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Abstract

An efficient and universal similarity search solution is a holy grail for multi-

media information retrieval. Most similarity indexes work by mapping the orig-

inal multimedia objects into simpler representations, which are then searched

by proximity using a suitable distance function.

In this paper we introduce a novel representation of the objects as sets of

integers, with a distance that is computed using set operations. This allows us

to use compressed inverted indexes, which have become a mature technology

that excels in this type of search. Such indexes allow processing queries in main

memory even for very large databases, so that the disk is accessed only to verify

a few candidates and present the results.

We show that our technique achieves very good speed/compression/recall

tradeoffs. As an example, to reach 92% recall in 30-nearest neighbor searches,

an index using 1 to 2.5 bytes per object inspects less than 0.6% of the actual

objects. Furthermore, the ratio between the distances to the actual nearest

neighbors and those reported by our algorithm is very close to 1.
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1. Introduction

A metric space is a pair (U, d) with U a universe of objects and d(·, ·) a

distance function d : U ×U → < holding the metric axioms: For all x, y, z ∈ U ,

d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x), and d(x, z) +

d(z, y) ≥ d(x, y). These properties are known as strict positiveness, symmetry,

and the triangle inequality, respectively. A finite subset of the metric space is

the database S ⊆ U . Problems of diverse domains, from pattern recognition,

classification and statistics, to multimedia retrieval, can be formulated with the

abstract framework described above. Two queries of most interest are range

queries (q, r)S , defined as the objects of S at distance at most r from q, and `-

Nearest-Neighbor queries `NNS , defined as the ` elements of S closest to q. The

second type of queries have been argued to be more meaningful for multimedia

information retrieval applications, as ` is a more intuitive measure for a user

unfamiliar with the precise distance function used.

We focus on `NN queries in this paper. These have a well-known linear worst

case [7, 21, 12, 4] when the database has high intrinsic dimensionality, that is,

a concentrated histogram of distances. Under this circumstance, all the tradi-

tional techniques suffer from a condition known as the curse of dimensionality

(CoD). This is a serious problem in many multimedia retrieval applications. An

alternative to overcome this limitation is to relax the condition of finding the

exact `NN and use approximate techniques. It has been shown that the query

time can be dramatically reduced by only slightly relaxing the precision of the

solution [16]. Tight approximate solutions are usually as satisfactory as exact

ones in multimedia retrieval, since the distance model is already a simplification

of a vague retrieval requirement. Furthermore, approximate methods usually

work well on similarity spaces where not all the metric axioms hold.

A general approach to solve proximity search problems is to map the objects

in the original space onto a simpler data space. While ad-hoc mappings can

be defined for specific applications (e.g., feature vectors for images) we are

interested in universal mappings that can be defined for arbitrary object types.
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For example, pivot based methods map objects into coordinate spaces using

distances to selected objects (the pivots) [7]. Recently, as described in Section 2,

various successful approximate searching methods build on weaker mappings

where only the distances to some pivots (usually the closest) are chosen, or

only the order of those distances is used. Proximity is hinted by similarity of

distances to the chosen pivots or of the orderings.

In this work we push the idea even further by considering only the subset of

pivots. Each object in the database will be represented by the set of its nearest

pivots, among a relatively large set to choose from, and proximity is hinted

by the number of shared pivots. This is at the same time simpler and more

efficiently computed than previous measures. The efficiency of the approach

comes from using an inverted index to find similar sets of pivots, which is a

technology from textual information retrieval [2]. At this respect, we take a

further step by representing the inverted index in compressed form.

Our contribution is twofold. First, we describe the neighborhood approxi-

mation (NAPP), a simple mapping from general similarity spaces to a set of

integers (with a proximity semantics). NAPP is an approximate technique with

high recall and high quality. The second contribution is to represent the NAPP

mapped database in a compact way, giving rise to the compressed NAPP in-

verted index. The combination of these two novelties yields a data structure

supporting very fast proximity searches, using little storage space, with high

recall and high quality in the answer.

The rest of the paper is organized as follows. Section 2 is a brief review of

related work. Section 3 introduces the mapping transformation and Section 4

the underlying data structure for our index. The compression of the index is

described in Section 5. Experimental results showing search time, memory usage

and recall of our index in real databases are shown in Section 6. Conclusions

and future work are discussed in Section 7.
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2. Related Work

Exact searching methods are divided into two broad categories, as follows

[7, 21, 12, 4].

Compact partition indexes define a partition of the space with purported

high locality. One can, for example, use a set of objects (called centers) with a

covering radius rc. Any item u where d(u, p) ≤ rc is represented by the center

p. The scheme can be repeated recursively inside each ball using smaller radii

at each level.

Pivot based indexes use a set of distinguished objects, called pivots, to

compute an implicit contractive mapping with a distance easier to compute

than the original d(·, ·). Most of the dataset is filtered out on the mapped

space, and only a few candidates must be compared to the query on the original

space. A pivot based index using sufficient pivots surpasses the performance of

a compact partition index, but the necessary number of pivots is too large for

high dimensional databases.

Both schemes, however, are ineffective on high dimensional spaces, due to the

CoD. This is intrinsic to the problem rather than a limitation of the known data

structures [17, 18]. Unfortunately enough, the CoD arises in many applications

of interest, including multimedia information retrieval.

To speed up searches in those cases, we can drop the condition of retrieving

all the objects relevant to the query, and be satisfied with a good approximation.

The quality of the approximation can be measured in several ways. For `NN

queries, some measures are the precision (how many of the reported answers

are among the ` true nearest neighbors), the recall (how many of the true `

nearest neighbors are reported), and the ratio between the distances towards

the reported objects and those towards the ` true nearest neighbors). Note that

precision and recall are complementary measures: one usually increases one by

decreasing the other. In information retrieval scenarios with a small number of

answers (as in `NN search), recall is more important because the user has little

chance of being aware of relevant results that have been lost, whereas irrelevant
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results included are evident by examining the set of answers.

A recent survey covers many of the techniques to trade speed for accuracy

in approximate searches [16]. Below we review some techniques related to our

approach.

2.1. The Permutation Index

An index called the Permutation Index (PI) [6] has high precision and recall

even for datasets of high intrinsic dimension, and can also be used in more

general similarity spaces. The PI drastically reduces the number of candidate

objects to be compared directly to the query.

The idea behind the PI is to represent each database object with the per-

mutation of a set of pivots, called the permutants, sorted by distance to the

object. The distance between objects is hinted by the distance between their

respective permutations. More formally, let R ⊆ U . For each u ∈ S, we sort

R by distance to u, obtaining a permutation πu of size σ = |R|. The distance

between permutations πu, πq is computed using π−1u and π−1q treated as vectors,

with Minkowski’s L1 or L2 distances.

Since σ is small, the PI is especially useful for expensive distances. All the

permutations of S can be represented with nσ log σ bits. The search is carried

out by computing n permutation distances plus γ metric space distances, where

γ is a parameter controlling the number of candidates to be verified with the

distance function. This parameter is used in our index too.

The good precision and recall of the PI is paid with a large number of L1 or

L2 distances computed among permutations. This cost dominates the savings

on metric distance computations, unless the distance function is very expensive.

Some authors have tried to reindex the permutation space [10], but it turns

out to be of medium to high dimensionality. As a result, the scalability of the

technique is limited.

2.2. The Metric Inverted Index

Amato et al. [1] gave a nice algorithmic way to simplify the distance com-

putation between permutations in the Metric Inverted Index. For each object,
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only K � σ closest permutants are stored. The structure is an inverted index

storing, for each permutant p, a posting list with pairs (objId , pos) sorted by

objId, so that p is among the K permutants closest to objId, precisely the pos-th

one.

The permutation πq is computed at query time. The permutation πu, for any

u ∈ S, is partially known because at most K references are stored in the inverted

file. For the missing references, a constant penalty ω is added to compute the

Spearman Footrule distance; one possible choice is ω = σ
2 . There are two choices

for the permutation reconstruction: to take the union or the intersection of

the posting lists of the permutants closest to q. The union produces better

quality results, while intersection yields faster responses. This index uses at

least nK log(nK) bits for the posting lists.

2.3. The Brief Permutation Index

Another algorithmic solution to compute an approximate distance between

permutations is the Brief Permutation Index [23]. The main idea is to encode

the permutation vectors using fixed-size bit-strings and compare them using the

binary Hamming distance. This produces a smaller representation that can be

filtered out faster than the original permutations space. Nevertheless the set

of candidate objects after filtering with the brief version of the permutations is

quite large and this is relevant for high-complexity distances. The advantage

against the original algorithm is the reduction of some extra CPU cost and

smaller requirements of memory, yielding faster searches for large databases.

The resulting Hamming space encodes each permutant with a single bit using

the information about how much it deviates from the original position in the

identity permutation. If the permutant is displaced by more than m positions

(which is a parameter) the corresponding bit is set to 1, else it is set to 0. The

number of bits then matches the number of permutants. A fair choice for m is

σ
2 . One observation is that the central positions are assigned mostly 0’s because

the central permutants have less room for displacement. This is solved using an

inline central permutation [23].
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Even if computing the Hamming distance is cheaper than computing L2,

a sequential scan can be time-consuming for large databases. The same au-

thors presented later a version indexed with Locality Sensitive Hashing [22].

Unfortunately, the recall dropped as the speed increased.

2.4. The Prefix Permutation Index

The last approach using the permutations idea is the PP-Index [9]. It stores

only the prefixes of the permutations and hints the proximity between two ob-

jects with the length of their shared prefix (if any). Longer shared prefixes hint

higher proximity and shorter length prefixes reflect lower proximity. This strict

notion of proximity yields very low recall, allowing only small γ values. This

condition is somewhat alleviated by using several permutation sets, several in-

dexes, and tricks like randomly perturbing the query, which end up increasing

the number of queries to the index and affecting the main advantage of search

speed. The index consists in a compact trie [2] representing the space of per-

mutation prefixes. A plain representation needs Kn log σ bits. The compact

trie is usually smaller, and the storage usage depends on the amount of shared

prefixes. The first levels in the trie are stored in main memory and the lower

levels in secondary memory.

In a concrete example, the PP-Index needs up to eight indexes to achieve

perfect recall on the 106 million MPEG7 vectors of the CoPhIR dataset [5].

3. Neighborhood Approximation

All the approaches described in the previous section are variants of the idea of

using permutations as object proxies. We will reuse some notation and introduce

a new formulation of the technique that is simpler and more powerful.

We call our approach Neighborhood approximation (NAPP). In a way NAPP

is a generalization of the permutation idea and we believe it captures the features

responsible of the high recall of the permutations, while simultaneously allowing

a compact representation and fast searching. We will reuse the notation of R,

γ, and σ.
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3.1. The Core Idea

We choose a set R of references from the database, with |R| = σ � n. Each

object u ∈ U is represented by a set of references, called the neighborhood of

u, defined as Pu = KNNR(u) (that is, the K closest neighbors of u in R) for a

fixed parameter K to be discussed later. We assume Pu to be an ordered set.

The default order will be the proximity to u.

Note that sets of references will act as database object proxies, just as per-

mutations do in permutation based indexes. We follow the same path: every

object in the database is transformed into its neighborhood representation (a

set of references) and to satisfy a query q we first compute its representation

Pq. As in other indexes, we will obtain a set of candidate objects in S that need

to be checked against the query. The list of candidates in NAPP will be the

objects u such that Pu ∩ Pq 6= ∅.

3.2. Retrieval Quality Considerations

Consider two objects u ∈ S and q ∈ U , and their respective neighborhoods

Pq, Pu ⊆ R (see Figure 1). The next two observations follow immediately from

the triangle inequality.

Observation 1. Let M = Pq ∩Pu. If M 6= ∅ then the distance d(q, u) is lower

and upper bounded as follows:

max
v∈M
|d(q, v)− d(u, v)| ≤ d(q, u) ≤ min

v∈M
d(q, v) + d(v, u)

Observation 2. If R ⊆ S and q∗ denotes the nearest neighbor of q in Pq, then

d(q, 1NNS(q)) ≤ d(q, q∗) = d(q, 1NNR(q)).

The upper and lower bounds depend on the selection of R. If R is dense

enough then the bounds above become tighter. A rule of thumb is to have

as many references as one can handle without slowing down the process of

comparing q with the set of references. A final remark is that R should have the

same distribution of S, so we should select the references uniformly at random

from the database. This is a core heuristic in our approximate index. Figure 1

shows a bad case on the left, and a more realistic case on the right.
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Figure 1: An example showing shared references as proximity predictor. Gray balls are

references, dark balls are objects in S.

4. The NAPP Inverted Index

Proximity in the NAPP framework is hinted by the number of shared refer-

ences, that is, the size of the intersection of two sets. A natural representation

to compute this number is an inverted index.

Each element of S and each element of R will be denoted by an integer.

Actual objects may reside somewhere else, for example on disk. We use integers

as object identifiers, so we abuse notation and call R = {1, · · · , σ} and S =

{1, · · · , n}; it will be clear from context which collection an index i refers to.

We define a list for each reference r, L[r] = {s1, s2, · · · , sk} ⊆ S such that

r ∈ Psi . In other words, L[r] is the list of all elements having reference r among

their K nearest neighbors. Algorithm 1 gives the construction.

Algorithm 1 Construction of the NAPP inverted index

1: R is the set of references of size |R| = σ.

2: Let L[1, σ] be an array of sorted lists of integers, initially empty.

3: Let S = {1, · · · , n}

4: for i from 1 to n do

5: Compute Pi[1,K], the K nearest neighbors of i in R

6: for j from 1 to K do

7: L[Pi[j]]← L[Pi[j]] ∪ {i}

8: end for

9: end for
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Experimentally, we have observed that many objects with a small intersec-

tion cardinality (1 or 2) appear in the candidate lists, and very frequently they

are not close to the query. It is then natural to impose an additional condition

about the minimum size of the intersection, say at least t shared references.

The search for the candidates using this restriction is implemented using the

t-threshold algorithm, a generalization of the set union/intersection problem of

K sets, where the solution is a collection of objects appearing in at least t sets.

Setting t = 1 is equivalent to the set union and t = K is equivalent to the

set intersection. We adapted the Barbay-Kenyon algorithm [3] to obtain the

candidate list. This is described in Algorithm 2.

To represent R we need σ log n bits. The storage requirements of the plain

mapping is Kn log σ bits. Using the inverted index the space cost increases to

Kn log n bits, that is, a total of Kn integers of log n bits, distributed among the

σ sorted lists.

5. Compressing the Inverted Index

The space of our index is Kn integers. For a value like K = 7, which is

adequate in terms of retrieval quality, this space overhead is larger than that

required by other typical data structures for similarity search. In this section we

show how the posting lists can be compressed using compact representations for

sparse bitmaps, with a very small speed penalty for set union and intersection

computations [15, 11, 20].

We must handle σ lists. The s items of a list are distributed in the range

[1, . . . , n], then ideally we can represent that list using log
(
n
s

)
= s log n

s + O(s)

bits. Using the sarray sparse bitmap representation [15] we can represent such

an inverted list using s log n
s + 2s + o(s) bits. As all the s items add up to

Kn items overall, the worst case arises when s = Kn/σ for each list, where

the complete index takes Kn log σ
K + 2Kn + o(Kn) bits. The sarray supports

constant access to every position of every list.
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Algorithm 2 Solve an `NN query in the inverted index

1: Compute Pq[1,K] = KNNR(q) by brute force

2: Let Q[1,K] = L[Pq[1]], . . . , L[Pq[K]] be the lists of references to consider

3: Let POS[1,K] = 1, . . . , 1 be pointers to the current position of the lists in Q

4: Let CND be a priority queue to store the set of candidates

5: while Q.Length ≥ t do

6: Ascending sort Q using Q[i][POS[i]] as key for 1 ≤ i ≤ Q.Length

7: if Q[1][POS[1]] 6= Q[t][POS[t]] then

8: Advance all POS[i] for 1 ≤ i < t until it holds Q[i][POS[i]] ≥ Q[t][POS[t]]

9: Restart the loop

10: end if

11: Find the greatest k ≥ t such that Q[k][POS[k]] = Q[t][POS[t]]

12: if k = Q.Length then

13: Increment all POS[i]← POS[i] + 1 for 1 ≤ i ≤ Q.Length

14: else

15: Advance all POS[i] for 1 ≤ i ≤ k until Q[i][POS[i]] ≥ Q[k + 1][POS[k + 1]]

16: end if

17: Append Q[t][POS[t]] to CND with priority k (the intersection size)

18: Evaluate the distance between q and the γ highest-priority candidates in CND

19: Return the ` closest objects to q

20: end while

Note 1: Increasing and advancing in POS and Q may reach the end of some lists,

in which case the entry must be removed from both POS and Q. This is why we use

Q.Length instead K.

Note 2: Advance means searching for the desired key in the list. In particular we use

doubling search [13] since it makes the algorithm of Barbay-Kenyon instance-optimal

in the comparison model [3].
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5.1. Inducing Runs in the Index

The plain representation and the sarray encoding are enough to host medium

to large databases in main memory in a standard desktop computer. In partic-

ular, when using the sarray the index is compressed to its zero-order entropy

and the extension to secondary memory is straightforward.

On the other hand, to handle very large databases or when using devices

with scarce memory (such as a mobile phone), better compression is needed.

The additional compression is obtained by renumbering objects (represented by

integers) so as to obtain proximal integers in the inverted lists L[r]. This is

done by observing that objects in any given inverted list L[r] share at least the

reference r, and hence cannot be much far apart from each other, as described

in Observation 1.

After computing Pu = KNNR(u) for each object u ∈ S, the reordering

procedure starts by sorting Pu in increasing order of the reference identifiers,

and not by proximity to u. Second, the database is lexicographically sorted

by the Pu sequences, using a linear sort for the first levels and a threeway

quicksort for deeper levels, similarly to practical suffix array sorting algorithms

[19]. Third, the permutation of S induced by this sorting is used to renumber the

database S. Finally, the inverted index is created using the permuted mapping.

Figure 2 illustrates the process.

The first step creates, inside the inverted lists, ranges of consecutive integers

such that the i-th integer plus 1 is equal to the (i+ 1)-th integer. These regions

are named runs, and are suitable to be encoded with a run-length scheme. For

ranges not in a run we aim at having small differences between consecutive

elements. Although sarray does not profit from runs and small differences, we

can reduce space significantly by using an alternative encoding.

Differential encoding. An inverted list encoded with differences is just the list

of differences between consecutive entries, as shown in the example of Figure 2.

Each difference is encoded using Elias-γ [8] which is a variable-length integer

encoding using 2 log x + 1 bits to encode an integer x. It uses less space than
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fixed-length binary encoding (which uses log n bits) if x ≤
√
n/2. We have s

integers in the range 1 to n. In the worst case each difference is n/s and we

need twice the optimal number of bits, 2s log n
s +2s. This worst case is unlikely,

however, as we have induced runs.

Our search algorithm (2) uses doubling search to advance, so we need access

to the i-th element. In order to parameterize time and storage requirements we

add absolute samplings each B entries. Now an access to any item in a list needs

to decode at most B Elias-γ codes. There are at most Kn
B samples overall.

The inverted list is represented by the differences. If s is the size of a list then

we need
∑s
i=1 2 log(docIdi−docIdi−1 +1) bits2 to represent the list using Elias-

γ without samples. These variable-length representations are concatenated in a

memory area L′, and a pointer to L′ is set every B positions of the original list L.

If these pointers are represented using a sarray, we need (s/B) log(|L′|/(s/B))+

2s/B+o(s/B) bits for them. In the worst case s = Kn
σ and |L′| = 2s log n

s +2s,

and the space for the samples adds up to (Kn/B)(log(B(log σ
K + 1)) +O(1)).

Let us choose B = Θ(log Kn
σ ), so accessing any integer costs O(log Kn

σ ) time.

Then the space for the samples becomes O(Kn log σ
K / log Kn

σ ) + o(Kn) bits. If

log σ
K = o(log n), the time is O(log n) and the space is o(Kn) bits.

Differential + Run-Length encoding. The differential encoding of the inverted

index is suboptimal when long runs arise, as their lengths are essentially rep-

resented in unary. A better option is to encode the run lengths using Elias-γ

codes. As in the differential encoding, we use regular samplings to get fast

access to the i-th integer. Figure 2 shows an example of run-length encoding

of the inverted index, where only differences of 1’s are run-length encoded as

a tuple (1, length). Since we always decode from left to right it is simple to

mix differences with run-length encodings. If an absolute sample falls inside a

sample, the run is cut. This is suboptimal in space, but allows decompression

without binary searching to locate the actual position.

2We define docId0 = 0.
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A natural optimization for long runs is introduced as follows: if the j-th and

the (j+ 1)-th absolute samples belong to the same run we say that the range is

filled, and no representation of the data inside the range is necessary; just the

samples are stored.

Notice that if the i-th integer lies in a filled range, it is decoded in constant

time. Similarly, even when the worst case requires B decompressions of items,

the average time is way smaller because when we find a run we advance many

positions in constant time.

Finally, note that our lexicographic sorting by Pu ensures that some runs will

arise: all the objects sharing the first element in Pu have received contiguous

identifiers. As a result, the inverted list of each r ∈ R contains at least one run,

and the sum of all those runs is n. Therefore, run-length encoding saves us at

least n bits, which are compressed to at most O(σ log n
σ ) bits.

6. Experimental Results

We give experimental results for four representative spaces.

Documents. A collection of 25, 157 short news articles in the TFIDF format

from Wall Street Journal 1987 − 1989 files from TREC-3 collection. We use

the angle between vectors as the distance measure, which is equivalent to the

popular cosine similarity measure. The dataset is available at the SISAP library

(http://www.sisap.org). We extracted 100 random documents from the collec-

tion as queries; these documents were not indexed. Each query searches for

30NN. TFIDF documents are vectors of thousands of coordinates. We choose

this space because of its high intrinsic dimensionality; the histogram of distances

is shown in Figure 3(a). As a reference, a sequential scan comparing the query

with every object needs 0.23 seconds in our machine.

CoPhIR MPEG7 Vectors. A subset of 10 million 208-dimensional vectors from

the CoPhIR database [5]. We use the L1 distance. Vectors are a linear com-

bination of five different MPEG7 features [5]. The first 200 vectors from the
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Id Pu

Orig. Num.

Sort

1 312 123

2 321 123

3 123 123

4 421 124

5 521 125

6 431 134

7 513 135

8 531 135

9 154 145

10 541 145

11 514 145

12 145 145

13 235 235

14 532 235

15 423 245

16 245 245

17 254 245

18 542 245

19 345 345

20 354 345

21 543 345

Inverted index

1 -> 1,2,3,4,5,6,7,8,9,10,11,12

2 -> 1,2,3,4,5,13,14,15,16,17,18

3 -> 1,2,3,6,7,8,13,14

4 -> 4,6,9,10,11,12,15,16,17,18,

19,20,21

5 -> 7,8,9,10,11,12,13,14,15,16,

17,18,19,20,21

Inverted index with differences

1 -> 1,1,1,1,1,1,1,1,1,1,1,1

2 -> 1,1,1,1,1,8,1,1,1,1,1

3 -> 1,1,1,3,1,1,5,1

4 -> 4,2,3,1,1,1,3,1,1,1,1,1,1

5 -> 7,1,1,1,1,1,1,1,1,1,1,1,1,1,1

Inverted index with differences + Run-Length

1 -> (1,12)

2 -> (1,5),8,(1,5)

3 -> (1,3),3,(1,2),(1,1)

4 -> 4,2,3,(1,3),3,(1,6)

5 -> 7,(1,14)

Figure 2: Example of the induction of runs for plain, differences and run-length encoding of

lists. Here σ = 5, n = 21.
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database are queries; each query searches for 30NN. Figure 3(b) shows the

histogram of distances. A sequential scan takes 47.3 seconds on our machine.

Color histograms. A set of 112, 544 color histograms (112-dimensional vectors)

from an image database from the SISAP testbed. We chose 200 histogram

vectors at random and applied a perturbation of ±0.5 on one random coordinate

for each of them. The searches look for 30NN under distance L2. Figure 3(c)

shows the histogram of distances. A sequential scan requires 0.27 seconds on

our testing hardware.

Synthetic datasets. In order to explore the behavior of the compressed NAPP

inverted index parametrized by the dimensionality of the datasets, we generate

six vector databases of 1 million objects each, and six different dimensional-

ities, with L2 distance. Each vector was generated randomly in the unitary

hypercube. More details will given in Section 6.3.

We use 30 nearest neighbors because it is a common value as an output size

in both textual and multimedia information retrieval systems.

Implementation notes and test conditions. All the algorithms were written in

C# , with the Mono framework (http://www.mono-project.org). Algorithms

and indexes are available as open source software in the natix project (http:

//www.natix.org). The experiments were executed on a 16 core Intel Xeon

2.40 GHz workstation with 32GiB of RAM, running CentOS Linux. The entire

database and indexes were maintained in main memory and without exploiting

any parallel capabilities of the workstation.

All our experiments were performed fixing K = 7 and with several σ values.

The selection of K affects the required space, the search time, and the quality of

the answer. We observed experimentally that K = 7 is a good tradeoff between

space, time and recall. The support of this choice is based on the assumption

that the histograms of distances seen from random objects are similar. Thus,

fixing K to a constant will fix the covering radii of the references to a con-

stant value, equivalent to a constant percentile of objects being covered. This
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(c) Color histogram with L2 distance.

Figure 3: Histograms of our real-life test databases using the chosen query sets.
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simplification reduces the complexity of fine tuning the parameters of the in-

dex. Experimental results validating this choice are presented in previous work

[9, 1, 24]. The particular value of K = 7 is not optimal for all datasets, but

for simplicity we used this fixed value, which in particular shows the robustness

of the methods. Moreover, using this fixed value enhances the recall quality of

some of the state of the art methods, yet it affects both their time and space

performances.

6.1. General performance

In this section we analyze the recall, total time, and the percentage of the

reviewed database (i.e., objects directly compared to the query) in the CoPhIR

database. Experimental results are shown for two types of queries: t-threshold

queries (for t = 2 to 7), and 1-threshold with a fixed number of compared objects

(60,000; 30,000; and 15,000).

Our primary quality measure is the recall. Since our queries are 30NN, the

recall is just the number of true 30NN elements returned, divided by 30. This

measure ignores how close the non-relevant objects are from the true 30NN. In

the next section we discuss this point.

Figure 4(a) shows how the recall evolves with the number of references.

Methods based on t-threshold show a decreasing recall as a function of t: a

smaller t gives better recall. Smaller σ values also give better recall, but at

the cost of more distance computations and time, see Figures 4(b) and 4(c),

respectively. Notice that, in both figures, the points in each curve are produced

by indexes with different σ values. Then, for t > 1, σ decreases as the recall

increases, whereas for t = 1 it is the opposite. We put labels with the σ values

on selected points of the curves to increase readability.

Larger σ values yield faster indexes. The speedup is produced because the

Kn objects are split into more inverted lists. We note that the distribution

of lengths (of inverted lists) is not Zipfian as it is in text inverted indexes for

natural languages [2].

All these parameters induce tradeoffs that can be used to effectively tune
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Figure 4: CoPhIR recall and performance
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real applications. For example, for t = 2 and σ = 2048, the index achieves a

recall of 0.92, comparing 0.6% of the database in about 0.4 seconds.

Larger t values produce faster searches, since the algorithm skips parts of

the input lists, due to advance commands in Algorithm 2. Fixing γ, the num-

ber of elements to be verified, restricts the percentage of verified elements of

the database and hence bounds the total time. See lines “15000”, “30000” and

“60000” of Figure 4. In this case t = 1 and the t-threshold algorithm is equiva-

lent to set union (being linear in the number of items in the input lists). Notice

that, under this configuration, the performance is dominated by the operations

on CND , the priority queue of Algorithm 2. Based on Figure 4(c), this strategy

(lines named “15000”, “30000” and “60000”) is useful to control the search time,

yet it needs to compute the entire set union.

Naturally, a hybrid configuration achieves better control of the performance

and quality, that is, the combination of t-threshold and fixed γ. For example,

for σ ≥ 1024, pure t-threshold configurations yield better times than just fixing

the cardinality, see Figure 4(c). The opposite holds for σ < 1024.

Comparison with previous work. We compared our work with four indexes using

the permutations approach [6, 9, 1, 23], described in Section 2. Since we do not

have the actual implementations of all the indexes being compared, we fix our

attention on the recall, disregarding the time, and also fixing the number of

references. A thorough comparison is still needed to have a fair overview of

the tradeoff between speed, recall and space usage for all this indexes. The

PP-index [9] was run as a single instance, and without query expansion.

Figure 5(a) shows the recall ratios for the CoPhIR dataset. Here the per-

mutation index is very effective, achieving perfect recall even for small σ. Un-

fortunately, it is very slow since it cannot be indexed. The brief index follows

the same behavior, but it is slower. The metric inverted index and the NAPP

inverted index improve the performance as σ grows. The PP-Index remains

unaffected for small σ, but it is affected negatively for σ > 512.

For the document and color spaces, Figures 5(b) and 5(c), respectively, show
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similar behavior. The permutation index rapidly reaches a steady recall value

for colors, while the recall grows slowly as σ increases for documents. The metric

inverted file improves as σ increases. Finally, the NAPP inverted index displays

the sharpest increase on the recall as σ grows.

The recall proportional to σ is a very interesting property since R can be

easily maintained in memory, while the entire database can reside on disk. Note

also that, in the comparison, we are considering the same number of references

for the distinct methods, but these may require distinct space per reference.

The NAPP index requires the least information per reference (no ordering and

no distance values), so taking the number of references as a uniform measure is

conservative. We explore further our space usage in Section 6.2.

Proximity ratio as a measure of retrieval quality. We have used the recall as

a measure of quality, that is, we have penalized only the false negatives. In

multimedia information retrieval applications, especially when some relevance

feedback is expected from the user, we want to measure how close the reported

non-relevant objects (the false positives) are from the relevant ones. To this end

we show statistics of the ratio between the covering radius of the 30-th nearest

neighbor and the distance given by NAPP in Table 1. Note that large σ values

yield results that are very close to the real answers. This supports Observation

1, which bounds the distance to the query, not the recall.

The same statistics are given for the database of documents and colors,

respectively, in Tables 2 and 3. Note that these databases have worse ratio,

probably because of their higher intrinsic dimensionality (recall Figure 3). Still,

in all the experiments, our false positives are nevertheless very close to the exact

results.

6.2. The Compressed NAPP Inverted Index

The plain inverted NAPP index uses a fixed number of bits in the in-

verted lists. For example, using 32-bit integers, the index for CoPhIR uses

267 megabytes, that is, 224 bits per database object. Our compressed repre-

sentation uses from 10 to 80 bits per object for CoPhIR, and 15 to 80 bits in
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(c) Color histograms, reviewing at most 3,000 candidates.

Figure 5: Recall behavior of the NAPP index and previous work.
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σ γ max-ratio

mean stdev min max

64 15000 1.06 0.04 1.00 1.25

128 15000 1.05 0.03 1.00 1.25

256 15000 1.03 0.03 1.00 1.27

512 15000 1.02 0.02 1.00 1.12

1024 15000 1.02 0.01 1.00 1.06

2048 15000 1.01 0.01 1.00 1.10

64 30000 1.04 0.03 1.00 1.19

128 30000 1.03 0.02 1.00 1.16

256 30000 1.02 0.02 1.00 1.26

512 30000 1.01 0.01 1.00 1.11

1024 30000 1.01 0.01 1.00 1.04

2048 30000 1.01 0.01 1.00 1.07

64 60000 1.02 0.02 1.00 1.12

128 60000 1.02 0.02 1.00 1.09

256 60000 1.01 0.02 1.00 1.25

512 60000 1.01 0.01 1.00 1.07

1024 60000 1.01 0.01 1.00 1.04

2048 60000 1.00 0.01 1.00 1.06

Table 1: Statistics of the covering radius (30-th nearest neighbor) of the CoPhIR database.
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σ γ max-ratio

mean stddev min max

64 100 1.14 0.17 1.00 2.01

128 100 1.11 0.14 1.00 1.87

256 100 1.10 0.17 1.00 2.27

512 100 1.05 0.07 1.00 1.58

1024 100 1.03 0.06 1.00 1.51

2048 100 1.02 0.02 1.00 1.10

64 500 1.08 0.14 1.00 1.86

128 500 1.05 0.10 1.00 1.80

256 500 1.03 0.09 1.00 1.77

512 500 1.01 0.02 1.00 1.12

1024 500 1.01 0.03 1.00 1.22

2048 500 1.00 0.01 1.00 1.07

64 1000 1.05 0.08 1.00 1.62

128 1000 1.02 0.03 1.00 1.14

256 1000 1.01 0.03 1.00 1.14

512 1000 1.01 0.02 1.00 1.12

1024 1000 1.00 0.01 1.00 1.06

2048 1000 1.00 0.01 1.00 1.07

Table 2: Radius statistics for the database of documents.

the space of documents. For the space of colors we found a behavior similar to

CoPhIR, yet requiring some additional bits per object.

Our experiments confirm that the number of induced runs is large: the

smallest index is the run-length based one and the largest compressed index is

the sarray, as shown in Figure 6. Note that even the space gain of sarray is

considerable compared to the plain index. It can be seen that σ is also a crucial

parameter for compression: small σ values produce a small index, yet it needs

to review larger portions of the database.
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Figure 6: Compression ratio as a percentage of the plain inverted index.
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σ γ max-ratio

mean stddev min max

1000 64 1.05 0.09 1.00 1.70

1000 128 1.03 0.06 1.00 1.28

1000 256 1.03 0.06 1.00 1.25

1000 512 1.02 0.05 1.00 1.24

1000 1024 1.01 0.04 1.00 1.25

1000 2048 1.00 0.02 1.00 1.15

2000 64 1.04 0.09 1.00 1.69

2000 128 1.03 0.06 1.00 1.26

2000 256 1.02 0.05 1.00 1.25

2000 512 1.02 0.04 1.00 1.24

2000 1024 1.01 0.03 1.00 1.25

2000 2048 1.00 0.02 1.00 1.14

3000 64 1.04 0.08 1.00 1.63

3000 128 1.02 0.05 1.00 1.25

3000 256 1.02 0.05 1.00 1.25

3000 512 1.01 0.04 1.00 1.24

3000 1024 1.01 0.03 1.00 1.25

3000 2048 1.00 0.02 1.00 1.14

Table 3: Radius statistics for the color histograms database.

6.2.1. Time performance of the compressed index

In these experiments, shown in Table 4, all the compressed indexes were

produced with induced runs. For the plain index we show the two encodings,

with and without induced runs, because this affects the retrieval speed. For

example, for the CoPhIR index the plain index working with the induced runs is

about 2.5 times faster than the original one. This is not surprising since the runs

allow faster skipping when carrying out the intersections. For differences and

run-length encodings, the parameter B (Section 6.2) drives the tradeoff between

time and compression. Run-length and differences are still interesting methods

since they achieve low compression ratios, as shown in Figure 6. Moreover, for
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type of search time (sec)

encoding B CoPhIR documents colors

Differences 7 2.57 0.020 0.0057

Differences 15 3.34 0.020 0.0058

Differences 31 4.81 0.022 0.0061

Differences 63 7.69 0.025 0.0066

Differences 127 13.50 0.028 0.0075

Run-Length 7 2.57 0.019 0.0054

Run-Length 15 2.73 0.019 0.0055

Run-Length 31 2.75 0.019 0.0056

Run-Length 63 2.71 0.019 0.0054

Run-Length 127 2.64 0.020 0.0055

sarray - 0.34 0.031 0.0056

plain (w/runs) - 0.17 0.024 0.011

plain (original) - 0.42 0.029 0.014

Table 4: Average search time on the compressed NAPP inverted index and the plain version.

Indexes were configured to use σ = 2048 and (t = 2)-threshold search. Indexes for CoPhIR

use γ = 15000, and γ = 1000 for documents and colors.

the CoPhIR dataset, the run-length based indexes are just four times slower

than the NAPP inverted index (without runs).

This tradeoff is significant for the CoPhIR database, where the search time

increases several times as compared with the plain representation. The sarray

structure is quite fast (faster than plain original) and still compresses signifi-

cantly. This is explained because the sarray gives constant time access to the

i-th element [15].

Contrasting with the CoPhIR results, compressed indexes for the documents

database are as fast as the plain representation, and even faster for some con-

figurations (i.e., for sarray). Even more, for the smaller colors dataset, all

compressed indexes are twice as fast as the original index, even surpassing the

plain index with runs. Remarkably, the run-length representation uses almost

constant time as B grows.
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dim mean stddev min max

4 1.00 0.00 1.00 1.00

8 1.00 0.00 1.00 1.00

12 1.00 0.02 1.00 1.21

16 1.00 0.02 1.00 1.19

20 1.01 0.04 1.00 1.24

24 1.02 0.04 1.00 1.26

Table 5: Proximity ratio as affected by the dimensionality. The NAPP uses a threshold of 2.

6.3. The dimensionality effect

For this experiment, we produce databases in the real unitary hypercube

of dimensions 4, 8, 12, 16, 20, and 24, and select coordinates using a uniform

distribution. Each dataset contains one million vectors, n = 106. All queries are

allowed to compare 1,000 objects, and all indexes are built using 2,048 references

and K = 7. Under this configuration, the number of compared objects is fixed

to 0.3% of the database, in terms of distance computations. We performed

30NN queries for new randomly generated vectors.

We can see the effect of the dimensionality on the compression ratio in

Figure 7(a). As expected, the compression capabilities are significantly reduced

as the dimension increases. About search quality, we remark that only 0.3% of

the database is compared to the query (and thus the search time is essentially

constant), yet we achieve close to perfect recall for all configurations. The search

time is depicted in Figure 7(b). We can observe the speedup (up to two orders of

magnitude) against sequential search, which is the only choice for exact searches

on high dimensional datasets (dimension over 20, in practice).

The behavior of the proximity ratio of the nearest neighbor is shown in Table

5. The mean is quite small, ranging from 1 to 1.02, with a very small standard

deviation. The maximum ratio is also small, yet it clearly increases with the

dimension.
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Random uniform data is free of clusters. Even on this setup our index shows

a good tradeoff among memory, space, speed, recall, and proximity ratio. To

put this in perspective, notice that even if the document dataset has intrinsic

dimensionality higher than 24, it yields better compression because its do form

clusters.

7. Conclusions and Future Work

We introduced a novel approximate index for general metric and similarity

spaces called the NAPP inverted index. Our index is capable of achieving high

recall in sub-second queries, even for large databases. The plain index uses a few

integers per object and the compressed versions use a few bits per object, with a

small penalty in search speed for large databases, and a small speedup for small

ones. The compression allows one to efficiently use higher hierarchies of memory

(RAM and caches). From another perspective, medium-sized indexes (a few

millions of objects) can fit in small computers with limited resources and mobile

devices, bringing proximity search to these popular computing instruments.

The quality achieved for our index was measured in two senses: recall and

proximity ratio. In both of them, the NAPP inverted index is a very competitive

option when compared with traditional solutions.

We introduced a novel technique able to induce runs in the inverted index,

usable in at least two scenarios: for speeding up a plain index, and for in-

ducing compression in compressed indexes. The sarray index produces a fast

compressed version and can be used with or without induced runs. Differential

encoding plus run-length compression achieves high compression rates and at

the same time very fast indexes.

We measure the behavior of our techniques in three real world datasets, and

a set of six synthetic databases. Experiments on these datasets study different

aspects of the NAPP index. Real world databases show the performance (time,

compression, and retrieval quality) of what can be found on real applications.

Synthetic databases explore the effect of the dimensionality in our index, that
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is one of the greatest challenges of metric indexes. We also analyzed the perfor-

mance in terms of space usage, a problem usually ignored in the literature. In

all cases, both our plain and compressed NAPP indexes display an exceptionally

good tradeoff between memory, time, recall and proximity ratios, making them

excellent options for several real world applications.

Nevertheless, the time performance our method is tightly linked to the un-

derlying t-threshold algorithm, which is primarily designed for uncompressed

inverted indexes. The design of faster ad-hoc algorithms for the t-threshold

problem on compressed inverted lists, and the optimization and scalability of

the technique using parallel and distributed techniques, remain as open prob-

lems.

Another challenge is how to efficiently support dynamism on the NAPP in-

verted index, that is, how to support insertions and deletions of objects and

refrences. Probably this can be addressed with a variation of dynamic com-

pressed bitmaps [14]. Maintaining set R dynamically also requires new efficient

algorithms to locate objects affected by the inserted reference.

Construction time is dominated by the σn distances computed, hence the

preprocessing step is linear on σ for a fixed n and can be large. For example, for

CoPhIR, it ranges from 49 minutes to 32 hours, for σ = 64 and 2048 respectively.

For the documents database, it requires 14.45 seconds using 64 references, and

up to 9 minutes for σ = 2048. A simple scheme to speed up the construction

is to index the references and then solve KNN searches over R, speeding both

search and construction times. In particular, we may use a NAPP inverted

index to index R. Notice that using a larger R set yields a faster index; the

sketched boosting technique may allow a significant increase in the number of

references.
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