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Abstract—Internet services are vulnerable to flooding attacks
that lead to denial of service. This paper proposes a new
framework to detect anomalies and to provide early alerts for
flooding attacks in backbone networks. Thus allow to quickly
react in order to prevent the flooding attacks from strangling
the victim server and its access network. The proposed detection
scheme is based on the application of Least Mean Square (LMS)
filter and Pearson Chi-square divergence on randomly aggregated
flows in Sketch data structure. Instead of analyzing one time
series for overall traffic, random aggregation of flows is used to
investigate a fixed number of time series for grained analysis.
Least mean square filter is used to predict the next value of
the time series based on previous values, and Pearson Chi-
square divergence is used to measure the deviations between the
current and estimated probability distributions. We evaluate our
approach using publicly available real IP traces (MAWI) collected
from the WIDE backbone network, on trans-Pacific transit link
between Japan and USA. Our experimental results show that the
proposed approach outperforms existing techniques in terms of
detection accuracy and false alarm rate. It is able to detect low
intensity attacks covered by the large number of traffic in high
speed network.

Index Terms—Intrusion Detection System; Anomaly detection;
DDoS; SYN flooding; BOTNET; Sketch; Least Mean Square;
Chi-Square divergence.

I. INTRODUCTION

Flooding attacks overwhelm web servers with connection
requests in order to prevent access for legitimate users. With
the use of BOTNET (roBOT NETworks), Distributed Denial of
Service (DDoS) is able to make silent any web site. Recently,
PayPal has been driven offline for eight hours after dropping
WikiLeaks donations (operation PayBack in 2010), where it
was easy for small group of users to have a large impact
on the functioning of major web sites. Flooding attacks have
increased significantly in the last decade, and the list of web
server victims of DDoS through TCP SYN flooding is large:
WikiLeaks, Twitter, CNN, Yahoo, Amazon, Ebay, etc.

TCP SYN flooding attack is on the top of the list of flooding
attacks, especially with the use of BOTNET containing large
number of compromised hosts (zombies). Usually, an attacker
may compromise many computers through exploiting existing
vulnerabilities, and a novice attacker rent a BOTNET with few
dollars on the web, to launch distributed attack with the help
of compromised computers.

Flooding attacks need to be accurately detected in real time,
in order to cope with ongoing attack as soon as possible.

Several techniques aimed to detect intrusion have been pro-
posed and tested in the last decade. Signature based IDS, like
Bro [1] and Snort [2] check payload of traffic for matching
attack signature. This approach is not scalable for the back-
bone networks. On the other hand, anomaly based approach
consists of monitoring network traffic to investigate and detect
abnormal deviations from dynamically updated model. Such
deviations are mostly direct indications of abnormal situations.
The real time analysis for early detection of these anomalies
allows reacting to prevent network deterioration and resources
exhaustion.

In this paper, we focus on volume based attacks, such as
flooding for DDoS. Our approach to detect flooding is based
on anomaly detection, since flooding attacks will change some
statistical metrics of traffic. With the distributed nature of these
attacks, detection and reaction must be pushed to core network
(backbone or Autonomous Systems), or near to the sources
of attack. However, with the complexity in analyzing huge
amount of data traffic from backbone network, the analysis of
each traffic flow is not scalable and computationally expensive.

Many change point detection algorithms have been proposed
and applied to the time series resulted from the aggregation of
whole network traffic in one flow [3], [4], [5]. Therefore, these
anomaly detection methods are based on the identification of
the change point where heavy deviation occurs in the resulted
time series. However, as these methods aggregate whole traffic
in one time series, attacks can easily be buried in background
traffic and pass undetected, i.e. flooding attack with intensity
106 packets/s does not produce a noticeable deviation when
the total number of packets is greater than 109. Moreover, time
series derived from IP traffic are subject to many variations
that are irrelevant to anomaly. The time series is non-stationary
and tends to change over time, leading to a lot of false
alarms. Reducing the false alarms and increasing the detection
accuracy in such methods are a challenging problem.

In this paper, we propose a new framework for anomaly
detection over high speed network. Our proposed framework
is aimed to resolve the issues of aggregating whole traffic
in one time series in order to improve the detection of low
intensity attacks. Thus allow to uncover hidden attacks by the
large variation resulted from aggregating the whole traffic, and
to distinguish attacks from normal traffic variations. We aim
also to resolve the problem of static threshold and to reduce
the false alarms ratio.
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The proposed framework is based on random aggregation
of traffic in Sketch [6], [7], [8] data structure for a discrete
time interval T . At the end of each interval, the Least Mean
Square (LMS [9]) filter is used to forecast the next values in
each time series from previous values, and the Chi-square [10]
(χ2) divergence is used to measure the distance between the
estimated and current probability distributions.

The Sketch data structure is an array of hash table, where
each cell contains a shared counter for specific monitored
attribute (number of: bytes, packets, SYN, etc.). Each counter
belongs to network traffic having the same hash value of
specific fields in packet header (e.g. destination IP address &
port, source IP address & port, protocol, etc.). Sketch is used to
reduce the number of time series through random aggregation
of network traffic. The benefit of sketch is twofold. First, it
resolves the problem of hidden attacks in the large variations
of aggregated traffic, and allows more grained analysis for
the detection of low intensity attacks. Second, it provides a
fixed number of time series to investigate. Furthermore, we
use Sketch data structure to establish a probabilistic model by
exploiting the counters of hash table.

The value of counters resulted from different interval are
used for anomaly detection. The least mean square filter is
used to estimate the current value of each counter from some
previous values. Afterward, the χ2 divergence between the
estimated and current distributions of monitored attribute is
used to detect anomaly.

We have applied our anomaly detection algorithm on pub-
licly available real data trace [11]. Our experimental results
show that our proposed approach achieves good performance
in term of detection accuracy and false alarm ratio, especially
when comparing the result with existing methods.

The rest of this paper is organized as follow. In section II,
we present some references related to our work. In section III,
we briefly review background materials related to the proposed
framework. Section IV gives a detailed description of our
proposed approach for anomaly detection. Section V presents
the experimental results of the proposed approach. Finally,
some concluding remarks are given in section VI.

II. RELATED WORK

Anomaly detection in data networks resulted from dis-
tributed monitoring sensors is primordial for network secu-
rity. Many interesting previous work on efficient and online
change point detection algorithms have been proposed and
tested for DDoS detection, such as Haar-wavelet analysis [12],
[13], change point detection methods with the CUmulative
SUM (CUSUM) and its non-parametric version [3], [4], [14],
adaptive threshold analysis [15], [3], Exponentially Weighted
Moving Average (EWMA) [5], Holt-Winters seasonal fore-
casting [16], [8], [17], ARIMA [7], Heavy Hitter [18], [6],
[19], SNMP [20] (Simple Network Management Protocol)
MIB statistical data analysis, combination of adaptive thresh-
old, CUmulative SUM and the source IP monitoring algo-
rithms [21], etc.

Statistical approaches establish a profile of normal traffic
during a training period, and deviations from the established
profile are considered as anomaly. Usually, malicious activities
provoke an abrupt change in the statistical values of the
parameters describing the traffic (number of packets, bytes,
SYN, etc.), e.g. NetScan produced by worms outbreak, that
send a large number of SYN from the same source IP, to scan
the network before propagation phase.

In [22], the CUSUM algorithm is used to detect SYN flood-
ing over one time series resulted from aggregation the whole
traffic in one flow. In [3] a comparison between CUSUM
and adaptive threshold for the detection of SYN flooding is
presented. These proposed approaches aggregate the whole
traffic in one time series for dimensionality reduction, and
attacks can easily be buried inside background traffic in
backbone network. However, it is complex and intractable to
investigate a time series per flow over backbone networks, but
more grained analysis than aggregating the whole traffic in
one time series is required.

Furthermore, when deviations are larger than a predefined
threshold in previous approaches, the observation (e.g. number
of packet) is considered as an outlier, and an alarm is triggered.
Such approaches cannot adapt the temporal variation in the
traffic, and a fixed threshold for different kind of networks is
not suitable parameter, especially with the large variations in
the traffic. It may induce large ratio of false alarm and miss
detection. In this paper, we want to overcome these problems
through the use of Sketch for more grained and scalable
analysis, and we want to propose a solution for dynamically
adjusting the threshold.

The Principal Component Analysis (PCA) method for
anomaly detection in [23], [24] transforms high dimensional
space into low space, and detects flow anomalies using the
evaluation of flows correlations over single link, instead of
single time series of whole traffic from many links. Authors
in [25] show that Euclidean and commute distances are more
stable and less sensitive than PCA method. The presented
results in [25] show that PCA is incapable of detecting large
anomalies. In [26], the authors showed that methods for tuning
PCA are not adequate and starting with a new data set,
adjusting parameters is unexpectedly difficult.

Sketch data structure [7], [27] is used as a dimensionality
reduction technique. It uses the random aggregation to sum-
marize monitored traffic in a fixed memory, and to provide
scalable input for online anomaly detection. Different type
of counters have been used for detecting change in traffic
features, such as the number of: SYN, packets, flows, bytes,
etc. For example, the number of SYN per destination IP
address can be used to detect SYN flooding, since distributed
attacks are directed toward unique victim.

In [8], a reversible sketch is proposed for detecting and
identifying malicious traffic. In [28], Sketch has been used in
HiFIND framework to detect and distinguish between many
classes of attacks.

In this paper, our proposed framework extends all these
previous works, through the use of LMS filter to predict the
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next value of the time series, and the χ2 divergence over
Sketch, and dynamic threshold for anomaly detection. The
method can be used to detect any type of flooding (UDP,
ICMP, SYN, ACK, etc.). We will present the method for
SYN flooding attack detection in this paper for the sake of
simplification. However, the same procedure can be applied
to detect any type of flooding attacks.

Under SYN flooding attack, the distribution of number of
SYN toward a specific IP address will deviate from previously
learned distribution under normal traffic condition. However,
with the difficulty of finding a distribution probability that
fits to traffic characteristics (self similarity, heavy-tailed, and
long range dependence, etc.), we will use the χ2 divergence to
detect deviations between the probability values resulted from
the shared counters of Sketch in current time interval, and the
estimated values of each counter in the time series.

III. THEORETICAL BACKGROUND

In this section, we review the Sketch data structure, the least
mean square filter and the χ2 divergence. They are relevant to
understand the proposed framework.

A. K-ary Sketch

K-ary Sketch S is an array of hash tables used to randomly
aggregate large number of flows into a fixed size of memory. It
is a two dimensional L×C array, with L mutual independent
hash functions. Each row is associated with a hash function.
Let A = a1, a2, . . . , an denotes the set of arrival, where
each arrival ai = (κi, νi) is identified by a key κi and its
associated value νi. For example, during SYN flooding attack,
high number of SYN requests are directed to the victim server.
Therefore, we use the destination IP (DIP) address as a key
κi = DIP , and νi = #SY N to count the number of SYN
received by destination. The arrival of a packet with key κi

increments its associated counter in the jth hash table by νi
(Sj,hj(κi)+ = νi), as shown in algorithm 1 and in Fig. 1. The
hash functions are chosen from the set of 2-universal hash
functions hj(κi) = {((ajκi + bj) mod PU ) mod C} + 1, to
uniformly distribute keys (κi) over hash table and to reduce
collisions. Collisions are resulted from two or many items
having the same hash value:

∀κi, κj ∈ U, κi �= κj : hk(κi) = hk(κj) (1)

The parameter PU is a prime number larger than the
maximum number in the universe, where Mersenne prime
numbers of the form 2i − 1 are generally chosen for fast
implementation. For κi on 32 bit, we use P = 261−1. aj and
bj are random integers smaller than PU , with aj �= 0. Using
L hash functions, the probability that two keys are aggregated
in the same bucket over the L hash tables is (1/C)L.

As the size of DIP (IPv4) is 32 bits, the hash functions
reduce the dimension of monitored space (232) to a fixed
size w (e.g. w = 210 = 1024), through the random aggre-
gation of multiple IP addresses in the same bucket, when
the value resulted from hashing the addresses are the same
(hj(DIP1) = hj(DIP2) = K). For L = 5, the probability

Algorithm 1 Sketch Update procedure
1: for all TCP SYN segment received during T do
2: for k = 1 to L do
3: j = univ hashk(κi);
4: S[k][j].counter+ = νi;
5: end for
6: end for

that 2 flows share the all counters over the L hash table is
0.88×10−15, and attacks can not be covered by the variations
of normal flows sharing the same cell over the L lines in the
Sketch. Usually, flows sharing the same cell in the first hash
tables, have less probability to share the same cell in other
hash tables.

C
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Fig. 1. Sketch data structure.

B. Least Mean Square

LMS estimates the next value x̂n+1 in the times series
from known previous values x1, x2, . . . , xn. It attempts to
minimize the error between the measured value xn+1 and
the estimated value x̂n+1 using a gradient-based method of
steepest decent [9]. The predicted value in the nth step is
calculated using Eq. 2, which depends on the weight vector
W and a vector of previous values XN . The vector W is
initiated randomly, and the vector XN contains the last N
measured values from the time series (N is the filter order).

x̂n+1 = WT
n .XN (2)

LMS uses an iterative algorithm based on the least mean
square for the correction of the weight vector W , as given in
Eq. 3:

Wn+1 = Wn + μ.(xn − x̂n).XN (3)

Where μ is a step size parameter that controls the conver-
gence characteristics, and must be chosen with respect to the
condition in Eq. 4 for fast convergence.

0 < μ <
2

λmax
(4)

Where λmax is the largest eigenvalue of the matrix Rn =
Xn.X

T
n . However, Rn is symmetric and the largest eigenvalue

is the trace of the matrix. Therefore, μ is updated online as
given in Eq. 5:

μ =
1

2× trace(R)
(5)
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C. Chi-square divergence

χ2 divergence is used to measure distance between two
discrete probability distributions (P and Q). For 2 probability
sets P = (p1, p2, p3, . . . , pn) and Q = (q1, q2, q3, . . . , qn),

with pi ≥ 0, qi ≥ 0 and
n∑

i=1

pi =
n∑

i=1

qi = 1, the Pearson χ2

divergence between P and Q is given by:

χ2 (P ||Q) =

n∑
i=1

(pi − qi)
2

qi
(6)

Where Q is the estimated probability distribution, and P
is the measured probability distribution, and χ2(P ||Q) is the
distance between distributions P and Q.

For hypothesis testing, such as H0 (normal traffic hypoth-
esis) and H1 (traffic with anomalies), χ2 values can run
from zero into infinity. χ2 will be zero iff P and Q are
identical (pi = qi) under hypothesis H0, and χ2 increases
as the distributions become dissimilar, and eventually so high
(infinity) when the two distributions are independent (P �= Q)
under hypothesis H1. It is important to note that χ2 divergence
is nonnegative and the division 0/0 is treated as 0, and the
division by zero is replaced by a very small value ε [29].

The χ2 divergence between 2 probability distributions P
and Q must be near zero under normal traffic, with a large
deviation (one spike) when distributions change occurs. χ2

is asymmetric
(
χ2 (P ||Q) �= χ2 (Q||P )

)
, and its symmetric

version (given in Eq. 7) raises two spikes. One spike at the
beginning and the second at the end of the attack.

χ2 (P ||Q) + χ2 (Q||P ) =

n∑
i=1

(pi − qi)
2(pi + qi)

pi.qi
(7)

We intend to use Pearson chi-square divergence (asymmet-
ric) to detect anomaly through the detection of deviations
from normal traffic profile, and we will modify the input
time series to constrain χ2 to raise alarms (spikes) for the
whole duration of attack. In [30], authors prove that χ2 diver-
gence behaves better than all classical divergences (Hellinger
distance, Kullback-Leibler, Likelihood, etc.). In our proposed
approach, we use χ2 divergence with dynamic threshold to
increase the detection accuracy, and to reduce the false alarm
ratio.

IV. PROPOSED APPROACH

The proposed approach for anomaly detection in backbone
networks is based on Sketch, LMS filter and χ2 divergence.
The detection system records the number of monitored at-
tribute (e.g. #packets, #SYN, #flows, etc.) in the Sketch for
each discrete time interval T . Random aggregation of traffic
flows in Sketch is the first step of our processing, followed by
time series forecasting with Least Mean Square, and change
detection with χ2 divergence (Fig. 2).

In fact, each cell in Sketch is a counter for randomly
aggregated flows during T (e.g. T = 1 min). The counters
in 2D table is used to record the number of SYN. Each cell
may contain many counters for detecting different type of

Fig. 2. Architecture of the proposed approach for network anomaly detection.

flood (TCP, UDP, ICMP, SIP INVITE, etc.). For the sake
of simplicity, we will restrict our analysis in this paper to
TCP SYN flooding by counting only the number of SYN, but
the same method can be applied to detect different type of
flooding attacks. Many web services are based on TCP, and
SYN flooding is the most used flooding attacks in these days.

During SYN flooding attack, the number of SYN directed to
victim server increases significantly. The destination IP (DIP)
address is used as key in the update procedure (κi = DIP in
algorithm 1) to derive the colon index, and the associated value
νi is equal to 1 for SYN segment and zero otherwise. There-
fore, we can detect anomalies targeting any host regardless the
number of the involved sources (one source or geographically
distributed sources).

At the end of each epoch T , the LMS filter predicts the next
values by using the previous N counters in the time series,
and adjusts its forecasting with respect to the error between
the estimated and obtained values. To predict the next value of
each counter, we use the first few minutes as training phase,
and a fixed size sliding window of N (filter order) time slot,
to adjust the weight vector W , and to predict the next value
of each counter.

Afterward, we derive two probability distributions from the
estimated and measured number of SYN. This is done by
dividing each counter in one hash table by the sum of whole
counters in this table (Eq. 8). The probability pi,j in each cell
is given by:

pi,j = Si,j .counter/

C∑
j=1

Si,j .counter (8)

Sketch data structure holds a vector XN in each bucket of
the 2D array. Each cell Si,j becomes a data structure, that
contains: an array of fixed size for the last N counters (XN ),
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two counters for current and estimated value of observations,
and 2 float variables for holding the associated probabilities.

Thus result in 2 × L distributions (Pi, Qi with i ∈ [1, L]),
where Pi is the probability distribution (pi,1, pi,2, . . . , pi,C )
resulted from the ith hash table, and Qi is the estimated
probability distribution. The χ2 divergence between the current
(Pi) and estimated probability (Qi) distributions is calculated
for each line in the sketch, at the end of each time interval (i.e.
at kT ). L values of χ2

i,kT will be calculated (one per line).
During malicious activities, many time series χ2

i,kT induce one
spike, and when more than H (H ≤ L) values of χ2

i,kT exceed
a dynamic threshold for more than η consecutive intervals, an
alarm is raised.

The waiting time η is used to avoid false alarms due to
normal traffic variations (e.g. flash crowd), and the fact that
DDoS attack must span for many consecutive intervals to
overload a server. Therefore, if the lifetime of the deviation
is smaller than predefined number of time interval, no alarm
will raise.

When an alarm is triggered, we halt the updating procedure
of vector XN until the end of attack, to prevent the poisoning
of the forecasting procedure. This technique constrains χ2 to
produce spikes for the whole duration of the attack, and allow
the detection of the start and stop instant of the attack.

Under normal traffic hypothesis (without anomaly), the first
value of the array XN will be dropped, and other values in
this vector are shifted one position (XN [i] ← XN [i+ 1]),
and the current counter is pushed to the end of the vector
XN . Afterward, the weight of LMS is updated, and the next
value is estimated. When an alarm is triggered, the update
procedure of XN is halted until the end of ongoing attack.

When the attack stops, the χ2
i,kT divergence values will drift

back near to zero, and the vector XN , used in the forecasting
procedure, continues to be updated with the value in the
current time interval.

To detect deviations in the time series χ2
i,kT , we derive

a subsequent time series χ̂2
i,kT containing the values in the

χ2
i,kT , but without spikes, i.e. only values smaller than dy-

namic threshold. In the time series χ2
i,kT , we use the dynamic

bound of μi,k−1 +ασi,k−1 given by Cheysheve inequality. At
least 1 − 1

/
α2 of the values of χ2

i,kT are within α standard
deviations from the mean. Significant deviations (outlier val-
ues) are larger than the dynamic bound, and are replaced by
the last value in χ̂2

i,kT (e.g. χ̂2
i,kT ← χ̂2

i,(k−1)T ). In contrast,
inliers are included in the χ̂2

i,kT time series. Therefore, χ̂2
i,kT

contains only the values of χ2
i,kT that satisfy the equation:

χ2
i,kT < μi,(k−1)T + ασi,(k−1)T (9)

Where χ2
i,kT is the value of chi-square in the time slot kT

for line i in the Sketch data structure, and μi,k & σi,k are
the mean and the standard deviation of χ̂2

i,kT respectively.
μi,k and σi,k are updated dynamically using the Exponentially
Weighted Moving Average (EWMA):

μi,kT = βμi,(k−1)T + (1− β)χ2
i,(k−1)T (10)

σ2
i,kT = βσ2

i,(k−1)T + (1− β)(χ̂2
i,kT − μi,kT )

2 (11)

The threshold is updated dynamically by adjusting the value
of μi,kT and σi,kT as shown in Eqs. 10 & 11. α is a parameter
used for calibrating the sensitivity of the detection algorithm
to variations, and to reduce the false alarm rate. High value
of threshold reduces the false alarm rate, and increases the
probability of misclassification of attack as normal traffic.
The choice of the threshold (implicitly α) reflects a trade-off
between misclassification (false negative) and the false alarm
rate.

Under normal traffic, divergence χ2
i,kT falls down the

threshold (μi,(k−1)T + ασi,(k−1)T ). When χ2
i,kT exceeds the

dynamically updated threshold over H lines (hash tables), an
alarm is triggered. The decision function for alarms is given in
Eq. 12. The alarm will not trigger before the value η exceeds
a specified threshold used to reduce false alarm rate. Another
interesting approaches for estimating and adjusting dynamic
threshold were proposed in [31], [32] for SIP INVITE flooding
detection.

d(Ai) =

⎧⎪⎨
⎪⎩

1 if χ2
i,kT ≥ μi,(k−1)T + ασi,(k−1)T

and η ≥ 3

0 Otherwise

(12)

Where d(Ai) is the decision function for alarms, with a
value 1 when an alarm must be triggered, and 0 otherwise.
χ2
i,kT is the chi-square divergence obtained from ith hash

table at time kT . μi,(k−1)T & σi,(k−1)T are the mean and
the standard deviation of the time series χ̂2. η is a counter for
the number of consecutive intervals where χ2

i,kT exceeds the
dynamic threshold. η is used to reduce false alarm ratio with
the dynamic and unpredictable fluctuations of network traffic.

V. EXPERIMENTAL RESULTS

The validation of proposed approach is realized with pub-
licly available IP traces over the web. We get the traces from
MAWI [11] repository of WIDE project. We use daily traces
in tcpdump format, collected at simplepoint-F which is a trans-
Pacific link between Japan & USA, from 15/04/2010 07h30
to 23h as background traffic from real life of the internet. We
analyzed 62 files with more than 50GB without application
data. IP addresses in these traces are scrambled by a modified
version of tcpdpriv [11] tool, but correlation between addresses
are conserved. We have analyzed these traces of wide area
network using the proposed approach, with κi = DIP and
νi = 1 for SYN request only, and νi = 0 otherwise. We found
many existing anomalies as we show later. Afterward, we
inject real SYN flooding DDoS attacks with different intensity
inside these traces.

The numeric values of used parameters are: C = 1024 and
L = 5, N = 5, H = 3, α = 3, β = 0.7, T = 1. The time
interval has an impact on detection delay, where a small value
of T reduces the detection delay at the cost of potentially
increasing the false alarm ratio. On the other hand, a large
value of T interval increases the detection delay. One minute
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flooding attacks.
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Fig. 8. Total number of SYN segments after
SYN flooding attacks.

is chosen as a tradeoff between detection delay and false alarm
ratio.

Computational complexity and required memory storage are
central issues for online anomaly detection. The processing
time for whole traces on Ubuntu box with 2.2 GHz Intel Core
2 Duo CPU & 3 GB of RAM is about 1072s.

With the use of Sketch, the spatial complexity is O(C × L)
cells, where each cell contains an array of integer with size
N (4 × N Bytes), and two integer variables for current and
estimated values of observations (8 Bytes), and two float
variables for current and estimated probabilities (8 Bytes).
Thus, the total required memory with used parameters in our
experiments is 44.8 KBytes. The required memory space for
Sketch data structure is fixed and independent of the amount
of traffic that must be handled.

We begin by applying our approach over MAWI traces to
detect existing anomalies. χ2 divergence raised many spikes
and we extract malicious flows as we will show later. Af-
terward, to analyze the detection accuracy of our proposed
approach, we inject 23 DDoS TCP SYN flooding attacks with
different intensity in these traces. The injected attacks are
presented in Fig. 14. Attacks duration are 10 min and separated
by 30 minutes.

The variations of the total number of packets before and
after attacks are given in Fig. 3 & Fig. 6 respectively. Attacks
cannot be detected when inspecting the variation of total
number of packets. In fact, there are no heavy deviations in the
time series describing the number of packets when comparing

Fig. 3 & Fig. 6, because the aggregation of attacks with the
high number of background packets, and the subsequent low
variations induced by injected attacks.

Also, the injected SYN flooding attacks don’t provoke any
obvious variations when comparing the total number of TCP
segments before and after attacks injection, as shown in Fig. 4
& Fig. 7 respectively. In fact, the number of TCP segments is
around 1.4× 106 and attacks (shown in Fig. 14) are of order
104 (relative insignificant variations). Therefore, the induced
variations by attacks can not be observed when comparing
Fig. 4 & Fig. 7 (same similarity when comparing Fig. 3 &
Fig. 6).

In Fig. 5, we present the variation of total number of
SYN in the original trace (before attacks injection), where
we can observe significant variations with time, and large
deviations in the number of these requests. In spite of these
heavy deviations, we found, after inspection, some of these
variations are legitimate, where SYN requests are not directed
towards a specific destination. The analysis of the aggregation
of whole SYN segments in one time series leads to lot of
false alarms, whereas the grained analysis with Sketch doesn’t
produce false alarms unless a deviation in the number of SYN
requests received by a destination.

To inspect these variations in the number of SYN, we apply
the proposed approach over the original IP dataset. We conduct
many experiments by incrementing the value of η from 1
to 10. Fig. 9 & Fig. 10 show the number of anomalous
SYN received by given destinations, and Fig. 11 shows the
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Fig. 9. #SYN received by given DIP.
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Fig. 10. #SYN received by given DIP.
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Fig. 11. #SYN sent by given SIP.
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Fig. 12. Basic χ2 divergence between
current & estimated values with η = 1.
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Fig. 13. χ2 divergence with η = 3 & halt
forecasting for continuous alarms.
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Fig. 14. Injected SYN flooding attacks with
different intensity.

number of anomalous SYN generated by given sources for
PortScan & SYN flooding. These anomalies are extracted from
original traces, after the application of χ2 divergence on the
estimated and current distributions resulted from Sketch. We
get 5 alarms for flooding attacks as shown in Fig. 12. Due
to space limitation, we present only the variations of χ2 on
the first hash table, where other lines exhibit very similar
variations. If less than H values of chi-square divergence are
higher than the dynamic threshold, no alarm is raised.

Raised spikes between 111 & 142 are the result of abnormal
(large) number of SYN sent from the same source to 3
servers. In fact, we found that the raised alarm at instant 56
is the result of PortScan with SYN, and the instant 399 is
caused by large number of SYN (sent from 144.9.215.4 to
the port 443) for 1.5 minutes. To reduce false alarms, we set
η = 3 in our experiment to prevent χ2 from raising alarms
for such small time variations. It is important to note, that
increasing the value of η will increase the detection delay, and
a tradeoff between accuracy and detection delay is required.
Furthermore, to continuously raise alarms during attack, we
stop the forecasting procedure at the start instant and until the
end of attack. The result of these modifications (halt updating
and η = 3) on the chi-square divergence is shown in Fig. 13.

The variation of SYN segments after the injection of SYN
flooding attacks is shown in Fig. 8. When comparing Fig. 5
& Fig. 8, which represent the variations of SYN requests
before and after attacks injection, we may not notice the
small variations induced by attacks unless a deep inspection.
In fact, the underlying changes invoked by injected attacks

(Fig. 14) are smoothed by the large fluctuations of backbone
traffic. These attacks cannot be detected by methods based on
analyzing one time series, which results from aggregating the
whole traffic, such as single channel CUSUM and adaptive
threshold used in [3], [4].

These methods identify attacks as heavy change in the
analyzed time series, and when applied on the aggregation
of whole traffic to reduce computational complexity and to
alleviate scalability problem (one time series per destination
IP), they cannot detect low intensity attacks. The proposed
approach resolves the problems of scalability, temporal com-
plexity and detection accuracy of low intensity attacks, through
analyzing a fixed number of time series resulted from ran-
domly aggregating traffic flows in Sketch data structure.

As we want to compare the efficiency of Chi-square diver-
gence with widely used divergence measures, we implement
3 distance measures over Sketch: Chi-square Divergence [29],
Hellinger Distance (HD [31], [32]) and Jensen-Shannon Diver-
gence (JSD [29]). In contrast to χ2, HD & JSD are symmetric
and raise two spikes: one at the start instant and the second
at the end of the attack.

The results of the application of these measures over traces
with attacks are given in Fig. 15 & Fig. 16 & Fig. 17. These
figures are the results of comparing only the predicted value
with the current observation (without halt updating technique).
HD and JSD raise two spikes for each inserted attacks, and
they achieve a very good detection, but with many additional
spikes (false alarms) with respect to χ2, by comparing Fig. 16
& Fig. 17 with the result of chi-square in Fig. 15. χ2
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Fig. 15. χ2 Divergence with η = 1 after
the injection of SYN flooding attacks.
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Fig. 16. Hellinger Distance after the injec-
tion of SYN flooding attacks.
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Fig. 17. Jensen-Shannon Divergence after
the injection of SYN flooding attacks.
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Fig. 18. χ2 Divergence with η = 1 and
dynamic threshold.
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Fig. 19. χ2 Divergence with η = 3 and
modified input.
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Fig. 20. Receiver Operating Characteristic
for χ2, HD & JSD.

divergence performs better detection with less false alarms.
In Fig. 15, we can see that the intensity of raised spikes by
χ2 are proportional to the intensity of the attacks, where high
intensity attack produces high spike, and thus can be exploited
for classifying attacks by severity. We can distinguish clearly
the performance of χ2 in terms of reduced false alarms, and
simple required threshold for detecting all attacks.

We add the dynamic threshold given in Eq. 9 on the χ2

divergence for both case: one alarm and continuous alarms on
attack detection. Fig. 18 & Fig. 19 show the results of our
investigations for both cases respectively. In fact, when the
current value of Chi-square is larger than dynamic threshold,
an alarm is triggered.

To evaluate the performance of the proposed approach,
we investigate the detection ratio (true positives) and the
proportion of false alarms (false positives). These indicators
are used by ROC (Receiver Operating Characteristic) for
accuracy analysis, when varying the value of threshold. The
detection rate is defined as the ratio of detected attack to the
number of existing attacks:

DR =
TP

TP + FN
(13)

Where TP is the number of true positive alerts, and FN is
the number of false negative. The false alarm rate is defined
as the ratio of false alarms to the number of raised alarms:

FAR =
FP

TP + FP
(14)

Where FP is the number of false positive alerts. A high true
positive and a low false alarm rate are desired to achieve good

performance. We compare the performance of 3 divergence
measures over Sketch: χ2, (HD) and (JSD). Fig. 20 shows that
the ROC curves (DR versus FAR) when varying the value of
α in the threshold. With the use of dynamic threshold, and
the halt technique of forecasting after the detection of attack,
HD achieves a DR=100% with a FAR of 22%, JSD achieves
a DR=100% with FAR=7.4%, and χ2 achieves a DR=100%
with FAR=3.8%. Thus, when comparing the performance of
these algorithms, we found JSD achieves better than HD, and
Chi-square outperforms both measures for anomaly detection
with the lowest FAR. χ2 divergence leads to very attractive
performance in terms of detection rate & false positives ratio.
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Fig. 21. Sketch width vs. detection rate.

Finally, we investigate the impact of varying Sketch param-
eters (width C and depth L) on the attack detection rate of
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the proposed approach. Fig. 21 shows the variation of attack
detection rate when increasing the Sketch width and depth.
We conduct 3 experiments with H = 1, 2, 3 for Sketch depth
L = 1, 3 and 5 respectively.

The attack detection rate increases with the Sketch width C
(Fig. 21) at the cost of computational complexity and required
memory. For L = 3 and C = 210, the attack detection rate is
88%, whereas, for C = 213, the detection rate is 100%. On
the other hand, an high value of C increases the detection rate,
but incurs sparse Sketch, per flow tracking and computational
overhead. A more practical solution is to increase the Sketch
depth (L), which increases the detection accuracy with lower
cost than increasing Sketch width. In online deployment of
Sketch for anomaly detection, a tradeoff between detection
accuracy and temporal complexity is desired to take decision
in less than T .

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a new sequential approach for
network anomaly detection in traffic of high speed networks.
The proposed approach is based on random aggregation of
flows in Sketch data structure. It uses LMS filter & Chi-square
divergence to detect network anomalies. The experimental re-
sults on real IP datasets prove the effectiveness of the proposed
approach in detecting low intensity attacks in massive data
flows with high accuracy.

Ongoing and future work will focus on improving the pro-
posed approach to identify and extract malicious flows related
to the detected change. Thus provide valuable information and
allow an automatic reaction to prevent ongoing attacks. Also,
we seek to exploit the proposed anomaly detection method, to
automatically generate signatures for newly detected attacks.
Signature generation is one of our interests for future work.
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