will first examine:
Paynter et al.’s Activity Description Language (ADL) [83], and graphical
notations in general.

5.1. OVERVIEW 113

Al: Identify target A2: Calculate target vector

Raw sensor data Target position Target vector

Ii

B: Image processing to
identify target

E: Calculate target vector
from new and old positions

p3 p4

State:: Previous-
target_position

Figure 5.1: A target tracker in ADL

5.1.1 Activity Description Language

ADL [83]is intended to fill a similar ‘gap” in the DORIS notation as the sim-
ple language in this chapter. Its major strength is that it makes use of the
concept of ‘deadlines” when specifying these activities. ‘Static” states are
points where the process may be descheduled, and ‘dynamic’ states have
some processing action associated with them. The underlying semantic
foundation of the ADL is RTL. ADL is currently under development.

Consider the diagram in Figure 5.1. This example is Figure 2 (Page 13)
of Paynter’s paper [83]. In ‘Identify target’, the transition ‘Rp1” occurs
when an input becomes available on “p1” from the signal, ‘Raw sensor
data’. Between ‘11" and ‘“ul’ units of work are carried out, and then the
system will wait until there is space to write on ‘p2’, i.e. space to write on
the channel “Target position’.

The major difference from the work presented here is that the ADL
specifies in more detail what is meant to happen; the language in the rest of
this chapter is an abstraction to model the timing of the system, although
it can capture functional properties.

114 CHAPTER 5. LANGUAGE FOR ACTIVITIES

5.1.2 Graphical Notations

A possible alternative involves using Harel’s Statecharts [40] (e.. see Fig-
ure 5.2, taken from Harel’s paper [40]). However, Statecharts themselves
were rejected quickly due to a number of problems [6,10]. (For example,
Statecharts allow an infinite amount of work in a finite time, and are often
ambiguous.)

Instead, a Statechart-like notation closely based on Timed CSP was con-
sidered. This notation had a very close relationship with the structure of
the textual grammar. Although the notation was reasonably easy to under-
stand, it would not have been particularly compact for the level of detail
required.

Anecdotally, it would appear that graphical notations that represent
the imperative-like design of an activity give rise to very large descrip-
tions. It is more efficient to spend a small amount of time learning a more
compact notation, and be subsequently more effective.

In particular, whether or not a particular notation is usable or aesthet-
ically pleasing is a subjective matter. However, graphical notations, by
virtue of using their layout for imparting information, rather than textual
symbols, suffer more from secondary notation than textual notations [88],
i.e. the layout of the graphical notation may be essential to its meaning,
whereas a badly formatted C program can be difficult to read and under-
stand, but it has exactly the same meaning as a "nicely” formatted version.

It is this secondary notation (e.g. layout and typographic cues) that
sometimes appeals to users, and causes confusion in interpreting such
notations. There is an increasing amount of work on the subject of “vi-
sualisation” [32,33,87]. It is largely inconclusive; it is not clear what an
appropriate notation (textual or graphical) is in a given context. There are
no obvious rules to apply.

Leveson et al. have described design criteria for such a language [64]:

e semantically consistent

e unambiguous intuitive meaning

readability given priority over writeability

easy to hand-draw

easy to computer-draw

5.1. OVERVIEW 115

-

general-mode

cruise
touchdown
navigate
on-ground
take off

Figure 5.2: Statechart for part of an avionics system

116 CHAPTER 5. LANGUAGE FOR ACTIVITIES

The aim of the work described in this thesis was to produce a semantics
for DORIS that was acceptable to engineers. A graphical notation would
(on current trends) be appealing to users, but there are no clear benefits to
introducing such a notation. Therefore, in the rest of this thesis, we shall
remain firmly in the textual domain.

5.2 Alphabets and Events

At this point, it is useful to identify the alphabet of the CSP program for
each basic component; i.e. the alphabet of the programs returned by N'SS
and N AS (the semantic functions which return the CSP for a simple server
or simple activity of given name, respectively). There are two parts: the
‘working” or “processing” alphabet, and the alphabet associated with any
IDAs the activity is connected to.

The language consists of a collection of expressions (introduced in the
next section) that are translated to Timed CSP programs. One of these
expressions is Work(l,u), where 0 < I < w. This expression represents an
activity undertaking some work that takes an amount of processor time
between [and u. Three events are involved with modelling this: sp, mp,
and ep (start, middle and end of processing). Using the CSP renaming
function, and the FQUN semantic function, F (defined in the previous
chapter), we have three events unique to each instance of a simple server
or simple activity that can be used for scheduler modelling.

The significance of the processing events and the times attached to
them (sp.(l,u), mp and ep) are that:

e The sp.(l,u) event represents the start of processing, where /,u :
Time; !l < u (although we will sometimes refer to sp unadorned).

e The mp event means that at least / time units of scheduled time have
passed since the immediately preceding sp event.

e The ep event represents the end of processing, and should not oc-
cur more than u time units of scheduled time after the immediately
preceding sp event.

Since it is impossible to code ‘must occur” in CSP (or, indeed, in the
real world), the interpretation is more precisely stated as ‘must be
offered to the environment’. Of course, when these events are hidden

5.2. ALPHABETS AND EVENTS 117

(as they ultimately would be), the ‘must occur”’ coincides with ‘must
be offered to the environment’.

We can then define the “processing alphabet’
aP = {sp.(l,u) | l,u: Time;l < u}U{mp,ep}

We require that these three events follow a sequence, as defined by the
following predicates:

Working , = (trftsp — tr#mp = 1) A (tr#mp = tr#ep)
Working g (tr#tsp = tr#mp) A (tr4mp — tr#tep = 1)
NotWorking = (trftsp = tr#tmp = tr#tep)

WorkSequence = Working , V Workingz V NotWorking

This predicate is similar to those in the previous chapter for the IDA pred-
icates. (Scheduler modelling issues are discussed in Section 5.6.)

Similarly, (from the previous chapter) three events are associated with
reading from a route: sr, mr, and er (start, middle, and end of read). A
further three events are associated with writing to a route: sw, mw, and
ew (start, middle, and end of write). Again, Rename is used to produce six
events unique to the instance of the route, this time using R (also defined
in the previous chapter). Some of these events appear in the alphabet of
any simple server or activity that accesses the route: i.e. an activity which
reads from port p has the events R(pp).sr, R(pp).mr, and R(pp).er in its
alphabet.

As before, four of the events associated with routes carry a value (i.e. they
are channels): er (the value read); and sw, mw, and ew (the values written).
The previous chapter covered routes in more detail.

When writing ‘raw” CSP (rather than using the simple language given
in this chapter), there is one major consideration: the events that are visible
outside the program (i.e. not hidden) should be a (not necessarily strict)
subset of those given here:

e For simple activities:

— the processing events: F(n).sp.(l,u), F(n).mp, and F(n).ep; and

- events for each route accessed via a port: R(p).sr, R(p).mr,
R(p).er.v (or the writing variant of these events as appropriate).

118 CHAPTER 5. LANGUAGE FOR ACTIVITIES

e For simple servers: the same as for simple activities, with the addi-
tion of events for each route accessed via a window.

e For routes:

- events for each route accessed via a window: R(p).sr, R(p).mr,
R(p).er.v (or the writing events as appropriate).

Additionally, within any particular simple server, activity or route, a par-
ticular triplet of events (start, middle, end) should be consecutive. The
first event should also be a ‘start’. This restriction is so that processing
events (sp, mp, and ep) can be refused for some time without affecting the
IDA timing specifications.

5.3 Syntax

We now define a language which is intended to abstractly model the ac-
tivities:
(Definition) := (Name)“="(Program)
(Program) == “Stop”
| “Wait("(Duration)*);”(Program’)
| “Work("(Duration)*,”(Duration)");”{ Program')
| “Read("(Port)""{ Variable)*);”{ Program')
| “Write("(Port)","(Variable)");"(Program')
(Program’)y == “Self”
| (Program)
| “ExtChoice("(Program’)")’{ Program')")"
| “IntChoice("(Program')"“(Program')")"
(Duration) =
(Port) ==
(Variable) =
Self means ‘loop to the beginning of the program’. Stop is the termina-

tion statement. Wait means ‘wait for at least the specified duration’. Read
means ‘read from the specified port and place the value in the variable’.

5.4. SEMANTICS 119

Similarly, Write means ‘write the value in the variable to the specified
port’. For a simple server, a (Window) may be used in place of a (Port).
ExtChoice represents external (deterministic) choice between two pos-
sible programs, and is decided on the first event offered. IntChoice is the
internal (nondeterministic) operator.
The two definitions of (Program) and (Program’) occur to ensure that
the program so defined is time-guarded when using a Timed CSP model.

5.4 Semantics

We can now give a three-part meaning function, A, for this language:
A(PaQaF) = (AP(PaQaF)aAT(PaQaF)aAW(PaQaF))

Ap translates the statements into the obvious CSP expressions using the
(recursive) structure of the grammar.

Ap(Self, Q. F) = Ap(Q.Q,F)
Ap(Stop,Q, F) = Stop
Ap(Wait(d);R,Q, F) = Wait(d); Ap(R,Q, F)
Ap(Work(l,u);R,Q, F) = F.sp.(l,u) = F.mp — F.ep
— Ap(R,Q, F)
Ap(Read(p,v);R, Q. F) = R(p).sr = R(p).mr
— R(p).erv — Ap(R,Q, F)
Ap(Write(p,0);R,Q, F) = R(p).sw.v — R(p).mp.v
— R(p).ew.v — Ap(R,Q, F)
Ap(ExtChoice(P,P,), Q, F) = Ap(P,Q, F) [Ap(P,Q, F)
Ap(IntChoice(P,,P,), Q. F) = Ap(P,,Q,F) 1 Ap(Ps, Q. F)

A also uses the syntax structure to recursively determine which ports and
windows (and thus which routes) are accessed.

A (Self,Q,F) = 0

A;(Stop,Q, F) = 0
A;(Wait(d);R,Q, F) = A/(R,Q,F
A;(Work(l,u);R,Q,F) = A;(R,Q,F

120 CHAPTER 5. LANGUAGE FOR ACTIVITIES

A;(Read(p,v);R, Q, F
A (Write(p,0);R, Q, F
A;(ExtChoice(Py,P,), Q, F
A;(IntChoice(P,,P,), Q, F

) R(p).aRUA(R,Q, F)

) = R(p).aWUA(R,Q,F)

) = A/(P,Q,F)UA(P,Q, F)
) = Ai(PL,Q, F)UA(P,Q, F)

Ay is simply the processing alphabet for the activity:
Aw(P,Q,F) = FaP

We can now give the definition of N'SS and N'AS (first mentioned in
Chapter 3). The functions N'SS and N AS have identical definitions, but
are kept separate (until the definition of .A) to highlight the distinction
between servers and activities.

NSS[n] = A(P,P,F(n)) whenn=P
NAS[n] = A(P,P,F(n)) whenn=P

The ‘n = P’ side clause relates to n being the name of a code stub, and P
being the program for the code stub.

This is intentionally a very sparse language: it is intended to be as ab-
stract as possible. This is achieved by using simple (and short) translations
to Timed CSP (choice) operators (in the case of choice operators), and lin-
ear sequences of events for Work, Read and Write.

The only major omission is some form of conditional control structure,
e.g.

if v=20 then P else Q

(since the language has sequences and simple eternal loops). However,
many programs can be satisfactorily specified using the IntChoice (nonde-
terministic) operator: if the nondeterministic version satisfies the specifi-
cation, then a refined version (say, with deterministic tests) will certainly
satisfy the specification.

In general, choice can be modelled in several ways. When the value re-
turned by a read is important in deciding the next event, there are several
options:

e Give a mathematical expression that can be evaluated without refer-
ence to CSP.

5.5. EXAMPLE 121

e Write some raw CSP, and offer several processes that choose between
the values, e.g.

(Data.wl.er.1 — P;) [] (Data.wl.er.2 — P,)

chooses between the returned values 1 and 2.

e Extend the activity language to capture the previous option (or some
other alternative).

However, for the purposes of the examples and case studies in this thesis,
the language is sufficient to capture the interactions with their environ-
ment.

5.5 Example

Recall the example introduced in Figure 3.2 and developed in Section 3.7
(Pages 59 and 71 respectively). The meaning of the system

((sy, Controller,
(sa, Process_A)
(sa, Process_B)
(rt, Data, Pool)
(sp, , Process_A:pl, Data:wl)
(sp, , Data:w2, Process_B:pl)))

was given by the expressions

MIS] = (CrlSY e syScheduler) \Cw[SY]

Cr[SY] = || { (WASp[Process A],
NAS] Process_A 1),

(NMNASp[Process B,

NAS;[Process B]),

[[ﬂ:

[1)

(N'RSp[Data, Pool
NRS;[Data, Pool

PAH[SY]

3

C[SY] = (NAS,[Process A]
U NAS,[Process B]
U NRS,[Data,Pool])

122 CHAPTER 5. LANGUAGE FOR ACTIVITIES

\H[SYV]

Cw[SY] = NASy [Process A]
U NASw|[ProcessB]
U NRSw][Data, Pool |

Suppose we have the following as the code stubs for the simple activi-

ties:

Process_A = Work(5, 10);
Write(p1, X);
Self

Process_B = Read(pl, y);
Work(10, 30);
Self

Then the value of N AS[Process_A] is determined thus:

NAS[Process A = A(P, P, F)

where
P = Work(5, 10);
Write(pl, X);
Self
F = F(Process_A)
This gives

NASp[Process A] = F.sp.(5,10) — F.mp — F.ep
— R(p1).sw.x — R(pl).mw.x — R(pl).ew.x
— NASp[Process A]

Next, we need to determine which IDA p1l is connected to. Now, the term

(sp, , Process_A:pl, Data:wl)

5.5. EXAMPLE 123

means that
R(pl) = Data

and in this instance, we set

F = Controller.Process_A

since this is a unique name. Then, the semantic function Ap on Page 119
gives us that
NASp[Process A] = pX e Controller.Process_A.sp.(5,10)
— Controller.Process_A.mp
— Controller.Process_A.ep
— Data.sw.r — Data.mw.x
— Data.ew.x — X
(We write the program in terms of the CSP recursion operator, X o F'(X)

rather than attempt to repeatedly expand Self.)
The other components of N AS] Process_A] are calculated similarly:

NAS;[Process A] = DataaW

NASy [Process. A] = Controller.Process_A.a.P

The N AS\ expression means ‘rename the processing alphabet, o P, using
the name Controller.Process_A’ (see Pages 98 and 117).
Similarly,

NASp[Process B] = pX eData.sr — Data.mr — Data.er.y
— Controller.Process_B.sp.(10, 30)
— Controller.Process_B.mp
— Controller.Process B.ep — X

NAS;[Process B] = Data.aR

NASw [Process B] = Controller.Process_B.aP

Now, Section 4.6 (Page 98) provides the information required to define
Data fully:

NRSp[Data,Pool|] = Data_Proc

124 CHAPTER 5. LANGUAGE FOR ACTIVITIES

NRS,| Data, Pool] = Data.cIDA

NRSw[Data,Pool] = 0

where Data_Proc has alphabet Data.a /DA and behaves as a Pool.

5.6 Support for Modelling a Scheduler

5.6.1 Why Model A Scheduler?

Why would we want to model a scheduler in this framework? Timing
is an important part of the models, even though it is not a very visible
part of the definitions. If certain timing requirements have been specified,
and the scheduler can interfere with the satisfaction of these requirements,
then to reason about the system, we must have some means of modelling
a scheduler — within this framework.

Arguably, the scheduler’s sole purpose is to ensure that the processes
complete all their work within a deadline. We will introduce deadlines as
a test to be proven towards the end of this section. First, we will identify
how our framework supports the modelling of a scheduler so that we can
test that these deadlines are supported.

5.6.2 Abstraction

Abstractly, the DORIS systems are being modelled as a number of CSP
programs composed using the parallel operator, with carefully chosen al-
phabets. Each of these CSP programs represents either

e asimple server,
e a simple activity, or
e aroute.

From the description of CSP in Section 2.4, recall that CSP assumes that
there are no restrictions such as scheduling limits.

In Section 3.6.3, we referred to a process called Scheduler. In Section 5.2,
a number of events were identified as being important in the modelling of
DORIS systems: we now use the events in Cy[S)Y | to model a scheduler.

5.6. SUPPORT FOR MODELLING A SCHEDULER 125

This will be in the form of predicates specifying the behaviour of such a
scheduler: then the process Scheduler is any process satisfying those pred-
icates.

By construction, the events in Cy,[S) | are based on renamings of the
processing alphabet, aP.

5.6.3 Initial Approach

In general, we can model the action of a scheduler by placing a scheduler
process in parallel with the CSP meaning of the system. This scheduler
process can be easily specified with timed failure predicates. In particular,
the use of trace (safety) and refusal (liveness) predicates allows statements
like these examples:

WorkSafe(X) = 7l X.aP =5 ((t,, X.sp.(I,u)), (tz, X.mp))
= la—1t1>1

(A safety property: the middle processing event for X must not
occur before | time units have passed since the relevant start
processing event.)

WorkLive.,(X) = 7L X.aP =5 ((t, X.sp.(I,u)), (tz, X.mp))
= X.ep ¢ N1 [max{t; + u,ts},00)

(The end-processing event for X must be available either (a) no
later than after u time units have passed since the relevant start-
processing event, or (b) immediately after the middle-processing
event, whichever is the later.)

By defining the scheduler in terms of predicates of this type, arbitrary
scheduling policies can be specified. (Note that the liveness predicate con-
cerns only the ep event. Generally, each of the processing events should
have an associated liveness predicate, as is the case in the next section.)

This model does not explicitly take into account processes requiring
more time when two or more are scheduled together: a more complex
definition incorporating a notion of ‘time descheduled’ can cope with this
case.

126 CHAPTER 5. LANGUAGE FOR ACTIVITIES

5.6.4 Descheduling

In this section, it is important to note that we are not attempting to con-
struct a scheduler that meets the constraints (/, u) for a particular triple of
processing events. Instead, we are attempting to simulate what happens
with a scheduler which is enforcing certain policies.

For a given activity X, suppose that two functions, Working(X)(s) and
Desched(X)(s), are defined thus:

Working(X)(s) returns true if an X.sp event has occurred in the trace s
without the corresponding X.ep:

Working(X)(s) = (s#X.sp > s#X.ep)

Desched(X)(s) is partial on the domain of traces where Working(X) is
true, i.e. it is only defined for those traces where Working(X) is true.
Desched(X)(s) returns the amount of time that the activity X has
been descheduled since the most recent X.sp event. This, of course,
depends on each individual scheduler strategy.

We now redefine the predicates in the previous section, this time in-
cluding three predicates for liveness, one for each event:

WorkSafe(X) = 71 XaP = s ((t, X.sp.(l,u)), (t2, X.mp))
= 19—ty > |+ Desched(X)(7)

(The middle processing event for X must not occur before [
time units, plus the time descheduled so far, have passed since
the relevant start-processing event.)

WorkLive,(X) = foot({(0, X.ep)) "7 | X.aP) = (t;, X.ep)
= X.sp live from #; until { X.sp}

(The start-processing event must be available if X is not work-

ing.)

WorkLive,,(X) = foot(r L X.aP) = (t1, X.sp.(l,u))
= X.mp ¢ o(X1 [t; +u+ Desched(X)(1),0))

5.6. SUPPORT FOR MODELLING A SCHEDULER 127

(The middle-processing event for X must be available no later
than after u + Desched(X) time units have passed since the rel-
evant start-processing event.)

WorkLive,,(X) = 71 X.aP = s ((t1, X.sp.(l,u)), (t2, X.mp))
= X.ep ¢ o(R 1 [max{t; +u + Desched(X)(7),t2},00))

(The end-processing event for X must be available either (a)
no later than after u + Desched(X') time units have passed since
the relevant start-processing event, or (b) immediately after the
middle-processing event, whichever is the later.)

5.6.5 Example

Suppose we take the previous example (Section 5.5, Page 121), and de-
cide that any event may occur at any time, except that when Process_B is
working, Process_A is not allowed to do anything.

We define the Desched function for Process_A, which measures the
amount of time that Process_A has been descheduled due to Process_B
working since it last started:

Desched(Process_A)(s) = Z (ty —t1) - 0(f(z" ((t1, €1))))

~\ N

s'=z ((t1,e1),(t2,e2)) ¥y

where
o

s=2z S

A s = ((to, Process_A.sp)) 2’
A Process_ A.sp ¢ o2

and
flw) = last(w | Process_B.aP) = Process_B.sp
%
last(w | Process_B.aP) = Process_B.mp

0 is the Kronecker delta, and is defined as

5(e) — 1 if eis true
71 0 otherwise

128 CHAPTER 5. LANGUAGE FOR ACTIVITIES

Desched(Process_A) considers each pair of events since (and including)
the most recent Process_A.sp. The full trace leading up to the first of each
of the pair of events is checked to see if Process_B is working (using the
function f(w)). If f(w) is true, the difference in times of the pair of events
is added to the descheduled time total.

Desched(Process_A) is simply a way of counting the amount of time
that both Process_A and Process_B were ‘working’ at the same time.

This function is partial on the domain of traces where Working(Process_A)
is true (i.e. it is only defined for traces where Working(Process_A) is true).
This is not a problem, since we only need to calculate it when between sp
and ep for Process_A.

Finally, the timed trace and refusal predicates for Process_A result by
inserting the definition of Desched(Process_A) into the four predicates on
Pages 126 and 127: WorkSafe, WorkLivey,, WorkLive,,,, and WorkLive.,,.

5.6.6 Deadlines

The predicates described above can add substantially to the burden of
proof in a system by adding much more detail. Why would we want to do
this?

Suppose that a system must generate a response to an input within a
particular deadline. We can use the predicates above to test whether or
not the system can guarantee the deadline. This sort of requirement is
common in embedded systems.

Alternatively, an additional parameter could be added to the Work key-
word, say d, a deadline. This is distinct from the parameters / and u al-
ready introduced, which indicate how much time the work will need to be
carried out on an otherwise unloaded system.

This would impose a proof obligation on the final combination of sched-
uler and system to prove that the work would always be completed within
that deadline, no matter what other work occurs. This could then be used
as part of rely/guarantee proofs, e.g. process A guarantees to finish work
in 15 seconds, process B guarantees to finish work in 10 seconds, so the
sequential combination of the processes can be guaranteed to finish within
25 seconds.

None of this is meant to be a replacement for scheduler theory. In-
stead, it is meant to simulate the behaviour of a scheduler on the timing

5.6. SUPPORT FOR MODELLING A SCHEDULER 129

responses of the system being modelled within the framework of the rest
of the thesis.

5.6.7 Untimed Scheduler Predicates

Timing is not required to model every problem. Sometimes, we will need
some untimed failures predicates to ensure that the servers and activities
can make progress. These predicates are similar to the IDA untimed re-
fusal predicates (Page 91).

WorkLiveg,(X) = (tr | X.aP = () Vlast(tr | X.aP) = X.ep)
= X.sp ¢ rf

WorkLive,,,(X) = (last(tr | X.aP) = X.sp) = mp ¢ rf

WorkLive,(X) = (last(tr | X.aP) = X.mp) = ep & rf

When a particular condition is met (i.e. the predecessor event has occurred),
the next event must not be refused.

130 CHAPTER 5. LANGUAGE FOR ACTIVITIES

Part 111

Mechanical Implementation

131

Chapter 6

Mechanical Support

6.1 Overview

In previous chapters, this thesis has given a semantics to the DORIS nota-
tion. For this semantics to be industrially useful, the theory must be ex-
ploitable to produce results. Typically, this means that the solution must
scale up, so the theory requires tool support.

In this chapter, we discuss the possible approaches to mechanizing our
work so far, and describe why we adopted the tools and techniques re-
ported in the rest of the chapter.

The issue of mechanical support in this thesis can be viewed as two
parts:

e how to turn a textual description of a DORIS system into Timed CSP;
and

e how to analyse the resulting Timed CSP.

6.2 Rationale

To a certain degree, the choice of tools is influenced by the semantic do-
main that we have chosen, and, similarly, our choice of semantic domain
is influenced by the tools available for particular semantic domains (see
Section 3.1.2, Page 54).

133

134 CHAPTER 6. MECHANICAL SUPPORT

In this section, we will start from the assumption that we are working
in the Timed CSP domain, and outline some of the tools that are available.
We then indicate why we have chosen this approach.

6.2.1 Related Work

With the exception of FDR, most approaches to mechanical support for
CSP are based on theorem provers.

Bryans, Dutertre, and Schneider have embedded and used a model of
untimed traces CSP in PVS to verify security protocols [11,26,27]. Camil-
leri has produced a mechanization of three untimed semantic models in
HOL [13], and Thayer has produced an embedding in IMPS using
monoids [118]. Tej and Wolff [117] have embedded CSP in Isabelle/HOL,
and discovered a problem with the previously accepted semantics of failures-
divergence CSP.

Of the work so far on embedding CSP in a theorem prover, only Thayer
has addressed timing, by proposing a monoid model of Timed CSP. This
work has not been developed any further than a suggestion. The other
embeddings have been used only for very tightly defined application do-
mains (e.g. security protocols) or for very small problems.

The PVS models referred to above are very similar in style to the Is-
abelle/HOL models: they both consider the observations of the process as
the primary objects of interest. Camilleri took a different approach in that
the algebraic structure of CSP was the primary focus.

6.2.2 Choice of PVS and FDR

As the work reported in this thesis developed, it became clear that us-
ing both a theorem prover and a state space exploration tool would pro-
vide complementary approaches. The dual approach of theorem prover
and model checker allows the use of sophisticated mathematical concepts
(e.g. induction over infinite domains) with the theorem prover, and brute
force checks of finite systems with the model checker. (Later in the thesis,
we report a result from FDR that can be fed back into PVS — see Sec-
tion 7.4, Page 169.)

The choice of FDR was easy: there is a lot of experience in applying
FDR to CSP problems. Indeed, FDR was explicitly developed for the pur-

6.2. RATIONALE 135

pose.

The choice of theorem prover, and how to model CSP, was slightly
harder. Most approaches are based on modelling the observations of a
process; only Camilleri differed here. In this thesis, the theorem proving
approach models observations: this approach has had some success, and
it seems sensible to develop it further.

On the grounds that more work had been carried out in PVS, we chose
PVS, although HOL would have probably been at least as adequate.

6.2.3 Other Tools

Other tools were considered for this work.

The NASA guidebooks [75,76] include a comprehensive list of formal
methods tools (Appendix B of Volume 1). Generally, these formal methods
tools are either state space exploration tools (a graph is constructed for the
system concerned, which is then subjected to constraint and reachability
tests) or theorem provers (which more closely follow rigorous proofs, but
often at a far greater level of detail). Some state space tools also include
simulators, which can follow a particular execution of the system being
modelled.

In particular, several tools warrant further comment:

e Concurrency Workbench (CWB) [120] analyzes CCS [74] systems us-
ing model checking. It can also handle a discrete time variant of
Temporal CCS (using ‘idle’ transitions where time passes). In style,
it is very similar to FDR (except for FDR’s X Windows interface).

However, there are sufficiently many minor semantic differences be-
tween CSP and CCS that no benefit would be gained by using CWB.

e UPPAAL [7] can perform safety and bounded liveness checks on
real-time automata. It is a model checker, and claims to deal with
the state-space explosion by reducing the verification problems to
linear constraint solutions.

At this time, it is a much less stable tool than either FDR or PVS:
we are aiming at providing an ‘industrial-strength” approach. In the
future, it may provide a further complementary view of problems.

136 CHAPTER 6. MECHANICAL SUPPORT

e Isabelle [124] and HOL [123] are two theorem provers from Cam-
bridge. Isabelle is a generic theorem prover where logics are defined
by specifying their syntax and inference rules, and HOL is an inter-
active prover for higher-order logic based on ML.

6.3 Summary of Mechanical Support

A bespoke tool, named ‘dt’, handles the reading and checking of DORIS
descriptions. It then produces two groups of output, one for a PVS imple-
mentation of Timed CSP, and another for FDR. This is illustrated below.

DORIS design

dt dt

DORIS definitions
for FDR

DORIS definitions
for TCSP-PVS

Timed CSP definitions
for PVS

FDR

Our complementary tools have advantages and disadvantages:

PVS e requires an embedding of Timed CSP;
e requires the definition of DORIS in PVS-CSP; and

e is a theorem prover’s assistant.

FDR e requires the definition of DORIS in FDR;

e the predicate specifications must be converted into programs;
and

e is a state exploration system.

We will discuss these points more fully in the rest of this chapter.

6.4. PVS 137

6.4 PVS

PVS is a mechanical theorem prover [15,79, 80,96, 105]. Abstractly, it takes
sequents of the form

AN NAyEC V...V Oy

where A, are antecedents, and C; are consequents. By the application of a
sequence of commands (a proof script, either interactive, or in a ‘batched’
mode), the aim is to transform the sequent until at least one consequent is
‘obviously’ true.

Commands include ‘LEMMA’ which introduces a new antecedent for
the lemma concerned, and ‘GRIND’, a strategy which tries a series of other
commands which commonly result in a successful proof.

PVS is supplied with a library of definitions and lemmas concerning
basic mathematical objects, including sets and sequences. These defini-
tions are grouped into theories. PVS users can create other theories: indeed,
theories are the basic building block in the theorem prover.

6.4.1 Timed CSP

The embedding reported in this thesis draws much inspiration from the
work by Bryans, Dutertre, and Schneider referenced above.
Four semantic models of Timed CSP are constructed within PVS:

e untimed traces (UT);
e untimed failures (UF);
e timed traces (TT); and
e timed failures (TF).

Each semantic model has a group of theories constructed for it, which
draws on another two theories containing basic definitions about obser-
vations and events.

The PVS theory hierarchy for these theories is included in Figure 6.1
(Page 138). At the bottom of this hierachy are some of the predefined theo-
ries from the PVS distribution. These provide facilities like type extension
and restriction, maps (filters), and set, sequence and list manipulation.

138

CHAPTER 6. MECHANICAL SUPPORT

extend

restrict

Figure 6.1:

csput

seq_functions

csp
cspuf csptt csptf
uf2 2 tf2
uf tt tf
common
axioms
basic
listsset filters list_props sets_lemmas functions
PVS theory hierarchy for the TCSP semantic models

6.4. PVS 139

These are used (‘imported’) in the next theory up, called basic. This
defines the basic concepts in the Timed CSP theory: the observations; what
an event is; what timed events and refusals are. The next theory is axioms,
which reasons about some of the constructs in basic. The theory common
ties these two together so that they can be more easily imported into the
per-semantic model theories.

Each semantic model provides exactly the same operators. This is so
that the semantic model for a particular problem can be changed by alter-
ing a single definition (which indicates the current semantic model). These
operators are defined in the four theories ut, uf, tt, and tf. The operators
provided are listed in Appendix C.2 (Page 232).

The next layer of theories (with ‘2" suffixed) provide definitions of sat-
isfaction for each theory, and some algebraic laws. The remaining theories
provide a consistent interface and bundle the CSP theories together.

We will touch upon some elements of the untimed traces theory when
we discuss PVS type-correctness conditions in Section 6.4.4 (Page 144). In
the next section (Section 6.4.2), we describe how these Timed CSP theories
were constructed.

(We will outline the time and effort required to construct both the Timed
CSP and DORIS theories in Section 6.4.5, Page 152.)

6.4.2 Timed CSP Theory Construction

In the previous section, we have identified the four semantic models of
Timed CSP for which we have constructed PVS theories in this thesis.
These are:

e untimed traces (UT);
e untimed failures (UF);
e timed traces (TT); and
e timed failures (TF).

Similarly, in Appendix C.2 (Page 232), we have identified the Timed CSP
operators available in each of these theories.

The theories themselves were constructed by building the UT theory
first; this is the simplest theory here, and was used to resolve initial issues
concerning the usability of the interface described in the appendix.

140 CHAPTER 6. MECHANICAL SUPPORT

The second theory constructed was the TF theory, the most complex.
From this, we can construct the two remaining theories with relatively
little effort.

Therefore, in this section, we use examples from the UT and TF theo-
ries.

Events and Alphabets

In Section 2.4.1 (Page 34), we introduced the notion of events. The PVS the-
ories are parametrised by a set of events, which includes a distinguished
event success (representing v).

However, we do not use an alphabetized model of processes. This is
really a matter of taste: some entities are easier to describe in an alphabet-
ized model; some are harder. A similar comment applies to proofs about
such entities.

The choice made in this instance is that the interface is clearer in the
non-alphabetized model.

Definition of Process

When we refer to Process , we really use one of four definitions, depend-
ing on the semantic model. A general feature, however, is that a process is
defined as a set of observations satisfying some properties:

Process = {P : setof[Obs] ' propl(P) A...ApropN(P) }

Each prop n constrains the possible observations.

The observations for each model are described in Sections C.1.2and C.1.5
(Pages 230 and 231 respectively). The table below summarises the prop-
erties on sets of observations for the UT and TF models:

UT TF
ProcessUT _Base ProcessTF _Base
ProcessUT _PrefixClosed ProcessTF _InfOrder

ProcessUT _SuccessClosed ProcessTF _SuccessClosed
ProcessTF _TimeForward
ProcessTF _Complete

Each “property’ is a PVS predicate taking a set of observations as an
argument.

6.4. PVS 141

The Base property is that the ‘bottom” observation is a member of ev-
ery process. In the UT model, this is the empty trace; in the TF model, this
is the pair consisting an empty timed trace and an empty timed refusal set.

The PrefixClosed property requires that if a trace is an observation
of a process, then all prefixes of that trace are observations of that process.

SuccessClosed requires that success, if it appears, is the last event in
a trace.

InfOrder uses the information order operator (<) from Schneider’s
text [102]:

(7R (1,R) & 3" o7 =7""7" AN C R 10, begin(r"))

In the TF model, if (7, R) is an observation of the process, then any (7', X')
such that (7', X') < (7, N) is also an observation of that process.

TimeForward applies to timed traces: this ensures that time goes for-
ward as the trace extends.

Complete is a more complicated statement intended to ensure that
there is enough timed refusal information in the process for consistency:
all events are either available or refusable. Like other parts of the TF
model, this is drawn from Schneider’s text [102]. This breaks down into a
statement referring to two clauses of a conjunction (ProcessTF _Completel
and ProcessTF _Complete2).

Example

PVS allows a natural translation from ‘written” mathematics, e.g. InfOrder
as described above, is written in PVS thus:

ProcessTF _InfOrder(P : ObsSetTF) : bool
= FORALL (f : (P), fp : ObsTF) :
InfOrder(f, fp) IMPLIES P(fp)

P is a set of observations in the TF model (ObsSetTF) representing a pro-
cess. The predicate contains a universal quantification over observations
of P (denoted f) and all possible observations (denoted fp). P(fp) means
‘fp is a member of P’, andInfOrder is defined thus:

InfOrder(fp, f : ObsTF) : bool
= EXISTS (spp : TimedTrace) :

142 CHAPTER 6. MECHANICAL SUPPORT

(TimedTrace(f) = append(TimedTrace(fp), spp)
AND
subset?(TimedRefusal(fp),
DuringBefore(TimedRefusal(f),

tBegin(spp)))

in the basic theory.
When all the definitions referred to above have been completed, the
definitions of ProcessUT and ProcessTF can be written:

ProcessUT : TYPE
= { P : ObsSetUT | ProcessUT _Base(P)
AND ProcessUT _PrefixClosed(P)
AND ProcessUT _SuccessClosed(P) }

ProcessTF : TYPE
= { P : ObsSetTF | ProcessTF _Base(P)
AND ProcessTF _SuccessClosed(P)
AND ProcessTF _TimeForward(P)
AND ProcessTF _InfOrder(P)
AND ProcessTF Complete(P) }

Process Definitions

At this point, we have a definition of Process . We can then define the
base processes! in terms of that definition.
The simplest example uses Stop in the UT model:

StopDefnUT : ObsSetUT = { t : ObsUT | t = null }

This simply defines a set of UT observations consisting of only the empty
trace (‘null ’). Next, we define three lemmas, one for each property of the
definition of ProcessUT :

StopUT_Base : LEMMA
ProcessUT_Base(StopDefnUT)

IThe ‘base’ processes, as distinct from ‘derived’ processes, are those appearing in Ap-
pendix C.2.1 (Page 232).

6.4. PVS 143

StopUT_PrefixClosed : LEMMA
ProcessUT_PrefixClosed(StopDefnUT)

StopUT_SuccessClosed : LEMMA
ProcessUT_SuccessClosed(StopDefnUT)

This illustrates a standard approach adopted in the PVS model: regular
naming. This then allows strategies to be written to exploit this naming
structure to automate some proof elements. Finally, we define Stop :

Stop : ProcessUT = StopDefnUT

An alternative example concerns the external choice operator in the TF
model. This follows the same structure as the example above: first we
define the process in terms of a set of observations. In this example, the
operator takes two operands (P and Q).

EChoiceDefnTF(P, Q : ProcessTF) : ObsSetTF
= { b : ObsTF |
(P(b) OR Q(b))
AND
intersection(P, Q)(null,
DuringBefore(TimedRefusal(b),
tBegin(TimedTrace(b)))) }

i.e. an observation b in EChoiceDefnTF(P, Q) is either an observation
of P, or an observation of Q or until the choice is resolved, an observa-
tion of both. We then identify the lemmas matching the process property
definitions:

EChoiceTF_Base : LEMMA
FORALL (P, Q : ProcessTF) :
ProcessTF_Base(EChoiceDefnTF(P, Q))

(We have omitted the remaining lemmas.) Finally, the operator EChoice
is defined:

EChoice(P, Q : ProcessTF) : ProcessTF
= EChoiceDefnTF(P, Q)

From these examples, we can see that there are many subsidiary defi-
nitions used to support the rich structure of Timed CSP.

144 CHAPTER 6. MECHANICAL SUPPORT

Proofs of Process Definitions

In Section 6.4.4, we describe the PVS notion of a type-correctness condi-
tion. The result of this is that we have to prove that every process defini-
tion is in fact a process. For example,

Stop : ProcessUT = StopDefnUT
generates the TCC that

Stop_TCC1: OBLIGATION
ProcessUT_Base(StopDefnUT)
AND ProcessUT_PrefixClosed(StopDefnUT)
AND ProcessUT_SuccessClosed(StopDefnUT);

(This proof is illustrated in Section 6.4.4.)

Note that we do not have to prove the TCCs to use the definitions;
however, a proof relying on the definition is not complete until we have
done so. This is useful when experimenting with alternative definitions.

6.4.3 DORIS

We now need to construct a PVS theory for DORIS on top of the CSP the-
ories.

The PVS theory hierarchy for the DORIS theories is included in Fig-
ure 6.2 (Page 145). The first theory to note is dorisdefs, which defines the
events for a DORIS system: i.e. the IDA and work events. Also defined are
server events: these are like the IDA events, but cover the case where the
path connects to a simple server, not a route.

dorisidaspecs, dorisproc, and dorisservers define the IDA specifica-
tions (i.e. the constraints on IDA events for particular routes), the con-
straints on work events, and the constraints on server events respectively.

The two theories dorisidaimpl and dorisprocimpl include implementa-
tion details and lemmas about the specifications. Finally, doris bundles all
the DORIS definitions together.

6.4.4 TCC Proofs

We have overlooked one important feature of PVS: it is strongly-typed, but
the type system is undecidable (due to the inclusion of general predicate

6.4. PVS

145

extend

doris
dorisidaimpl dorisprocimpl
dorisidaspecs csp dorisproc dorisservers

dorisdefs csptf

common

axioms

basic

seq_functions list2set filters list_props sets_lemmas functions

Figure 6.2: PVS theory hierarchy for DORIS

146 CHAPTER 6. MECHANICAL SUPPORT

subtypes). This means that to show type-correctness, the prover will gen-
erate type-correctness conditions (TCCs, or proof obligations). Termination
TCCs are generated when recursive definitions are encountered: typically
these are required to ensure that the recursive definition is total (as PVS
does not admit partial functions).

In many cases, TCCs can be automatically discharged by PVS. The
more complex the definition, the less likely this is. Most of the TCCs from
the DORIS theories concern either recursion or proving that a particular
named event is not the termination event, both of which are easily dis-
charged. The TCCs that cause most problems at first are those concerned
with defining CSP processes.

Stop in the UT model

The simplest example is to prove that (within the UT model) the process
Stop satisfies the constraints placed upon processes.

Processes in the UT model can be defined as any set of observations
such that

1. the ‘bottom” observation, (), is in the set;

2. the setis ‘prefix closed’ (all prefixes of a trace in the set are also in the
set); and

3. the set is “success closed’ (if success appears in the trace, then it ap-
pears exactly once, and is the last event in the trace).

Thus there are three parts to be proved in each case.

Since the process Stop is defined as being the set of observations con-
taining the singleton element (), the three parts of the TCC are trivially
proved.

Least Fixed Point operator in the UT Model

A more complex construct, the least fixed point (LFP) operator, can be
used to illustrate PVS’s proof capabilities. The following PVS definitions
implement this operator.

IterateUT carries out n unwindings of the process map F.

6.4. PVS 147

IterateUT(F : PMapUT, n : nat) : RECURSIVE PMapUT =
(LAMBDA (X : ProcessUT) :
IFn=0THEN
X
ELSE
F(lterateUT(F, n-1)(X))
ENDIF)
MEASURE n

(PMapUT is the type from ProcessUT to ProcessUT.)
LFPDefnUT uses IterateUT to define the least fixed point of this func-
tion.

LFPDefnUT(F : PMapUT) : ObsSetUT
={b: ObsUT |
FORALL (n: nat) : IterateUT(F, n)(Chaos(Sigma))(b) }

The definition says that a trace, b, is a member of the set of observations
LFPDefnUT if, for all values of n, b is a member of the set of observations
that results from n unwindings of IterateUF applied to the most nonde-
terministic process, Chaos(Sigma). (Sigma is the set of all events ‘in the
universe’.)

Finally, LFP is defined as LFPDefnUT.

LFP(F : PMapUT) : ProcessUT = LFPDefnUT(F)

(This step-wise definition allows us to introduce lemmas about the defini-
tion more easily.)

The proof that LFPUT is indeed a process is split into three parts. (Fig-
ures 6.3-6.5, on Pages 149-151, are the PVS proof trees illustrating each
proof.) The sketch proof for each part is as follows:

1. (Base element) Proof is by induction. The base case (zero unwind-
ings) is trivial, because Chaos is a process. The inductive case then
relies on the fact that if the base element is a member of the process

148 CHAPTER 6. MECHANICAL SUPPORT

represented by the jth unwinding, then it is a member of the j + 1st
unwinding.

2. (Prefix closure) The proof is again by induction. The second split on
each branch is due to more TCCs being created in the course of the
proof.

3. (Success closure) This proof is not by induction. It works by showing
that the LFP process is success closed because the zero’th unwinding
is the Chaos process which is itself success closed.

The proof trees show the overall structure of the formal proof, but obscure
the detail needed for the overall rigorous proof to be clear. Indeed, many
of the steps in the tree are simple manipulations, e.g. substituting one ex-
pression for an equivalent one.

It is important to note that the rigorous proofs are simple proofs, yet the
formal proof is quite involved: complex rigorous proofs are very complex
formal proofs.

6.4. PVS

149

|_

(skolem!)

|
-

(expand "ProcessUT_Base")

|
-

(expand "LFPDefnUT")

|
-

(induct "n")

(R

(grind) (skolem!)

|
-

(flatten)

|
|_
(name|)

|
F

(replace -1 -2)

|
=

(Iemme!)
|

I

(simplify)
|
|

(simplify)
|
I

(propax)

Figure 6.3: Base element proof tree for LFPUT

150

CHAPTER 6. MECHANICAL SUPPORT

I

(skolem!)

T

(expand "ProcessUT_PrefixClosed")

(skol

T T

—

(flatteh)

T

(expand "LFJ:DemuT”)

T

(induct *n")

F F
(expand "IterLteUT“) (skole‘m!)
| |
F E
(\emmi) ('IalteL)
[[
k E
(expand "ProcsssuTJPrethlosed") (name‘..,)
| |
F E
(inst -1 "s111" Jszll") (replace —‘1 -2)
[
F F E
(replace JZ -1) (typepred "LZ’l") (expand "Ilsra(JUT”)
| | |
F F F
(expand “(Lhaos“) (expand "LFJ’DefnUT“) (replace ‘—1 1)
[[[
F F F
(replace L -1) (inst -1 l0”) (\emmi)
[[[
k k E
(simplify) (expand "IlsrL(eUT“) (slmp\lLy)
| | |
F F F
(prnp‘ax) (expand "Chaos" ~1) (slmp\lLy)
[[
k E
(prop‘aX) (\nle)
F F
(replace JA -1) (typepred “LZ'I“)
[[
[F
(replace g -1) (expand "LFJ’DernuT”)
[[
[F
(slmphLy) (inst -1 “j!1‘+1")
| |
F F
(prop‘ax) (expand “\leraleLT” (-1)
[
'_
(replace —‘2 -1)
|
l_
(oo

Figure 6.4: Prefix closure proof tree for LFPUT

6.4. PVS

151

F
|

(skolem!)

|
F

(expand "ProcessUT_LuccessCIosed")

|
|_
|

(skolem!)
|
|_

(flatten)

— T — 53—

(typepred "s!1")

T —

e

(expand "LFPDefnUT")

(inst -1 "0")

T 5T

(expand "lterateUT")

|
=

(expand "(Lhaos")

|
=

(Iemmi)

|_
(expand "ProcessUT_lSuccessclosed")
|

(inst -1 "s!1")

(propax) (propax)

Figure 6.5: Success closure proof tree for LFPUT

152 CHAPTER 6. MECHANICAL SUPPORT

6.4.5 Time and Effort Required

The Timed CSP theories are not insignificant in size. The following table
gives (an incomplete) list of the theories to illustrate this.

Theory | Size (in lines of code)
basic 421
axioms 328
ut 435
uf 617
tt 520
tf 798
ut2 206
tf2 214
csppmr 200

The last entry, csppmr, does not appear in the hierarchy (in Figure 6.1,
Page 138), because it is directly imported by a ‘client” theory which re-
quires parameterised mutual recursion in CSP. (We will find a use of this
theory on Page 165.)

For comparison, the DORIS theories have the following sizes:

Theory Size (in lines of code)
doris 127
dorisdefs 59
dorisidaimpl 210
dorisidaspecs 510
dorisprocimpl 21
dorisproc 52
dorisservers 198

This is relatively meaningless: it provides a very rough measure of how
much work was involved. A better measure concerns the time needed to
construct these theories.

The Timed CSP theories took around two months to define, using Schnei-
der and Roscoe’s texts [95,102] as the primary reference. Similarly, the
DORIS theories took three weeks.?

2In fact, they took longer — but much development of the underlying theory took
place during this time.

6.5. FDR 153

Once defined, these do not need defining again. Also, the proofs, once
discharged, do not need performing again, unless something they depend
upon changes (e.g. an unproven lemma is found to be false).

As this thesis aims to demonstrate whether this is a tractable method
for industry, we have not carried out all the proofs required. Due to the
size of the Timed CSP and DORIS theories, this is not a trivial task. We
estimate that at least one man-year (maybe several years) of time is re-
quired to rework all the theories and ensure that all proof obligations are
discharged.

Fortunately, we can accept many of the lemmas ‘on trust’. They have
been rigorously proven in the past (although we must be careful of even
these proofs). However, we must be aware of their strictly unproven status
(in the PVS sense).

6.5 FDR

FDR
e is a model checker: it requires little direction from the user (but is
susceptible to state space explosion);
e it already uses a widely accepted variant of CSP syntax [98]; and
e has a (relatively) friendly X Windows interface for debugging pro-
cesses;
but
e FDR does not model real (i.e. non-sequential) time;

e it only reports problems and counter-examples — it cannot give an
output to demonstrate why a refinement holds;

e it has a flat naming structure: it does not have a notion of “scoping’;
and

e all CSP processes must be represented as programs: predicates can
not be used.

It can be a very useful and effective tool.?

3Thanks are due to Bryan Scattergood of Formal Systems Europe Limited, who offered
much assistance with the mechanical aspects of FDR.

154 CHAPTER 6. MECHANICAL SUPPORT

6.5.1 Time

Although FDR does not handle real time, it can model the passage of dis-
crete intervals of time by using an event that we will call fock, in common
with other treatments of this problem [95].4

The complication here is that tock must be represented in every process
where time is allowed to pass. This significantly complicates the defini-
tions of processes.

At its simplest, an untimed process P continues regardless of the pas-
sage of time: P|||(uX o tock — X). If the passage of time can alter the
properties of the process, then the program must be altered to allow for
time to pass ‘inside’ the original program.

The PVS implementation of DORIS can handle this by simply using the
delayed prefix operator (derived from Wait and —), and a timed semantic
model. The FDR implementation has to count tocks in the definition of
Wait: note that once the wait delay has passed, more time is permitted to
pass.

6.5.2 DORIS

In the same way that PVS requires a definition of DORIS theories, we
define a separate file that is included in the dt-generated file for FDR .
This contains all the basic definitions that we use, i.e. definitions of IDAs,
servers, and processing events.

6.5.3 Program Definitions of IDAs

Earlier, we noted that we must give specifications in the form of programs.
The IDAs were defined in the form of predicates in Section 4.5 (Page 89).

Figures D.1-D.4 (Pages 238-241 of Appendix D) give the state ma-
chines (and thus the programs) for the four main groups of IDA. There
are three points to note here:

e The constant IDA state machine (Figure D.1) allows the writer to
write, but without affecting the reader. The definition given on Page 92
permits refusal of writer events.

*Here, we take ‘real time’ to mean that the domain representing time is the set of real
numbers, R, as opposed to ‘discrete time’, represented by the integers, Z.

6.6. BESPOKE TOOL FOR TRANSLATING DORIS TO TIMED CSP 155

e The pool IDA state machine does not make it clear that the value re-
turned by a read is a nondeterministic (internal) choice. When writ-
ten as a CSP program, this can be made explicit.

e Timing is not explicitly represented on the state machines. The pred-
icate specifications indicate that a maximal delay ¢ is permitted on
each transition (%, for the first start-read and start-write).

Generally, programs such as these are not the most general program
that could satisfy a particular predicate specification; however, this is gen-
erally not a problem in practice. (Typically, the programs that are defined
are ‘sufficiently general’.) It is important to be aware of the problem so
that counter-examples can be checked more thoroughly.

In Section 7.1 (Page 159), we give a specific example relating to this
issue.

6.5.4 Time and Effort Required

There is one FDR include file for each dt format: these are several hundred
lines of code each. They took slightly less time to initially develop than
their PVS counterparts: around two weeks (the previous remark about
ongoing development increasing this time applies here). However, de-
bugging the FDR definitions proved to be time-consuming, taking another
week.

6.6 Bespoke Tool for Translating DORIS to Timed
CSp

‘dt” has been mentioned several times before in this thesis. It is a bespoke
program written by the author in Ada 95 (using the Ada Core Technologies
GNAT compiler [122]) as part of the work for this thesis.

Inputs to dt are flat text files in a particular format. They can define
either DORIS designs, or supply the code stubs for those designs. Internal
consistency checks are then carried out based on the constraints in Sec-
tion 3.5.

Output takes several forms:

Plain text A format intended for human analysis;

156 CHAPTER 6. MECHANICAL SUPPORT

PVS Four versions for PVS:

e untimed traces (UT) model of the design layer (i.e. no schedul-
ing information);

e UT model of the distribution layer (i.e. with scheduling infor-
mation);

e timed failures (TF) model of the design layer; and
e TF model of the distribution layer.

FDR Four versions for FDR:

e untimed model of the design layer;
e untimed model of the distribution layer;
e timed model of the design layer; and

¢ timed model of the distribution layer.

The four versions for both PVS and FDR are intended for different ‘views’
of similar applications. We may only be interested in an untimed safety
model; there is no need to include all the extra detail in the timed failures
model. Similarly, depending on which part of the software development
cycle we are up to, we may or may not need to incorporate the scheduler
framework.

The output routine has been written with the intention of producing
other output formats as needed. This allows for use of other tools that
support a similar view of the world, e.g. the concurrency workbench or
UPPAAL. These output routines have been complicated by the slight dif-
ferences between the ‘blackboard” semantics implemented in PVS, and the
FDR semantics.’

MADGE is BAe’s bespoke CASE tool for handling MASCOT-3 and
DORIS designs. dt has been developed to show that mechanical gener-
ation from a design file can produce the inputs to other tools. Ideally,
MADGE would generate code in a form ideal for input to a modified ver-
sion of dt. This would allow software engineers to produce their design

°In particular, the parallel operators are used slightly differently, but to achieve the
same effect. This has the useful side-effect of allowing slightly easier proof strategies
in PVS. In the PVS version, we use the hybrid parallel operator; in the FDR version,
we use the network parallel operator (and include the work events, Cyw, in the alphabet
interface).

6.6. BESPOKE TOOL FOR TRANSLATING DORIS TO TIMED CSP 157

in MADGE, and produce either Ada code (as they can at the moment), or
Timed CSP for analysis of the design.
Further details of dt are given in Section B.3 (Page 228).

158 CHAPTER 6. MECHANICAL SUPPORT

Chapter 7
IDA Analysis

The purpose of this chapter is to both test the mechanical support for CSP,
and explore the properties of the DORIS IDAs. This is not just exploration
for its own sake: if we know more about how the IDAs behave, then we
can use those results as part of larger results about systems.

A number of proofs and reports of FDR checks are given here. When
PVS is used, a summary of the proof is given. This chapter also serves to
demonstrate just how much work is required to formalize even a simple
rigorous proof.

7.1 Predicate and Program Specifications: The Pool

When there are two specifications of the same object, say Sp for the pred-
icate specification, and S¢; for the program specification, we should prove
that Sp is refined by Sg:

Vf:O(Sa) e Sn(f)

i.e. every observation f admitted by the program S; satisfies the predicate
SD .

The converse is not necessary: what we need to show is that S is the
most general program that satisfies S),. This is not trivial, and for the pool,
a solution has not been found.

This causes a complication if we use Sg; in place of Sp, and find that a
proposed implementation, say I, does not satisfy Sp. We must check that
each counter-example (for Sg;) is also false for Sp,.

159

160 CHAPTER 7. IDA ANALYSIS

We now illustrate this using the pool IDA as an example.

7.1.1 Untimed Traces Model
We want to show that Pool), is satisfied by Pool:
Poolg sat Poolp

ie.
Vs : Traces(Poolg) ® Poolp(s)
(where Poolp is the predicate specification on Page 93, and Pool; is the
program specification on Page 239).
If we can show that this is true, then we can (subject to the caveats

about processes that are not the most general possible process) replace
Poolp with Pool for the rest of our work.

Approach

We can adopt a two-stage approach: first, we break the predicate definition
Poolp into its conjunctive parts. Then we define a program, the ‘conjunc-
tive program’, for each conjunctive part, and show that this new program
refines the conjunctive part.

Then we use the facts' that

and
(I, 30 ANl sat S) = [rsat S

to justify using FDR to check that the program Pool; satisfies the parallel
combination of conjunctive programs, and infer that Pool; refines Poolp.
This reduces the amount of mechanical work that we need to do: instead
of attempting a single monolithic proof (I, sat S), we use FDR to show
that I, J I;, and PVS to show that /; sat S.

More generally, this is a very useful technique for breaking down large
CSP problems into smaller ones. However, it requires a considerable amount
of effort in designing processes that can be broken down in this fashion.

IThese facts are not proved in this thesis; they are asserted in many CSP texts. Note
that the first fact is only valid in the traces models.

7.1. PREDICATE AND PROGRAM SPECIFICATIONS: THE POOL 161

Recall from the definition of Pool on Page 93 that

Pool(D,dy) = Basic(D)
A MayRead (D)
A MayWrite(D)
A PoolValue(D, dy)
Because this is the untimed traces model, we can disregard the two con-
junctive terms MayRead(D) and MayWrite(D). (In any of the other se-
mantic models used in this thesis, we would have to include both of these

terms in the following argument.) Moreover, Basic splits into three terms:

Basic(D) = ReaderSequence(D)
N WriterSequence(D)
A Consistent Write(D)

We choose to split Poolp into three specification-program pairs:

e ReaderSequence;

o WriterSequence N Consistent Write; and

e PoolValue.

The first two programs are easy to define:

puX e sr — mr — er?d > X
for ReaderSequence, and
pX e swld — mw.d = ew.d - X

for WriterSequence A Consistent Write. The program for PoolValue (Page 93)

can be described in state machine form (the name on each node indicates
the next reader event that is expected):

162 CHAPTER 7. IDA ANALYSIS

LMW =dg; LEW =dg; RCV =0 W d

T~

e € RCV&er.e

The three variables are:

LMW the value of the last middle write;

LEW the value of the last end write; and

RCYV the candidate values to be returned for a read.

Note that we do not say anything about the start-write event (this is im-
portant when determining the event sets for parallel composition?).

This program is arguably clearer than the predicate definition to de-
scribe the value that should be returned by a pool, except that the value
returned by er is nondeterministic in the specification. That is, an imple-
mentation must be prepared to return at least one value, but does not have
to be prepared to return all of them. (The same remark applies to the pro-
gram on Page 239.)

ZParallel composition can be viewed analogously to conjunction: it constrains the pos-
sible observations of a process. Since we do not care about the start-write event, nor the
order of the writer events for this particular program, we avoid even mentioning it in the
parallel composition interface.

7.1. PREDICATE AND PROGRAM SPECIFICATIONS: THE POOL 163

Proof for ReaderSequence

This proof is a trivial instance of the following general proof rule3:

uXea:A—-b:B—c:C—X
sat
tr#A = tr#B = tr#C
Vitr#A —tr#B =1Ntr#B = tr#C
Vir#gA=tr#BANtr#B — tr#C =1

where
ANB=0ANANC=0ABNC =10

Here, we see one of the complications of moving from a two-point to a
three-point model: the corresponding proof rule for two-point models is
much clearer and shorter. We have traded a more descriptive model for
more complicated proof obligations.

Carrying out this “trivial” instantiation in PVS proves to be a little harder;
we have to arrange that the types of the operators match correctly. For ex-
ample, the overloading we use of the ‘counting’ operator (#) for both sin-
gle events, and sets of events complicates the PVS implementation. The
only remarkable point is just how much time it takes to prove this very
simple statement.

Proof for WriterSequence and Consistent Write

This requires two parts, which we combine using the rule that

P sat S; A P sat S
= P sat (S] N SQ)

for S, and S, predicate specifications, and P a program.

The first predicate of these two predicates is WriterSequence: the proof
of this is identical to the proof for ReaderSequence above.

The second predicate concerns the Consistent Write predicate. First, we
can replace the term tr | a W (D) in Consistent Write on Page 90 with ¢r be-
cause the alphabet of the program we are using here is exactly the alphabet

3This rule is very nearly a tautology: however, it is a necessary step in a formal proof.

164 CHAPTER 7. IDA ANALYSIS

aW. (This can be done formally — we elect not to in this exposition for
brevity.) This leaves us with showing that
uX e sw?d — mw.d = ew.d - X
sat
tr = s (sw.dy, mw.dy) = dy = dy

Atr = s (mw.dy, ew.ds) = dy = ds

Note that the specification itself splits into two conjunctive terms. Al-
though this is “obvious’ (a dangerous word in a proof), we need two fur-
ther lemmas, to prove this formally:

Vir:Q e last(tr) = mw.d = tr = s~ (sw.d, mw.d)
Vir : Q e last(tr) = ew.d = tr = s (mw.d, ew.d)
where
Q=pX esw?d— mw.d— ew.d— X

PVS aside, we can show that both lemmas are true by inspection of Traces(Q)
(the set of all traces in QQ):

{ (sw.dy),

(sw.dy, mw.dy),

(sw.dy, mw.dy, ew.dy),

(sw.dy, mw.dy, ew.dy, sw.dy),

(sw.dy, mw.dy, ew.dy, sw.dy, mw.dy),

(sw.dy, mw.dy, ew.dy, sw.dy, mw.dy, ew.ds),

(sw.dy, mw.dy, ew.dy, sw.dy, mw.dy, ew.dy, sw.dg), ... | d,dy,ds,... € D}

However, we cannot easily replicate this style of proof in PVS.
Instead, we use the substitution of sat in induction over traces (de-
scribed on Page 171):

(() € Traces(Q) = S(()))
A
Vs.ae ((s € Traces(Q) = S(s)))

= ((s"(a)) € Traces(Q) = S(s" (a)))
=

Vse (s € Traces(Q) = S(s))

7.1. PREDICATE AND PROGRAM SPECIFICATIONS: THE POOL 165

and set
S(s) = (last(s) = mw.d = s = s (sw.d, mw.d))

Now, we just need to prove two statements:
1.

() € Traces(Q) = S(())

Ve e ((s € Traces(Q) = S(s)))
7 = ((s"(a)) € Traces(Q) = S(s™ {(a)))

This can be proved by working through the individual cases that occur
(i.e. classify the different sequences and events), but is very tedious to im-
plement formally.

Again, the type system in PVS causes us difficulty in implementing
this proof, but a mechanized proof is possible (although very messy). The
second lemma follows the style of proof for the first.

Proof for PoolValue

This is the first proof we encounter that is not based on simple loops (al-
though the previous proofs implicitly used general choice for carrying
data values). However, it is very similar to the proof above in terms of
overall strategy, because we use our trace induction scheme.

We now explain the proof more informally. For the event er.d to have
occurred, the event sr must have occurred previously in the trace. At this
point, the set RC'V is set to the values of the last mw and ew. This corre-
sponds to PoolValuesSR. Any mw events occurring between the sr and mr
are added into the set RCV’; this corresponds to PoolValuesSMR. Thus the
two sets RCV and PoolValues are identical.

The difficulty is in proving this at a level that we can formalize in PVS.
One of the reasons that this is harder than the previous proof is the exis-
tence of these three variables in the program definition: RCV, LMW, and
LEW . This requires a particularly unpleasant PVS definition, as it incor-
porates both mutual recursion (as a least fixed point operator) and param-
eterization (a function from the parameters onto processes). The least fixed
point operator has parameterized processes as both domain and range.

166 CHAPTER 7. IDA ANALYSIS

Further, we have to aid PVS by giving it further lemmas about the spe-
cific program. These say, ‘this particular form of trace is admitted by this
program’, or ‘this particular form of trace is not admitted by this program’.

This can be mechanized, but requires multiple lemmas (of the form
described in the previous paragraph). This substantially limits the cur-
rent usability of this overall method (i.e. for proof of even slightly compli-
cated expressions). From this we conclude that formal proofs cannot gen-
erally be manipulated interactively; we need more automation to make
this method usable.

7.1.2 Timed Failures Model

We aim to provide a timed semantics for DORIS in this thesis, so we must
examine the timed properties as well as the untimed properties described
in the previous section.

Fortunately, we do not need to repeat the conceptual work of the proofs
above. They can be repeated in the timed model, although the extra (tim-
ing) information inherent in this (timed) model causes implementation
difficulties with PVS: the repeated proofs have to manage the timed trace-
timed refusal pairs.

What remains is to prove the MayRead and MayWrite terms. Earlier,
we simply stated that

“Timing is not explicitly represented on the state machines.
The predicate specifications indicate that a maximal delay 7 is
permitted on each transition (%, for the first start-read and start-
write).”

The proofs for MayRead and MayWrite in the case of the pool do not add
anything interesting to the discussion: the program specification for the
timed case merely has to nondeterministically delay for a time between 0
and ¢. Our approach simply adds another two conjunctive specification-
program pairs: one for each of MayRead and MayWrite.

The more interesting cases relate to the channel and signal, with the
conditional refusal predicates. However, they turn out to be managed in
a similar way to the proof for PoolValue (i.e. we define two conjunctive
specification-program pairs, and add the programs into the FDR model).

Although the proofs are generally tedious and difficult to implement,
they illustrate one useful fact (introduced on Page 160): we can refine the

7.2. FDR AND TIME 167

conjunction of predicates with the parallel composition of programs, and
exploit the many conjunctions in the specification of the IDAs. Note that
this approach is only valid in the traces models; the corresponding lemma
when refusals are involved is more complicated.

7.1.3 Time and Effort

The proofs described in this section have required more work than the PVS
and FDR model constructions together. An estimate of the time taken is
around one year of work: moreover, this only covers several of the more
interesting proofs, and even then, we have often omitted the fine details
(e.g. proving that the trace denoted ‘null’ is the equal to the trace “(: :)’).

Part of this time can be considered ‘learning’ time. Automated proof
techniques are difficult. For the amount of time and effort invested, it is
hard to derive any useful results. We will further discuss the benefits and
difficulties later in the thesis.

7.2 FDR and Time

At this point, it becomes very clear that both rigorous and PVS proofs
are interesting, but extremely time-consuming. The proofs themselves are
not intellectually hard: indeed, some are very easy. It is mechanizing the
proofs that is time-consuming.

As an alternative, we can use FDR. This raises an important issue: what
happens to the deeper issues relating to time when we move from the real-
time model of PVS, to the discrete time model using tock in FDR?

We require that the granularity of tock is sufficient to represent the
timed traces and refusal sets. This means that we have to transform times
until they fit the positive integers.

This is (for most traces) possible, but refusal sets are dense in time.
For this, the granularity of tock has to be sufficient to represent the refusal
tokens in a refusal set (i.e. the step function from time to untimed refusal
sets).

The way that the processes have been constructed means that we can be
sure that time passes in a sensible way. Although the timed model in FDR
is not the timed model used in PVS, it is a good enough approximation,

168 CHAPTER 7. IDA ANALYSIS

provided that no processes violate the conditions described above, e.g. a
Zeno process.

We are now in a position to use PVS when a particularly interesting
or critical assertion is to be tested, and to use FDR for exploring more
substantial problems.

7.3 Four-slot Implementation of the Pool

In Section 4.10, we presented a model of the four-slot implementation of
the pool IDA, which itself was defined in Section 4.5. The obligation upon
us is to prove that this implementation does indeed satisfy the specifica-
tion.

Earlier in this chapter, in Section 7.1, we showed that the program spec-
ification of the pool refined the predicate specification. We can therefore
use the program as our specification in FDR.

Note that if any counter-examples are found, we would have to check
these against the predicate specification, or show that the predicate speci-
fication refined the program specification before we could assume that the
implementation was faulty.

However, we did not need to refer to the predicate specification, be-
cause:

Under the untimed traces and untimed failures models, the four-slot
implementation refined the pool specification.

As we noted on Page 153, FDR does not give supporting evidence of such
statements.

We can expand on this further by varying the type of Lamport variables
involved. When Safe variables are used, the four-slot mechanism fails,
which is not very surprising. The more reasonable regular variables satisfy
the model, as do the atomic variables. Further, the mechanism still works
when the Bit isimplemented as a Regular variable, and DS is implemented
as a Safe variable.

Timed models (in so far as they can be analysed — it is extremely dif-
ficult to obtain results due to the large state spaces) will obviously vary
according to the timing parameters for each component. The models only
confirm this, but no details can be derived from FDR output.

7.4. COMPOSITION OF IDAS 169

7.4 Composition of IDAs

Having developed the programs for the four main types of IDA, it was un-
known what behaviour the composed IDAs would possess using (in this
case) the read in-write out composition process described in Section 4.7
(Page 99). This section describes the results of testing the following asser-
tion for every combination of A4, B, and C:

AoBLC

where each is an IDA. Here, ‘o” denotes composition, hiding, then renam-
ing the composed process to match the interface of C. Figure 7.1 gives
the results for the untimed IDAs, and notes the semantic models that the
result was found for.

Why is this useful to know? Although it would not result in faster
implementations of the IDAs, it is possible to imagine circumstances when
two composed IDAs could be replaced by a single IDA (assuming that an
appropriate composition operator was used).

When considering the IDAs more abstractly, we conjecture that they
might possibly be a group under composition-and-refinement. (This is
partially for mathematical curiosity. If we knew that IDA A could be de-
composed into IDAs B and C, we would not have to implement A in the
proof system, although this would obviously not be sensible in a real im-
plementation of a design.) Figure 7.1 is derived from results from FDR,
and shows that this is not the case. Although every pair of IDAs was
refined by an IDA, in most cases, there were many IDAs matching the
refinement.

More interesting is that most were only refinements under the traces
model. The failures resulted from refusals to engage in an event quickly
enough.

For a more general application, this result can be re-run in FDR with
different composition operators to produce lemmas for PVS (which we
then claim are proved by FDR). By choosing an appropriate composi-
tion operator (for the particular problem), parts of a network can be com-
pressed.

170

CHAPTER 7. IDA ANALYSIS

IDA Type
A B C Semantic Model
Channel | Channel | Channel Traces only
Channel | Constant || Constant Traces only
Channel Pool Channel Traces only
Channel Pool Constant Traces only
Channel Pool Pool Traces and failures
Channel Pool Signal Traces only
Channel | Signal | Channel Traces only
Channel | Signal Signal | Traces and failures
Constant | Channel || Constant | Traces and failures
Constant | Constant || Constant | Traces and failures
Constant Pool Constant Traces only
Constant Pool Constant Traces only
Constant | Signal | Constant Traces only
Pool Channel || Channel Traces only
Pool Channel || Constant Traces only
Pool Channel Pool Traces and failures
Pool Channel | Signal Traces only
Pool Constant | Constant Traces only
Pool Pool Channel Traces only
Pool Pool Constant Traces only
Pool Pool Pool Traces only
Pool Pool Signal Traces only
Pool Signal || Channel Traces only
Pool Signal | Constant Traces only
Pool Signal Pool Traces only
Pool Signal Signal Traces only
Signal | Channel | Channel Traces only
Signal | Channel || Signal | Traces and failures
Signal | Constant || Constant Traces only
Signal Pool Channel Traces only
Signal Pool Constant Traces only
Signal Pool Pool Traces and failures
Signal Pool Signal Traces only
Signal Signal || Channel Traces only
Signal Signal Signal | Traces and failures

Figure 7.1: Results of composition of untimed IDAs

7.5. PVS LEMMAS 171

7.5

PVS Lemmas

Even without the case studies in the next chapter, there is a very wide

range of proofs that we can choose as a test subject for the theory. Indeed,

the work that this thesis is based on examines only a few of these lemmas.
The possible lemmas can be categorized thus:

TCCs generated for parts of the Timed CSP theory;
TCCs generated for parts of the DORIS-on-Timed CSP theory;

‘“Trivial” lemmas, e.g. to convert from one style of notation to another
within the theorem prover;

Other ‘obvious” lemmas (e.g. ‘a trace is either empty, or consists of a
trace with a singleton trace appended’);

General proof strategies (e.g. the trace_induction lemma described be-
low); and

Lemmas about IDAs.

To make the overall problem more manageable, a number of the more
interesting lemmas have been chosen. The following lemma is generally
more useful than the IDA lemmas, and is used in several of the previous
proofs.

Induction Over Traces

The mathematical statement of this lemma is

P(()

A
Vs,a e P(s) = P(s" (a))

Vse P(s)

where P is a predicate over traces; s is a trace; and a is an event. If we wish
to prove that () sat S, then the expansion of sat gives us

Vir : Traces(Q) o S(tr)
= Vses e Traces(Q) = S(s)

172 CHAPTER 7. IDA ANALYSIS

Setting
P(s) = (s € Q = S())

allows us to use our induction lemma:

(() € Traces(Q) = S(()))
A

e ((s € Traces(Q) = S(s))
= (57 @) € Traces(@Q) = S(s(a))

Vse (s € Traces(Q) = S(s))

For this to be part of a valid proof, we must prove that the induction
lemma is true. We can perform this proof in PVS, as illustrated by the
proof tree in Figure 7.2. There are three noteworthy steps in this proof:

e In this proof, the ‘measure induction” scheme (measure-induct in
PVS) replaces a consequent of the form

Vs e P(s)
with
Vs1 @ (Vsq @ length(sy) < length(si) = (P(sy) = P(s1))

e The lemma cons_foot states that any trace s is empty, or can be writ-

ten s = s'" (a) where s’ is a trace, and «a is an event. This introduces
a disjunctive antecedent, which can be split into two proof branches.

e Lemma length_foot is related to the previous lemma: it says that
length(s' " {(a)) = length(s') + 1

The rest of the proof steps are concerned with substituting variables, in-
stantiation, and simplifying expressions.

Of course, PVS then imposes an obligation to prove that the two lem-
mas cons_foot and length_foot are true. Curiously, these much simpler
statements are quite difficult to prove within PVS.

7.5. PVS LEMMAS

173

]

(skolem!)

T—

(I\alleL)

(measure-induct "\elglh(s)" "s")

(replace =1 1) (skol

| |
]]

(propax) (inst =2 "sp!1")

\
[

(inst -4 “sp‘l“"‘a!l")
\

I

(replace =1'-4 rl)

|
1

(replace -1 -2)

[

(lemma "IenthJoot")

\
\
|_
\
\
0

\
[

(simplify‘
\
|_
!
\
|_
(hide -1 —2‘—3 -4)
\
|_

(grind)

(inst -1 "sp!1"™"all")

(replace -1 -3)
-3)

(replace -3 -5)

Figure 7.2: Proof tree for induction over traces

174 CHAPTER 7. IDA ANALYSIS

7.6 Comments on Results

The most striking thing about these results is the sheer difficulty encoun-
tered in attempts to formalize these proofs. These are small objects: they
are relatively easy to understand, and to provide with rigorous (or at least
sketch) proofs. Indeed, the programs for the different IDAs are relatively
easy to informally validate with respect to the predicate specifications. Im-
plementing parts of these proofs as formal PVS proofs has taken the year
referred to in Section 7.1.3.

There are two broad (overlapping) classes of problem: those that are
unbounded, and those concerning programs that have relatively simple
state machine representations. The unbounded problems are not handled
well by FDR: it is difficult to construct a ‘phrasing” of the program that
does not exhibit a state-space explosion. These problems are more easily
solved by PVS.

Conversely, it is difficult to manipulate programs within the PVS model.
Given a program, it is difficult construct an argument from the structure
of the program to a predicate expression. This could be a problem of the
construction of the CSP embedding used in this thesis. The embedding is
intended to be a very general model: previously published work has used
highly constrained models (e.g. Dutertre et al.’s work on security proto-
cols [26,27]).

Alternatively, we could argue that there is in fact a great deal of infor-
mation in our abstract model. This would imply that we have to handle
this information regardless of the formalism. Thus we should expect to
find it difficult to simplify the problems.

A further alternative is that the rich language of CSP requires a very
rich library of lemmas about constructs, and that only a small number
have been constructed as needed. It would be helpful if sufficient libraries
could be constructed, but it is not clear what general statements are needed.
Some useful statements concern the usual commutativity, associativity,
and identity laws for the primitive CSP processes. As indicated in Sec-
tion 7.4, we can derive certain types of results about the IDAs from PVS.
But the overall proofs strategies require a higher-level of structure which
is difficult to apply to more than a single proof.

It is more likely that both the general nature of the construction, and the
inherent complexity of the formal proofs are the source of our difficulties.

Chapter 8

Case Studies

8.1 Introduction to Case Studies

The overall aim of this work is to produce an industrially usable seman-
tics for the DORIS notation. Although the meaning of “usable’ can often
be disputed (it depends on the overall context), case studies can provide
useful information on the method or notation in question. In this instance,
we intend to produce a semantics that as well as being mathematically
elegant, is suitable for machine checking or proof.

Two case studies have been chosen: one small and one large. The small
case study is based on the example in Paynter et al.’s paper [83], and is
presented in Section 8.2. The second is a system of significant size, based
on a British Aerospace product (Section 8.5, Page 185).

8.2 Small Case Study

This first case study is intended to show whether the syntax and semantics
defined in Chapters 3-5 fit together sensibly, and are amenable to machine
work on a small scale.

Recall Figure 8.1 (this is the same as Figure 5.1 on Page 113). This ex-
ample is Figure 2 (Page 13) of Paynter’s paper [83].

175

176 CHAPTER 8. CASE STUDIES

Al: Identify target A2: Calculate target vector

Raw sensor data Target position Target vector

Iﬁ

B: Image processing to
identify target

E: Calculate target vector
from new and old positions

p3 p4

State:: Previous-
target_position

Figure 8.1: A target tracker in ADL

8.2.1 Translation of the Design

Figure 8.2 gives the design in the DORIS notation. This design contains
two activities and three IDAs. These are connected with six simple paths,
and the whole object is viewed as a complex server. (It is not a system
alone; and it cannot be a complex activity, since it possesses windows.) As
in Paynter’s paper, this translation is performed on an ad hoc basis.

We are now in a position to give a statement in terms of the syntax
defined in Chapter 3 (Page 58). This is presented in Figure 8.3. Note that
for IDAs, we are setting the window for data input (i.e. write events) to
be w1, and the window for data output (read events) to be w2. Two code
stubs are required: these are given in Figures 8.4 and 8.5.

8.2. SMALL CASE STUDY

177

(Target_Tracker
' \ '4 \
Raw_Sensor_Data Target_Position Target_Vector
Identify_Target Calculate_Target_Vector
pl p2 p3 p4
wl w2

Figure 8.2: DORIS version of the target tracker

(cs,Target_Tracker,
(sa, ldentify_Target),
(sa, Calculate_Target_Vector),
(rt, Raw_Sensor_Data, Signal),
(rt, Target_Position, Channel),
(rt, Target_Vector, Pool),
(sp, , wl, Raw_Sensor_Data:w1l),
(sp, , Raw_Sensor_Data:w2, Identify_Target:p1),
(sp, , Identify_Target:p2, Target_Position:w1l),
(sp, , Target_Position:w2, Calculate_Target_Vector:p3),
(sp, , Calculate_Target_Vector:p4, Target_Vector:wl),
(sp, , Target_Vector:w2, w2))

Figure 8.3: Textual statement of small case study

178 CHAPTER 8. CASE STUDIES

Identify_Target = Read(pl, X);
Work(l1, ul);
Write(p2, X);
Self

Figure 8.4: Code stub for Identify_Target

Calculate_Target_Vector = Read(p3, y);
Work(12, u2);
Write(p4, y);
Self

Figure 8.5: Code stub for Calculate_Target_Vector

8.2.2 Required Properties
Paynter et al. identify two properties that this system should exhibit:

Timeliness-deadline (also known as ‘liveness’) is the requirement that in-
put to Raw_Sensor_Data should generate output to the pool
Target_Vector within some deadline; and

Safety is the requirement that no spurious outputs are generated.

Note that in the first condition, we have identified the left-hand side of the
pool (Target_Vector) as the terminal point for timing, since the pool will
continue to serve old data on its output (to Target_Tracker.w?2) if it doesn’t

receive newer data.
We need to identify the CSP statements for these two requirements.

The first is

T | {Target_Vector.sw}; = (¢, Target_Vector.sw)
= 1 | {Target_Tracker.wl.sw}, = (t1, Target Tracker.wl.sw)
Nty <ty +D

8.2. SMALL CASE STUDY 179

(where s; means the ith element of the sequence s). This can be interpreted
as

“If the ith write to Raw_Sensor_Data starts at time ¢, then the
ith write to Target_Vector must start within D time units.”

This statement asks us to check that a deadline is satisfied across multiple
components.
Similarly, the second statement is

tr#{Target_Vector.sw} < tr#{Target_Tracker.wl.sw}

and can be interpreted as

“The number of start writes to Target_Vector must be no greater
than the number of start writes to Raw_Sensor_Data.”

There are two points to note here: firstly, we have assumed the natural
mapping of DORIS names to CSP events; secondly, that the routes are
‘reasonably fast’, i.e. the IDAs will not impose additional delays, except
for when there is no space in the IDA. (We will expand on this later.)

A single file captures the information above for input to dt. This file is
given in Figure 8.6. Note that we have to give the work time bounds —
the numbers here are completely arbitrary.

180 CHAPTER 8. CASE STUDIES

cs:Target_Tracker:0

sa:ldentify_Target:H
sa:Calculate_Target_Vector:H
rt:Raw_Sensor_Data:Signal
rt:Target_Position:Channel

rt:Target_Vector:Pool
sp::wl::Raw_Sensor_Data:wl
sp::Raw_Sensor_Data:w2:ldentify_Target:pl
sp::Identify_Target:p2:Target_Position:w1l
sp::Target_Position:w2:Calculate_Target_Vector:p3
sp::Calculate_Target_Vector:p4:Target_Vector:wl
sp::Target_Vector:w2:w2:

defldentify_Target

Read(pl, default); Work(5, 10);
Write(p2, default); Self

enddef

defCalculate_Target_Vector
Read(p3, default); Work(4, 11);
Write(p4, default); Self

enddef

Figure 8.6: dt input file for the small case study

8.3. SMALL CASE STUDY: SAFETY CONDITION ANALYSIS 181

8.3 Small Case Study: Safety Condition Analy-
sis

8.3.1 Sketch Proof

This proof is very simple, and relies on the mathematical fact that

a>bANb>c
= a>c
(i.e. > is transitive). We choose to count the start-write and end-read events
of each IDA in Figure 8.2 (except for the end-reads of Target_Vector, be-

cause it is a pool).
We define several variables:

¢ = tr#Raw_Sensor_Data.SW
co = tr#Raw_Sensor_Data.ER
c3 = tr#Target_Position.SW

cy, = tr#Target_Position.ER

s tr#Target_Vector.SW

We can see that the following property holds:

For any signal or channel IDA, the number of start-writes is
greater than or equal to the number of end-reads.

A sketch proof for this statement follows from the construction of the
safety predicate on SignalValue and ChannelValue respectively (Pages 95
and 97). This safety predicate, in conjunction with ReaderSequence means
that the reader cannot read unless there has been a write. (In the case of a
signal, some values are also discarded unread.)

Therefore

C1 > C
N €32 ¢y

By examination of the two programs Identify_Target and Calculate_Target_Vector,
we can see that

182 CHAPTER 8. CASE STUDIES

Thus ¢; > ¢35, which is the statement we intended to prove. Note that at
no stage in this proof do we care about the value that is transmitted — we
simply want to ensure that no spurious outputs appear.

8.3.2 PVS Proof

The PVS proof follows the structure of the sketch very closely. The only
difficulties are encountered in the two lemmas, the first concerning the
signal and channel, and the second relating to the two programs” inputs
and outputs.

8.3.3 FDR Check

There is some difficulty in using FDR for this problem: the specification
program is inherently unbounded. Instead, we introduce a specification
that has an upper bound, and generates an alarm event when that bound
is reached. (This illustrates a general method of addressing these types
of FDR checks. Note that this can generate ‘false witnesses” where the
alarm bound is reached, but the unbounded program would refine the
unbounded specification.)

In this case, the program for the small case study successfully refines
our specification program in FDR.

8.4 Small Case Study: Liveness Condition Anal-
ysis

8.4.1 Sketch Proof

For the purpose of this section, we simplify our model slightly, and choose
to allow IDAs to work ‘very fast’. This does not make the problem easier,
but smaller to illustrate.

Our strategy chains together significant events, in a similar fashion to
the safety property. Instead of counting the events, we calculate the maxi-
mum time between the pairs. The total of these times gives the maximum
time.

8.4. SMALL CASE STUDY: LIVENESS CONDITION ANALYSIS 183

Thus, if Identify_Target and Calculate_Target_Vector use up to d; and
d, time units respectively, then the total is dy + d,. By inspection of the
programs, we can see that the worst case is d; = ul and dy = u2. (The
simplification given in the first paragraph effectively sets the maximum
time spent in each IDA to be zero: generally, we would end up with three
further terms to add to the total.)

In this type of proof, we must carefully check that nothing can block:
if it could, the maximum time is unbounded. There is indeed a prob-
lem: a process could write to w1l (Raw_Sensor_Data) twice very quickly. If
Identify_Target has not finished processing a previous input (i.e. less than
|1 time units have passed) then the first input will be overwritten by the
second, thus falsifying our liveness condition. An example trace is in Fig-
ure 8.7. The response for v, will never be generated, as it has been over-
written in the signal IDA.

Therefore, we have to impose a constraint on a user of this system (the
process that writes to Raw_Sensor_Data). We suppose that there is a min-
imum delay, g, between two consecutive writes to Raw_Sensor_Data.

We can see that ¢ must be strictly greater than ul to ensure that a read
can be completed before the value is overwritten. Alternatively, the sig-
nal could take sufficiently long to process a write, thus refusing the write
events ‘too soon’.

This means that the system must keep up with the environment, or
have some means of refusing to cooperate when the previous input hasn’t
been handled.

Although this is a long (sketch) proof to show this point, it is a rel-
atively verbose proof. However, it demonstrates that the IDAs possess
properties that can have serious implications in a system: the overwriting
in the signal.

8.4.2 PVS Proof

Again, the only difficulty in this proof is extracting a desired property from
a CSP program. In this instance, we need to go from the program which
reads, works, then writes, to a statement of particular executions: merely
enumerating all possible observations is not useful, since we cannot sub-
sequently use them.

The minimum delay condition is easily built into the lemma that we

184 CHAPTER 8. CASE STUDIES

((0,Raw_Sensor_Data.sw.v;),
(0, Raw_Sensor_Data.mw.v,),
(0, Raw_Sensor_Data.ew.v;),
(0, Raw_Sensor_Data.sr),
(0, Raw_Sensor_Data.mr),
(0, Raw_Sensor_Data.er.v;),
(0, Identify_Target.sp.I1.ul),

(0, Raw_Sensor_Data.sw.v,),

(0, Raw_Sensor_Data.mw.v,),

(0, Raw_Sensor_Data.ew.vs),

(0, Raw_Sensor_Data.sw.v3),

At this point, the input of v, has been overwritten:

it will never generate an output.

(0, Raw_Sensor_Data.mw.vs),

(0, Raw_Sensor_Data.ew.v3),

(t1, dentify_Target.mp),

(t9, Identify_Target.ep),

(t2, Raw_Sensor_Data.sr),

(to, Raw_Sensor_Data.mr),

(to, Raw_Sensor_Data.er.v3))

where |1 < ¢, <t, <ul

Figure 8.7: Counter-example for small case study (liveness condition)

8.5. LARGE CASE STUDY 185

use for this problem. For each event transition (since this is a chain of
events without any choices), we determine the maximum delay. Subject to
the condition described, this proof is successful.

8.4.3 FDR Check

We use a similar process to the previous FDR check: engage in an “alarm’
event if the process takes too long. Under any failures model, the refine-
ment will fail if too much time passes, since alarm will be refused in the
implementation.

Although the model and method for testing the model both appear to
be sound, the construction of the model causes FDR to run rapidly out of
resources (it appears to be unbounded). The assertion (under FDR) cannot
be tested.

8.5 Large Case Study

The system that we are modelling is the Electronics and Power Unit (EPU)
for a flight control system produced by British Aerospace. The design
details are from several original documents:

e 45 pages of DORIS notation; and

e several booklets describing the general make-up of the system, and
brief descriptions of the code stubs.

8.5.1 Summary of the Design

It consists of a number of concurrent activities distributed over a trans-
puter network which includes six processors, which communicate on 8
direct multiplexed links. The breakdown by DORIS type is given in Fig-
ure 8.8. Section B.2 (Page 225) contains a series of extracts from the actual
main data file; this file is over one thousand lines long — calculating the
CSP for this case study by hand would have been both tedious, and diffi-
cult to perform correctly. Instead, dt was used to generate the CSP code.

186 CHAPTER 8. CASE STUDIES

Complex Basic
Components | Components
sy 1 tp 6
cs 8 td 8
ca 13 | ti 7
dv 36 |cs 8
ca 13
ss 18
sa 39
dv 36
rt 144
cp 88
sp 656

Total | 58 | Total | 1023

Figure 8.8: Breakdown of large case study by DORIS type

8.5.2 Code Stubs

The major problem with this model appears with the definition of the code
stubs. The documentation available to the author had relatively little de-
scription of the code stubs.

In general, for every entity requiring a code stub, a simple loop was
constructed, possibly with choices, which read and wrote to (most if not
all) of the connected ports. Although this is not exactly the design in-
tended, this does exercise the theory appropriately.

57 such code stub definitions were required.

8.5.3 Machine Assistance

The prototype tool, dt, described in Appendix B (Page 223) was used to
construct the CSP for the PVS model. This overcame the problem of a
hand-translation: sheer size. This means that (when appropriate) the for-
warding processes for the IDAs can be automatically generated, and that
all the ports can be assigned their correct windows.

8.6. LARGE CASE STUDY ANALYSIS 187

8.5.4 Required Property

Having constructed the model, we now require a predicate to test the
model with. We chose the deadlock freedom test, i.e. for all traces, there is
an event that extends the trace.

Vs € traces(A) o (e o s (e) € traces(A))

where traces(A) is the set of all traces of the model.

8.6 Large Case Study Analysis

8.6.1 FDR

We chose to use the inbuilt FDR tests for deadlock and livelock. The un-
timed model was too large for either test; instead, each of the six main
subsystems were tested: these were deadlock and livelock free. Note that
we cannot infer that the timed system is deadlock or livelock free from
these results.

(The model pushed the (big) machine FDR was running on to the limit
of resources in terms of virtual memory, to such a degree that other pro-
cesses using resources would sometimes cause a check to fail, even when
FDR compression features were used.)

8.6.2 PVS

No proof for deadlock freedom in the large case study was attempted.
There is a very simple reason for this: a rigorous proof is not obvious, even
when the design is examined closely. Without brute-force mechanical as-
sistance, it is difficult to understand the structure of the system in terms of
deadlock. Without a candidate rigorous proof, a mechanical proof would
have been impossible to perform.

There is the question of why we could not determine a proof. We
would like to generate lemmas that are based on transactions, like those in
the small case study: if a component takes an input at one time, we might
except a particular output after some specified delay later.

However, the system consists of many paths which traverse the entire
hierarchy. This results in a system that cannot be split into functionally

188 CHAPTER 8. CASE STUDIES

separate parts to produce transaction lemmas about. The inability to re-
duce the problem to small lemmas is the difficulty here.

On Page 202, we describe a metric which followed from this observa-
tion.

8.7 Comments on Results

The first comment is that some results about both small objects (IDAs —in
the previous chapter) and larger systems could be obtained. A mixture of
mechanical methods (model checking and proof) were used, illustrating
that this theory is applicable.

Some rigorous proofs with PVS about small properties (but not nec-
essarily small systems) are relatively easy. The difficulty, as noted previ-
ously, is in completing the mechanized proof in sufficient detail. FDR al-
lows systems that are difficult to reason about to be checked for relatively
simple properties without user intervention.

However, regardless of the result, a PVS analysis usually increased the
understanding of how a particular system worked. FDR simply says, ‘suc-
cess’” or ‘failure: here are some witnesses’. The latter results are useful for
debugging, but the former does not add to the understanding of a process.

There are several areas in which improvement would aid the imple-
mentation of this work:

e A large library of properties about CSP would remove some of the
difficulty with PVS proofs.

e An improved prover interface for PVS would allow time that was
previously used ‘fighting” the prover to be used instead for con-
structing proofs.

e Continuing improvements to FDR, in particular, to allow a cleaner
model of time (using tock, as described by Roscoe [95]), and to allow
larger systems to be analysed. In common with other model check-
ers, the ‘state of the art” is continually improving.

e An integration of theorem provers and model checkers: theorem
provers would benefit from automated examination (under the di-
rection of heuristics); model checkers simply cannot cope with the

8.7. COMMENTS ON RESULTS 189

large systems — the incorporation of results from a theorem prover
might allow larger compressions of systems than current methods
allow. Thus the integration would help both types of mechanical
support.

190 CHAPTER 8. CASE STUDIES

Part IV

Discussion and Conclusions

191

Chapter 9

Discussion

In this chapter, we address each specific part of the work in this thesis.
The individual steps from the DORIS design through to tool support are
considered. We summarise and evaluate these individual steps, and then
discuss the implications for hierarchical timed notations generally and fu-
ture work.

9.1 DORIS Semantics

Chapters 3, 4, and 5 present a denotational semantics for DORIS in Timed
CSP.
A number of issues arose:

Why use Timed CSP for the semantic domain?

Why formulate the overall syntax and semantics in that form?

How to model concurrent shared variables (the IDAs).

How to model the active parts of the system.

How to manage the interaction of time and functionality.

Each of these issues can be addressed briefly in the following sections.

193

194 CHAPTER 9. DISCUSSION

9.1.1 Why Timed CSP?

Timed CSP is a well-understood process algebra. It has a wide range of op-
erators that match the application domain, e.g. network parallel and hid-
ing. The consistent set of semantic models allows us to choose a semantic
model appropriate to the property we are testing.

There are alternative process algebras, e.g. CCS and Circal [72,73]. We
had to choose one: Timed CSP appears to be the most well-developed
theory, especially in terms of timing, although any of the other well-known
process algebras would almost certainly have been at least as adequate for
our purpose.

9.1.2 Overall syntax and semantics

The semantics presented in Chapter 3 are compositional in the sense that
any complex component can be calculated alone via the three-part seman-
tic meaning function C (Page 69). These complex components can then be
combined into other components, by resolving the currently unresolved
paths (Cy).

This means that we can construct individual components in both a top-
down and bottom-up approach. Top-down system design is supported by
defining ‘black box” specifications of the lower components; bottom-up
construction is supported by building layers of components and combin-
ing them as complex components. Re-use by (re)naming is supported in
the syntax.

This gives us a natural view of the system design process: it reflects
how systems are designed, rather than imposing a strict process.

Later in this chapter, we discuss the point that the denotational seman-
tics effectively ‘translates’ the design into Timed CSP. Certainly, the de-
notational approach hinders some aspects of proof; an axiomatic method
would have been more suitable. However, we would have lost the more
intuitive approach offered by the denotational semantics.

The denotational semantics is effective in the sense that it is intuitive. It
directly supports (through recursion of the semantic functions) the compo-
sitional approach. We noted on Page 46 that an adequate understanding of
a language is attained when it possesses several different, but consistent,
types of semantics. The denotational semantics presented here is clear and

9.1. DORIS SEMANTICS 195

unambiguous, and offers a good starting point for complementary seman-
tics to be designed.

9.1.3 IDAs

The study of concurrent shared variables is interesting, and has important
applications to any situation where data corruption or timing interference
are harmful. Lamport’s variables (Section 4.2.1, Page 81) provide a more
abstract view of this issue, and because of their more primitive nature can
be used to ‘implement’ Simpson’s IDAs (Section 4.2.2, Page 83).

The four main (families of) IDAs possess two classes of orthogonal
properties: can they block the reader, and can they block the writer? This
leads to modelling decisions about the policy to be adopted when data can
be lost. In the process of making these decisions, we encountered difficul-
ties when only two events were used to indicate an interaction with an
IDA, and found that using three events provides a sensible approach.

The specifications of the IDAs then provide an abstraction away from
possible implementations: we can reason about a system without regard
to the implementation because we have a proof obligation that can be dis-
charged independently, i.e. prove that a particular implementation of an
IDA refines the specification.

Chapter 7 gave a program specification of the pool IDA; compared to
the rather convoluted predicate specification (from Chapter 4), we might
be inclined to say that all specifications should be given as programs.
However, when contrasted with the constant (can the writer write, or is
it refused?) we see that this isn’t a simple decision: the predicate specifi-
cations can describe some subtle behaviours more easily.

In this sense, the definition of the IDAs is unsatisfactory: the predicate
definitions require some effort to understand them; the program defini-
tions are ‘large’ state machines (nine states each with variables). We can
contrast these with Simpson’s RTL definitions [111]: we then see that our
definitions are not significantly more complex. From this, we conclude
that the properties we are trying to model are inherently complex.

The attempts to prove that the four-slot mechanism was indeed a pool
illustrated how independent (i.e. orthogonal) specifications could be used
to break up a definition into manageable parts. For predicates, this reveals
itself as conjunction; programs see this as parallel composition. The two

196 CHAPTER 9. DISCUSSION

can then be mixed: a program that satisfies a particular predicate can be
placed in parallel with another program representing other properties.

From these points, we can see that combinations of predicate and pro-
gram specifications can give a clearer view of a desired specification. By
choosing orthogonal properties, the proof burdens can be eased. Future
IDA designs should be constructed with this in mind.

It is interesting to note that we can make up plausible properties for
IDAs quite easily: choose how many readers and writers are involved, and
whether they can be blocked; determine the timing policies (we could have
chosen very esoteric timing conditions); determine what value is read on
the basis of previous reads; and then compose the chosen properties to-
gether. There is much that can be profitably investigated here.

Much of the motivation for designing the IDAs is to ‘decouple’ the
activities connected to either side of a particular IDA. This then results in
the distinction between which end of a path is driving the communication.
This distinction is denoted by resolved paths having a port at one end (the
driving end), and a window at the other end (the driven end).

Of course, ports and windows also have a concept of being inbound or
outbound, i.e. the direction of the information flow.

The implication for the Timed CSP model is that the passive end can
refuse to perform events, while the active end attempts to perform them
as fast as possible.

General Access Interfaces

In Section 3.2.2 (Page 57), we mentioned the MASCOT-3 concept of ‘gen-
eral access interfaces’. These can be modelled in this semantics by using a
device containing several routes.

To do this, the generalisation of a library of routes with well-known
behaviours could be extended to include a library of devices with well-
known behaviours.

In the process of developing the semantics and case study models, we
can make the following (simple, but important) observation: Ports and
windows in DORIS designs are given very sparse names, e.g. p7, W3, or
pl:a (see the syntax in Appendix A.2, Page 216). In common with higher-
level programming languages, replacing the numbers and complex chan-
nel letters with more descriptive names would result in a more readily
understandable design.

9.1. DORIS SEMANTICS 197

9.1.4 Activities

The model of an activity in this thesis is intended to be a model of the
imperative program for that activity. The model is an abstraction of the
behaviour of the activity: it only has to capture the interactions with its
environment (typically, the IDAs) by considering which ports are read and
written, and how long calculations may take. The internal behaviour is not
relevant to the overall system.

The functional properties of an activity, when they are of concern, can
be modelled by mathematical expressions, e.g. if the value «a is read, then
f(a) will be written out. How f is calculated is irrelevant here — how long
it takes is relevant; how it does it, i.e. the internal details, is not.

Our model of activities captures exactly the details that we need: we
do not need to worry about implementation details, yet we capture the
local properties that affect the overall properties of the system.

Complex Servers and Activities

The DORIS semantics given in this thesis does not distinguish between
complex servers and complex activities, except for the restriction concern-
ing the appearance of windows. Devices, however, further restrict the
appearance of active basic components.

A future semantics could eliminate the complex servers and complex
activities, and replace them with a single ‘complex active’ component which
may contain any basic component internally, and may possess both ports
and windows. This would be helpful by removing an unnecessary com-
plication in distinguishing between complex servers and activities.

Transputer Information

At a late stage during the development of dt, it became clear that all the
transputer and transputer link information could sensibly be separated
from the rest of the design information.

This should be stored, along with the details of the transputer alloca-
tion for various components, in a related, but alternative file. This would
allow for a single design to be mapped to multiple architectures, which
then enables easier comparison of the effect of different layout strategies
on the performance of the system.

198 CHAPTER 9. DISCUSSION

9.1.5 Timing

If we were not worried about the effects that the passage of time might
have on the system, then we could simply use the untimed traces and
untimed failures models of CSP. However, there are occasions when we
need to explicitly model the passage of real-time.

The semantics capture the passage of time in a consistent fashion, where
the semantic model of Timed CSP used can be matched to the properties
considered.

For the types of properties considered, the model presented in these
semantics is at an appropriate abstract level (i.e. it captures the interactions
that we believe to be relevant, regardless of the semantic model), without
too much, nor too little mathematical detail.

9.2 Mechanical Translation of DORIS to Timed
CSP

The tool dt can be viewed as evidence that the syntax can be mechanically
translated to the semantic domain. (The PVS and FDR models show that
the semantics is mechanically implementable.) The experience of writing
the tool provided much feedback for the semantics: trying to write the
tool and discovering that the general case of some construct is difficult to
implement (say, because some feature of the notation has been forgotten)
provides useful suggestions to incorporate into revisions of the semantics.
Indeed, both the semantics and dt have been through many revisions.

It is interesting to note which parts of dt required the most effort, and
the most code: the resolution of paths has proven to be quite difficult to de-
scribe, both mathematically and as an imperative program. This is worth
remarking since when a user is presented with forty pages of DORIS di-
agrams, the path resolution for a single interface is trivial: the user can
simply trace where the lines go.

The most code of any distinct section of dt is involved with writing
the output. This is not surprising, since (at this time) nine distinct output
formats are supported, and these require that type-dependent code is gen-
erated for virtually every part of the context tree in a depth-first traversal
(see Section B.3, Page 228).

9.3. MECHANICAL SUPPORT 199

9.3 Mechanical Support

The mathematical theory is now reasonably mature, and fits together in
a regular, intuitive fashion. Chapter 6 started with the assertion that we
require mechanical support for reasoning about systems modelled with
these semantics.

The solution presented in Chapter 6 contained three components: an
embedding of Timed CSP in PVS, a general model of DORIS systems in
Timed CSP/PVS, and a general model of DORIS in FDR.

The main advantage of this approach is its modularity: if another me-
chanical implementation of Timed CSP is chosen, then the output routines
of dt can be extended to generate the appropriate input files. If another
notation is given a Timed CSP semantics, then the PVS model of Timed
CSP can be employed.

9.3.1 Timed CSP, DORIS, and PVS

The PVS model of Timed CSP consists of four semantic models (see Fig-
ure 6.1, Page 138). Two of the semantic models are timed; the other two
are untimed. One of each pair is a traces-only semantics; the second has
failures as its observations.

With the assistance of dt, the DORIS model is easily implemented on
top of Timed CSP/PVS.

In 1997, Tej and Wolff remarked that their very basic model of failures-
divergence CSP' had taken about one man year just for the theory (not
including five months for an earlier attempt) [117].

It is sobering to consider that many months of work have been invested
in the PVS model described in this thesis, and that it is quite difficult to
use. At times, the type system seems extremely strong, and coercing type
conversions results in failure to determine that two equivalent expressions
are indeed equal.

Chapters 6,7, and 8 have illustrated that very simple rigorous or sketch
proofs often have quite substantial formal proofs. With considerable ef-
fort, formal proofs can be constructed to represent the structure of the
sketch proof. Indeed, no formal proof was successfully carried out with-
out a sketch proof having been successfully completed before. Conversely,

! Another untimed model of CSP: see Page 38.

200 CHAPTER 9. DISCUSSION

many faults with sketch proofs were detected as a result of the far greater
rigour involved with the formal proof.

We will comment on the problems of scaling up this work in Section 9.4.2,
and possible future approaches in Section 9.5.

9.3.2 DORIS, Timed CSP, and FDR

Again, the use of dt considerably aided the production of the case study
models. However, FDR has a number of defects, the most severe of which
is the fragility of the system to errors in scripts. A fault in a script is of-
ten not detected until late in the FDR cycle of load-compile-test, and even
then, the fault often resulted in one component crashing without a useful
diagnostic message. Debugging broken processes is easier with FDR than
with PVS, but is still very difficult.

Fortunately, FDR is an otherwise excellent model checker, and bounded
systems are coped with relatively quickly and effectively. Unfortunately,
most of our systems were extremely large.

Modelling time could reasonably be expected to cause problems. It
is not real-time that causes problems, but the unbounded nature of even
the type nat. Indeed, one can argue that the systems modelled are digital
in nature, and that the domain representing time should not be anything
other than nat!

At the time of writing, development versions of FDR contain a lazy
evaluator: this may assist with scaling up by not attempting to expand
unbounded systems totally and immediately (which results in a failure of
the model checker).

9.4 Remarks

9.4.1 Correctness of Designs

In the previous sections, we have described the use of PVS and FDR to
formally analyse DORIS designs. It is important to note that we do not
know for sure that our models are correct — nor can we ever be sure.

In the construction of the CSP theory in PVS, the author has a distinct
idea of what is intended: PVS may interpret this differently. The only way
to check is to introduce lemmas, and see that they are proved as expected,

9.4. REMARKS 201

but this only increases assurance. We cannot take this as proof that the
theory is ‘correct’. Indeed, we could easily introduce an axiom that is false.

Similarly, we have used CSP processes as specifications, yet we can-
not be sure that these processes correctly model our intended systems.
(This is an instance of the more general problem of formalising informal
requirements.) Again, we can interrogate the tools, e.g. by asking whether
a particular trace is in the set of observations of that process, but this is not
totally convincing.

Finally, how do we know that the tools are operating correctly? They
have certainly not been formally constructed: both PVS and FDR are con-
siderable software engineering efforts, and can not easily be formally proved.
Another tool could be used to check that the proofs generated by PVS are
correct, although we then need to trust that tool.

In practice, we can take a more optimistic view: long use can allow
a user to develop a trust in a tool; many results that are consistent allow
a greater degree of confidence in the tool. This confidence will never be
total, but will often be adequate for the problem concerned.

9.4.2 Industrial Scale

The PVS and FDR approaches to proving concepts about the IDAs and
case studies are complementary: PVS handles inductive proofs about un-
bounded systems far better than FDR (which by its nature cannot handle
unbounded systems). However, FDR does not require any interactive di-
rection from the user at all, whereas PVS requires a lot of input.

It should be noted that the amount of detail required to carry out for-
mal proofs is overwhelming. But this is only when attempting to formalize
already existing proofs. In this case, much can be learnt about the nature
of the statement being proved.

When no obvious proof can be determined, as is the case for the large
case study, attempts to construct a formal proof are entirely doomed. It is
this that leads us to the following conclusion:

Retro-fitting proofs to systems that were designed without any
intention of performing formal proofs is extremely difficult,
and is likely to be uneconomical even when it is technically
feasible for a particular system.

202 CHAPTER 9. DISCUSSION

An ‘ideal’ of high-integrity system development starts by taking a very
abstract, black-box specification. This should then be refined, and at each
step, the proof obligations carefully documented. This would encourage
an isolated style of component development, where the smallest possible
interface is employed at each level. (Indeed, Jones has made similar re-
marks about the interference between concurrent components [55].) This
can then be exploited by breaking monolithic proofs into a larger number
of smaller lemmas.

This is in contrast to the large case study, where out of 324 resolved
paths, 148 were resolved at the top-most parallel statement, and many of
the rest were resolved at the next level down. This is despite the policy of
the semantics to hide such details as low down the system as possible.

Further, refining a system from its initial specification would allow
the work in this thesis to produce small, trusted components, rather than
making futile attempts to reason about large systems. The difficulty here
would be integrating this into current methods — this would require con-
siderable changes to the notations and development methods.

9.4.3 PCI Metric

The previous section leads us to suggest a metric, which we call the “proof-
complexity /interface metric’. This assigns a higher value of ‘badness’ to
systems which resolve paths higher than necessary.

For each resolved path, count the number of hierarchies traversed. Ap-
ply a weighting function (e.g. quadratic) to this height. The metric is then
the mean of the resulting weighted values for each resolved path. The aim
is to minimise the metric.

Obviously, a system will never be ‘perfect’ by this measure, but a real
system never could be: a system design is a trade-off between many fac-
tors, including maintainability, cost, ease of design, understanding, etc.
Here, we have to balance the various ‘ideals’ involved in these factors.

The metric proposed above aims to reduce the difficulties encountered
with proofs about poorly structured designs.

This PCI metric is similar to metrics proposed for object-oriented de-
signs [54], and it has been suggested that this PCI metric could have more
general applicability to other design notations®.

2Suggested by Richard Paige in private correspondence.

9.4. REMARKS 203

9.4.4 Alternative Approaches

DORIS is an example of a hierarchical timed design notation. Are there

any lessons that can be learnt for such notations in general? Could a differ-

ent approach to some parts of this work have resulted in greater success?
Several points can be immediately stated:

1. Graphical notations will always have a more severe problem of sec-
ondary notation than textual notations, i.e. by virtue of using the
layout for imparting information, that layout is open to more mis-
interpretation than a simple text description (see Page 114 for the
first remarks on this subject). However, note that the determination
of route resolution (Appendix A.2, Page 216) is much clearer graph-
ically than in text form, although this does not help us determine a
simpler algorithm.

2. Hierarchical notations can be given intuitive, formal semantics if
they are constructed in an encapsulated fashion, i.e. the individual
components can be constructed and ‘encapsulated” with a black box
interface. In this thesis, the interface consists of those events indicat-
ing free IDA interactions, and processing events.

3. Timing does not necessarily have to be real-time: the natural num-
bers can be used, where the unit value corresponds to the smallest
grain value needed in the application.

The greatest difficulties encountered concerned managing the detail in
proofs: we claim that this is not specific to the choice of formalisms used in
this thesis. Any formal analysis at this level of abstraction (i.e. modelling
interactions of IDAs and processing) will require some reasoning about
the interactions at that level.

We could change the level of abstraction, but we then miss out on the
details which we need: the abstraction we chose matched the properties
we wanted to reason about. An alternative abstraction would not help
with this particular problem.

Alternatively, we could try a different formalism, say RTL [53], but we
would still have difficulties because of the details of the model. Fowler’s
thesis [30] includes a description of using RTL within PVS (much as we
have used Timed CSP within PVS), and still encountered many difficul-
ties: these involved proof steps that were too small, and tactics that were

204 CHAPTER 9. DISCUSSION

too uncontrollable to produce meaningful results. It is interesting to con-
trast the relative sizes of the supporting theories: Fowler’s RTL description
takes approximately forty lines of PVS; the CSP-PVS theories described
here (excluding the DORIS theories) consist of around 4000 lines of PVS
(including all four semantic models) — but the general problems encoun-
tered were broadly the same. (The difference in size is accounted for as
follows: CSP has many more primitive operators than RTL; we have also
implemented multiple semantic models, whereas RTL only has one. The
underlying representation of CSP as observations also requires more de-
scription than the corresponding RTL constructs.)

A further option would be to throw away modelling DORIS in terms of
another formalism, and model it in terms of the basic entities provided by
PVS: in his thesis, Stringer-Calvert suggests this for the subject of compiler
verification [115]; this remark applies generally. This would be sensible
in the short term, as it would overcome the problems of reasoning about
structures relating to the formalism, but in the long term, we would have
no formal base to reuse. A general goal of this type of work should be
to provide carefully structured machine models of common formalisms so
that they can be exploited further.

The conclusion is that if the models are at this level of abstraction (two
or three point models describing reads, writes, and ‘working’), then both
rigorous and formal proofs will be difficult. An approach to manage this
was based on using the abstract specifications of components in place of
the components: this makes some difference to the magnitude of the prob-
lem. It also imposes the problem of determining the specification for a
component when it hasn’t been the subject of a refinement.

9.5 Future Work

A number of topics for future work can be highlighted:

9.5.1 General Formal Methods Tool Support

The greatest hindrance to industrial application of this work is the poor
tool support. If we claim that we have modelled our systems at the cor-
rect level of abstraction, and that we have designed our semantics care-
fully to take advantage of the features provided by our semantic domain

9.5. FUTURE WORK 205

(e.g. Timed CSP’s parallel operator), then we would make no significant
changes to the mathematical part of the thesis, except to change the type
of semantics. However, even changing to an alternative semantics would
still have to manage the individual interactions that we model. Thus we
conclude that an essential part of improving the applicability of this (type
of) work is to improve formal methods tool support.

This is not a problem specific to this thesis: it is a problem widely re-
ported in the formal methods literature, although it is often over-reported [8,
36].

All those concerned with formal methods tools, including SRI (respon-
sible for PVS) and FSEL (FDR), are working on improving their tools to
cope with larger models faster. It is reasonable to expect that with im-
proved understanding of constructing the Timed CSP theories, and im-
provements to PVS and FDR (or other tools) that larger scale application
will become possible.

9.5.2 Improved Proof Interfaces

The very nature of the systems examined means that the proofs being per-
formed are large and detailed. A CADiZ-like interface would be useful -
this is a context sensitive hyperlinked interface [121]. More generally, the
human-computer interface of the theorem provers (and model checkers)
require much attention [71]. The integration of provers and model check-
ers suggested at the end of Chapter 8 would need better interfaces for the
user to sensibly direct such a system.

9.5.3 More Investigation of IDAs and General Lemmas

A detailed library of IDAs and associated properties is needed. This thesis
has only scratched the surface of possible work in this sense. Similarly,
general lemmas about all the constructs in this thesis are needed.

The problem with this is that the underlying definitions have to be very
carefully designed, and then frozen — because once work starts building
on top of these definitions, changes become extremely expensive in terms
of time and effort.

Given the difficulty encountered with large-scale formal analysis, most
benefit to the software engineering process would probably be derived

206 CHAPTER 9. DISCUSSION

from exploring more general properties of the IDAs.

On Page 196, we commented that other plausible properties could be
suggested and composed together to define new IDAs. Although the anal-
ysis of large systems was extremely difficult, this size of analysis is more
profitable, and is likely to produce more benefits in the short-term.

9.5.4 Code Generation and Animation

An alternative to formal model checking or theorem proving could be to
generate executable code, and either test it, or animate it (like UPPAAL [7]).
Animation can be very useful for debugging and understanding a design
— although animation only examines a small number of possible execu-
tion paths. At a specification level, animation can act as “testing’, i.e. ‘Does
the proposed specification do what it's meant to do?’.

Chapter 10

Conclusions

The thesis presented is that hierarchical design notations can be given a
timed semantics, and that this semantics can be exploited. This exploita-
tion using mechanical tools is limited by both the tools, and the underly-
ing abstraction of the semantics, but useful and interesting results can be
derived.

10.1 The Problem

The problem addressed in this thesis concerns the design of complex, em-
bedded control systems that have safety and liveness requirements that
can include time. In particular, many of these systems are critical: their
failure can lead to loss of life, economic harm, or environmental damage.
Examples of such systems can be found in the aerospace, automotive, nu-
clear, and defence industries.

Because of the potential consequences, and the large expense of many
of these systems, they have to be designed so that they work “first-time’
when deployed. Strategies to ensure this success include structured anal-
ysis, testing, peer review of code, high-level languages, and formal meth-
ods [52].

Hierarchical design notations are increasingly used because they allow
a system design to be decomposed into smaller and smaller components.
DORIS is an example of such a design notation.

DORIS, as initially defined, does not have a formal meaning: we cannot
reason about such designs. This thesis proposes an engineering solution

207

208 CHAPTER 10. CONCLUSIONS

for this problem.

10.2 The Solution

This thesis
e defines a syntax for DORIS;

e defines a denotational semantics using Timed CSP as the semantic
domain;

e explores the issues involved with concurrent, shared variables;

e describes a PVS embedding of four semantic models of Timed CSP;
and

e describes a prototype tool, dt, that checks designs according to a set
of constraints, then produces output for Timed CSP/PVS, and the
FDR model checker.

On page 24, we noted that Timed CSP can be viewed analogously to
machine code. An additional view of these results is that as well as pro-
ducing a formal timed semantics for DORIS, the DORIS syntax now pro-
vides a higher-level language for Timed CSP.

The problems with the solution are involved with the tool support. For
example, how do we know that dt produces correct code? It certainly has
not been developed formally.

As discussed in the previous chapter, we can never be sure about our
programs or models — but further use will develop confidence, provided
the results are consistent. Ultimately, software engineers could use the
‘Holy Grail’ [115] of formal development, which includes formally devel-
oped compilers, kernels, and tools. Even then, the hardware might still
fail!

10.3 Final Remarks

A pragmatic approach to the use of formal methods in industry should
involve a careful assessment of the expected benefits and costs of using a
particular formal method.

10.3. FINAL REMARKS 209

In some cases, just formally specifying the system in question will bring
significant benefits. The rigour involved in producing a formal specifica-
tion can clarify many design issues that would only appear later in the
development process [36]. Other times, several different formal notations
used simultaneously can give multiple and useful views of the problem.

Even if a formal method is used on a project from initial specification,
through refinement and complete proof, it can only increase assurance of
correctness. It is simply not possible to have total assurance — all formal
methods are based on models of systems. Thus hardware failure can inval-
idate the effort of formally producing a product. (Indeed, a failure at any
part of the ‘chain’ of formal steps will invalidate the overall assurance.)

We must also consider which users are intended to use these meth-
ods. Different individuals handle different parts of the software life-cycle:
where should formal methods fit in? The experience of theorem proving in
this thesis suggests that non-specialists are not going to be able to prove as-
sertions about their designs: but they could hand off their designs (which
could be automatically generated, as suggested in Section 6.6, Page 155) to
a small number of specialists.

Risk assessment could also play a part in choosing small parts of the
system which need very high standards of assurance: the remaining parts
could then be developed to ‘normal” standards.

This thesis has produced a formal semantics for an industrial-strength
design notation. It has illustrated the potential strengths —and current
weaknesses— of the formal tool support for this semantics. Ultimately,
the models described in this thesis can strengthen any DORIS-designed
system, but more work is needed before this could be a routine activity in
developing industrial-scale systems.

210 CHAPTER 10. CONCLUSIONS

Part V

Appendices, Glossaries, and
Bibliography

211

Appendix A
Semantics for DORIS

A.1 Static Semantics for DORIS

This appendix contains the material for Section 3.5 (Page 66).
Let

C = {8y}
U{CS; |ie{1,... Ns}}
U{CA;|ie{l,...,Na}}
U{DVi|ie{l,...,Np}}

i.e. U is the set of all complex components, in the following rules:
1. All names of complex components are unique:
VC,dEC’.CQ:dng:d

(From the syntax, the second part of every complex component tuple
is the name of that component.)

2. Within a particular complex component, every name referred to is
either empty, or unique:

VeeCe
Vi,j>3e
cio = (empty_string)

213

214 APPENDIX A. SEMANTICS FOR DORIS

V ¢;jo = (empty_string)
V Cig # Cjo

Vee Ce
Vi>3e
cio = (empty_string) = (ci1 =CPV ¢;1 = SP)

This ensures that hierarchical names are unique for everything ex-
cept paths. (Paths are the only constructs that do not need to be
referred to by name in the semantics.)

The i,j > 3 term (and terms like it) refers to the basic components
within the complex component c: recall that ¢ is a tuple, where the
first element is the tag (Page 61), and the second element is its name.
The remaining elements are the basic components contained in c.

Thus we can match the tag of basic component ¢; by comparing it
with Ci-

3. When working at the distributed level,! transputer links only refer
to names of transputers; they also refer to distinct transputers within
a particular link:

Vi>3e
SY; = (td, n,s, d) =
(3, k>3;) #keSY; = (tp,s) NSV, = (1p, d))

Vi>3e
SY; = (tin,s,d,v) =
(34, k0235 #k;j#Lk# e
SY; = (tp,s) A8V, = (tp,d) A SV, = (tp, v))
Since the transputer and T-link components can only appear within

the system component, we only need to check for consistency within
the system component.

!When working at the design level, transputers (processors) do not appear in the lan-
guage.

A.1. STATIC SEMANTICS FOR DORIS 215

4. If a complex server is referred to inside a complex component, then

there must be a complex server defined of that name:

VeeCe
Vi>3e
¢ =(cs,t)= (Fje{l,...,Ns} et =CS;>)
Ve =(cs,nlt)= (Fje{l,...,Ns} ot =CS;>)
The first part of the disjunction refers to the case where there is only
one instance of that complex server in ¢; the second part uses the

(Instance)“!"(Target) notation to allow multiple instances of a partic-
ular (Target).

5. Similarly, complex activities must exist to be referred to:

Vee(Ce
Vi>3e
¢ =(ca,t)=(3je{l,...,Ns} ot =CA,»)
Ve =(canlt)= (Fje{l,...,Ns} ot =CA;»)

6. Similarly, devices too must exist to be referred to:

VeeCe
Vi>3e
¢ =(dv,t) = (Fj€{l,...,Np} et =DV, ,)
Ve =(dv,nlt) = (Fje{l,...,Np} et =DV,,)

7. Cycles of complex components are not allowed:

=dci,...,cp €C e
diy,.. 0, > 3@
Vie{l,....,n}e
cji;1 € {Cs,ca, dv}
N Cjtimodn,1 = Cjij,1
N Cijo =tNAT= Citimodn,2

V ijijVQ =nltAt= Cj+1modn,2

216 APPENDIX A. SEMANTICS FOR DORIS

Essentially, this says that there does not exist a sequence of complex
components such that they form a cycle (by matching the tag and the
name).

8. Timed CSP ‘code stubs’? should be available for any simple server or
simple activity:
VeeCe
Vi>3e
¢; = (8S,t) = t € Code_Stubs_Required
V ¢; = (ss,nlt) = t € Code_Stubs_Required

Vee Ce
Vi>3e
c; = (sa,t) = t € Code_Stubs_Required
V¢ = (sa,nlt) =t € Code_Stubs_Required

9. Definitions are also required for every type of route mentioned:

Vee (Ce
Vi>3e
Ci = (rta 2 T) = r € Routes_Required

The constraints on paths are described in Section 3.8 (Page 73).

A.2 Path Resolution Algorithm

This appendix provides supplementary information for Section 3.8.1 (Page 73).
We can give a syntax for the interfaces on either end of a path:

(Local _Interface_Spec) = (Name)":"(Interface_Spec)
(Parent_Interface_Spec) = (Interface_Spec)
(Complex_Interface_Spec) = (Interface_Spec)*:”"(Complex_Channel)
(Interface_Spec) “p" | “w”)
(positive_number)

(Complex_Channel) = (lower_case_alpha)

2‘Code stubs’ are Timed CSP expressions that represent the component concerned.

A.2. PATH RESOLUTION ALGORITHM 217

(Path_Source) and (Path_Destination) are then defined as specified by the
following categorisation:
Simple paths can be split into several distinct categories:

Simple-local Both the source and destination of the path are of the form
“t:" ((Local _Interface_Spec)), where t is the name of a local component
with tag cs, ca, ss, sa, dv, or rt. One end should be a port; the other
should be a window.

(In the syntax above, ‘p” denotes a port: these can only appear on
components with tag cs, ca, Ss, or sa. ‘W’ denotes a window, which
can only appear on component tags cs, ss, dv, and rt.)

Simple-parent One end of the path has syntax (Local_Interface_Spec) and
the other end has syntax (Parent_Interface_Spec). Both ends should
be of the same interface type; i.e. both ports or both windows.

This effectively ‘renames’ a port or window; a reference to the parent
interface results in a reference of the local interface.

Simple-complex Again, one end of the path has syntax (Local_Interface_Spec),
but the other has syntax (Complex_Interface_Spec). Both ends should
have the same interface type.

The (Complex_Channel) identifies which part of a complex (multi-
plexed) path the local interface should be identified with.

Complex paths are also split into several categories:

Complex-local Both the source and destination of the path have syntax
(Local _Interface_Spec), and the interface types should differ (i.e. one
end should be a port; the other should be a window). The same
constraints on component types as for simple-local paths apply.

Complex-parent One end of the path has syntax (Local_Interface_Spec);
the other has syntax (Parent_Interface_Spec). Both ends should have
the same interface type.

No other format of path sources and destinations is permitted in this se-
mantics.

The following algorithm effectively ‘grows’ the interfaces up from the
leaves of the hierarchy until they are resolved.

218

APPENDIX A. SEMANTICS FOR DORIS

When partial systems are being described, there is the possibility that
some ports and windows will not be resolved, because they are already
at the ‘parent’ of the top-most complex component. In this case, they are
‘free’ (not hidden) events, i.e. C; is non-empty.

The general algorithm for path-interface resolution is as follows:

1.

Identify all the simple interfaces, i.e. all the (Local_Interface_Spec)s ap-
plying to simple servers, simple activities, and routes.

. Repeat the following steps until nothing more can be done.

. Examine each complex component for simple-local paths: these con-

nect two simple interfaces, and provide the final resolution (e.g. the
window of a route to the port of an activity).

. Apply every simple-parent path by looking for a local interface that

matches the path: these result in the creation of a simple renaming for
the local interface. The renamed path takes the name of the parent
(and the new (Interface_Spec)).

. Apply every simple-complex path by looking for a local interface

that matches the path: these result in the creation of a simple-complex
interface. The interface takes the name of the parent, but has an
(Interface_Spec) and a (Complexz_Channel). The path that connects
to the parent end of the current path must be a complex path (this
is now a multiplexed path — this is a mechanism for saying ‘lots of
paths go from this component to this component’).

. Apply every complex-parent path by looking for a local interface

that matches the path: like the simple-parent path, these result in
the creation of a complex renaming for the local (complex) interface.

Apply every complex-local path to local interfaces: these resolve the
complex interfaces. These can link many simple ports and windows;
the final resolution is determined by the (Complex_Channel) values,
where like matches like.

Figures A.1 and A.2 can be used to illustrate this algorithm. (This is the
same example as in Section 3.8.1.) There are eight paths (including at least
one of each of the five categories described above):

A.2. PATH RESOLUTION ALGORITHM 219

bc simple-complex ih simple-parent
cb simple-parent bd simple-local
gb complex-local df simple-parent
hg complex-parent fe simple-local

The simple interfaces defined by these paths (including the full hierarchi-
cal names) are:

A.B.Cwl AB.Cpl A.G.H.lpl
A.D.F.wl A.D.Fw2 A.D.E:ppl

These are resolved thus:

ADFw2 — AD.E:pl because fe links them directly

AB.Cpl — AD.Fwl viacb,bd,and df

AGH.Ipl — AB.Ciwl via ih, hg, gb, and bc on complex
channel a

220 APPENDIX A. SEMANTICS FOR DORIS

Described on Page 218

Textual version in Figure A.2 (Page 221)

Figure A.1: Illustration of path resolution algorithm

A.2. PATH RESOLUTION ALGORITHM 221

((%A

(cs, B),

(cs, D),

(ca, G),

(cp, gb, G:p1, B:wl),

(sp, bd, B:p1, D:wl))
(cs, B,

(ss, C),

(sp, bc, wl:a, C:wl),

(sp, cb, C:p1, pl))
(cs, D,

(sa, E),

(rt, F, Channel),

(sp, df, wi, F:wl),

(sp, fe, F:w2, E:pl))
(ca, G,

(ca, H),

(cp, hg, H:pl, pl))
(ca, H,

(sa, 1),

(sp, ih, I:p1, pl:a)))

Code stubs expected are: simple server C
simple activity E
simple activity |
route type Channel

Described on Page 218

Graphical version in Figure A.1 (Page 220)

Figure A.2: Textual statement of path resolution example

222 APPENDIX A. SEMANTICS FOR DORIS

Appendix B
Prototype DORIS Tool

B.1 ASCII Syntax for DORIS Systems

This syntax closely follows the definition given in Section 3.3 (Page 58),
and uses the simplified BNF syntax given on Page 62. One or more literal
newlines are represented by (newline).

A file containing the definition of a DORIS system consists of a series
of complex construct definitions:

(System,) System_Design') | (System_Distributed'))

=
{(Complex_Server’)

|

|

{
{

Complex_Activity'")
Device') }

Each of (System_Design'), (System_Distribution’), (Complex_Server'),
(Complex_Activity'), and (Device') is defined by a name, and a list of other
constructs contained within it. (Ref) is a reference note: in the large case
study (Section 8.5), these are the page numbers of the original network
diagram of the construct concerned.

(System_Design') == “sy:"(Name)":"(Ref)(newline)
{{Component)}*“::"(newline)
(System_Distribution’) = “sy:"(Name)":"(Ref)(newline)

{{Transputer) | (Direct_T _Link)
| (Indirect_T_Link) | {Component)}*

223

224

(Complex_Server')

(Complex_Activity')

(Device')

{Component)
(Active)

(Passive)

APPENDIX B. PROTOTYPE DORIS TOOL

“::"(newline)
“cs:”(Name)"“:"(Ref) (newline)
{{Component)}*
“::"(newline)
“cc:”(Name)"“:"(Ref) (newline)
{{Component)}*
“::"(newline)
“dv:"(Name)“:"(Ref) (newline)
{{Passive)} "

“::"(newline)

(Active) | (Passive)
(Complex_Server)

| (Complex_Activity)
(Simple_Server)

S?mpl(’ Activity)

|
|
{
|
|
|

The individual ‘simple” constructs are defined as a single line each:

(Transputer)
(Direct_T_Link)

(Indirect _T _Link)

(Complex_Server)
(Complex_Activity)
(Simple_Server)
(Simple_Activity)
(Device)

)

(Route

“tp:"(Name) (newline)

“td:"(Name)*:"(T _Source)

“"(T_Destination)(newline)

“ti.”"(Name)*“:"(T _Source)

“"(T_Destination)*:"(T-Via)(newline)

“cs:"(Name)(newline)

“ca:’()(newline)

“ss:"(Name)(newline)

“ a:"(Name><neWI|ne>
v)(n)

Name

o un

"(Name) (newline
“rt:”(Name)"“:"(Route_Type) (newline)

B.2. EXAMPLE

(Complex_Path)

(Simple_Path)

225

“cp:"(Name)“:"(Path_Source)
“"(Path_Destination)(newline)
“sp:"(Name)“:"(Path_Source)
“"(Path_Destination)(newline)

The final part of this syntax is filling in the gaps that were left unspecified
in Section 3.3. Here, a (String) is a (possibly empty) string of letters, digits,

and underscores.

(Name) = (String)
(Path_Source) = (String)“:"(String)
(Path_Destination) == (String)*:"(String)

(T _Source) := (String)

(T _Destination) = (String)

(T_-Via) == (String)

(Route_Type) = (String)

B.2 Example

The following example is drawn from the input file to the DORIS proto-
type tool for the large case study (Section 8.5, Page 185). ‘[...]" denotes

deleted text.

sy:EPU _Software:0
tp:T1

tp:T2

[...]

tp:T

[...]
td::T1:T3
td::T1:T4
[...]
td::T5:T6
ti:T1:T2:T3
ti::T1:T6:T5

226 APPENDIX B. PROTOTYPE DORIS TOOL

[...]

ti::T4:T6:T5

dv:T5_T6_Link

dv:T4_T5_Link

[...]

dv:T2_T3_Link

dv:T4_to_T6

dv:T6_to_T1

[...]

dv:T5to_T2
cp:Get_T6_to_T5:T5_T6_Link:w3:T5:p6
Ccp:Put_ T5.to_T6:T5:p5:T5_T6_Link:w4

[...]
p:Put_ T2 to_T5:T2:p9:T2_to_T5:wl

cc:Tl:l

cs: Tl Tele

sa:Clone_Global_Mode_T1:H
sa:Image_State_Control:L
ca:Generate_and_Organize_Objects
rt:1ISC_Missile_Mode:pool
sp:Rd_Report_Best_Trgts_Tele:pl:b:T1 Tele:p2
sp:Rd_Set_Trgt_Near_Tele:pl:c:T1 _Tele:p3

[...]
p:Recv_PO_Body_Processed:p6:a:Generate_and_Organize_Objects:pl

[..]

cc:Assess_Target_Objects:10
rt:CA_IP_State:Pool
rt:Previous_Thresholds:Pool
rt:Scene_Stats_Data:Pool
rt:Image_Control:Pool
rt:Process_Trgt_Data:Signal
rt:Primary_Number:Pool
rt:PPD_Body_Processed:Signal

B.2. EXAMPLE 227

rt:PPD_IP_State:Pool
rt:PPD_Image_TIO:Signal
rt:IP_State_Available:Signal
sa:Control_Assessment:L
sa:Process_Patch_Data:L
sa:Process_Target _Body:L
ss:Multiple_Readers_CA:H
sp::Process_Target_Body:p6:p1l:
sp::Process_Target_Body:p7:p2:

[...]
p::Multiple_Readers_CA:w2:Process_Patch_Data:p5

[..]

cs:Actuator_IF:20
rt:AS_Data_In:Pool
rt:AS_Data_Out:Pool
sa:Manage_Actuator:H
ss:Actuator
sp::wl::AS_Data_Out:wl
sp::Manage_Actuator:p7:p2:
[...]

sp::Actuator:w2:Manage_Actuator:p12

[..]

dv:T1_T3_Link:113
dv:T1_to_T3
dv:T3_to_T1
cp::wl:T1l to T3:wl
cp::T1 to_T3:w2:w4:
cp::w3:: T3 to_T1l:w2
cp::T3_to_Tl.wl:w2:

228 APPENDIX B. PROTOTYPE DORIS TOOL

dv:T1 to T2:212

rt: Tracking_Point:pool
sp::wl:a:Tracking_Point:w2
sp::Tracking_Point:wl:w2:a

B.3 Algorithm

The algorithm in the prototype tool (dt) is as follows:
1. Read input files.
Write out some statistics about the input files.
Match the code stubs to the simple servers and simple activities.

Find the definitions of all complex components.

AR RN

For each ‘context run’, i.e. for every system component, or complex
component indicated on the command-line:

(a) Build a tree of contexts, where every complex component has
edges leading from it, until all the leaves are basic components.
(b) Determine all the simple interfaces.

(c) By a depth-first traversal of the context tree, resolve the simple
interfaces.

(d) Using the context information, construct forwarding and schedul-
ing records.

(e) Write out the various output formats.

Appendix C
PVS Model of Timed CSP

The interface for the PVS model of Timed CSP is described in this ap-
pendix. Section 2.4 introduces Timed CSP (Page 33).

Throughout this appendix, parts of the PVS source are included — the
extracts are not complete, as the remains are omitted for brevity.

C.1 Basic Concepts

We now define a number of basic concepts.

C.1.1 Events and Alphabets

The theory basic is parametrised by the nonempty set SEvents (‘events
including success’), and the distinguished event, success (representing
V).

basic [SEvents : NONEMPTY_TYPE,
success : Events] : THEORY

This set contains all possible events that could occur (in the given context).
An Alphabet is then a (not necessarily strict) subset of Events , and
SAlphabet is a subset of SEvents .

Alphabet : TYPE = setof[Events]
SAlphabet : TYPE = setof[SEvents]

229

230 APPENDIX C. PVS MODEL OF TIMED CSP

SubAlphabet(Al : Alphabet) : TYPE
= A2 : Alphabet |
FORALL (e : Events) : A2(e)
IMPLIES Al(e)
SubSAlphabet(Al : SAlphabet) : TYPE
= A2 : SAlphabet |
FORALL (e : Events) : A2(e)
IMPLIES Al(e)

C.1.2 Observations: Untimed Traces
A Trace is a sequence of events (including).

Trace : TYPE = list[SEvents]

A single observation in the untimed traces (UT) model, ObsUT, isa Trace .
A set of such observations is ObsSetUT .

ObsUT : TYPE = Trace
ObsSetUT : TYPE = setof[ObsUT]

C.1.3 Observations: Untimed Failures
A Refusal setis a set of Events (including V).

Refusal : TYPE = setof[SEvents]

An observation in the untimed failures (UF) model is the ordered pair con-
sisting of a Trace , and a Refusal

ObsUF : TYPE = [Trace, Refusal]
ObsSetUF : TYPE = setof[ObsUF]

C.1.4 Observations: Timed Traces

We now introduce the type for Time.

Time : TYPE = { x :real | x >= 0 }

C.1. BASIC CONCEPTS 231

Time s are non-negative real numbers. Note that PVS cannot understand
real number constants, but that real numbers can still be reasoned about.
A TimedEvent is then a pair with a Time and an Event .

TimedEvent : TYPE = [Time, SEvents]

Analogously to the untimed traces case, the timed traces (TT) model is
defined in terms of observations on TimedTrace s.

TimedTrace : TYPE = listfTimedEvent]
ObsTT : TYPE = TimedTrace
ObsSetTT : TYPE = setof[ObsTT]

C.1.5 Observations: Timed Failures

The last model that we describe is the timed failures (TF) model. This
requires a definition of TimedRefusal

TimedRefusal : TYPE = setof[TimedEvent]

A TimedRefusal consists of a set of TimedEvent s.
An observation in the TF model is then an observation in the TT model
augmented with a TimedRefusal

ObsTF : TYPE = [TimedTrace, TimedRefusal]
ObsSetTF : TYPE = setof[ObsTF]

C.1.6 Useful Functions

In this theory, a number of useful functions are defined. These are de-
scribed here, since they are used in the remaining sections.

These projections provide a more memorable and easy to read notation
for extracting components of tuples.

Time(e : TimedEvent) : Time = proj_1(e)
Event(e : TimedEvent) : Events = proj_2(e)
Trace(b : ObsUF) : Trace = proj_1(b)
Refusal(b : ObsUF) : Refusal = proj_2(b)

This projection uses the Event projection to extract an untimed trace
from a timed trace.

232 APPENDIX C. PVS MODEL OF TIMED CSP

project(t : TimedTrace) : Trace
= map(Event)(t)

The functions sigma provide the PVS version of o (‘set of’). They re-
turn the events that are referred to in the (timed) trace.

sigma(t : Trace) : SAlphabet = list2set(t)
sigma(t : TimedTrace) : SAlphabet
= sigma(project(t))

prefix returns true if s1 is a prefix of s2; otherwise false is returned.

prefix(sl : Trace, s2 : Trace) : bool
= EXISTS (s : Trace) :
s2 = append(sl, s)

C.2 Interface

The next four sections define the types ProcessUT , ProcessUF , Pro-
cessTT , and ProcessTF . In each of those sections, we define the CSP
processes for each type of process.

These definitions, with the exception of the process type, have identi-
cal formal parameters. These are described here. In each case, Process
should be substituted with one of the four process types. Other parameter
types that will be encountered are

RenameFn an injective function from Events to Events
VProcess a vector of Process

PMap a function from Process to Process

VPMapa function from VProcess to VProcess

VAlphabet a vector of Alphabet

C.2.1 Base Processes

These processes are defined as sets of observations.

C.2. INTERFACE

Stop (deadlock)

Stop : Process

Chaos (most nondeterministic process)

Chaos(A : Alphabet) : Process

Skip (successful process)

Skip : Process

Run (will engage in any event always)

Run(A : Alphabet) : Process

e: EE — P, (general choice)

GChoice(E : Alphabet)

(EP : [(E) -> Process]) : Process

P[] @ (external choice)

EChoice(P, Q : Process) : Process

P 1@ (internal choice)

IChoice(P, Q : Process) : Process

P; Q (sequential composition)

SComp(P, Q : Process) : Process

P||gQ (hybrid parallel)

Par(E : Alphabet)(P, Q : Process) :

Process

233

234 APPENDIX C. PVS MODEL OF TIMED CSP

P\E' (hide)
Hide(E : Alphabet, P : Process) : Process

Note that the second parameter, E, is the alphabet of that is revealed to
external observers, whereas ' is the set of events that are hidden.

Renaming

Rename(P : Process, F : RenameFn) : Process

pX o F(X) (recursion)

LFP(F : PMap) : Process

VLFP(N : nat)(F : VPMap(N)) : Process

(Recursion is handled in this model by a least fixed point operator.) The
first form is a single process; the second form allows mutually recursive
processes.

P é @ (timeout)

Timeout(t : Time, P, Q : Process) : Process

Note that, in an untimed model, this can be defined as
t
PrQ=(POQ)NQ

C.2.2 Derived Processes

These processes are defined in terms of other processes, rather than as
observations.

a — P (prefix)
Prefix(a : Events, P : Process) : Process

Prefix is defined as a general choice which offers only one event.

C.2. INTERFACE 235

PJ|@Q (synchronized parallel)
SPar(P, Q : Process) : Process

This is defined in terms of Par , with a synchronization alphabet Sigma.

P|||Q (asynchronous parallel)
APar(P, Q) : Process

Again, this is defined in terms of Par, this time with synchronization al-
phabet emptyset .

%4, P; (network parallel)

NPar(N : nat)(A : VAlphabet(N),
P : VProcessUT(N)) : Process

Network parallel takes two vectors of equal cardinality, A, the interfaces,
and P, the processes.

|" P; (general synchronized parallel)
SPar(N : nat)(P : VProcess(N)) : Process

We can define general (rather than binary) variants of many operators.

|||'P; (general asynchronous parallel)

APar(N : nat)(P : VProcess(N)) : Process

|%=P; (general hybrid parallel)

Par(N : nat)(E : Alphabet)(P : VProcess(N))
. Process

There is no reason why we shouldn’t continue to define further general
operators for sequential composition, choice, etc. They can be easily added
to the theories: they have not been at this point because they were not
needed.

236 APPENDIX C. PVS MODEL OF TIMED CSP

Wait t (timed delay)
Wait(t : Time) : Process

Wait is defined thus: .
Wait t = Stop > Skip

Appendix D
IDA Programs

Figures D.1-D.4 are those referred to in Section 6.5.3 (Page 154).

237

238 APPENDIX D. IDA PROGRAMS

er.dg

Figure D.1: State machine for Constant

239

e € R&er.e

W+ {do}

sw.d

ew.d: W « {d}

st R+ W

e € R&er.e

mw.d: W « WU {d},
R+ RU {d}

ew.d: W « {d}

\ mw.d : W « W U {d}

ew.d: W «+ {d}

Figure D.2: State machine for Pool

//O

e € R&er.e

240 APPENDIX D. IDA PROGRAMS

ChannelFamily

s Q) #s < n&ew.d

muw.d : s < s (d)

#s < n&ew.d

#s > 1&mr

mw.d : s < s (d)

#s < n&ew.d

Figure D.3: State machine for ChannelFamily

241

SignalFamily

#s > n&ew.d : s « tail(s)
#s < n&ew.d

#s > n&ew.d : s « tail(s)
#s < n&ew.d

#s > 1&mr :
e < head(s), s « tail(s)

#s > 1&mr :
e < head(s), s <« tail(s)

mw.d :s + s (d)

’VTLE\
-/

#s > n&ew.d : s + tail(s)

#s < n&ew.d

Figure D.4: State machine for SignalFamily

head(s),
tail(s)

242 APPENDIX D. IDA PROGRAMS

Glossary

A

access interface The generalized interface (not just one reader-one writer) for a
MASCOT-3 IDA (Page 79).

activity A (simple or complex) DORIS entity that carries out a task (Page 111).
ADL Activity Description Language [83] (Page 113).

atomic A Lamport variable that appears to have atomic interactions with its en-
vironment [59] (Page 81).

B

BAe British Aerospace.

BNF Backus-Naur Form; used in Chapter 3 (Page 62).

C

CASE Computer Aided Software Engineering.
CCS Milner’s Calculus of Communicating Systems [73, 74] (Page 43).
channel A basic route; both the writer and the reader may be held up (Page 95).

code stub Code written in either Timed CSP, or a language translatable to Timed
CSP (e.g. the language presented in Chapter 5) and used to represent the
actions of a server or activity (Pages 216 and 119).

243

244 GLOSSARY

complex activity An activity that can be decomposed into further DORIS entities
(Page 61).

complex path A multiplexed path that ‘carries” many simple paths (Page 217).

complex port A port that connects to either complex paths, or many simple paths
(Page 61).

complex server A server that can be decomposed into further DORIS entities
(Page 57).

complex window A window that connects to either complex paths, or many simple
paths (Page 61).

constant A basic route; the writer is always held up, but the reader can always
read (Page 92).

CORE Controlled Requirements Expression.

critical A piece of software of which the failure would have ‘serious’ repercus-
sions.

CSP Hoare’s Communicating Sequential Processes [46] (Section 2.4, Page 33).

D

device A collection of IDAs (Page 57).

DIA Data Interaction Architecture (Page 55).

direct link (i.e. direct transputer link) A (direct) link between two transputers.

divergence An observation of a CSP process where an unbounded amount of in-
ternal work occurs (Page 38).

DORIS Simpson’s Data Orientated Requirements Implementation Scheme (Page 53).

dt ‘DORIS-to-Timed CSP’: the bespoke tool described in this thesis (Page 155).

E

embedded A dedicated computer system, typically built into a larger system
(e.g. the engine controller of an aircraft) [12].

GLOSSARY 245

environment A conceptual process with which CSP processes are placed in parallel
composition.

event The basic element of observation in CSP (Page 34).

F

failure An observation of a CSP process consisting of a trace and a refusal set
(Page 37).

FDR Failures-Divergence Refinement [28]; a model checker for CSP (Page 47).
FIFO First in-first out.

FM See Page 28.

formal methods See Page 28.

forwarding process A process that ‘forwards’ IDA interactions across transputer
links (Page 103).

four-slot An implementation of the pool IDA (Pagel06).

FQUN Fully-qualified unique name (Page 73).

H

hierarchical The property of a notation where some constructs can be decom-
posed hierarchically: they can be reduced into other constructs which may
themselves be decomposed.

I

IDA Intercommunication Data Area. A protocol or route; generally interchange-
able with protocol and route.

indirect link (i.e. indirect transputer link) A link between two indirectly-connected
transputers, via a third transputer (which is itself directly linked to the two
transputers).

interface An access interface, window, or port, depending on context.

246 GLOSSARY

internal event An event that is hidden from external observers by the CSP hiding
operator ‘\" (Page 36).

M
MADGE MASCOT-3 Design Generator [65, 66] (Page 48).

MASCOT Modular Approach to Software Construction, Operation, and Test
(Page 30).

mutex Mutual exclusion; only one of many activities competing for a single re-
source may use it at any single time.

@)

observation A CSP process interacts with its environment: an observation is the
entire history of these interactions for a particular execution. The CSP op-
erators can be defined in terms of these observations. The nature of the
observation is dependent on the semantic model being used, e.g. the obser-
vations of a process in the UT model are traces.

OO Object oriented (a programming paradigm) [54].

P

path A connection between specific DORIS entities that represents data flow
(Page 61).

pool A basic route; neither the reader or the writer are held up.
port An interface onto an activity or server.
pragmatics The usability of a language (Section 2.5).

private IDA An IDA which is written to, and read from on the same processor
(Page 80).

process An element of a CSP semantic domain (Section 2.4.1).
processor A CPU.

program A term of the CSP syntax (Section 2.4.1).

GLOSSARY 247

proof script A file of instructions that can be replayed by a theorem prover (e.g. PVS)
to prove a lemma.

protocol Strictly, the specification of an IDA.

PVS ‘Prototype verification system’; a theorem prover [78] (Page 48).

R

real-time A system of which its correctness depends not only on the correctness
of a result but also on the time that the result is produced. This can be in
the dense (R) time domain, or the discrete (Z) time domain. In this thesis,
‘real-time’ generally refers to observations in the R domain.

refusal set A set of events that a CSP process is not prepared to engage in at that
observation (Page 37).

regular A Lamport variable that is a realistic compromise between safe and atomic
variables [59] (Page 81).

remote IDA An IDA which is read on one processor, and written to via an activity
on another processor linked to the first processor via a indirect link (Page 80).

resolved path A simple path representing a sequence of paths connecting a port
to a window via other ports and windows (Section 3.8.1).

route Strictly, an implementation of a protocol. Generally, interchangeable with
IDA and protocol.

RTL Real-Time Logic [53].

S

safe A Lamport variable that returns any type-correct value when a write con-
flicts with a read [59] (Page 81).

safety critical A system of which failure would cause injury or loss of life.

scheduler Software that allocates resources of concurrent programs on the same
processor (Section 5.6).

semantics The assignment of meanings to legal terms of a language (Section 2.5).

248 GLOSSARY

server A specialised activity that interacts with a piece of hardware (Page 79).

shared IDA An IDA which is read on one processor, and written to via an activity
on a processor directly linked to the first processor (Page 80).

signal A basic route; the writer is never held up, but the reader may be (Page 96).
stability An alternative treatment of divergence (Page 38).

subsystem A distinct part of a system when it is decomposed.

syntax The appearance and structure of legal terms of a language (Section 2.5).

system The final product of a software design.

T

tag A two-character string denoting the ‘type” of a DORIS component in the for-
mal semantics (Section 3.3.1).

TCSP See Timed CSP.
TCC See type-correctness condition.

testing The method where an input is given to a system, and the output checked
against the desired value. This is (ideally) repeated for every possible sys-
tem input.

TF The timed-failures model of Timed CSP.

theory A PVS object which can be type-checked, may contain definitions, lem-
mas, and may import other theories.

three-point Modelling interactions with three distinct events: start, “‘middle’,
and end (Section 4.5).

Timed CSP An extension of CSP involving real-time [102] (Section 2.4.3).
timed event The CSP observation consisting of a time value, and an event.
timed failure The CSP observation consisting of a timed trace, and timed refusal.

timed refusal A set of timed events representing those events that a process was
not prepared to engage in at particular times.

GLOSSARY 249

timed trace A sequence of timed events representing the execution of a process.
TLA Lamport’s Temporal Logic of Actions (Page 44).

T-link A Transputer link.

trace A sequence of events representing the execution of a process.

transputer Specifically, a specialised microprocessor manufactured by INMOS,
which communicates with other transputers on a network via interproces-
sor links. Used in this thesis to refer to either a transputer (in the large case
study) or the syntactic element (Transputer) in the distributed-level of the
DIA.

TT The timed-traces model of Timed CSP.

two-point Modelling interactions with two distinct events: a start and an end
(Section 4.3).

type-correctness condition A proof obligation generated by PV'S to ensure type-
correctness, consistency, and termination (Page 144).

U

UF The untimed-failures model of Timed CSP.

UT The untimed-traces model of Timed CSP.

W

window An interface onto an IDA.

250 GLOSSARY

Glossary of Symbols

Timed CSP Programs
(see Sections 2.4.2 and 2.4.3, Pages 35 and 38 respectively.)
Stop The deadlock process.
Skip The successful process.
Wait Delay.
Chaos The most nondeterministic process.
Run The process which will engage in any event.
| Parallel composition.
|| Asynchronous parallel.
la Alphabetized parallel.
Iy, Network parallel.
> Timeout.
v/ Timed Interrupt.
— Prefix.
\ Hiding.
[] External (general) choice.

M Internal (nondeterministic) choice.

251

252 GLOSSARY OF SYMBOLS

u Recursion.

; Sequential composition.

Notation for Traces and Refusal Sets
tr A trace.

rf A refusal set.

7 A timed trace.

N A timed refusal set.

C Refined by....

Traces Traces of a program.

sat Satisfaction.

Event count.

Y. The universal set of events.

v The termination (success) event.

“ Concatenation of traces.

1 Restriction of a (timed or untimed) trace or refusal set to an alphabet.
1 Restriction of a timed trace or refusal set to a time interval.

o Set of events in a (timed) trace.

seq Set of sequences of a given set of events.

=< Subtrace.

<& Prefix of a trace.

< Information order.

first First event in a (timed) trace.

last Last eventin a (timed) trace.

GLOSSARY OF SYMBOLS 253

begin First time in a timed trace.

end Last time in a timed trace.

head First (timed) event in a (timed) trace.
foot Last (timed) event in a (timed) trace.
R The set of real numbers.

Z The set of integers.

0 Kronecker deltal.

BNF Notation

(...) Syntactic terms.

{...} Zero or more terms.
{...}* One or more terms.
[...] Optional term.

| Choice.

(...) Grouping.

“...” Literal.

(newline) One or more newlines.

DORIS Semantics

[...] Semantic brackets.

S Top-level tuple.

IThe Kronecker delta is defined as

5(e) = { 1 if eis true

0 otherwise

254 GLOSSARY OF SYMBOLS

SY System construct.

CS Complex server construct.

CA Complex activity construct.

DV Device construct.

M Meaning function of a system.

C Meaning function of a complex component.

H Hiding alphabet for a complex component.

B CSP meaning for a basic component.

A CSP meaning of an activity code stub.

NCS CSP meaning for a complex server of a given name.
NCA CSP meaning for a complex activity of a given name.
NDV CSP meaning for a device of a given name.

NSS Code stub for a simple server of given (Name).

NAS Code stub for a simple activity of given (Name).

NRS Code stub for a route of given (Name) and (Route_Type).
F Fully qualified unique name of a simple server, simple activity, or route.

R The route and port or window associated with a server or activity’s port or
window.

Scheduler A scheduler process.

tock Clock ticking.

Bibliography

[1]

2]

3]

Martin Abadi and Leslie Lamport. Conjoining specifications. Tech-
nical Report 118, DEC SRC, December 1993.

The specification of components of a system using TLA [60] is illustrated.
In this report, the specification of the system is the conjunction of the spec-
ifications of the components.

The differences between decomposing a complete system, and composing
open parts of a system together are discussed. (A complete system is one
which is totally self-contained; it may be observed, but does not interact
with the observer. Open systems interact with their environment.)

This paper is very detailed, and is specific to Lamport’s TLA.

James Armstrong and Leonor Barroca. Specification and verification
of reactive system behaviour: The railroad crossing example. Real-
Time Systems, 10(2):143-178, 1996.

This paper combines Timed Statecharts, RTL, and Proofpower HOL. Spec-
ification and verification of reactive system behaviour is described in a
human-readable rigorous style, and supplemented by automated (formal)
proofs.

Luciano Baresi and Maruo Pezzé. Toward formalizing structured
analysis. ACM Transactions on Software Engineering and Methodology,
7(1):80-107, Jan 1998.

This paper asserts that the advantages of structured analysis (SA) are lim-
ited by the informality of the notations used, leading to ambiguous speci-
fications. The assertion is illustrated with a list of such features from com-
mon notations.

255

256

[4]

[7]

BIBLIOGRAPHY

Jon Barwise. Mathematical proofs of computer system correctness.
Notices of the American Mathematical Society, 36:844-851, 1989.

This paper summarizes the main arguments concerning the concept of pro-
gram verification. In particular, it starts with the assertions in Fetzer’s pa-
per [29], which claims that the aims of program verification are, in princi-
ple, quite impossible.

Although the author disagrees with Fetzer’s claims, (and indeed states ‘I
think that program verification is an effective way of getting more reliable
programs’) he sounds a note of caution concerning the modelling of com-
puter systems.

Twan Basten and Jozef Hooman. Process algebra in PVS. Technical
Report 98/10, Eindhoven University of Technology, 1998.

This paper explores two approaches to using PVS to support an ACP-like
process algebra (one using ‘rewrite’ definitions; the other using datatypes
and equivalence relations). The authors conclude that such use is feasible,
and identify work required (e.g. defining the underlying theories of the
process algebra).

Michael von der Beeck. A comparison of Statecharts variants. In
H. Langmaack, W.P. de Roever, and]. Vytopil, editors, Proceedings
of the 3rd International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer
Science, pages 128-148. Springer-Verlag, 1994.

This paper describes briefly the problems of the Statecharts formalism [40].
It also surveys 21 variants in 13 papers [14, 24, 39, 40, 49-51, 57, 64, 68, 69, 85,
90], and notes the differences between them. This is useful as a reference

paper.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. UPPAAL: A tool suite for automatic verification of
real-time systems. In 4th DIMACS Workshop on Verification and Con-
trol of Hybrid Systems, October 1995.

The authors present their tool, UPPAAL, which takes timed automata
and can perform safety and (bounded) liveness checks. It has an X Win-
dows interface, and is able to cope with relatively large systems by using
constraint-solving methods.

BIBLIOGRAPHY 257

[8]

[9]

[11]

Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of
formal methods. IEEE Software, 12(4):34-41, July 1995.

Another seven myths to supplement Hall’s original seven [36]. The seven
myths in this paper are:

1. Formal Methods delay the development process.

2. Formal Methods are not supported by tools.

3. Formal Methods mean forsaking traditional engineering design
methods.

Formal Methods only apply to software.
Formal Methods are not required.

Formal Methods are not supported.

N e

Formal Methods people always use Formal Methods.

PJ. Brooke, J.L. Jacob, and].M. Armstrong. An analysis of the four-
slot mechanism. In Proceedings of the BCS-FACS Northern Formal
Methods Workshop, electronic Workshops in Computing. Springer-
Verlag, 1996.

This paper models Simpson’s four-slot mechanism in CSP [46,108, 109].
This four-slot mechanism is an implementation of the DORIS pool [110].

It is noted that even in this small model without real time, the analysis of
the mechanism is difficult due to the size of the state space.

Phillip J. Brooke. Literature survey on hierarchical timed tran-
sition systems for high-integrity real-time systems, 1996. First
Year MPhil/DPhil Qualifying Dissertation, Department of Com-
puter Science, The University of York; also issued as BAe report
DCSC/BG/96/6.

This literature survey covers the semantics of graphical design notations
such as Statecharts [39] in the context of critical systems. Process algebras
are examined as a semantic domain for graphical notations.

Jeremy Bryans and Steve Schneider. CSP, PVS and a recursive au-
thentication protocol. DIMACS Workshop on Formal Verification of
Security Protocols, September 1997.

This paper describes an authentication protocol, and the analysis of that
protocol using CSP. The proofs are mechanized using PVS.

258

[12]

[14]

[15]

[17]

BIBLIOGRAPHY

Jean Paul Calvez. Embedded Real-Time Systems. Wiley, 1993.

This book introduces the Electronic Systems Design Methodology (MCSE
— from its original French name). As the title suggests, this is aimed at
embedded real-time systems.

Albert John Camilleri. Mechanizing CSP in HOL. IEEE Transactions
on Software Engineering, 16(9):993-1004, 1990.

This is an optimistic paper concerning the embedding of (traces) CSP in
the HOL theorem prover. The approach is similar to later papers on em-
bedding CSP in PVS, except that the structure of the programs is used as a
tirst-class datatype.

Towards the end of the paper, the seperate definition of the syntax of CSP
permits an easy definition of failures and divergences semantics. Camil-
leri comments that the increasing power of theorem provers should enable
reasoning about more complex semantics.

A. Classen. Modulare Statecharts: Ein formaler rahmen zur hierar-
chischen prozefispezifikation. Master’s thesis, Aachen University of
Technology, 1993.

Referred to in von der Beeck’s paper [6].

Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mad-
nayam Srivas. A tutorial introduction to PVS. Presented at WIFT "95:

Workshop on Industrial-Strength Formal Specification Techniques,
April 1995.

This is an introduction, tutorial, and reference to the PVS theorem prover.

P. Curwen, S. Mallon, and T. Smith. The official handbook of the
CORE method. Technical Report DCSC/BG/91/25, DCSC, Septem-
ber 1991.

‘CORE’ is the ‘Controlled Requirements Expression” method.

Defence standard 00-55. MoD CIS Procurement Board, July 1995.
Draft revision (version 6).

This document sets out the requirements (and related guidance) for Safety
Related Software used in Defence Equipment in the UK armed forces. This
standard has been informally adopted in other domains, e.g. railways and
civil aviation.

BIBLIOGRAPHY 259

[18]]J. Davies, D.M. Jackson, G.M. Reed,].N. Reed, A.W. Roscoe, and S.A.
Schneider. Timed CSP: Theory and practise. In Real-Time: Theory in

Practise, volume 600 of Lecture Notes in Computer Science, pages 640—
675. Springer-Verlag, 1992.

This paper is an overview of work on Timed CSP performed at Oxford
University.

[19] Jim Davies and Steve Schneider. A brief history of Timed CSP. The-
oretical Computer Science, 138:243-271, 1995.

This is an updated version of the previous paper of the same title [20].

[20] Jim Davies and Steve Schneider. A brief history of Timed CSP. Tech-
nical Report PRG-96, Programming Research Group University of
Oxford, April 1992. Also available by FTP from ftp.comlab.ox.ac.uk.

This paper is ‘a comprehensive introduction to the language of Timed
CSP”.

[21] Jim Davies and Steve Schneider. Real-time CSP. Available by FTP
from ftp.comlab.ox.ac.uk.

A real-time variant of CSP is described in detail. It is illustrated with two
case studies: a distributed watchdog timer, and the railroad crossing ex-
ample.

[22] Jim Davies and Steve Schneider. Using CSP to verify a timed proto-
col over a fair medium. Available by FTP from ftp.comlab.ox.ac.uk.

A timed failures model of CSP that permits infinite observations is intro-
duced so that fairness can be adequately treated. The example used in this
paper is the alternating bit protocol.

[23] Jim Davies. Specification and Proof in Real-Time Systems. DPhil thesis,
Oxford University Computing Laboratory Programming Research
Group, 1991. PRG-93.

Davies substantially extends Reed and Roscoe’s work [92]. The motivation
for this is to enable the specification and proof of complex real-time sys-
tems. This thesis is an excellent presentation of the language of TCSP.

[24] N. Day. A model-checker for Statecharts: Linking CASE tools with
formal methods. Technical Report 93-95, Department of Computer

260

[29]

BIBLIOGRAPHY

Science, University of British Columbia, Vancouver, Canada, Octo-
ber 1993.

Of particular interest in this reference is Chapter 2, which covers the se-
mantic issues of Statecharts. This includes a discussion of what actually
constitutes a ‘step’.

Edsger Wybe Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag, 1989.

This text is “a reasonable self-contained theory of predicate transformer
semantics”. Predicate transformers are introduced as a means of defining
programming language semantics in a way that would directly support
the systematic development of programs from their formal specifications.
The notions of ‘weakest precondition’, “‘weakest liberal precondition’, and
‘strongest postcondition” are introduced. The presentation of proofs is ele-
gant.

Bruno Dutertre and Steve Schneider. Using a PVS embedding of
CSP to verify authentication protocols. In International Conference on
Theorem Proving in Higher Order Logics, 1997.

This is a report of the use of an embedding of the traces model of CSP in
PVS. This embedding is subsequently used in the verification of security
protocols.

Bruno Dutertre and Steve Schneider. Embedding CSP in PVS: An
application to authentication protocols. Technical Report CSD-TR-
97-12, Royal Holloway, University of London, 1997.

This is a detailed account of using CSP embedded in PVS as applied to
authentication protocols.

Formal Systems (Europe) Ltd. Failures-divergence refinement.
http://www.formal.demon.co.uk/, October 1997.

FDR is a model checker that uses a widely-accepted machine-readable
CSP [46] syntax, and performs refinement (and other) checks upon models.

This document describes the use of this tool.

James H. Fetzer. Program verification: The very idea. Communica-
tions of the ACM, 31(9):1048-1063, September 1988.

BIBLIOGRAPHY 261

This paper provoked a long-running argument: it asserted that the whole
concept of trying to verify programs was flawed because a real program
running on a real computer could not be appropriately modelled.

Simon Fowler. A Development Method for Trusted Real-Time Kernels.
DPhil thesis, Department of Computer Science, University of York,
1998.

Fowler introduces a PVS model of RTL [53], and uses this to develop a
provable trusted real-time kernel.

Eric Goubault and Thomas P. Jensen. Homology of higher dimen-
sional automata. In CONCUR 92, volume 630 of Lecture Notes in
Computer Science, pages 254-268. Springer-Verlag, 1992.

This paper describes the use of geometry, specifically, higher dimensional
automata (HDA), for describing concurrency. HDAs are a generalisation of
nondeterministic finite automata.

T.R.G. Green and M. Petre. When visual programs are harder to
read than textual programs. In G.C. van der Veer, M.]. Tauber,
S. Bagnarola, and M. Antavolits, editors, Human-Computer Interac-
tion: Tasks and Organisation. Proceedings of ECCEG6 (6th European Con-
ference on Cognitive Ergonomics). CUD, 1992.

This paper starts with the comment that

“Claims for the virtues of visual programming languages have
generally been strong, simple-minded statements that visual
programs are inherently better than textual ones.”

The paper continues with a comparison between textual and visual pro-
grams, and concludes that the visual programs are harder to comprehend
(at least in this case).

T.R.G. Green and R. Navarro. Programming plans, imagery and vi-
sual programming. In Proceedings of INTERACT 95, 1995.

This paper discusses the mental models that programmers using different
types of language use (i.e. textual languages vs. visual languages).

Alan Grigg. End-to-end timing analysis case study: ASRAAM EPU.
Technical Report DCSC/TR/97/13, University of York DCSC, De-
cember 1997. Version 1.

262 BIBLIOGRAPHY

This is a report of the application of a form of timing analysis to a case
study. The case study concerned is based on the same system as the large
case study of this thesis (Section 8.5). The analysis is based on end-to-end
timing.

[35] Corin A. Gurr. Supporting formal reasoning for safety-critical sys-
tems. High Integrity Systems, 1(4):385-396, 1995.

This paper combines both Milner’s CCS and Statecharts. It also briefly dis-
cusses the reasons why formal methods are not widely used. A correspon-
dence from certain CCS constructions to Statecharts is devised, and is used
to investigate small fragments of specifications.

[36] J.A.Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19,
September 1990.
This paper describes seven ‘myths’ of formal methods, and explains why
they do not hold. The myths are:

Formal Methods can guarantee that software is perfect.

Formal Methods are all about program proving.

Formal Methods are only useful for safety-critical systems.

Formal Methods require highly trained mathematicians.

Formal Methods increase the cost of development.

Formal Methods are unacceptable to users.

N oS GO N

Formal Methods are not used on real, large-scale software.

[37] Drew Hamilton. Programming languages do make a difference.
Speech at Tri-Ada "97, November 1997.

This speech covered topics primarily relating to the Ada audience, but also
touched upon the realm of safety critical software, and how it should be
designed and implemented.

[38] Michael R. Hansen and Zhou Chaochen. Semantics and complete-
ness of duration calculus. In Real-Time: Theory in Practise, volume 600
of Lecture Notes in Computer Science, pages 209-225. Springer-Verlag,
1992.

The Duration Calculus (an extension of the Interval Temporal Logic) is de-
scribed. A formal syntax and denotational semantics is then given. The

BIBLIOGRAPHY 263

[43]

Duration Calculus has been used to give a semantics to a real-time variant
of Hoare’s CSP [46].

D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. On the formal
semantics of Statecharts. In Proceedings of 2nd IEEE Symposiom on
Logic in Computer Science, pages 54-64, 1987. Extended abstract.

This paper suggests a syntax and operational semantics for Statecharts [40].
There are formal treatments of the syntax and semantics in an appendix. Of
particular interest is the definition of a ‘step” as a sequence of micro-steps,
and the distinction between external and internal events.

This is one of many attempts at defining the semantics of Statecharts, and
it exhibits the problem of generating the negation of the triggering event
on a transition.

D. Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8:231-274, 1987.

This paper by Harel is a full description of the Statechart formalism, as it
was in 1987.

E. C. Hehner and C. A. R. Hoare. A more complete model of com-
municating processes. Theoretical Computer Science, 26:105-120, 1983.

Hoare’s previous work on CSP is supplemented with predicate definitions.
These are consistent with the earlier axioms and proof rules, and are more
powerful to reason with.

Matthew Hennessy. The Semantics of Programming Languages: An El-
ementary Introduction using Structural Operational Semantics. Wiley,
1990.

Hennessy’s exposition is clear and understandable. It covers syntax and
basic mathematical concepts, and then surveys several semantic theories,
which he calls: concrete operational semantics, evaluation semantics, com-
putation semantics, and denotational semantics. The book has a large num-
ber of examples, although some terminology differs from other texts.

M. Hennessy. Concurrent testing of processes. In CONCUR 92, vol-
ume 630 of Lecture Notes in Computer Science, pages 94-107. Springer-
Verlag, 1992. (extended abstract).

264

BIBLIOGRAPHY

Hennessy develops a non-interleaving semantics based on actions with a
strictly positive duration in time. The language is based on CCS [74], and
describes a notion of testing known as ‘Characteristic ST-testing’.

Martin Hesketh. Synthesis of Petri box expressions from Petri boxes.
University of Newcastle upon Tyne.

This paper covers the problem of translating (synthesising) from Petri
Boxes (labelled Petri nets) to Box expressions (a semantic domain). Hes-
keth proposes an algorithm for this problem.

C.A.R. Hoare and]. He. Unifying Theories of Programming. Prentice-
Hall, 1998.

This book demonstrates that different specification and proof methods can
be used for different parts of a design project.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall In-
ternational UK, 1985.

This classic text is a description of Hoare’s Communicating Sequential Pro-
cesses (CSP). CSP is a process algebra which is useful for the study of con-
currency and communication. A system evolves by interacting with its en-
vironment via events. Concurrent components are able to synchronise on
these events.

The language of CSP is very rich, enabling the modelling of diverse sys-
tems. A proof theory is provided, and there a several semantic models
(traces, failures, and divergences).

C.A.R. Hoare. Algebraic specifications and proofs for communicat-
ing sequential processes. In M. Broy, editor, Logic of Programming and
Calculi of Discrete Design, volume F36 of NATO ASI Series. Springer-
Verlag, 1987.

In this paper, Hoare defines processes by their algebras, similar to the def-
inition of the natural numbers using the Peano axioms.

C. Michael Holloway and Ricky W. Butler. Impediments to indus-
trial use of formal methods. IEEE Computer, 29(4):25-26, April 1996.

This short article (one of a series on formal methods in this journal issue)
discusses why formal methods have not been used greatly in industry. The
authors identify three major impediments:

BIBLIOGRAPHY 265

[49]

[50]

[51]

1. Inadequate tool support.
2. Inadequate examples.

3. The gulf between industry and research.

J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A compositional ax-
iomatization of Statecharts. Theoretical Computer Science, 101(2):289—
335, 1992.

This paper describes a compositional axiomatisation for Statecharts. It is
large, and covers most areas of Statecharts. The authors state: ‘Although
the meaning of a statechart is usually intuitively clear, there are a few cases
where the specified behaviour is not completely obvious.’

C. Huizing, R. Gerth, and W.P. de Roever. Modelling Statecharts
behaviour in a fully abstract way. In CAAP 88, volume 299 of Lecture
Notes in Computer Science, pages 271-294. Springer-Verlag, 1988.

This paper describes a syntax for a restricted version of Statecharts [40].
A denotational semantics in terms of sets of ‘history triples’ (each cor-
responding to a possible execution of a Statechart) is given. The authors
claim that this semantics is compositional.

C. Huizing and R. Gerth. Semantics of reactive systems in abstract
time. In Real-Time: Theory in Practise, volume 600 of Lecture Notes in
Computer Science, pages 291-314. Springer-Verlag, 1992.

This paper describes three criteria for real-time reactive systems: respon-
siveness, modularity, and causality. The difference between transforma-
tional and reactive systems is described: the former read their input; pro-
duce a (possibly nondeterministic) output, then terminate. The latter main-
tain an interaction with the environment.

In particular, the authors note that several attempts have been made to
formalise the development of reactive systems (e.g. Statecharts), and that
there have been problems. It is asserted that the three criteria cannot be
combined in one semantics. The three criteria are described are:

Responsiveness ‘Meaning that a system’s output comes simultaneously
with the input that causes it’. This is essentially the synchrony hy-
pothesis [90].

Modularity ‘All parts of the system should be treated symmetri-
cally...every part of the system should have the same view of the

266

[55]

BIBLIOGRAPHY

events occurring in the total system at any moment’. This leads to the
notion of communication by immediate broadcast.

Causality There must be some input event preceding any ‘internal” event.

A simple reactive language is then described, and five semantics proposed.
None of them satisfy all three criteria. The proposed solution is that the
criteria are satisfied at different ‘levels” of view.

Michael Jackson. Software Requirements and Specifications. Addison-
Wesley, 1995.

This book contains 75 short articles concerning the principles and tech-
niques of software engineering. The comments on the roles of mathematics
and formalism are particularly interesting.

Farnam Jahanian and Aloysius K. Mok. Safety analysis of timing
properties on real-time systems. IEEE Transactions on Software Engi-
neering, 12(9):890-904, September 1986.

This paper introduces Real-Time Logic, a formalism which is intended to
be ‘especially amenable to reasoning about the timing behaviour of sys-
tems’.

Pankaj Jalote. An Integrated Approach to Software Engineering.
Springer, 2nd edition, 1997.

This book is an introduction to software engineering, and is aimed at un-
dergraduates. Its emphasis is on a case-study approach in which a project
is developed through the course of the book. All typical software activ-
ities, including quality assurance and control, are described. The author
introduces metrics for controlling and assessing the software process.

C. B. Jones. Accomodating interference in the formal design of con-
current object-based programs. Formal Methods in System Design,
8:105-122, 1996.

Ideally, complex concurrent systems would be composed of separate com-
ponents. However, they tend to interfere with each other to the detriment
of the design. Jones describes two approaches: minimizing the interference
by isolating components; and living with the problem by documenting and
proving the design.

BIBLIOGRAPHY 267

[56]

[57]

[59]

Andrew Kay. A theory of rely and guarantee for timed CSP. Techni-
cal report, Oxford University Computing Laboratory Programming
Research Group, November 1993.

This paper introduces the notion of CSP programs satisfying a specification
of the form
P sat (Reply p = Guaranteep)

This means that a weaker specification can be given, which is easier to
implement, provided that the environment satisfies Reply p.

Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their
textual representation. In Lecture Notes in Computer Science, volume
571, pages 591-620. Springer-Verlag, 1991.

This paper defines a textual representation for Statecharts. Transition rela-
tion rules are defined with diagrams.

Ralf Kneuper. Limits of formal methods. BCS Formal Aspects of Com-
puting, 9(4):379-394, 1997.

Kneuper gives a realistic discussion about how formal methods can be re-
alistically applied in the ‘real world’. In particular, he highlights the prob-
lem with scaling-up small-grain mathematical models of systems without
encapsulation.

Leslie Lamport. On interprocess communication. Technical Re-
port 8, DEC SRC, 1985.

Lamport describes a formalism which is not based on atomic actions for
specifying and reasoning about concurrent systems. System execution is
considered to consist of a set of operation executions (which are not as-
sumed to be atomic) and certain temporal precedence relations on the op-
eration executions. A ‘precedes’ B is taken to mean that all actions of A
occur before any actions of B; A ‘can affect’ B means that some action of A
precedes some action of B.

Communication is divided into ‘transient’ and ‘persistent’ types. It is
claimed that communication between truly asynchronous processes must
be persistent. Requiring mutual exclusion for some operations will, at
some lower level, require the problem of concurrent access to be addressed.
Three types of register which permit concurrent reads and writes are de-
fined: safe (will get a type-valid value), regular (will get the previous or

268

[63]

BIBLIOGRAPHY

the new value), and atomic (reads and writes appear to occur in a definite
order). Lamport then describes the construction of stronger registers from
weaker registers.

Leslie Lamport. The temporal logic of actions. Technical Report 79,
DEC SRC, December 1991.

This paper presents the temporal logic of actions (TLA). It is a small logic,
but powerful, as Lamport illustrates. Specifications and systems are de-
scribed in the same language, thus it is easier to reason about satisfaction
(and also refinement).

Leslie Lamport. TLA in pictures. Technical Report 127, DEC SRC,
September 1994.

Lamport describes predicate-action diagrams, which are interpreted in
terms of TLA [60]. The diagrams are closer to TLA than they are to tra-
ditional state-transition diagrams.

Leslie Lamport. Proving possibility properties. Technical Report
137, DEC SRC, December 1995.

This short report discusses the use of TLA [60] for proving properties in a
traces model.

J. van Leeuwen. Handbook of Theoretical Computer Science, volume B:
Formal Methods and Semantics. MIT Press/Elsevier, 1990.

A large volume, covering topics such as automata, rewriting, functional
programming, the lambda calculus, type systems, semantics, temporal and
modal logics, and distributed and concurrent issues. An excellent reference
text.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements specification for process-control
systems. IEEE Transactions on Software Engineering, 20(9):684-707,
September 1994. Also Technical Report 92-106 (University of Cali-
fornia).

This paper uses the TCAS II (aircraft collision avoidance system) as a case
study. It notes that formal requirements need to be described in a way un-
derstandable by applications specialists (i.e. not formal methods special-
ists). The approach given is to model the ‘black-box” behaviour of the sys-
tem, the interface, and no more.

BIBLIOGRAPHY 269

The paper includes the following design criteria for such a language:

e blackbox

e minimal

e semantically simple

e coherent, consistent, and concise

¢ unambiguous underlying language with a formal founda-
tion for analysis

e readable, reviewable, and usable by application experts
and developers

o flexible notations (graphical, tabular, and symbolic) tied to
the best way to provide a particular type of information

e readability given priority over writeability

e user needs given priority over personal preferences

¢ information exposure

The Requirements State Machine Language (RSML) is described. The au-
thors note that certain parts of Statecharts were left out, e.g. history and
event selectors. Several features that are used well include AND/OR ta-
bles in DNF (disjunctive normal form), and transition buses (another way
of reducing the number of transition arrows on a diagram). A comparison
of the step semantics of RSML and Statecharts is given.

Matra BAe Dynamics. User Guide for the MASCOT 3 Design Generator
(MADGE), October 1994. Issue 7.

MADGE is a tool which allows software designs to be captured graphically.
MADGE supports the MASCOT-3 method, with extensions drawn from
DORIS (primarily the routes which are more developed in DORIS than
MASCOT).

In addition to the X-Windows interface and MASCOT design features, the
tool provides version control and file management facilities, and provision
for code generation, including the generation of SPARK Ada code.

Matra BAe Dynamics. MASCOT Design Generator (MADGE) Release
Notification, October 1997. Issue 9.

This document updates previous MADGE manuals [65] to correspond
with the current version of the MADGE tool.

270

[67]

[69]

[70]

BIBLIOGRAPHY

Joint IECCA and MUF Committee on MASCOT (JIMCOM). The Of-
ficial Handbook of MASCOT, June 1987. Version 3.1, Issue 1, Crown
Copyright.

This document sets out the MASCOT-3 method. This is aimed at building
concurrent, real-time systems in a structured, hierarchical manner. A de-
sign notation is given, as well as comments about development facilities,
run-time features, and an overall ‘method’. (MASCOT is the ‘Modular Ap-
proach to Software Construction, Operation, and Test’.)

A. Maggioli-Schettini and A. Peron. Semantics of full Statecharts
based on graph rewriting. In 5th International Workshop on Graph
Grammars and their Application to Computer Science, 1994.

Referred to in von der Beeck’s paper [6].

F. Maraninchi. Operational and compositional semantics of syn-
chronous automaton compositions. In CONCUR '92, volume 630
of Lecture Notes in Computer Science, pages 550-564. Springer-Verlag,
1992.

This paper describes the Argos language, which is based on the state-
transition paradigm. Level-crossing transitions are suppressed, in contrast
to Statecharts [40]. There is a modular decomposition through the hierar-
chy. The operational semantics are compositional, and refinement of spec-
ifications is possible.

John A. McDermid. Software Engineer’s Reference Book. Butterworth
Heinemann, 1991.

This handbook is a collection of specialist articles covering the theory and
practise of software engineering.

Nicholas A. Merriam and Michael D. Harrison. Evaluating the in-
terfaces of three theorem proving assistants. In Proceedings of DSV-
IS°96, 1996.

This paper explores how users interact with a theorem prover. Concepts
such as planning and reuse in the context of proofs are discussed.

George Milne. Formal Specification and Verification of Digital Systems.
McGraw-Hill, 1994.

BIBLIOGRAPHY 271

[75]

[76]

[78]

This book describes several complementary approaches to formal specifi-
cation and verification. It is applied to hardware design, and uses VHDL,
HOL, and Circal (a process algebra for circuit design).

Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

This is Milner’s original exposition of CCS. See his 1989 book [74] for fur-
ther details.

Robin Milner. Communication and Concurrency. International Series
in Computer Science. Prentice Hall, 1989.

The Calculus of Communicating Systems (CCS) is a classic mathematical
model of concurrency and communication.

John C. Kelly. Formal Methods Specification and Verification Guide-
book for Software and Computer Systems, Volume I: Planning and
Technology Insertion. NASA, July 1995. Available via HTTP:
http://eis.jpl.nasa.gov/quality/Formal_Methods/.

This guidebook is an excellent general introduction to Formal Methods,
and includes a comprehensive list of associated tools.

John C. Kelly. Formal Methods Specification and Analysis Guidebook
for the Verification of Software and Computer Systems, Volume II: A
Practitioner’s Companion. NASA, May 1997. Available via HTTP:
http://eis.jpl.nasa.gov/quality/Formal_Methods/.

This volume gives a more mathematically-inclined introduction to Formal
Methods. Chapters on formal specification and formal analysis include
comprehensive introductions to a wide-range of topics.

Peter G. Neumann. Computer-Related Risks. Addison-Wesley, 1995.

Neumann gives a technical account of many computer mishaps, and im-
portantly, explains how these mishaps could have been avoided. This book
addresses similar material to Wiener’s [119], but with more technical anal-
ysis.

S. Owre, N. Shankar, and J.M. Rushby. The PVS Specification Lan-
guage. Computer Science Laboratory, SRI International, April 1993.

A reference manual for the PVS specification language.

272

[79]

[83]

[84]

BIBLIOGRAPHY

S. Owre, N. Shankar,].M. Rushby, and D.W.]. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International,
September 1998.

A reference manual for the PVS specification language.

S. Owre, N. Shankar, .M. Rushby, and D.W.J. Stringer-Calvert.
PVS System Guide. Computer Science Laboratory, SRI International,
September 1998.

A description of the PVS system.

Richard F. Paige. When are methods complementary. Accepted for
publication in Information and Software Technology, 1999.

This paper discusses when (formal) methods integration should be carried
out, as opposed to how to carry out methods integration. It is a relatively
brief note describing some of the issues involved.

Richard F. Paige. Formal Method Integration via Heterogeneous Nota-
tions. PhD thesis, Graduate Department of Computer Science, Uni-
versity of Toronto, 1997.

This thesis discusses ‘method integration” in the domain of formal (and
‘semi-formal’) methods. The approach is based on ‘heterogeneous nota-
tions” — compositions of compatible notations. Examples in the areas of
system specification, design and implementation are given, and a general
‘meta-method’ is constructed.

Stephen Paynter, Jim Armstrong, and Jan Haveman. ADL: The ac-
tivity description language. Draft; intended to be published in BCS
Formal Aspects of Computing, October 1997.

The Activity Description Language (ADL) gives a (graphical) notation with
a formal RTL semantics that can be used to define the activities in the
DORIS method.

Stephen Paynter. The Formalisation of Software Development Using
MASCOT. PhD thesis, Mathematics Department, Southampton Uni-
versity, September 1993.

This thesis uses graphical grammars to give a CSP-based semantics to a
subset of MASCOT-3.

BIBLIOGRAPHY 273

[85]

A. Peron. Synchronous and asynchronous models for Statecharts.
Technical Report TD-21/93, Dipartimento di Informatica, Universita
di Pisa, Italy, 1993.

Referred to in von der Beeck’s paper [6].

Carsta Petersohn and Luis Urbina. A timed semantics for the State-
Mate implementation of Statecharts. In FME "97: Industrial Applica-
tions and Strengthened Foundations for Formal Methods, volume 1313
of Lecture Notes in Computer Science, pages 553-572. Springer-Verlag,
1997.

This paper gives a faithful model of the Statemate variant of the Statechart

language.

M. Petre, A.F. Blackwell, and T.R.G. Green. Cognitive questions
in software visualisation. In J. Stasko, J. Domingue, B. Price, and
M. Brown, editors, Software Visualisation: Programming as a Multi-
Media Experience. MIT Press, 1997.

Petre et al. describes ‘Software visualisation’, and raises some open ques-
tions on the subject, e.g.

e What is software visualisation suitable for?

e Does visualisation mean pictures?

e Why are experts often resistant to other people’s visualisations?

e Are visualisations trying to provide a representation that is more ab-
stract, or more concrete?

¢ What do we know about perception, anyway?
e When are two representations better than one?

e Why do people like graphical widgets?
This is a thought-provoking paper.

Marian Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. Communications of the ACM, 38(6):33—-
44, JTune 1995.

This article discusses how textual and visual representations differ. It notes
that different viewers may see different meanings in a given picture. A

274

[89]

[93]

BIBLIOGRAPHY

number of arguments are referred to, including the phenomena of ‘sec-
ondary notation’ (layout, typographic cues, and so on). It is suggested that
the freedom of expression afforded by graphical notations also allows for
greater mis-cueing and confusion.

C.A. Petri. Communication with automata. Technical report, Prince-
ton University, 1966. Translation by Clifford F. Greene, Jr. of original
1962 text (Kommunikation mit Automaten).

This is the seminal paper on the subject of Petri nets.

A. Pnueli and M. Shalev. What is in a step: On the semantics of stat-
echarts. In Proceedings of the IEEE Symposium on Theoretical Aspects
of Computer Science, volume 526 of Lecture Notes in Computer Science,
pages 244-264. Springer-Verlag, 1991.

This paper proposes an operational semantics for Harel’s Statecharts [40].
Notions such as the synchrony hypothesis, causality, expressing priorities
and global consistency are considered.

An informal description of Statecharts is followed by two definitions of
‘step’. This is an improvement on an earlier proposed semantics [39].

Vaughan Pratt. Modelling concurrency with partial orders. Avail-
able by FTP from boole.stanford.edu, 1986.

This paper models concurrent systems with an algebra based on partially
ordered multisets (pomsets). The author does not give any formal rules for
reasoning with these constructs, but an example of a workshop problem
shows that for at least some types of problem, the algebra permits elegant
expressions. In particular, notions such as continuous time and hierarchy
are easily incorporated. This is a very abstract formulation.

G.M. Reed and A.W. Roscoe. A timed model for communicating se-
quential processes. In Proceedings of ICALP’86, volume 226 of Lecture
Notes in Computer Science, 1986.

Referred to by a number of authors, including Davies [23] and Schneider
[100].

G.M. Reed. A uniform mathematical theory for real-time distributed com-
puting. DPhil thesis, Oxford University, 1988.

Referred to by a number of authors, including Davies [23] and Schneider
[100].

BIBLIOGRAPHY 275

[94]

[95]

[96]

[97]

Wolfgang Reisig. Petri Nets. Springer-Verlag, 1985.

This is a reasonable introduction to Petri nets [89].

A.W. Roscoe. The Theory and Practice of Concurrency. Series in Com-
puter Science. Prentice Hall, 1998.

Roscoe covers untimed CSP in much detail, with many examples, both
large and small. This book includes several chapters on different seman-
tic styles, and also discusses mechanization (with FDR). Discrete time
(through a tock event) is covered, but not real-time CSP.

J.M. Rushby and D.W/J. Stringer-Calvert. A less elementary tutorial
for the PVS specification and verification system. Technical Report
CSL-95-10, Computer Science Laboratory, SRI International, August
1996.

This tutorial introduces some of the more powerful features of PVS.

John Rushby. Formal methods and their role in the certification of
critical systems. Technical Report CSL-95-1, Computer Science Lab-
oratory, SRI International, March 1995.

This report introduces formal methods, and explains how they can be used
to aid in the specification, verification, and ultimately, the certification of
(in this case) civil aviation computer systems.

Bryan Scattergood. Tools for CSP and Timed CSP. DPhil thesis, Oxford
University Computing Laboratory Programming Research Group,
1995. (Draft thesis).

This thesis deals with the issues that must be addressed before useful tools
can be developed for Timed CSP. These include formally defining a syntax
for the language that can be parsed. This must also include stating how the
many mathematical expressions that are often used in blackboard exposi-
tions are expressed for the machine.

David A. Schmidt. Denotational semantics. Allyn and Bacon, Inc.,
1986.

Schmidt starts by stating that a programming language consists of syntax,
(the appearance and structure of sentences,) semantics, (the assignment of
meanings to the sentences,) and pragmatics, (the usability of the language).

276

[100]

[101]

[102]

[103]

[104]

BIBLIOGRAPHY

Syntax is briefly addressed in the first chapter, with a description of
Backus-Naur form (BNF). The remainder of the book is a thorough de-
scription of Strachey’s methodology of denotational semantics.

Two other forms specification of semantics are noted: operational seman-
tics (where an interpreter is used to define the language; and axiomatic
semantics (wWhere properties about the language constructs are given, ex-
pressed in terms of axioms and inference rules).

Steve Schneider. Correctness and Communication in Real-Time Systems.
DPhil thesis, Oxford University Computing Laboratory Program-
ming Research Group, 1989. PRG-84.

This well-written thesis contains an excellent summary of Timed CSP, as
well as describing a number of useful properties in real-time systems.

Steve Schneider. Specification and verification in Timed CSP. In
Mathai Joseph, editor, Real-time Systems: Specification, Verification and
Analysis, International Series in Computer Science, chapter 6, pages
147-181. Prentice-Hall, 1996.

This is probably the most up-to-date version of Timed CSP [19, 20, 46]. The
chapter also includes the ‘Mine Pump” example, obviously described in
Timed CSP.

Steve Schneider. Concurrent and Real Time Systems: The CSP Approach.
John Wiley, (to appear).

When published, this book will make a significant contribution to the un-
derstanding of models of time and concurrency. The book contains a theory
of Timed CSP that is more mature than previous descriptions.

Steve Schneider. An operational semantics for timed CSP. Available
by FIP from ftp.comlab.ox.ac.uk.

A detailed operational semantics for Timed CSP is given in this paper. Two
relations are used: an evolution relation, where a process becomes another
by waiting for time to pass, and a timed transition relation, where a pro-
cess becomes another process by carrying out an action at some time. The
relationship of several models of TCSP to testing is discussed.

Steve Schneider. Rigorous specification of real-time systems. Avail-
able by FTP from ftp.comlab.ox.ac.uk.

BIBLIOGRAPHY 277

[105]

[106]

[107]

[108]

[109]

This paper is a fairly short introduction to using TCSP for the rigorous
specification of real-time systems.

N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI International,
September 1998.

A documentation introducing proving with PVS.

Alan C. Shaw. Communicating real-time state machines. IEEE Trans-
actions on Software Engineering, 18(9), September 1992.

This paper defines communicating real-time state machines (CRSMs),
which are claimed to be ‘a new complete and executable notation for spec-
ifying concurrent real-time systems’. They are essentially state machines
that communicate synchronously in a manner much like the input-output
in CSP.

The author provides many examples. A graphical notation, and an op-
erational semantics are given. It is asserted that such specifications are
amenable to formal analysis.

Hugo Simpson. The MASCOT method. Software Engineering Journal,
pages 103-120, May 1986.

The MASCOT method uses functional and structural decomposition, and
is considered to be especially suitable for large systems.

Hugo Simpson. Four-slot fully asynchronous communication mech-
anism. IEE Proceedings, 137 Part E(1):17-30, January 1990.

This paper describes a mechanism which enables a reader and a writer
to communicate asynchronously. The author claims that this is fully asyn-
chronous, but there are subtleties depending on the assumptions. The ter-
minology used is described at length, as are several motivating examples.
The one-, two- and three-slot mechanisms are examined and discarded
due to problems, which are illustrated. The algorithms themselves are de-
scribed in pseudo-code.

Hugo Simpson. Correctness analysis for class of asynchronous com-
munication mechanisms. IEE Proceedings, 139 Part E(1):35-49, Jan-
uary 1992.

278

[110]

[111]

[112]

[113]

[114]

[115]

BIBLIOGRAPHY

This paper describes a variant of the four-slot mechanism as presented in
Simpson’s original exposition [108]. A correctness analysis is carried out
using ‘role-transition diagrams’.

Hugo Simpson. Methodological and Notational Conventions in DORIS
Real Time Networks. Dynamics Division, British Aerospace, February
1994.

The data orientated requirements implementation scheme (DORIS) is a
methodology for the design of systems, primarily, real-time networks. This
incorporates work on the data interaction architecture (DIA).

Hugo Simpson. Interaction protocols, January 1996. Memo.

A number of protocols are described and categorised. RTL and pseudo-
code descriptions are given of the various protocol families: channels, sig-
nals and pools.

Hugo Simpson. Layered architecture(s): Principles and practise in
concurrent and distributed systems. In International Conference on the
Engineering of Computer Based Systems, Monterety, March 1997.

This is a brief exposition of the DORIS method.

Eugene W. Stark. A proof technique for rely/guarantee proper-
ties. In Foundations of Software Technology and Theoretical Computer
Science, volume 206 of Lecture Notes in Computer Science, pages 369—
391. Springer-Verlag, 1985.

Stark describes a method where the proof of a finite collection of
rely/guarantee statements can be used to prove a more substantial
rely /guarantee statement.

Joseph E. Stoy. Denotational Sematics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1977.

A text covering the subject of denotational semantics very thoroughly. Al-
though a relatively old text, it is still very relevant.

David W. J. Stringer-Calvert. Mechanical Verification of Compiler Cor-
rectness. DPhil thesis, Department of Computer Science, University
of York, March 1998.

BIBLIOGRAPHY 279

Stringer-Calvert’s thesis reruns an earlier (hand) proof of a high-integrity
compiler. Several interesting points emerge, such as the benefits of formal,
machine proof (implicit assumptions were uncovered and made explicit);
and the difficulties with carrying out such proofs.

[116] Dirk Taubner. Finite Representations of CCS and TCSP Programs by
Automata and Petri Nets. Number 369 in Lecture Notes in Computer
Science. Springer-Verlag, 1989.

This book is a revised version of Taubner’s doctoral thesis. The central idea
is essentially the translation of process algebras to Petri nets and automata.
Note that “TCSP’ here refers to ‘Theoretical CSP’ and not “Timed CSP’. The-
oretical CSP is the version described in Hoare’s 1985 text [46].

[117] H. Tej and B. Wolff. A corrected failure-divergence model for CSP
in Isabelle/HOL. In FME '97: Industrial Applications and Strength-
ened Foundations for Formal Methods, volume 1313 of Lecture Notes in
Computer Science, pages 318-337. Springer-Verlag, 1997.

This work uncovered a previously unknown fault within the failures-
divergence model of CSP involving the termination event. This illustrates
the strength of mechanical formal methods: the requirement for extreme
precision found this problem.

[118] F. Javier Thayer. An approach to process algebra using IMPS. Tech-
nical Report MP-94B193, MITRE Corporation, April 1995.

A mechanical implemention of CSP is constructed within the IMPS theo-
rem prover using monoids. The author suggests a possible model for timed
CSP, also within this framework.

Although mathematically elegant, the treatment using monoids is poten-
tially a hindrance to wider use of the work.

[119] Lauren Wiener. Digital Woes: Why we should not depend on software.
Addison-Wesley, 1993.

This is an intelligent and lively discussion of the problems with software,
and society’s increasing reliance on such software. A large number of ex-
amples illustrate this issue.

[120] Concurrency workbench. http://www.dcs.ed.ac.uk/home/cwb/index.html.

280

[121]

[122]

[123]

[124]

[125]

BIBLIOGRAPHY

The Concurrency Workbench allows CCS [74] systems to be analyzed in
a model-checking environment. It has several process semantics available,
including Temporal CCS and SCCS.

York Software Engineering. CADIZ.

This tool supports the Z notation. It includes a syntax and type-checker,
type-setting facilities, and a proof assistant. The interface to the proof as-
sistant is based upon context-sensitive hypertext documents.

Ada Core Technologies. GNAT, the GNU Ada compiler.
http://www.gnat.com/.

GNAT is a member of the GCC compiler family.

HOL. http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html.

HOL is an interactive proof environment for higher-order logic developed
at Cambridge. It is based on the meta-Language (ML) and is highly pro-
grammable.

Isabelle. http://www.cl.cam.ac.uk/Research/HVG/isabelle.html.

Isabelle is a generic theorem prover developed at Cambridge. It permits
new logics to be defined by specifying their syntax and inference rules.
Proof procedures are expressed in terms of ‘tactics” and “tacticals’.

Qiwen Xu, Willem-Paul de Roever, and Jifeng He. The rely-
guarantee method for verifying shared variable concurrent pro-
grams. BCS Formal Aspects of Computing, 9(2):149-174, 1997.

This is a systematic illustration of the rely-guarantee approach to proving
properties of systems.

