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ABSTRACT
In robust design, it is important not only to achieve robust

design objectives but also to maintain the robustness of design
feasibility under the effect of variations (or uncertainties).
However, the evaluation of feasibility robustness is often a
computationally intensive process. Simplified approaches in
existing robust design applications may lead to either over-
conservative or infeasible design solutions. In this paper,
several feasibility-modeling techniques for robust optimization
are examined. These methods are classified into two
categories: methods that require probability and statistical
analyses (i.e., the probabilistic feasibility formulation and the
moment matching method) and methods do not require
probability and statistical analyses (i.e., the worst case
analysis, the corner space evaluation, and the variation pattern
method).  Using illustrative examples, the effectiveness of each
method is compared in terms of its efficiency and accuracy.
Constructive recommendations are made to employ different
techniques for modeling feasibility robustness under different
circumstances.  Under the framework of probabilistic robust
optimization, we propose to use a most probable point (MPP)
based importance sampling method, a method rooted in the
field of reliability analysis, for evaluating the feasibility
robustness. The advantages of this approach are discussed.
Though our discussions are centered on robust design, the
principles presented are also applicable for general
probabilistic optimization problems. The practical significance
of this work also lies in the development of efficient feasibility
evaluation methods that can support quality engineering
practice, such as the Six Sigma approach that is being widely
used in American industry.

NOMENCLATURE
b width  of  beam cross-section
cdf cumulative distribution function
F. a cdf
f. a pdf
g a constraint function
h height of  beam cross-section
I indicator function
J number of constraints
L  length of the beam
MPP Most Probable Point
m number of  parameters
n number of variables
P probability
p vector of design parameters
P0 desired probability of constraint satisfaction
pdf probability density function
Q external force on the beam
R allowable stress of the beam
Smax maximum tensile stress of beam
s cross-section area of beam
T tolerance space
x vector of design variables
xl lower bound of x
xu upper bound of x
Y vector of random design variables and parameters
U vector of basic variables in standard normal space
U* MPP in standard normal space
v importance density function
W corner space
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Φ cdf of standard normal distribution
β safety index
µ mean value
σ standard deviation

1. INTRODUCTION
Deterministic optimization techniques have been

successfully applied to a large number of engineering design
problems.  However, it is generally recognized that there
always exist uncertainties in any engineering systems due to
variations in design conditions, such as loading, material
properties, physical dimensions of parts, and operating
conditions. With the introduction of the integrated product and
process development (IPPD) paradigm, manufacturing
variations could be considered as another contributing source
of uncertainty in the product design stage. Deterministic
approaches do not consider the impact of such variations and
as a result, the design solution may be very sensitive to the
variations. Moreover, deterministic optimization lacks the
ability to achieve specified levels of constraint satisfaction
(such as under reliability considerations). Therefore, a design
based on the deterministic factor of safety may be under-
designed (infeasible) or over-conservative.

Robust design, originally proposed by G. Taguchi
(Taguchi, 1993), is a probabilistic-based design method for
improving the quality of a product through minimizing the
effect of the causes of variation without eliminating the causes
(Phadke, 1989).  Although Taguchi's robust design principle
has been widely accepted, the methods Taguchi offers have
received much criticism (Chen et al. 1996a), including the
limitation of not being able to consider design constraints. In
recent years, the advancement of robust design methods in the
design community has produced nonlinear programming based
robust design methods that can be used in a variety of
applications (Otto and Antonsson, 1991; Parkinson et al.,
1993; Sundaresan et al., 1993; Cagan and Williams, 1993;
Eggert and Mayne, 1993; Chen et al.1996a; Su and Renaud,
1997). With the introduction of the nonlinear programming
framework to robust design, both the robustness of design
objectives as well as the robustness of design constraints can be
considered.  It is generally recognized that the robustness of a
design objective can be achieved by simultaneously
"optimizing the mean performance" and "minimizing the
performance variance".  Modeling the tradeoff between these
two aspects has been widely studied in the literature
(Sudaresan, et al., 1993; Bras and Mistree, 1995; Chen, et al.,
1996a; Iyer and Krishnamurty, 1998).  In recent developments,
a multiobjective mathematical programming approach has
been proposed (Chen, et al., 1998) to overcome the limitations
of Taguchi’s signal-to-noise ratio approach and the simplistic
weighted-sum method.  In general, objective robustness is an
issue related to how to better model a designer's preference

structure when making tradeoffs between the mean and
variance attributes.

No matter what objective expression we use to achieve the
robustness of product performance, it is even more critical to
maintain the design feasibility under variations (uncertainties).
For example, for a key structural component, satisfying strictly
its strength constraint (or reliability) subject to random
parameters is more important than achieving the robustness of
the design objective, e.g., minimizing the weight. This raises
the question: how can we describe the design feasibility under
the effect of variations to maintain the feasibility robustness?
Moreover, as we will discuss later in details, depending on the
formulation, the evaluation of feasibility robustness could
become a very complicated and time-consuming process. This
leads to another question: what kind of constraint model
should we adopt to ensure the accuracy in evaluating levels of
constraint satisfaction with an acceptable computational
efficiency?

 Although alternative approaches, such as the probabilistic
feasibility analysis (Eggert 1991), the moment matching
method (including the use of Taylor expansion) (Parkinson, et
al., 1993), the worst case analysis (Parkinson, et al., 1993;
Sundaresan, et al., 1995), the method of corner space
evaluation (Sundaresan, et al., 1993), and the variation
patterns method (Yu and Ishii, 1998), have been proposed to
model feasibility robustness, it is not clear the effectiveness of
each individual method in terms of its efficiency and accuracy.
Koch et al. (1998) compared three methods (Taylor expansion,
design of experiments (DOE)-based Monte Carlo simulation,
and Taguchi's product array) for predicting performance
variance.  However, their study focused on only the evaluation
of performance variance rather than the overall level of
constraint satisfaction.  Due to the lack of guidelines in the
area of evaluating feasibility robustness, simplistic approaches
such as the first order Taylor expansion and the worst case
analysis are often used in existing applications.

Our aim in this paper is to conduct an in depth analysis of
the existing feasibility-modeling techniques in robust design
and compare these methods using illustrative examples.  We
will show that, although some of these approaches are easy to
use, they may lead to either over-conservative or infeasible
design solutions in robust design applications.  Constructive
recommendations are made to employ different techniques for
modeling feasibility robustness under different circumstances.
To improve the accuracy and efficiency in evaluating the
probability of constraint satisfaction, we propose to use a most
probable point (MPP) based importance sampling method, a
method rooted in the field of reliability analysis, for evaluating
the feasibility robustness.  The advantages of this approach and
the directions of future improvement are discussed.

This paper is organized as follows. In Section 2, the
existing methods for feasibility modeling in robust design are
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analyzed.  The feasibility analysis and the comparison of these
methods are discussed in detail by illustrative examples in
Section 3.  In Section 4, a most probable point (MPP) based
importance sampling method is introduced and the relevant
issues of utilizing it for the evaluation of feasibility robustness
are discussed.  Section 5 is the closure of this paper.

2. EXISTING APPROACHES FOR MODELING
FEASIBILITY ROBOUSTNESS

2.1 Objective Robustness and Feasibility Robustness

Before reviewing the existing approaches for modeling
feasibility robustness, we first explain the roles of two major
robustness issues involved in robust design problems: objective
robustness and feasibility robustness. We consider an
engineering design problem stated using the conventional
optimization model in Eqn. (2.1):

minimize ),( pxF

subject to J ..., 2, 1,j        0,)(g j =≥x, p         (2.1)

ul xxx ≤≤ ,

where T
nxxx ],[ 1 L=  is a vector of design variables and

T
mppp ],[ 1 L=  is a vector of design parameters whose values

are fixed as a part of the problem specifications.  In robust
optimization, both design variables and design parameters
could be the contributing sources of design variations.
Consequently, the system performance F(x, p) is a random
function. Both its mean value ),( pxFµ  and variance

),(2 pxFσ  are expected to be minimized. The general form of
the objective can be expressed as

)],(),,([min pxpx FF σµ                                 (2.2)

In a deterministic optimization as shown in Eqn. (2.1),
those design points that satisfy all the constraint equations
define the feasible region. This is a go or no-go problem, either
yes or no, and the limit-state of feasibility or unfeasibility is
distinguished.  In robust design, however, the problem needs to
be converted into a consideration of the degree of feasibility
between yes or no. According to Parkinson et al. (1993), a
design is described to have "feasibility robustness”, if it can be
characterized by a definable probability, set by designers, to
remain feasible relative to the nominal constraint boundaries
as it undergoes variations.  It is obvious that, compared with
the deterministic feasible region, the size of the feasible region
will be reduced under the robustness consideration.  In
addition, based on the above definition, we note that the degree
of feasibility can be defined by the desired level of probability

chosen by the decision maker. In the following sections,
several existing feasibility modeling methods are analyzed.
These methods are classified into two categories: methods that
require probability and statistical analyses and those do not
require such analysis.

2.2 Methods Requiring Probability and Statistical

      Analyses

The Probabilistic Feasibility Formulation
Under the definition of feasibility robustness in Section

2.1, feasibility in robust design can be considered as the
probability of events, that constraints are satisfied, should be
greater than the user specified probability. This will ensure
that the desired degree of constraint satisfaction is achieved
exactly so as to avoid over-designed or under-designed
situations. A general probabilistic feasibility formulation can
be expressed as follows:

JjPpxgP ojj ,,1]0),([ L=≥≥         (2.3)

where ojP  is the desired probability for satisfying constraint j.
If the distributions of all the variables x and parameters p are
known, the probability P in Eqn. (2.3) can be obtained
accurately by the following integral:

dxdppxfpxgP
pxg

xpj

j

∫
≥

=≥
0),(

),(]0),([          (2.4)

where ),( pxf xp  is the joint probability density function (pdf)
of x and p.

Practically, it is very difficult or even impossible to get an
analytical solution of the above equation because of the multi-
dimensional integration and the complicated integral region.
Only if the distribution of ),( pxg j is known, the probability
can then be simplified into the following one-dimensional
integral:

jjgjj dggfpxgP ∫∞=≥
0

)(]0),([          (2.5)

where )( jgj gf  is the pdf of ),( pxg j . For several typical
variable distributions (for example, Normal and Lognomal),
when used for simple constraint functions and low-
dimensional problems, the analytical expression of the
probability can be derived (Eggert, 1991).

In the case that the analytical method is not applicable,
simulation-based approaches, such as Monte Carlo
simulations, are often used to obtain a more accurate
estimation of the probability.  The estimation of the probability
is expressed as:
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∫=≥
pxall xpjj dxdppxfpxgIpxgP

,
),()],([]0),([

)],([
1

1
iij

N

i

pxgI
N ∑

=
=          (2.6)

where N is the simulation size, ix  and ip  are samples of x
and p, and )(⋅I is an indicator function defined as



 ≥

=
otherwise

pxgif
pxgI j

j 0
0),(1

)],([          (2.7)

Compared with other approximate methods, simulation
methods are flexible for any types of distributions and any
forms of constraint functions.  Neglecting the algorithmic error
caused by simulation, if a sufficient number of simulations are
used, simulation methods often result in solutions with a high
accuracy.  However, when the desired level of probability for
constraint satisfaction is very high (approaching to 1.0), the
computational burden may not be affordable.

The Moment Matching Formulation
To reduce the computational burden associated with the

probabilistic feasibility evaluation, simplistic approaches are
widely used in the literature. One of these approaches is the
moment matching method (Parkinson et al. 1993).  The title of
this method comes from the fact that it uses the first and
second moments (mean and variance) of statistical
distributions.  With this approach, ),( pxg j  is assumed to be

normally distributed. The probability of the event 0),( ≥pxg j

becomes:

)(]0),([
gj

gj
j pxgP

σ
µ

Φ=≥          (2.8)

where )(⋅Φ  is the cumulative distribution function (cdf) of a
standard normal distribution, gjµ  and gjσ   are the mean value

and the standard deviation of ),( pxg j , respectively. The
constraint can then be written as:

0≥− gjjgj k σµ         (2.9)

where )( 0
1

jj Pk −Φ=  and )(1 ⋅Φ −  is the inverse function of the

cdf of a standard normal distribution. For example, 2=jk

stands for 9772.00 =jP  and 3=jk  means 9987.00 =jP .

Several methods could be used to evaluate gjµ  and gjσ .
A simplistic approach is to use Taylor series approximations of
the constraint function ),( pxg j  at the mean values of x and p.

The mean value and the variance of ),( pxg j are estimated as

),( pxjg
gj

µµµ =             (2.10a)
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Based on Eqns. (2.9) and (2.10), the feasibility
formulation can be expressed as:
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2.3 The Methods Not Requiring Probability and

      Statistical Analyses

The Worst Case Analysis
Worst case analysis is another simplistic approach to the

evaluation of feasibility robustness in robust design. It is
applicable to general robust design problems including those in
which the distributions of random variables are not given.  The
worst case analysis (Parkinson et al., 1993) assumes that all
fluctuations may occur simultaneously in the worst possible
combinations. The effect of variations on a constraint function
is estimated from a first order Taylor’s series as follows:

∑∑
==

∆
∂
∂

+∆
∂
∂

=∆
m

i
i

i

j
n

i
i

i

j
j p

p
g

x
x
g

pxg
11

),(       (2.12)

By subtracting ),( pxg j∆  from ),( pxg j to maintain the
feasibility, the constraint becomes:
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In most cases, the worst case analysis is almost always
conservative because it is unlikely that the worst cases of
variable or parameter deviations will simultaneously occur.
On the other hand, the estimation using Taylor expansion is
not as accurate as identifying the extreme conditions such as
the minimum and maximum of the performance within the
given intervals of variations. However, due to its
simplification, worst case analysis is used widely in robust
optimization applications.

The Corner Space Evaluation
Following the similar idea of the worst case analysis,

Sundaresan et al. (1995) presented the method of corner space
evaluation.  Identical to the worst case analysis, their method
does not require the descriptions of the distributions of random
variables. What is different is that, with their approach, the
variations on design variables are not transmitted into
constraint functions as the way in the worst case analysis.

 Assume that the design variables have nominal values x
and a tolerance x∆ . The tolerance space (T) is defined as a set
of points close to the target design point where each point
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represents a possible combination of design variables due to
uncertainties in each variable:

{ }xxxxxT ttt ∆≤−= :)(         (2.14)
The corner space (W) consists only of corner vertices of a

tolerance space:
{ }xxxxxW ttt ∆=−= :)(       (2.15)

To maintain the design feasibility, the nominal value x
should be inside the feasible region. This can be achieved by
keeping the corner space always touching the original
constraint (expressed by x and p) boundary. Fig. 1 shows the
feasibility of a two- dimension problem with this approach.
With this approach, the constraint can be stated as:

JjxWxxgMin j L,10)}(),({ =≥∈∀         (2.16)
If the distributions of variables of interest are known, the

tolerance x∆  can be determined by a prescribed confidential
level. For example, for a normally distributed random variable,
the tolerance can be chosen as three standard deviations under
the confidential coefficient of 99.87%.  This method does not
require the calculation of the partial differential of the
constraint function, so it is very easy to use. However, the
overall probability of constraint satisfaction is not evaluated as
the result of this procedure even though the tolerance is under
confidential consideration.

Figure 1. Feasibility under the Corner Space
                            Evaluation Method

The Variation Patterns Formulation
In the same category of the corner space evaluation, Yu

and Ishii (1998) presented an improved method named
Manufacturing Variation Patterns (MVP) analysis based on the
consideration that the manufacturing errors may be correlated
with each other, for example the correlation among
dimensional errors in typical manufacturing processes. Since
the approach is not restricted to manufacturing related
problems only, a general title “variation patterns formulation”
is given.  With their approach, MVP(1-α) denotes the space of
possible variable combinations at the confidence coefficient of
1-α, where α indicates the probability of design variable
distribution outside the variation pattern. The shape of the
pattern is determined by the variable distributions and the size
of the pattern is determined by the confidence coefficient. For

example, for the problem with two normally distributed
dependant variables, the shape of the pattern is an ellipsoid as
shown in Fig. 2.

Under this concept, the constraint is formulated as:

JjMVPxpxg j L,1),1(,0),( =−∈∀≥ α          (2.17)

Figure 2.  Variation Pattern Analysis Method

It is obvious that the process of searching for the robust
design solution is quite complicated if the shape of the pattern
is irregular. According to Yu and Ishii (1998), the details of
the application procedure of this method still await future
investigation.

3. A COMPARISON OF ALTERANTIVE TECHNIQUES
In this section, the feasibility-modeling techniques

analyzed in Sections 2.2 and 2.3 for robust optimization are
compared using two illustrative examples.  One example only
illustrates the differences in feasibility evaluation when using
different approaches. The other used to illustrate the impact on
both feasibility evaluation and the final robust design solution.
Constructive recommendations are made to employ different
techniques for modeling feasibility robustness under different
circumstances.

3.1 A Mathematical Example

In this example, we consider a simple linear constraint
that involves only two design variables x1 and x2, both are
normally distributed and represented as ),(~ 111 σµNx  and

),(~ 222 σµNx , where 111 µσ c= , 2.01 =c  and 25.02 =σ .
Note that the standard deviation of x1 is considered as a
function of its mean in this case. The original constraint
function is  given as

21)( xxxg −=                 (3.1)
The design variables in optimization are the mean values

1µ  and 2µ  of 1x  and 2x .

x1

x2

o

x

original constraint
boundary

x1

x2

o

x ∆x2

original constraint

∆x1

boundary
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Deterministic situation
When not considering uncertainties, the constraint

function can be expressed as
21)( µµ −=xg         (3.2)

The constraint curve is a line through the origin (see Fig.
3).

The Probabilistic Feasibility Formulation
Based on the discussion in Section 2.2, the probabilistic

feasibility formulation in Eqn. (2.3) is represented here by
Eqn. (3.3), given the desired probability of constraint
satisfaction P0 as 99.98%, i.e.

9998.0]0[]0)([ 021 =≥≥−=≥ PxxPxgP         (3.3)
Since )(xg  is the difference of two normal variables,
)(xg  is also normally distributed with its mean value being

21 µµ −  and its variance being 2
2

2
1 σσ + , the probability can be

further calculated as:

)(]0)([
2
2

2
1

21

σσ
µµ

+
−Φ=≥xgP                      (3.4)

Eqn. (3.4) is an exact expression of the achievable
probability of constraint satisfaction.

Based on Eqn. (3.4), Eqn. (3.3) can be written as the
following:

0)( 2
2

2
1

2
10

1
21 ≥+Φ−− − σµµµ cP         (3.5)

From Fig. 3, it is noted that the probabilistic feasibility has
resulted in a reduced feasible region compared to the
deterministic constraint.

Figure 3.  Comparisons of Feasibility Curves

The Moment Matching Formulation
The moment matching formulation in Eqn. (2.11) can be

expressed for the example as:

0)( 2
2

2
1

2
10

1
21 ≥+Φ−− − σµµµ cP         (3.6)

Eqn. (3.6) is the same as the probabilistic feasibility
formulation in Eqn. (3.5).  From this example, we can see that
if the constraint function is normally distributed under the
effect of variations, the moment matching formulation can give
an exact estimation of the level of constraint satisfaction just as
that from the probabilistic feasibility formulation.

The Worst Case Formulation
Based on the discussion of the worst case formulation in

Section 2.4, for 11 3σ=∆x  and 22 3σ=∆x , the constraint
formulation in Eqn. (2.13) can be expressed as:

03)31( 2211 ≥−−− σµµ c          (3.7)
From Fig. 3, we note that the use of this constraint

formulation is over-conservative over the majority of the
design space. However, the problem becomes under-
constrained either near the origin or when 1µ  is bigger than
about 6.7 where the probability of constraint satisfaction is less
than the expected probability. We can conclude from this
example that though the worst case analysis is widely
considered as a conservative approach for modeling feasibility
robustness, we should use it with caution because the violation
of constraints is still possible over certain design regions.

The Corner Space Formulation
Based on the introduction of this method in Section 2.5,

we could set 11 3σ=∆x  and 22 3σ=∆x , which indicate that the
confidential coefficient is 99.87%.  By keeping the rectangle
with dimensions of 21 22 xx ∆×∆  touching the deterministic
constraint curve, we obtain the locus of the centroid of the
rectangle which strands for the position of the constraint limit.
For the special linear function 21)( xxxg −= , the constraint
curve obtained by the corner space formulation is the same as
the one from the worst case formulation, due to the fact that
the first-order Taylor expansion under the worst case approach
provides an accurate evaluation for a linear function.
However, the confidence coefficient chosen for the variables
and parameters cannot be used to estimate the probability of
constraint satisfaction. The discrepancies between the two
values are representatively presented in Table 1 for a set of k
values at the point where 51 =µ .

Table 1 Discrepancies between the Confidential Level of
Parameters and the Probability of Constraint Satisfaction

Number of Standard
deviation k
( σkx =∆ )

Confidential
Level

Probability of
constraint

satisfaction
1 0.8413 0.8874
2 0.9772 0.9924
3 0.9987 0.9999

3.5 0.9998 0.999989

0 1 2 3 4 5 6 7 8
-
1

0

1

2

3

4

5

6

7

8

u1

u2

deterministic constraint

direction of feasible region

corner space formulation
worst case formulation

probabilistic feasibility formulation
moment matching formulation
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3.2 Design of a Cantilever Beam

In this section, an engineering design problem is used to
further illustrate the differences between the existing
approaches for modeling feasibility robustness and their
impacts on final robust design solutions. The cantilever beam
in Fig. 4 is designed against yielding due to bending stress
while the cross-sectional area is desired to be kept as
minimum. Five random variables are involved in this problem,
including two design variables: TT hbxxx ],[],[ 21 ==  and

three design parameters TT LQRpppp ],,[],,[ 321 == . b
and h are the dimensions of the cross-section, L is the length of
the beam, and b, h, and L are all normally distributed.  Q is the
external force with an extreme value distribution, and R is the
allowable stress of the beam with a Weibull distribution.

Figure 4.  Cantilever Beam

Distribution parameters for each random variable are
described in Table 2. In robust design, the variables to be
determined are the mean values (µx1 and µx2) of b and h.

Table 2 Distributions of Random Variable

Name Symbol Mean
Value

Standard
Deviation

Distribution
Type

R p1 200Mpa 200Mpa Two-parameter
Weibull

Q p2 20KN 2KN Extreme Value
Distribution

L p3 0.2m 1.0mm Normal
b x1 µx1 0.05mm Normal
H x2 µx2 0.05mm Normal

The maximum tensile stress is calculated as

23max
6

12/
2/2/

bh
QL

bh
QLh

I
QLhS ===         (3.8)

The strength requirement can then be defined by the
following constraint:

0
66),( 2

21

32
12 ≥−=−=

xx
pp

p
bh
QLRpxg        (3.9)

If not considering the uncertainties, all the random
variables/parameters can be presented by their mean values

and the constraint can then be formulated in terms of the mean
values of variables/parameters as follows:

0
6

),( 2
21

≥−=
xx

LQ
Rpxg

µµ
µµ

µ                                 (3.10)

If the prescribed probability of this constraint satisfaction
P0 is 99.95%, the Probabilistic Feasibility Formulation can be
written as:

%95.99]0
6

[ 02
21

32
1 =≥≥− P

xx
pp

pP         (3.11)

By keeping the probability at 99.95% and varying the
combinations of 1xµ and 2xµ , we obtain the position of the
constraint curve (see Fig. 5).  The feasibility direction is also
indicated on the Fig.  5.

Figure 5.  Comparisons of Feasibility Analyses

The constraint curve obtained based on the moment
matching formulation shown in Eqn. (2.11) is also plotted on
the same figure.  It is noted that its location is different from
that obtained from the accurate probability feasibility analysis.
This is true due to the nonlinearality of the constraint function
which follows a nonnormal distribution. Therefore for this
particular problem, the moment matching method provides an
under-constrained formulation.

When using the worst case analysis by assuming
Xx σ3=∆  and Pp σ3=∆ , we find from Fig. 5 that the

formulation generates conservative results, especially over the
design region where µx2 is large and µx1 is small.  As for the
corner space formulation and the variation pattern
formulation, because the variations of the design variable x1

and x2 are very small, the obtained constraint curves (the curve
of variation pattern not shown in Fig. 5 are very close to the

4 6 8 10 12 14 160

2

4

6

8

10

12

14

µx1

µx2

deterministic formulation

moment matching formulation

probabilistic  feasibility formulation

worst case formulation

direction of feasibility

corner space formulation

b

h

Q

L
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deterministic ones. This indicates that the feasibility robustness
evaluated by these two methods is not reliable for this
particular example.

In terms of the objective of keeping the cross-sectional
area the minimum, the cross-sectional area can be expressed as

21xxs =        (3.12)
In robust design, the objective robustness is achieved by

minimizing both the mean value and the variance of the cross-
sectional area:

21 xxs µµµ =       (3.13)
2
2

2
1

2
1

2
2

2
2

2
1

2
xxxxxxs σσσµσµσ ++=       (3.14)

For feasibility robustness, we expect that the strength
constraint should be satisfied exactly with the probability of
satisfaction of 99.95% and the ratio of h/b should be less than
2. Because the first constraint is very important, we consider it
as a critical constraint (with high priority) and formulate it
using the probabilistic feasibility formulation (see Eqn. 3.16).
For the constraint on ratio relationship, the probability of
constraint satisfaction is not so strict and so we use the
nominal of b and h to express the constraint function (see Eqn.
3.17). In this problem, we need to decide the mean value (µx1

and µx2) of b and h. The robust optimization model can be
stated as:

Find:  mean value (µx1 and µx2) of b and h
*

2
*

1 //),(min sSsS wwpxF σσµµ +=               (3.15)
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        (3.17)

where *
sµ  and *

sσ  are the best achievable optimal solution of

sµ and sσ , respectively. Here we use the weighting factor
method to formulate the multiple objective function.  For the
purpose of illustration, we use weighting factors w1=w2=0.5.
The optimal solutions are shown in Table 3 and Fig. 6. Other
solutions with different formulations of the first constraint are
also provided for comparison. The solution from the
probabilistic feasibility formulation is obtained by the MPP-
based sampling method (details see Section 4).

Figure 6.  Results of the Beam Example

Table 3 Solutions of the Beam Example

Formulation
method

(µx1,µ x2)
(mm)

Probability
of  strength
constraint

satisfaction

Mean value of
cross-sectional
area Sµ  (mm2)

Standard
deviation of cross-
sectional area sσ

(mm)
Probabilistic
feasibility
formulation

(39.25,68.71) 0.9995 2596.87 3.9565

Moment
matching
formulation

(34.91,69.81) 0.9852 2437.07 3.9026

Worst case
formulation (37.88,75.77) 0.99993 2870.17 4.2356

Corner space
formulation (31.22, 62.43) 0.5433 1949.06 3.4901

Conventional
deterministic
optimization

(31.07, 62.14) 0.5360 1930.69 3.4737
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Even though deterministic optimization generates the
lowest values of mean and variance of the cross-sectional area,
its feasibility is the worst with only 53.6% possibility of
constraint satisfaction. The worst case formulation obtains the
most conservative result with the probability greater than the
specified limit. On the other hand, the moment matching
method obtains a solution with its actual probability of
constraint satisfaction equal to 0.9852, which is less than the
specified limit. From the viewpoint of reliability, this means
the beam will have a higher risk of failure than expected and
this may lead to safety problems. The corner space formulation
gives a solution that is very close to that from the deterministic
formulation with slightly higher probability of constraint
satisfaction.  This is due to the fact that with the corner space
formulation, we can only consider the deviations of design
variables (tolerances) (x1, x2) but cannot introduce the
deviations of design parameters (p1,   p2,   p3).

3.3 A Summary of Comparisons

Based on the two example problems presented in Sections
3.1 and 3.2, the features of various existing methods for
modeling feasibility robustness are summarized and compared
in Table 4. We have considered various attributes in this
comparison, such as whether the constraint function requires
statistical evaluation, whether the description of uncertainty
distribution has to be given, how the performance distributions
are described, and whether the calculation of partial
differential of the function is needed, etc. The number of
function evaluations required, the capacity and accuracy of
each method are also summarized. In summary, if neglecting
the computational effort, the probabilistic feasibility
formulation is the ideal method to describe the feasibility
robustness that can ensure the solution achieve an accurate
level of constraint satisfaction. For simple constraint functions,
adopting this formulation will lead to a quick solution.
However, in general, it is very time-consuming and difficult to
evaluate the probability of constraint satisfaction. If the
calculation cost is more concerned by designers, the alternative
formulations, such as the moment matching formulation
should be considered.  Moment matching formulation provides
an accurate estimation of the probability when the constraint
function is linear and the variables are normally distributed or
when the functions are nonlinear but normally distributed. The
moment matching formulation is much more computationally
efficient compared to the probabilistic feasibility formulation.
On the other hand, we should pay attention to the fact that
when using different mathematical structures for the same
constraint function, different results may be obtained by the
moment matching method due to the differences exist in the
first-order Taylor’s expansion (Chen and Weng, 1998). The

methods in the category of "not requiring probability and
statistical analyses" suit better the problems in which the
distributions of variables and parameters are not available.
The worst case formulation is a good selection under this
situation.  Though the worst case analysis is widely considered
as a conservative approach for modeling feasibility robustness,
we should use it with caution since the violation of the
constraint is still possible over certain design regions.

To avoid statistical analysis or the evaluation of partial
differential of constraint functions, the methods of Corner
Space Formulation and Variation Pattern can be adopted.  The
accuracy of these methods depends on whether the constraint
function is monotonic with respect to all design variables in
the tolerance space and whether the tolerance of design
variables are the only source of variation. One limitation is
that these two methods do not provide the information on the
probability (level) of constraint satisfaction.

4. AN EMERGING METHOD FOR PROBABILISTIC
FEASIBILITY EVALUATION
From the preceding discussions, we note that the

probabilistic feasibility formulation is the ideal method to
describe the feasibility robustness, as it can ensure the solution
achieve an accurate level of constraint satisfaction when the
distributions of parameter variations can be described by
designers. However, due to the reasons explained earlier,
probabilistic feasibility formulation could be a very difficult as
well as time-consuming task, especially when this becomes a
part of an iterative optimization process. The issue becomes:
how can we develop an affordable probabilistic feasible
evaluation technique so that the probabilistic robust
optimization framework can be used more widely in robust
design practices?

We propose to introduce a most probable point (MPP)
based importance sampling method into the process of
evaluating the feasibility robustness. The MPP method was
originally developed in the field of reliability analysis (Wu,
1990) and has caused more and more attention in recent
implementations of probabilistic optimization (Maglaras, et
al., 1996). We find the same principle can be applied to
evaluate the feasibility robustness in robust design problems.
The advantages of this approach are discussed here.
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Table 4 Comparisons of Feasibility Modeling Techniques
Probabilistic
Feasibility
Formulation

Moment
Matching
Formulation

Worst Case
Analysis

Corner Space
Evaluation Variation Pattern

Require statistical
evaluation of
constraint
function

Yes Yes No No No

Description of
uncertainty
distribution

Necessary Not necessary Not necessary Not necessary Necessary

Description of
constraint
performance
distribution

Yes
Only mean value
and standard
deviation

Extreme values Extreme values Extreme values

Deal with
correlation Yes No No No Yes

Calculation of
partial differential
of function

May or may not Yes Yes No No

Number of
constraint
function
evaluation (N)

Methods includes
MPP searching and
simulation, etc. In
general, N is very
large.

Evaluation includes
mean and variance
(function
differentiation).
N=m+n+1.

Evaluation includes
mean and variance
(function
differentiation).
N=m+n+1.

Evaluation includes
calculating function
values at the
“corners”.
N =2n.

Evaluation involves
searching the
tangent point of
MVP(1-α) with the
original constraint
boundary.  N
depends on the
shape of the
variation pattern.

Capability and
accuracy

Gives exact
probability
estimation;
Solve complicated
problems;
Difficult to get
analytical solution;
Needs great
computational
effort especially
when simulations
are involved.

Gives exact
probability
estimation for
normally
distributed
functions;  Provides
approximations for
other problems; The
accuracy of result is
sensitive to the
mathematical
structure of the
constraint.

Simple to use;
Low estimation
accuracy;
In most cases, gives
over- conservative
results.

Simple to use;
Calculation amount
increases with
variable dimension
increasing.
Doesn't provide the
probability (level)
of constraint
satisfaction.

More accurate than
the corner space
method;
Complicated to use
in the process of
optimization;
Doesn't provide the
probability (level) of
constraint
satisfaction.

For simplicity, we call both the random design variables
and random parameters as basic random variables and use the
vector T

kyyY ],[ 1 L=  to denote them. The constraint can then
be written as

0)( ≥Yg .         (4.1)
We assume ),,1( kiyi L=  are mutually independent and

their probability density functions are fi(yi) and their
cumulative distribution functions are Fi(yi). Two steps are
followed to calculate the probability of ]0)([ ≥YgP . The first
step is to search the so-called most probably point (MPP), and
then in the second step, probability is calculated by the
importance sampling around MPP.

The MPP method uses the properties of standard normal
space. The basic random variables Y are transformed into
standard, uncorrelated, and normal variables T

kuuU ],[ 1 L= .
The transformation is given by Rosenblatt transformation
(Rosenblatt, 1952) as

)]([1
ii yFu −Φ=         (4.2)

Eqn. (4.1) can now be rewritten as
0)( ≥Ug .         (4.3)

In the transformed U space, the MPP is defined as the
minimum distance point, which is the point in the U space that
has the highest probability of producing the value of constraint
function g(U) (Hasofer and Lind,1974,  Wu, 1990). The
minimum distance β is called as safety factor (Hasofer and
Lind, 1974,  Wu, 1990). If the constraint function g(Y) is
linear in terms of the normally distributed random variables U,
the accurate probability of constraint satisfaction is given by
the equation:

)(]0)([ βΦ=≥YgP         (4.4)
If the constraint function g(Y) is nonlinear or random

variables Y are not normally distributed, a good approximation
can still be obtained by the above equation, provided that the
magnitude of the principal curvatures of the constraint surface
at the MPP is not too large.  Different techniques can be used
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to search the MPP, such as using optimization, advance mean
value (AMV) (Wu, 1990), sampling-based MPP search (Wu,
1998), etc. In this paper, a set of non-sampling based MPP
search technique, such as sensitivity analysis, modified
searching direction, and MPP locus tracking, are used to
ensure the robustness and efficiency of the search.

After MPP is obtained, samples are picked around the
MPP to evaluate the probability of constraint satisfaction by
importance sampling method. An importance-sampling
density, )(YvY , is introduced into the Monte Carlo estimation
equation (2.5) to obtain

∫=≥
Yall Y

Y

Y dYYv
Yv
Yf

YgIpxgP )(
)(
)(

)]([]0),([       (4.5)

 A Monte Carlo algorithm to evaluate the integral in Eqn.
(4.5) would be to sample a series of Yi from )(YvY  and to
estimate the probability through

∑
=

=≥
N

i iY

iY
i Yv

Yf
YgI

N
pxgP

1 )(
)(

)]([1]0),([         (4.6)

We execute importance sampling in the standard normal
space U and chose the importance-sampling density as the
standard normal distribution with its mean value shifted to the
MPP *U  (Ang, et al., 1992). This gives a good estimation of
the probability with a small number of simulations. The
concept is illustrated in Fig. 7.  We can see that about half of
the samples will fall into either the unfeasible region or the
feasible region. The evaluation efficiency can be significantly
improved by this way. The probabilistic feasibility analysis of
the beam design example in Section 3.2 is implemented by this
MPP-based importance sampling method.

Figure 7. Importance Sampling
As the evaluation of probabilistic feasibility is a part of a

robust optimization process, we believe measures need to be
taken into account on how to use this approach more
effectively in the solution process of optimization.

To reduce the computational effort of evaluating the
constraint function g(Y), we suggest not to provide an accurate
evaluation of probability of constraint evaluation at each
iteration of optimization, but to use the sampling method only

when it is necessary. For example, if the safety factor β
obtained in the MPP searching step is too far away (either
much larger or much smaller) from the one corresponding to
the desired probability, )(βΦ  will be used to approximate the
probability.

In the process of sampling, we suggest to determine the
number of simulations by a prescribed error with a certain
confidence level.  The system will keep tracking the number of
samples that fall into the feasible region and computing the
simulation error due to randomness (Law and Kelton, 1982).
If the error is less than the acceptable error defined by
designers under a certain confidential level, the sampling
process will stop and the probability will be estimated.

To keep the stability of convergence in an optimization
process and to ensure the repeatability of solutions, except for
using enough number of simulations determined by the
prescribed error, we also suggest using the same “seed”
number to generate random variables.

5. CLOSURE
In robust design, it is important not only to achieve the

robust objective performance but also to maintain the
robustness of design feasibility. In this paper, we discussed how
to define the robustness of design feasibility under the effect of
variations. By providing analytical interpretations and using
illustrative examples, the features of various existing methods
for modeling feasibility robustness are compared from different
aspects.  We illustrate that, although some of these approaches
are easy to use, they may lead to either over-conservative or
infeasible design solutions in robust design applications. The
summary of comparisons is provided in Section 3.3 and will
not repeat here.  We expect that they could serve as guidelines
for choosing the right technique under different circumstances.

It is our belief that the probabilistic feasibility formulation
is the ideal method to describe the feasibility robustness and to
ensure the solution achieve an accurate level of constraint
satisfaction. To improve the efficiency of using this
formulation, we propose to use a most probable point (MPP)
based importance sampling method, a technique rooted in
reliability analysis, for evaluating the feasibility robustness.
Though our discussions have been centered on robust design,
the principles presented are generally applicable for any
probabilistic optimization problems. The practical significance
of this work also lies in the development of efficient feasibility
evaluation methods that can support quality engineering
practice, such as the Six Sigma approach that is being widely
used in American industry.
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