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LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 31 INTRODUCTIONThe ability of multilayer back-propagation networks to learn complex, high-dimensional, non-linear mappings from large collections of examples makes them obvious candidates for imagerecognition or speech recognition tasks (see PATTERN RECOGNITION AND NEURALNETWORKS). In the traditional model of pattern recognition, a hand-designed featureextractor gathers relevant information from the input and eliminates irrelevant variabilities.A trainable classi�er then categorizes the resulting feature vectors (or strings of symbols)into classes. In this scheme, standard, fully-connected multilayer networks can be used asclassi�ers. A potentially more interesting scheme is to eliminate the feature extractor, feedingthe network with \raw" inputs (e.g. normalized images), and to rely on backpropagationto turn the �rst few layers into an appropriate feature extractor. While this can be donewith an ordinary fully connected feed-forward network with some success for tasks such ascharacter recognition, there are problems.Firstly, typical images, or spectral representations of spoken words, are large, often withseveral hundred variables. A fully-connected �rst layer with, say a few 100 hidden units,would already contain several 10,000 weights. Over�tting problems may occur if trainingdata is scarce. In addition, the memory requirement for that many weights may rule outcertain hardware implementations. But, the main de�ciency of unstructured nets for imageor speech aplications is that they have no built-in invariance with respect to translations, or



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 4local distortions of the inputs. Before being sent to the �xed-size input layer of a neural net,character images, spoken word spectra, or other 2D or 1D signals, must be approximatelysize-normalized and centered in the input �eld. Unfortunately, no such preprocessing can beperfect: handwriting is often normalized at the word level, which can cause size, slant, andposition variations for individual characters; words can be spoken at varying speed, pitch, andintonation. This will cause variations in the position of distinctive features in input objects.In principle, a fully-connected network of su�cient size could learn to produce outputs thatare invariant with respect to such variations. However, learning such a task would probablyresult in multiple units with identical weight patterns positioned at various locations in theinput. Learning these weight con�gurations requires a very large number of training instancesto cover the space of possible variations. On the other hand, in convolutional networks, shiftinvariance is automatically obtained by forcing the replication of weight con�gurations acrossspace.Secondly, a de�ciency of fully-connected architectures is that the topology of the input isentirely ignored. The input variables can be presented in any (�xed) order without a�ectingthe outcome of the training. On the contrary, images, or spectral representations of speechhave a strong 2D local structure, time-series have a strong 1D structure: variables (or pixels)that are spatially or temporally nearby are highly correlated. Local correlations are thereasons for the well-known advantages of extracting and combining local features beforerecognizing spatial or temporal objects. Convolutional networks force the extraction of localfeatures by restricting the receptive �elds of hidden units to be local.



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 52 CONVOLUTIONAL NETWORKSConvolutional networks combine three architectural ideas to ensure some degree of shiftand distortion invariance: local receptive �elds, shared weights (or weight replication), and,sometimes, spatial or temporal subsampling. A typical convolutional network for recognizingcharacters is shown in �gure 1 (from (LeCun et al., 1990)). The input plane receives imagesof characters that are approximately size-normalized and centered. Each unit of a layerreceives inputs from a set of units located in a small neighborhood in the previous layer.The idea of connecting units to local receptive �elds on the input goes back to the Perceptronin the early 60s, and was almost simultaneous with Hubel and Wiesel's discovery of locally-sensitive, orientation-selective neurons in the cat's visual system. Local connections havebeen reused many times in neural models of visual learning (see (Mozer, 1991; Le Cun,1986) and NEOCOGNITRON in this handbook). With local receptive �elds, neurons canextract elementary visual features such as oriented edges, end-points, corners (or similarfeatures in speech spectrograms). These features are then combined by the higher layers.As stated earlier, distortions or shifts of the input can cause the position of salient featuresto vary. In addition, elementary feature detectors that are useful on one part of the imageare likely to be useful across the entire image. This knowledge can be applied by forcinga set of units, whose receptive �elds are located at di�erent places on the image, to haveidentical weight vectors (Rumelhart, Hinton and Williams, 1986). The outputs of such a setof neurons constitute a feature map. At each position, di�erent types of units in di�erent



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 6feature maps compute di�erent types of features. A sequential implementation of this, foreach feature map, would be to scan the input image with a single neuron that has a localreceptive �eld, and to store the states of this neuron at corresponding locations in the featuremap. This operation is equivalent to a convolution with a small size kernel, followed by asquashing function. The process can be performed in parallel by implementing the featuremap as a plane of neurons that share a single weight vector. Units in a feature map areconstrained to perform the same operation on di�erent parts of the image. A convolutionallayer is usually composed of several feature maps (with di�erent weight vectors), so thatmultiple features can be extracted at each location. The �rst hidden layer in �gure 1 has4 feature maps with 5 by 5 receptive �elds. Shifting the input of a convolutional layer willshift the output, but will leave it unchanged otherwise. Once a feature has been detected,its exact location becomes less important, as long as its approximate position relative toother features is preserved. Therefore, each convolutional layer is followed by an additionallayer which performs a local averaging and a subsampling, reducing the resolution of thefeature map, and reducing the sensitivity of the output to shifts and distortions. The secondhidden layer in �gure 1 performs 2 by 2 averaging and subsampling, followed by a trainablecoe�cient, a trainable bias, and a sigmoid. The trainable coe�cient and bias control thee�ect of the squashing non-linearity (for example, if the coe�cient is small, then the neuronoperates in a quasi-linear mode). Successive layers of convolutions and subsampling aretypically alternated, resulting in a \bi-pyramid": at each layer, the number of feature mapsis increased as the spatial resolution is decreased. Each unit in the third hidden layer in�gure 1 may have input connections from several feature maps in the previous layer. The



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 7convolution/subsampling combination, inspired by Hubel and Wiesel's notions of \simple"and \complex" cells, was implemented in the Neocognitron model (see NEOCOGNITRON),though no globally supervised learning procedure such as back-propagation was availablethen.
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ConvolutionFigure 1: Convolutional Neural Network for image processing, e.g., handwriting recognitionSince all the weights are learned with back-propagation, convolutional networks can beseen as synthesizing their own feature extractor. The weight sharing technique has the inter-esting side e�ect of reducing the number of free parameters, thereby reducing the \capacity"of the machine and improving its generalization ability (see (LeCun, 1989) on weight sharing,and LEARNING AND GENERALIZATION for an explanation of notions of capacity andgeneralization). The network in �gure 1 contains about 100,000 connections, but only about2,600 free parameters because of the weight sharing. Such networks compare favorably withother methods on handwritten character recognition tasks (Bottou et al., 1994) (see alsoHAND WRITTEN DIGIT RECOGNITION), and they have been deployed in commercialapplications.



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 8Fixed-size convolutional networks that share weights along a single temporal dimensionare known as Time-Delay Neural Networks (TDNNs). TDNNs have been used in phonemerecognition (without subsampling) (Lang and Hinton, 1988; Waibel et al., 1989), spokenword recognition (with subsampling) (Bottou et al., 1990), and on-line handwriting recogni-tion (Guyon et al., 1991).3 VARIABLE-SIZE CONVOLUTIONALNETWORKS,SDNN
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Figure 2: Variable-size replicated convolutional network, SDNNWhile characters or short spoken words can be size-normalized and fed to a �xed-size network,more complex objects such as written or spoken words and sentences have inherently variablesize. One way of handling such a composite object is to segment it heuristically into simplerobjects that can be recognized individually (e.g., characters, phonemes). However, reliablesegmentation heuristics do not exist for speech or cursive handwriting. A brute force solution



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 9is to scan (or replicate) a recognizer at all possible locations accross the input. Whilethis can be prohibitively expensive in general, convolutional networks can be scanned orreplicated very e�ciently over large, variable-size input �elds. Consider one instance of aconvolutional net and its alter ego at a nearby location. Because of the convolutional natureof the networks, units in the two nets that look at identical locations on the input haveidentical outputs, therefore their output does not need to be computed twice. In e�ect,replicating a convolution network can simply be done by increasing the size of the �eld overwhich the convolutions are performed, and replicating the output layer, e�ectively makingit a convolutional layer. An output whose receptive �eld is centered on an elementaryobject will produce the class of this object, while an in-between output may be empty orcontain garbage. The outputs can be interpreted as evidence for the categories of objectcentered at di�erent positions of the input �eld. A post-processor is therefore required topull out consistant interpretations of the output. Hidden Markov Models (HMM) or othergraph-based methods are often used for that purpose (see SPEECH RECOGNITION, andPATTERN RECOGNITION AND NEURAL NETWORKS in this volume). The replicatednetwork and the HMM can be trained simultaneously by back-propagating gradients throughthe HMM. Globally trained, variable-size TDNN/HMM hybrids have been used for speechrecognition (see PATTERN RECOGNITION AND NEURAL NETWORKS for a list ofreferences) and on-line handwriting recognition (Schenkel et al., 1993). Two-dimensionalreplicated convolutional networks, called \Space Displacement Neural Networks" (SDNN)have been used in combination with HMM or other elastic matching methods for handwrittenword recognition (Keeler and Rumelhart, 1991; Matan et al., 1992; Bengio, LeCun and



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 10Henderson, 1994). Another interesting application of SDNNs is object spotting (Wolf andPlatt, 1994).An important advantage of convolutional neural networks is the ease with which theycan be implemented in hardware. Specialized analog/digital chips have been designed andused in character recognition, and in image preprocessing applications (Boser et al., 1991).Speeds of more than 1000 characters per second were obtained with a network with around100,000 connections (shown in �gure 1).The idea of subsampling can be turned around to construct networks similar to TDNNs,but that can generate sequences from labels. These networks are called reverse-TDNNsbecause they can be viewed as upside-down TDNNs: temporal resolution increases from theinput to the output, through alternated oversampling and convolution layers (Simard andLeCun, 1992).4 DISCUSSIONConvolutional neural networks are a good example of an idea inspired by biology that resultedin competitive engineering solutions that compare favorably with other methods (Bottouet al., 1994). While applying convolutional nets to image recognition removes the need for a



LeCun & Bengio: Convolutional Networks for Images, Speech, and Time-Series 11separate hand-crafted feature extractor, normalizing the images for size and orientation (ifonly approximately) is still required. Shared weights and subsampling bring invariance withrespect to small geometric transformations or distortions, but fully invariant recognition isstill beyond reach. Radically new architectural ideas, possibly suggested by biology, will berequired for a fully neural image or speech recognition system.AcknowledgementsThe authors wish to thank Leon Bottou, Chris Burges, Isabelle Guyon, Larry Jackel, andthe other members of the Adaptive Systems Research Department for their support andcomments.ReferencesBengio, Y., LeCun, Y., and Henderson, D. (1994). Globally Trained Handwritten Word Rec-ognizer using Spatial Representation, Space Displacement Neural Networks and HiddenMarkov Models. In Advances in Neural Information Processing Systems, volume 6,pages 937{944.
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