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1 Introduction

In their seminal paper, Koenker and Bassett (1978) propose to use linear quantile regression to

examine effects of an observable covariate on the distribution of a dependent variable other than the

mean. Since then, linear quantile regression has become a dominant approach in empirical work in

economics, see e.g., Buchinsky (1994) and Koenker (2005). Following Koenker and Bassett (1978),

this approach has been extended to censored data in Powell (1986), Buchinsky and Hahn (1998),

Khan and Powell (2001), Chernozhukov and Hong (2002), Honore, Khan, and Powell (2002), and

to unit root quantile regression models in Koenker and Xiao (2004), further broadening its scope

of applications.

Linearity adopted in Koenker and Bassett (1978) has been relaxed to accommodate possibly

nonlinear effects of the covariates on the conditional quantile of the dependent variable in nonpara-

metric and semiparametric quantile regression models. The ‘check function’approach of Koenker

and Bassett (1978) has been extended to estimating these models as well, see e.g., Truong (1989),

Chaudhuri (1991), He, Ng, and Portnoy (1998), and He and Ng (1999) for nonparametric estima-

tion of conditional quantiles; Chaudhuri, Doksum, and Samarov (1997) for nonparametric average

derivative quantile estimation; Fan, Hu and Truong (1994), Yu and Jones (1998) and Guerre and

Sabbah (2012) for local polynomial estimation of regression quantiles; Lee (2003) and Song, Ritov,

and Hardle (2012) for partial linear quantile regression models; Wu, Yu, and Yu (2010) and Kong

and Xia (2012) for single index quantile regression models; and Chen and Khan (2001) for partially

linear censored regression models.1

For nonparametric quantile regression models, an alternative estimation approach to the ‘check

function’approach is taken in Stute (1986), Bhattacharya and Gangopadhyay (1990), Cai (2002),

Fan and Liu (2011), and Li and Racine (2008), among others. In this approach, the conditional

distribution function of Y , the dependent variable, given the covariate X is estimated first and the

generalized inverse of this estimator at a given quantile level p ∈ (0, 1) is taken as an estimator of

the p-th conditional quantile. Stute (1986) and Bhattacharya and Gangopadhyay (1990) focused on

univariate covariate and estimated the conditional distribution function by k-NN method, while Fan

and Liu (2011) and Li and Racine (2008) allowed for multivariate covariate and adopted respectively

k-NN and kernel estimators of the conditional distribution function.

Under regularity conditions, existing work establish asymptotic normality of the conditional

quantile estimators which is the basis for the Wald-type inference, i.e., using the t statistic to

test hypotheses or form confidence intervals for the true conditional quantiles. Regardless of the

1Conditional quantile function also plays an important role in the recent structural econometrics literature, see
e.g., Chesher (2003) for non-separable models, Chernozhukov and Hansen (2005) for quantile treatment effect mod-
els using IV, Holderlein and Mammen (2007) for analyzing marginal effects in non-separable models without as-
suming monotonicity, Echenique and Komunjer (2009) for models involving multiple equilibria, and Chernozhukov,
Fernandez-Val, and Kowalski (2011) for models with censoring and endogeneity.
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approach used to estimate the conditional quantile in parametric, semiparametric, or nonparametric

quantile regression models, one common feature of the asymptotic distributions of the conditional

quantile estimators is that their asymptotic variances depend on the conditional quantile density

function of Y given X = x and some even depend on the density function of X, see e.g., Horowitz

(1998), Khan (2001), Koenker and Xiao (2002), Li and Racine (2008), Hardle and Song (2010), and

Song, Ritov, and Hardle (2012), among others. As a result, inference procedures for the conditional

quantiles based on the asymptotic distributions of these estimators require consistent estimators of

the conditional quantile density function of Y given X = x and/or the density of X both involving

bandwidth choice. Numerical evidence presented in De Angelis, Hall, and Young (1993), Buchinsky

(1995), Horowitz (1998), and Kocherginsky, He, and Mu (2005) shows that although asymptotically

valid, these inference procedures are sensitive in finite samples to the choice of smoothing parameter

used to estimate the conditional quantile density function.

Various alternative approaches have been proposed in the current literature to improve on

the finite sample performance of Wald-type inferences. Most of these are developed for linear or

parametric conditional quantile regression models. First, Goh and Knight (2009) propose a different

scale statistic to standardize the estimator of the model parameter in linear quantile regression

models resulting in a nonstandard inference procedure; Second, Zhou and Portnoy (1996) construct

confidence intervals/bands directly from pairs of estimators of conditional quantiles in the location-

scale forms of linear quantile regression models extending the direct or order statistics approach

for sample quantiles in Thompson (1936), see also Serfling (1980), Csörgő and Réveséz (1984), and

van der Vaart (1998); Third, Gutenbrunner and Jureckova (1992) and Gutenbrunner, Jureckova,

Koenker, and Portnoy (1993) employ rank scores to test a class of linear hypotheses; Fourth,

Whang (2006) and Otsu (2008) apply the empirical likelihood approach to parametric quantile

regression models; Lastly, MCMC related approaches have been proposed to improve standard

resampling or simulation paradigms: He and Hu (2002) resample estimators from the marginal

estimating equation along the generated Markov chain; Chernozhukov, Hansen, and Janssen (2009)

develop finite sample inference procedures based on conditional pivotal statistics in parametric

quantile regression models. A nice survey of various inference procedures targeted at linear quantile

regression models could be found in Kocherginsky, He, and Mu (2005).

Compared with parametric quantile regression models, inference in nonparametric and semi-

parametric quantile regression models is still in its infancy. The only alternative approach to the

Wald-type and bootstrap inferences that is currently available is the empirical likelihood procedure

in Xu (2012) for nonparametric quantile regression models. In semiparametric quantile regression

models including partial linear and single index models, only Wald-type and bootstrap inferences

are available. Although the empirical likelihood approach in Xu (2012) avoids estimation of the con-

ditional quantile density function and performs better than the Wald-type inference procedures,
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it is known to be computationally costly. Among existing approaches to inference in paramet-

ric quantile regression models, the direct approach is the simplest to implement and least costly

computationally– it only requires computing pairs of the quantile estimate. In addition, it does not

rely on estimation of the conditional quantile density function and exhibits superior finite sample

performance compared with the Wald-type inference, see Zhou and Portnoy (1996). However, as

discussed in Portnoy (2012), it appears that the direct approach in Zhou and Portnoy (1996) has

theoretical justification only under location-scale forms of linear quantile regression models, severely

limiting its applicability– in numerous cases the data do not satisfy the location-scale paradigm,

see Koenker (2005).

This paper aims at bridging this gap. Specifically, it makes two main contributions to inference

in quantile regression models. First, we develop direct inference procedures including confidence

intervals/bands for conditional quantiles in nonparametric and semiparametric quantile regression

models allowing for the covariate to affect the conditional quantile of the dependent variable in gen-

eral ways. Compared with the currently available Wald-type inference procedures in these models,

our new confidence intervals/bands avoid the estimation of the conditional quantile density func-

tion of Y given X = x and/or the density function of the covariate X. In fact, our confidence

intervals/bands do not even require the covariate to have a density function. The underlying idea

is easily explained in a nonparametric quantile regression model. To avoid assuming the existence

of a density function for the covariate, we adopt the symmetrized k-NN estimator of the conditional

distribution function and take the conditional quantile estimator as the generalized inverse of the

symmetrized k-NN estimator. Instead of relying on the asymptotic normality of the k-NN estima-

tor, we construct confidence intervals/bands directly from our k-NN quantile estimator evaluated

at two appropriately chosen quantile levels. Like the empirical likelihood confidence interval in

Xu (2012), our confidence interval for nonparametric quantiles internalizes the conditional quantile

density estimation of Y given X and the covariate density estimation and is not necessarily sym-

metric. Compared with Xu (2012), our confidence interval is easier to compute and does not require

optimization. In addition, we also construct confidence intervals/bands for conditional quantiles in

partial linear and single index quantile regressions. Compared with Hardle and Song (2010), and

Song, Ritov, and Hardle (2012), our confidence intervals/bands share the same features as those in

nonparametric quantile regression models– easy to compute and density-free. A small scale sim-

ulation study demonstrates the advantages and feasibility of our confidence intervals/bands over

existing ones in practically relevant model set-ups.

Second, under a high level assumption on the conditional quantile function and the original

quantile estimator, we present a generic confidence interval for conditional quantiles using the

rearranged quantile curves that is asymptotically valid for any quantile regression (parametric,

nonparametric, or semiparametric), any method of estimation, and any data structure. We verify
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our high level assumption for three examples: nonparametric quantile regression with multivariate

covariate estimated by the standard asymmetric k-NN quantile estimator; Censored nonparametric

quantile regression; and nonparametric quantile regression for time series. Interestingly pairs of

the standard k-NN asymmetric quantile estimate in our first example correspond to pairs of order

statistics of the induced order statistics of Y , so our generic confidence interval in this case shares

the elegance and simplicity of the confidence interval for unconditional quantiles based on order

statistics originally proposed in Thompson (1936), see also van der Vaart (1998).

The rest of this paper is organized as follows. Section 2 considers the nonparametric quantile

regression with a univariate covariate. It introduces our conditional quantile estimator, constructs

a new confidence interval, and a new confidence band. Section 3 extends the confidence inter-

vals/bands developed in Section 2 to two popular semiparametric models, partial linear and single

index quantile regression models. Section 4 presents a generic confidence interval, shows its asymp-

totic validity under a high level assumption on the original quantile estimator, and verifies the high

level assumption in several examples. Section 5 provides a simulation study comparing the finite

sample performance of our new confidence intervals with Wald-type confidence intervals and two

bootstrap versions for nonparametric and partial linear quantile regressions. We conclude in the

last section. All the proofs are collected in the Appendices.

2 Nonparametric Quantile Regression

Let {Xi, Yi}ni=1 denote an i.i.d. copy of the bivariate random vector {X,Y }, with marginal dis-
tribution functions FX (x), FY (y) respectively, where2 x ∈ X ⊂ R and y ∈ Y ⊂ R. Further,
let FY |X (·|x) denote the conditional distribution function of Y given X = x with density function

fY |X (·|x) and ξp (x) = ξ (p|x) = F−1
Y |X (p|x) denote the p-th conditional quantile3 of Y given X = x,

where 0 < p < 1 and x ∈ X .
The nonparametric quantile regression can be written as

Yi = ξp (Xi) + εi, with Pr [εi ≤ 0|Xi = x] = p and i = 1, ..., n.

Let x0 ∈ X denote a fixed covariate value. We now introduce our estimator of ξp (x0). Let Fn(·)
denote the empirical distribution function of {Xi}ni=1 and F̂n (y|x0) denote the symmetrized k-NN

estimator of FY |X (y|x) introduced in Yang (1980) and further studied in Stute (1984b, 1986):

F̂n (y|x0) =

∑n
i=1 1{Yi ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) , (1)

2To focus on the main idea, we consider nonparametric quantile regression with a univariate covariate in this
section. Section 4 allows for nonparametric quantile regression with multivariate covariate.

3 In the sequel, we will use ξp (x), ξ (p|x), and F−1Y |X (p|x) interchangably.
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where K(·) is a kernel function and hn → 0 is a bandwidth. The estimator of ξp (x0) based on

F̂n (y|x0) is defined as

ξ̂ (p|x0) = ξ̂p (x0) = F̂−1
n (p|x0) . (2)

In the rest of this section, we introduce a new confidence interval for the conditional quantile

at a fixed covariate value and then construct a confidence band that is uniformly valid over a range

of covariate values.

2.1 A New Confidence Interval

Our new level (1− α)-confidence interval for ξp (x0) takes the following form:

CIN1−α =
(
F̂−1
n

(
p− zα/2σnp (K) |x0

)
, F̂−1

n

(
p+ zα/2σnp (K) |x0

)]
, (3)

where zα/2 denotes the α/2-th quantile of the standard normal distribution and

σnp (K) =

√
R (K) p (1− p)

nhn
(4)

in which R (K) =
∫
K2 (u) du.

Let qp (x) = 1/fY |X
(
ξp (x) |x

)
denote the conditional quantile density function of Y given

X. It is obvious from (3) that our new confidence interval (CI), CIN1−α, has several advantages

over existing CIs. First, compared with Wald-type confidence intervals, our new confidence interval,

CIN1−α, does not require either a consistent estimator of the density function ofX or the conditional

quantile density function of Y given X = x0, qp (x0). Second, compared with the CI based on

the empirical likelihood approach in Xu (2012), our CI is much easier to implement; there is no

optimization involved and it only requires evaluating our conditional quantile estimator ξ̂p (x0) at

two specific quantile levels, p− zα/2σnp (K) and p+ zα/2σnp (K).

Below we provide a list of suffi cient conditions for the asymptotic validity of CIN1−α.

Assumption (S). Let H (y|u) = FY |X
(
y|F−1

X (u)
)
.

(i) Assume that

sup
|t−s|≤τ

∣∣H (F−1
Y (t) |u

)
−H

(
F−1
Y (s) |u

)∣∣ = o
((

ln τ−1
)−1
)
as τ → 0

uniformly in a neighborhood of u0 = FX(x0);

(ii) Uniformly in y, H (y|·) belongs to the second order Holder class at u0 ∈ (0, 1), i.e., for any

y, H (y|u) is differentiable w.r.t u at u0 and there exists a neighborhood of u0 such that for any

u1, u2 in this neighborhood, we have that∣∣H ′ (y|u1)−H ′ (y|u2)
∣∣ ≤ L|u1 − u2|
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holds uniformly in y, where H ′ (y|u) = ∂H (y|u) /∂u and L <∞.
Assumption (H). The bandwidth satisfies hn = n−δ for some δ ∈ (1/5, 1/3), i.e., it satisfies:

nh5
n → 0 and nh3

n →∞ as n→∞.
Assumption (K). The kernel function K(·) is a twice continuously differentiable density func-

tion with zero mean, compact support and bounded second order derivative.

Assumption (X). X has continuous distribution function FX (x) .

Assumption (S) is chosen in accordance with Assumptions (A), (B) in Stute (1986). For (S) (i),

we added the corresponding quantile transformation since Stute (1986) directly works with (X,Y )

with uniform marginal distributions. (S) (ii) is written slightly differently from Assumption (B) in

Stute (1986) as it does not require second order differentiability of H (y|u), but achieves the same

purpose in controlling the bias term. The so-called uniform Holder class is adapted from Tsybakov

(2008), Korostelev and Korosteleva (2011), see also Guerre and Sabbah (2012). Assumption (X)

spells out this asymptotic distribution freeness advocated by Stute (1984b), as by the elementary

fact FX (Xi) ∼ U [0, 1]. The requirement on the bandwidth is standard, with one added condition

nh3
n → ∞, which is necessary in dealing with the asymptotic variance term as demonstrated in

Stute (1984b). Assumption (K) ensures that our quantile estimator F̂−1
n (p|x0) is monotone in

p ∈ (0, 1) so CIN1−α is non-empty. Kernel functions satisfying Assumption (K) include Bisquare

and Triweight kernels.

THEOREM 2.1 Suppose Assumptions (X), (S), (K), and (H) hold and x0 is an interior point

not on the flat part of FX . In addition, assume FY |X (y|x0) is continuously differentiable in a

neighborhood of ξp (x0) corresponding to [p1, p2] containing p with strictly positive derivative and

0 < p1 < p2 < 1. For 0 < α < 1, we get: Pr
(
ξp (x0) ∈ CIN1−α

)
→ 1− α as n→∞.

The Lemma below demonstrates the critical role played by the symmetrized k-NN estimator

F̂n (y|x0) in our new confidence interval which not only avoids the estimation of the conditional

quantile density function of Y given X = x0 but also the estimation of the density function of X.

Lemma 2.2 Suppose the conditions of Theorem 2.1 hold. Then

(i)
√
nhn

[
F̂n(·|x0)− FY |X(·|x0)

]
=⇒ B0(·), where B0(·) is the Brownian Bridge with the fol-

lowing covariance structure:

Cov(B0(y1), B0(y2)) = R (K)
[
FY |X(y1 ∧ y2|x0)− FY |X(y1|x0)FY |X(y2|x0)

]
;

(ii) Moreover, the conditional density function of Y given X is strictly positive on the interval:[
F−1
Y |X (p1|x0)− ε, F−1

Y |X (p2|x0) + ε
]
for some ε > 0. Then{√

nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

: p ∈ [p1, p2]
}

=⇒ qp (x0)B0(F−1
Y |X (p|x0)).
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Lemma 2.2 (i) is restated from Stute (1986). It makes clear that in contrast to the commonly

used Nadaraya-Watson estimator or the local polynomial estimator of the conditional distribution

function, the asymptotic variance of F̂n (y|x0) does not depend on the density of the covariate X.

In fact, Lemma 2.2 does not even require that X has a density. It is this “density-free”feature of

F̂n (y|x0) that enables us to dispense with the density of X in our new confidence interval.

Lemma 2.2 (ii) follows from Lemma 2.2 (i), Lemma 21.3 in van der Vaart (1998), and the

functional Delta method. It implies that for a fixed p ∈ [p1, p2],√
nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

=⇒ N
(
0, σ2

)
with σ2 = R (K) p (1− p) q2

p (x0). So even though the use of F̂n (y|x0) frees us from estimating

the density of X, the asymptotic variance of F̂−1
n (p|x0) still depends on the conditional quantile

density qp (x0). As a result, Wald-type inference procedures based on the asymptotic normality of

F̂−1
n (p|x0) would still require a consistent estimator of qp (x0) or fY |X

(
ξp (x0) |x0

)
which our new

confidence interval avoids as well.

2.2 A New Confidence Band

In many applications, uniformly valid confidence bands over a range of covariate values may be

desirable, see Hardle and Song (2010), Song, Ritov, and Hardle (2012) for interesting empirical

applications in labor economics. Below we extend our confidence interval CIN1−α to confidence

bands over a range of covariate values.

Let

CBN1−α =
[
F̂−1
n (p− cnδ (α,K)σnp (K) |x) , F̂−1

n (p+ cnδ (α,K)σnp (K) |x)
]
, (5)

where σnp (K) is defined in (4) and

cnδ (α,K) =
c (α)

(2δ log n)1/2
+ dn (6)

in which c (α) = log 2− log | log(1− α)| and

dn = (2δ log n)1/2 + (2δ log n)−1/2 log


∫ (

K
′
(u)
)2
du

4πR(K)

 . (7)

Note that like our confidence interval CIN1−α, our confidence band, CBN1−α, is easy to compute

and shares the remarkable density-free feature.

Below we provide additional conditions under which we show the uniform asymptotic validity

of our confidence band. Let J ⊂ X denote an inner compact subset of X .
Assumption (S̃). Assumption (S) holds uniformly for x ∈ J .
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Assumption (X̃). Assumption (X) plus the compactness of J gives uniform continuity of

FX (·). We list this rather redundant assumption for easy reference.
Assumption (B). (i) h−3

n log n
∫
|y|>an fY (y)dy = O (1), where fY (y) is the marginal density of

Y and (an)∞n=1 is a sequence of constants tending to infinity as n→∞; (ii) infx∈J fY |X(ξp(x)|x) > 0;

(iii) supy supx∈J fY |X(y|x) < ∞; (iv) Y has Lipschitz continuous distribution function FY (·) and
(X,Y ) has uniformly bounded copula density function c (x, y).

Assumption (B) (i), (ii) are added in accordance with the strong approximation result in Hardle

and Song (2010). Since we base our analysis on the covariateX after (empirical) probability integral

transform, some of the assumptions in Hardle and Song (2010) will be satisfied automatically here

such as their (A5) and (A6). Also notice that our Assumption (H) on the bandwidth implies

Assumption (A2) in Hardle and Song (2010) and our Assumption (K) implies their assumption

(A1). Assumption (B) (iii), (iv) will be needed to establish the uniform Bahadur representation.

Specifically Assumption (B)(iii) aims to control the bias term in the local oscillation uniformly, and

with the help of (B)(iv) we could utilize certain nice maximal inequality in Stute (1984a) to bound

the local oscillation of copula process within a shrinking rectangle. Details could be found in our

Lemmas A6 and A7.

THEOREM 2.3 Suppose Assumptions (B), (S̃), (X̃), (K), and (H) hold. Then the confidence

band CBN1−α is asymptotically valid with coverage probability 1− α uniformly over x ∈ J .

Compared with our confidence interval, our confidence band replaces zα/2 with cnδ (α,K). The

Lemma below explains why.

Lemma 2.4 Under Assumptions (B), (S̃), (X̃), (K), and (H), it holds that

Pr

(
(2δ log n)1/2

[
σ−1
np (K) sup

x∈J

{
fY |X

(
ξp (x) |x

)
|F̂−1
n (p|x)− F−1 (p|x) |

}
− dn

]
≤ z
)

→ exp (−2 exp (−z)) as n→∞.

3 Semiparametric Quantile Regression Models

In most applications, the covariate X is multivariate. Semiparametric quantile regression models

are introduced in the literature to alleviate the curse of dimensionality associated with fully non-

parametric models and at the same time are more robust than fully parametric regression models.

Commonly used semiparametric quantile regression models include partial linear and single index

quantile regression models. Although most work in the literature concern root-n estimation of

the finite dimensional parameters, Song, Ritov and Hardle (2012) have constructed uniform con-

fidence bands for partial linear quantile regressions. Their confidence bands, however, require the

estimation of both the conditional quantile density and the density function of the covariate.

8



In the next two subsections, we extend our confidence interval/band for univariate nonpara-

metric quantile regression in Section 2 to both partial linear and single index quantile regressions.

3.1 Partial Linear Quantile Regression Model

Consider the following partial linear quantile regression model with a univariate covariate X and

multivariate covariate Z having support Z ⊂ Rd:

Yi = Z
′
iβ0 + g(Xi) + εi, i = 1, ..., n,

where {Yi, Xi, Zi}ni=1 is a random sample and Pr [εi ≤ 0|Xi = x, Zi = z] = p for all x ∈ X and

z ∈ Z. Notice that Pr [εi ≤ 0|Xi = x] = p holds as well.

Root-n consistent estimators of β0 are available in Lee (2003) and Song, Ritov, and Hardle

(2012). Semiparametric effi cient estimation of the above model has been studied by Lee (2003).

Let β̂ denote a root-n consistent estimator of β0. For x0 ∈ X and z0 ∈ Z, let

F̂n,PL (y|x0) =

∑n
i=1 1{Yi − Z

′
i β̂ ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) . (8)

Our CI for the conditional quantile [z′0β0 + g(x0)] is defined as:

CIPL1−α =
(
z
′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, z
′
0β̂ + F̂−1

n,PL

(
p+ zα/2σnp (K) |x0

)]
, (9)

where σnp (K) is defined in (4).

We now introduce two assumptions.

Assumption (Z1). Let Ỹ = Y − Z ′β0. Assumptions (S) and (X) hold for
(
Ỹ , X

)
.

Assumption (PL). Zi has a finite conditional (on Xi) second moment and

E
[∣∣∣1{Yi − Z ′iβ1 ≤ y} − 1{Yi − Z

′
iβ2 ≤ y}

∣∣∣ |Xi

]
≤M |β1 − β2|

holds uniformly in y, where M is a positive constant.

THEOREM 3.1 Suppose β̂ − β0 = Op
(
n−1/2

)
and Assumptions (Z1), (PL), (K) and (H) hold.

Then the confidence interval, CIPL1−α, achieves the nominal level (1− α) asymptotically.

Similarly, the new confidence band is defined as

CBPL1−α =
[
z
′
β̂ + F̂−1

n,PL (p− cnδ (α,K)σnp (K) |x) , z
′
β̂ + F̂−1

n,PL (p+ cnδ (α,K)σnp (K) |x)
]
,

(10)

where σnp (K) is defined in (4) and cnδ (α,K) is defined in (6).
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Once we strengthen our assumptions to handle various uniformity issues, we get the asymptotic

validity of the new confidence band for the partial linear quantile model.

Assumption (Z̃1). Let Ỹ = Y − Z ′β0. For Z taking values restricted to a given compact set

K ⊂ Z, Assumptions (S̃), (X̃), and (B) hold for
(
Ỹ , X

)
.

THEOREM 3.2 Suppose β̂ − β0 = Op
(
n−1/2

)
and Assumptions (Z̃1), (PL), (K) and (H) hold.

Then the confidence band, CBPL1−α, is asymptotically valid with coverage probability (1− α) uni-

formly over x ∈ J and z ∈ K.

3.2 Single Index Quantile Regression Model

Consider the single index model with multivariate covariate Z below:

Yi = g
(
Z
′
iβ0

)
+ εi, i = 1, ..., n,

where {Yi, Zi}ni=1 is a random sample and Pr [εi ≤ 0|Zi = z] = p for all z ∈ Z.
Let β̂ denote a consistent estimator of β0 such as that in Wu, Yu, and Yu (2010) or Kong

and Xia (2012), based on structural adaptive estimation methods. Those authors find that their

estimators improve upon the two step M-estimators as in Chen and Pouzo (2009), Ichimura and

Lee (2010) in terms of both computation time and accuracy. For z0 ∈ Z, let

F̂n,SI (y|z0) =

∑n
i=1 1{Yi ≤ y}K

(
F̂n(z

′
0β̂)−F̂n(Z

′
i β̂)

hn

)
∑n

i=1K

(
F̂n(z

′
0β̂)−F̂n(Z

′
i β̂)

hn

) , (11)

where F̂n is the empirical distribution function of
{
Z
′
i β̂
}n
i=1
. Our CI for g (z′0β0) is defined as:

CISI1−α =
(
F̂−1
n,SI

(
p− zα/2σnp (K) |z0

)
, F̂−1

n,SI

(
p+ zα/2σnp (K) |z0

)]
, (12)

where σnp (K) is defined in (4).

We make the following assumptions.

Assumption (Z2). Let X̃ = Z ′β0. Assumptions (S) and (X) hold for
(
Y, X̃

)
. Moreover,

E||Z||γ <∞ for some γ ≥ 4.

Assumption (HS). In addition to Assumption (H), the bandwidth also satisfies:

h−1/2
n n−1/4+1/2γ

√
lnn = o(1) and h−5/2

n n−1+1/γ lnn = o(1).

THEOREM 3.3 Suppose β̂−β0 = Op
(
n−1/2

)
and Assumptions (Z2), (K), and (HS) hold. Then

the confidence interval, CISI1−α, achieves the nominal level (1− α) asymptotically.
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Remark 3.1. The root-n asymptotic normality of the estimator β̂ in Wu, Yu, and Yu (2010),

Kong and Xia (2012) actually requires much stronger assumptions than what we assume here. For

the restriction on bandwidth, Assumption (H) is maintained, letting hn = n−δ. A suitable δ could

be chosen from (1/5, 1/3) ensuring γ ≥ 4, which is a rather mild restriction.

Again once we strengthen our assumptions in accordance with various uniformity issues, we

get the asymptotic validity of the new confidence band defined in (13) below for the single index

quantile model.

Assumption (Z̃2). Let X̃ = Z ′β0. In addition to the moment restriction in (Z2), Assumptions

(S̃), (X̃), and (B) hold for
(
Y, X̃

)
uniformly in a compact set K ⊂ Z.

THEOREM 3.4 Suppose β̂−β0 = Op
(
n−1/2

)
and Assumptions (Z̃2), (K), and (HS) hold. Then

the confidence band below is asymptotically valid with coverage probability (1− α) uniformly over

z ∈ K:

CBSI1−α =
[
F̂−1
n,SI (p− cnδ (α,K)σnp (K) |z) , F̂−1

n,SI (p+ cnδ (α,K)σnp (K) |z)
]
, (13)

where σnp (K) is defined in (4) and cnδ (α,K) is defined in (6).

4 A Generic Confidence Interval Based on Rearranged Quantile
Curves

In this section we present a generic confidence interval based on a consistent estimator of the

conditional quantile function using the direct approach. In Subsection 4.1, we show that under

a high level assumption, our generic confidence interval is asymptotically valid regardless of the

specification of the quantile function (parametric, nonparametric, or semiparametric), the method

of estimation, and data structure. In Subsection 4.2, we verify the high level assumption in three

examples and obtain a novel confidence interval based on order statistics for conditional quantiles,

a new confidence interval for censored nonparametric quantile regression, and a new confidence

interval for nonparametric time series quantile regression.

4.1 A Generic Confidence Interval

Let X ∈ X ⊆ Rd denote the covariate of dimension d ≥ 1. Throughout, we will use ξp (x0) ,

p ∈ (0, 1), to denote the conditional quantile of interest, where x0 ∈ X is fixed and ξp (x) could

be a parametric, nonparametric, or semiparametric function of x. Let ξ̂ (p|x0) ≡ ξ̂p (x0) denote a

consistent estimator of ξp (x0), where ξ̂ (p|x0) may or may not be monotone in p ∈ (0, 1). If it is

not monotone, we adopt the rearranged version of ξ̂ (p|x0) in Chernozhukov, Fernandez-Val, and

Galichon (2010).4 The monotonicity issue has to be tackled here since we need to make sure the
4Besides Chernozhukov, Fernandez-Val, and Galichon (2010), alternative monotone rearrangement plans have been

carried out by He (1997), Yu and Jones (1998), Dette and Volgushev (2008). In the last two references, additional
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nonemptyness of the new confidence interval based on two ordered pairs of the estimated quantile,

see (14) below.

Let ξ̂
∗

(p|x0) denote the rearranged version of ξ̂ (p|x0) proposed by Chernozhukov, Fernandez-

Val, and Galichon (2010):

ξ̂
∗

(p|x0) = inf

[
y :

∫ 1

0
1{ξ̂ (τ |x0) ≤ y}dτ ≥ p

]
.

We will use ξ̂
∗

(p|x0) to construct our confidence interval for ξp (x0) based on the direct approach

and show its asymptotic validity under the following high level assumption on the quantile function

ξp (x0) and its estimator ξ̂ (p|x0).

Assumption (G)

(i) Let ξ (p|x) = ξp (x). Then ξ (p|x0) is a continuously differentiable function in p ∈ (0, 1) and

for fixed p ∈ (0, 1), ξ (p|x) is continuously differentiable at x = x0;

(ii) Let qp (x0) = ∂
∂pξ (p|x0). Then qp (x0) > 0 for p ∈ (0, 1);

(iii) The quantile estimator ξ̂ (·|x0) takes its values in the space of bounded measurable functions

defined on (0, 1) and in l∞ ((0, 1)),

bn

(
ξ̂ (p|x0)− ξ (p|x0)

)
=⇒ qp (x0)B (p|x0) , p ∈ (0, 1),

as a stochastic process indexed by p ∈ (0, 1), where B (p|x0) , p ∈ (0, 1) is a Gaussian process whose

variance is V ar [B (p|x0)] = p (1− p)$2
x0 , for some positive constant $x0 depending on x0 and bn

is a sequence of positive constants such that bn →∞ as n→∞.
Assumption (G) (i) and (ii) are taken directly from Chernozhukov, Fernandez-Val, and Galichon

(2010). Assumption (G) (iii) is a special case of Assumption 2 in Chernozhukov, Fernandez-Val, and

Galichon (2010). It imposes a specific structure on the asymptotic variance of the quantile estimator

ξ̂ (p|x0) which ensures the asymptotic validity of the following confidence interval obtained from

the direct approach:

CI-G1−α =

[
ξ̂
∗
(
p−

zα/2$̂x0

√
p (1− p)

bn
|x0

)
, ξ̂
∗
(
p+

zα/2$̂x0

√
p (1− p)

bn
|x0

)]
, (14)

where $̂x0 is a consistent estimator of $x0 .

THEOREM 4.1 Suppose Assumption (G) holds. Then CI-G1−α is asymptotically valid with cov-

erage probability equal to (1− α).

Proof. Resorting to Corollary 3 in Chernozhukov, Fernandez-Val, and Galichon (2010) which

asserts that the rearranged estimator ξ̂
∗

(p|x0) has the same first order asymptotic properties as

smoothing parameters are introduced and under mild regularity conditions, the monotone estimators have the same
first order asymptotics as the original estimators (see Theorem 2 in Yu and Jones, 1998; Remark 6 in Dette and
Volgushev, 2008).
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ξ̂ (p|x0). In particular, Assumption (G)(iii) implies that

bn

(
ξ̂
∗

(p|x0)− ξ (p|x0)
)

=⇒ qp (x0)B (p|x0) .

The rest of the proof follows verbatim the proof of our Theorem 2.1, making use of stochastic

equicontinuity of the process bn
(
ξ̂
∗

(p|x0)− ξ (p|x0)
)
, p ∈ (0, 1) and the simple fact that under

Assumption (G)(i),

bn

[
ξ

(
p±

zα/2$̂x0

√
p (1− p)

bn
|x0

)
− ξ (p|x0)

]
= qp (x0) zα/2$x0

√
p (1− p) + op (1) .

Q.E.D

The above proof makes it clear that Assumption (G) (iii) is crucial to the asymptotic validity

of our generic confidence interval CI-G1−α defined in (14). It is worth noting, however, that As-

sumption (G)(iii) is satisfied by many quantile regression estimators regardless of the model and

data structure. For example, the special class of location scale forms of linear quantile regression

models in Zhou and Portnoy (1996) ensures that under standard regularity conditions, the quantile

estimator of Koenker and Bassett (1978) satisfies Assumption G (iii), see e.g., Gutenbrunner and

Jureckova (1992), Koenker and Xiao (2005), and Portnoy (2012), and thus the asymptotic validity

of our generic confidence interval CI-G1−α defined in (14). In fact, for location scale forms of the

linear quantile regression models, our generic confidence interval CI-G1−α is essentially the confi-

dence interval in Zhou and Portnoy (1996) except that Zhou and Portnoy (1996) uses the original

estimator of Koenker and Bassett (1978) instead of its monotone rearranged version. Assumption

(G) (iii) is also satisfied by the nonparametric and semiparametric quantile regression models and

the symmetric k-NN estimators studied in Sections 2 and 3 in this paper. Since we directly take the

generalized inverse of the estimated conditional distribution function as the estimator for the condi-

tional quantile, our quantile estimator is automatically monotone and is identical to its rearranged

version.

4.2 Applications of the Generic Confidence Interval

To demonstrate the broad applicability of the confidence interval, CI-G1−α, defined in (14), we

present three examples in this subsection. These include a novel confidence interval for nonpara-

metric conditional quantiles based on order statistics/induced order statistics in Example 4.1; a

new confidence interval for nonparametric censored quantile regression in Example 4.2; and a new

confidence interval for nonparametric time series quantile regression in Example 4.3.

Example 4.1. (A Novel Order Statistic Approach): The direct approach when applied

to sample quantiles leads to confidence intervals for unconditional quantiles based on pairs of order

statistics of {Yi}ni=1, see Thompson (1936) and van der Vaart (1998). The generic confidence interval

in (14) when applied to the standard asymmetric k-NN estimator of the conditional quantile leads
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to a novel confidence interval for conditional quantiles based on pairs of order statistics of an

appropriately chosen set of induced order statistics of {Yi}ni=1. To introduce it, let Ri = ||Xi−x0||,
for i = 1, · · ·, n, where || · || is the standard Euclidean norm in Rd, and (Yn,i)

n
i=1 denote the collection

of induced order statistics by rank (Ri)
n
i=1, i.e., Yj = Yn,i iff Rj = R(i) and R(i) is the i-th order

statistic of (Ri)
n
i=1. For k ≤ n, the standard asymmetric k-NN estimator of the distribution function

of Y given X = x0 is defined as

F̂n,k (y|x0) = k−1
k∑
i=1

I (Yn,i ≤ y)

and the asymmetric k-NN estimator of ξp (x0) is given by

ξ̂ (p|x0) ≡ ξ̂p (x0) = inf

{
y : F̂n,k (y|x0) ≥ [kp]

k

}
= the [kp] -th order statistic of Yn,1, Yn,2, · · · , Yn,k, (15)

where k ≡ kn is a sequence of constants such that kn → ∞ and kn = o
(
n

4
4+d

)
. Assuming (G)

(i) and (ii), the asymptotic validity of CI-G1−α based on the asymmetric k-NN estimator relies

on Assumption (G) (iii). For a random sample {Xi, Yi}ni=1, Dabrowska (1987) provides primitive

conditions under which the standard k-NN estimator of the conditional distribution function con-

verges weakly to a Gaussian process which can be used to show that Assumption (G) (iii) holds

for ξ̂ (p|x0) in (15) with bn =
√
kn and $2

x0 = πd/2/Γ (d/2 + 1). We refer the reader to Section 3.3

and the proof of Proposition 3.4 in Dabrowska (1987) for further details including the primitive

conditions. Using ξ̂ (p|x0) in (15), the confidence interval (14) reduces to:

CI-O1−α =
[
ξ̂
(
p− zα/2σkn|x0

)
, ξ̂
(
p+ zα/2σkn|x0

)]
=

[
Yn,([k(p−zα/2σkn)]), Yn,([k(p+zα/2σkn)])

]
, (16)

where σkn =
√
p(1− p)$2

x0/kn and Yn,(i) denotes the i-th order statistic of {Yn,i}
k
i=1. Notice that

σkn involves no covariates’density and the constant factor $2
x0 is the volume of the unit ball in

Rd, which appears in the asymptotic variance of the standard asymmetric k-NN estimator, see

Mack (1981). The new confidence interval CI-O1−α defined in (16) for conditional quantiles shares

the elegance and simplicity of the confidence interval for unconditional quantiles based on order

statistics.

Example 4.2. (Nonparametric Quantile Regression With Censoring): Consider a

nonparametric censored quantile regression model where the dependent variable Yi is subject to

conditional random censoring Ci. So instead of observing {Xi, Yi}ni=1, we observe a random sample

(min (Yi, Ci) , δi, Xi)
n
i=1, where δi = 1{Yi ≤ Ci}, Yi and Ci are independent of each other conditional

on Xi. Dabrowska (1987) extends various nonparametric quantile regression estimators for random

samples including the kernel estimator, the symmetric k-NN estimator, and the asymmetric k-NN
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estimator to the above censored case. Under primitive conditions, she establishes weak convergence

of the associated quantile processes which ensures Assumption (G) (iii). Thus our generic confidence

interval defined in (14) is asymptotically valid.

Example 4.3. (Nonparametric Quantile Regression for Time Series): Suppose {Xi, Yi}ni=1

is a realization of a stationary α-mixing process. Xu (2012) constructs an asymptotically valid con-

fidence interval for ξ (p|x0) via the empirical likelihood approach. The generic confidence interval

(14) shares the advantages of the empirical likelihood based confidence interval and is less involved

computationally. Let ξ̂ (p|x0) denote a local polynomial quantile regression estimator or a gen-

eralized inverse of a kernel estimator of FY |X (y|x0). Under primitive conditions, Su and White

(2011) and Polonik and Yao (2002) establish respectively Bahadur representation5 for ξ̂ (p|x0) valid

uniformly over p ∈ (0, 1), where the linear representation is proportional to qp (x0). So Assumption

(G) (iii) is satisfied under their conditions, where bn =
√
nhdn with hn the bandwidth. For uncondi-

tional quantiles, Wu (2005) establishes a uniform Bahadur representation for sample quantiles for

a wide class of processes which can be used to justify CI-G1−α for sample quantiles.6

5 Simulation

In this section, we investigate the finite sample performance of our new confidence intervals for

nonparametric and partially linear quantile regressions and compare them with Wald-type con-

fidence intervals and two bootstrap confidence intervals. In order to see the separate effects of

estimating fX (x) and qp (x), we use both the Nadaraya-Watson estimator and Stute’s symmetric

k-NN estimator of the conditional distribution function of Y given X. In sum, we compare four

asymptotic confidence intervals in our simulation. For the nonparametric quantile regression, they

take the following forms:

W-NW1−α =

ξ̂p,NW (x)−
zα
2
σnp (K) q̂p,NW (x)√

f̂X (x)
, ξ̂p,NW (x) +

zα
2
σnp (K) q̂p,NW (x)√

f̂X (x)

 ,(17)
W-S1−α =

(
ξ̂p (x)− zα/2σnp (K) q̂p (x) , ξ̂p (x) + zα/2σnp (K) q̂p (x)

]
, (18)

CI-NW1−α =

F̂−1
n,NW

p− zα/2σnp (K)√
f̂X (x)

|x

 , F̂−1
n,NW

p+
zα/2σnp (K)√

f̂X (x)
|x

 , (19)

CIN1−α =
(
F̂−1
n

(
p− zα/2σnp (K) |x

)
, F̂−1

n

(
p+ zα/2σnp (K) |x

)]
,

5To save space, we refer the reader to Su and White (2011) and Polonik and Yao (2002) for details.
6There is no covariate for sample quantiles.
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where q̂p (x) = 1/f̂Y |X

(
ξ̂p (x) |x

)
, q̂p,NW (x) = 1/f̂Y |X

(
ξ̂p,NW (x) |x

)
, ξ̂p,NW (x) = F̂−1

n,NW (p|x) in

which F̂−1
n,NW (p|x) is the generalized inverse of F̂n,NW (y|x) defined as

F̂n,NW (y|x) =

∑n
i=1 1{Yi ≤ y}K

(
x−Xi
hn,NW

)
∑n

i=1K
(
x−Xi
hn,NW

) , (20)

and

f̂X (x) =
1

nhX

n∑
i=1

K

(
x−Xi

hX

)
, f̂Y |X (y|x) =

∑n
i=1K

(
y−Yi
hC,Y

)
K
(
x−Xi
hC,X

)
hC,Y

∑n
i=1K

(
x−Xi
hC,X

) , (21)

in which hX , hC,X , hC,Y , and hn,NW are all bandwidths that need to be chosen.

While the first two confidence intervals, W-NW1−α and W-S1−α, are both Wald-type confidence

intervals relying on a consistent estimator of the conditional quantile density function, W-S1−α does

not require a consistent estimator of the covariate density function fX (x). The two new confidence

intervals,7 CIN1−αand CI-NW1−α, make use of the conditional quantile estimators directly. They

differ in the quantile estimators being used the consequence of which is that CIN1−α does not depend

on any density estimation, but CI-NW1−α depends on a consistent estimator of the covariate density

fX (x).

Throughout the simulation, we used the Bisquare Kernel function, K (u) = 15
16

(
1− u2

)2
I{|u| ≤

1}. The choice of bandwidths is delicate and will be discussed below. Among these four confidence
intervals, our new confidence interval, CIN1−α, is the least demanding in terms of bandwidth choice,

as it only requires choosing one bandwidth which is needed to estimate the conditional quantile

function. In sharp contrast, the Wald-type confidence interval, W-NW1−α, is the most demanding,

as there are four bandwidths involved.8

As the Wald-type inference is known to be poor in linear models (see Kocherginsky, He, and

Mu, 2005), we also compared our confidence intervals with the following two bootstrap competitors:

Boot-Norm1−α =
(
ξ̂p (x)− zα/2σBoot, ξ̂p (x) + zα/2σBoot

]
,

Boot-Perc1−α =
(
ξ̂p (x)− zBoot,1−α/2, ξ̂p (x) + zBoot,α/2

]
, (22)

where σBoot is the bootstrap standard deviation for ξ̂p (x) and zBoot,α/2 is the bootstrap percentile.

In the tables below, we denote these confidence intervals, W-NW1−α, W-S1−α, CI-NW1−α,

CIN1−α, Boot-Norm1−α and Boot-Perc1−α as ‘Asy NW’, ‘Asy CI’, ‘New NW’, ‘New CI’, ’BootNm’,

and ’BootPerc’respectively.

7Section 2 establishes the asymptotic validity of CIN1−α. The asymptotic validity of CI-NW1−α can be established
using Theorem 4.1.

8The results in Tables 1-7 reveal the best performance of the Wald-type confidence intervals when these bandwidths
are different and chosen carefully and the worst performance when these bandwiths are chosen to be the same.
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5.1 Nonparametric Quantile Regression

The first two designs are taken from Yu and Jones (1998). Model 1 gives curvy quantile with

homoskedasticity while Model 2 exhibits almost linear quantile with heteroskedasticity:

Model 1 : Yi = 2.5 + sin (2Xi) + 2 exp
(
−16X2

i

)
+ 0.5εi and

Model 2 : Yi = sin (0.75Xi) + 1 + 0.3
√

(sin (0.75Xi) + 1)εi,

where Xi and εi are independent bivariate normal with standard normal marginal distributions.

We computed the coverage rates of six confidence intervals based 5, 000 simulations with sample

size n varying from 200, 500 to 1000 and nominal size equal to 95%. The bootstrap replication9 is set

to be 500. The confidence interval, W-NW1−α, involves four bandwidths: (i) the bandwidth hn,NW

in the quantile estimator is chosen to be n−1/20hY J , where hY J is the rule of thumb bandwidth

in Yu and Jones (1998) based on a preliminary Ruppert-Sheather-Wand bandwidth. The presence

of the factor n−1/20 reflects the slightly undersmoothing requirement in our Assumption (H); (ii)

the bandwidth hX in f̂X (x) is chosen to be the Sheather-Jones bandwidth with Silverman’s rule

of thumb as the pilot estimate; (iii) the two bandwidths (hC,Y , hC,X) in the conditional quantile

density estimator are chosen by the ’normal-reference’rule in Racine’s np package. The bandwidths

involved in the remaining three confidence intervals, W-S1−α, CI-NW1−α, and CIN1−α, are chosen

in the same way. However it is worth mentioning that hn and hn,NW are different as the first one is

based on the sample (Yi, Fn (Xi)) after we transform Xi using its empirical distribution function.10

The results are presented in Tables 1-3 for different sample sizes.

Insert Tables 1-3 here

Several observations follow immediately from Tables 1-3. First, the performance of the two new

CIs based on pairs of quantile estimates is very stable across models, quantile levels, and sample

sizes, especially our new CI using the symmetric k-NN estimator– its performance is comparable

to the computationally more extensive Bootstrap percentile method and in many cases better with

finite sample coverage rate very close to the nominal level even for sample size 200; Second, the

performance of the two Wald-type CIs is not as stable. For small sample sizes, their coverage rates

at most covariate points for both models are not close to the nominal level. Even at sample size

1000, the coverage rates of the two Wald-type CIs could be far away from the nominal level, e.g.,

9To ease the computational burden, we fixed the bandwidth for the bootstrap sample.
10We need to truncate the support of X in order to avoid the crash of computation of Ruppert-Sheather-Wand

bandwidth for the Nadaraya-Watson type estimators. In particular, for Model 1, we restrict the computation of the
R-S-W bandwidth only for those points whose covariate values are in [−1.65, 1.65] and for Model 2, the restricted
range is [−2, 2] . When it comes to the small sample with 200 observations, we always truncate at [−0.75, 0.75] for
both models. In contrast, the empirical probability integral transformation prevents this crash due to the equal
spacing of sample points.
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0.991, 0.9896 for Model 1 when x = 0 and p = 0.5 and 0.9302, 0.9254 for Model 2 when x = 1.5 and

p = 0.25; For the two bootstrap confidence intervals, the one based on normal approximation is

biased towards undercovering even in relatively large samples, while the one based on the percentile

approach is much more accurate, but showing some variability in small samples.

To see the sensitivity of Wald-type confidence intervals to the choice of bandwidths, we also

computed their coverage rates using one bandwidth only, the bandwidth in the conditional quantile

estimate. Table 4 presents the results for sample size 1000. For comparison purposes, we also

presented the coverage rates for the two new confidence intervals, CIN1−α and CI-NW1−α.11 The

coverage rates for CIN1−α are the same as in Table 3. Interestingly we observe that the coverage

rate of CI-NW1−α does not change much, but the performance of the two Wald-type intervals is

very poor for Model 1.

Insert Table 4 here

Overall these results reveal the superior performance of our new confidence interval, CIN1−α,

and the sensitivity of Wald-type confidence intervals to the choice of bandwidths in the estimation

of the conditional quantile density function.

5.2 Partial Linear Quantile Regression

The design is adapted from Song, Ritov, and Hardle (2012) and the finite dimensional parameter

β was estimated by the method proposed in Song, Ritov, and Hardle (2012):

Model 3: Yi = 2Zi +Xi
2 + εi,

where Xi, Zi, and εi are independent of each other, Xi ∼ U (0, 1), Zi ∼ U (0, 2), and εi is standard

normal.

Our new confidence interval, CIPL1−α, is presented in (9). Modifications will be required to the

other three types of confidence intervals for partial linear models. Specifically, we need to replace

Yi with Yi−Ziβ̂ in computing F̂n,NW (p|x) , F̂n (p|x) , and f̂Y |X
(
ξ̂p (x) |x

)
and also add z′β̂ to both

end points of the intervals in (17), (18), and (19). The bandwidths are chosen in the same way as

in the nonparametric model. Tables 5 and 6 report results for n = 500, 1000.

Insert Tables 5 and 6 here

Like in the nonparametric case, the two new confidence intervals based on pairs of estimated

quantiles perform remarkably well across covariate values, quantile levels, and sample sizes. Their

11The two bootstrap confidence intervals also require only one bandwidth from estimating the conditional quantile,
hence the results would not change from Table 3 and we will not replicate that part.
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performance is comparable and sometimes better than the Boot-Norm1−α which performs better

than Boot-Perc1−α for the partial linear model. In contrast the two Wald-type intervals do not

perform well even when the sample size is 1000.

We also computed the coverage rates of the first three confidence intervals using one bandwidth

only, the bandwidth in the conditional quantile estimate. Table 7 presents the results for sample

size 1000. Again the performance of the Wald-type intervals deteriorates dramatically.

Insert Table 7 here

6 Concluding Remarks

In this paper, we have constructed “density-free” confidence intervals and bands for conditional

quantiles based on estimated conditional quantiles evaluated at two appropriately chosen quantile

levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic distributions

of estimators of the conditional quantiles, our confidence intervals and bands circumvent the need to

estimate the density of the covariate and the conditional quantile density of the response variable,

thus freeing practitioners from choosing bandwidths involved in estimating the covariate density

and the conditional quantile density. A small Monte Carlo study reveals the superior finite sample

performance of our new CIs compared with the Wald-type CIs that are sensitive to the choice of

bandwidth needed to estimate the conditional quantile density function and two bootstrap CIs.

We have also presented a generic confidence interval for conditional quantiles using the re-

arranged quantile curves that is asymptotically valid for any quantile regression (parametric, non-

parametric, or semiparametric), any method of estimation, and any data structure, provided that

the conditional quantile function satisfies some mild smoothness assumptions and the original quan-

tile estimator is such that its associated quantile process converges weakly to a Gaussian process

with a covariance kernel proportional to the conditional quantile density function.

As far as we know, this paper is the first paper presenting a systematic investigation of the direct

approach to inference in nonparametric and semiparametric quantile regression models. Given the

simplicity and superior performance of this approach compared with existing approaches, it would

be worthwhile investigating its applicability in other contexts. One example is inference on the

finite dimensional parameter in semiparametric models. This paper has focused exclusively on

inference for the conditional quantile function. In semiparametric models, the finite dimensional

parameter might be of interest. It would also be interesting to extend our generic confidence interval

to a generic confidence band across the covariates’ support. This is more challenging, since the

confidence bands for parametric and nonparametric models differ substantially. For the location-

scale forms of linear quantile models, Zhou and Portnoy (1996) construct Scheffe type confidence

band using the direct approach (see their Proposition 3.1) based on chi-square asymptotics, while
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we construct our confidence bands based on the extreme-value asymptotics for nonparametric and

semiparametric models.

7 Appendix A. Technical Proofs For Section 2

Throughout the proofs, M denotes an unspecified positive constant and its value does not depend

on n and typically does not depend on x ∈ J and y either (This will be clear in specific context that
M is used); ∆ denotes an intermediate value in the Taylor series expansion. The values of both M

and ∆ may vary from line to line. Also the limits are taken as n→∞ unless stated otherwise.

We define f̂U (x) and f̃U (x) below which appear frequently in the proofs:

f̂U (x) =
1

nhn

∑n

i=1
K

(
Fn(x)− Fn(Xi)

hn

)
and f̃U (x) =

1

nhn

∑n

i=1
K

(
FX(x)− FX(Xi)

hn

)
.

Proof of Theorem 2.1. First, we show that√
nhn

(
F̂−1
n

(
p+ zα/2σnp (K) |x0

)
− F̂−1

n (p |x0 )
)

=
zα/2

√
R (K) p (1− p)

fY |X
(
ξp (x0) |x0

) + op (1) and

√
nhn

(
F̂−1
n

(
p− zα/2σnp (K) |x0

)
− F̂−1

n (p |x0 )
)

= −
zα/2

√
R (K) p (1− p)

fY |X
(
ξp (x0) |x0

) + op (1) .

We provide a detailed proof of the first result. The second can be proved similarly. It follows from

Lemma 2.2 (ii) that the conditional quantile process:
{√

nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

: p ∈ [p1, p2]
}

converges weakly in l∞ (0, 1). This implies that√
nhn

[
F̂−1
n

(
p+ zα/2σnp (K)

∣∣x0

)
− F−1

Y |X
(
p+ zα/2σnp (K)

∣∣x0

)]
−
√
nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

= op (1) .

That is, √
nhn

(
F̂−1
n

(
p+ zα/2σnp (K) |x0

)
− F̂−1

n (p |x0 )
)

=
√
nhn

[
F−1
Y |X

(
p+ zα/2σnp (K) |x0

)
− F−1

Y |X (p|x0)
]

+ op (1)

=
zα/2

√
R (K) p (1− p)

fY |X
(
ξp (x0) |x0

) + op (1) .

Finally, we obtain:

Pr
(
ξp (x0) ∈ (F̂−1

n

(
p− zα/2σnp (K) |x0

)
, F̂−1

n

(
p+ zα/2σnp (K) |x0

)
]
)

= Pr

(
F̂−1
n (p|x0)−

zα/2σnp (K)

fY |X
(
ξp (x0) |x0

) < ξp (x0) ≤ F̂−1
n (p|x0) +

zα/2σnp (K)

fY |X
(
ξp (x0) |x0

))+ o (1)

= Pr
(√

nhn

∣∣∣F̂−1
n (p|x0)− ξp (x0)

∣∣∣ ≤ zα/2σ)+ o (1)

= (1− α) + o (1) .
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Q.E.D

We now present a few lemmas used in the proofs of Theorem 2.3 and Lemma 2.4. Let

Bn (x,Xi) = Fn(x)− Fn(Xi)− FX(x) + FX(Xi).

Lemma A.1 (Stute, 1982) Under our Assumptions (H), (K), and (X),

(i) for any given x0 ∈ X , we have:
√
nh−1

n sup|FX(x0)−FX(Xi)|≤Mhn |Bn (x0, Xi) | = Op (1);

(ii) uniformly over x ∈ X , we have:
√
n (hn log n)−1 sup|FX(x)−FX(Xi)|≤Mhn |Bn (x,Xi) | = Op (1).

Proof. Those bounds actually hold almost surely. The proof could be found in the proofs of

Lemma 2.4 and Theorem 2.14 in Stute (1982). Q.E.D

Lemma A.2 Given Assumptions (S̃) (ii) and (K), for any interior point x ∈ X and any y ∈ Y,
when hn → 0, we have∣∣∣∣ 1

hn

∫
FY |X (y|Xi)K

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)− FY |X (y|x)

∣∣∣∣ ≤Mh2
n,

where M is independent of y and x in J ⊂ X .

Proof. Let u = FX (x). Then∣∣∣∣ 1

hn

∫
FY |X (y|Xi)K

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)− FY |X (y|x)

∣∣∣∣
=

∣∣∣∣∫ FY |X
(
y|F−1

X (u− Uhn)
)
K (U) dU − FY |X

(
y|F−1

X (u)
)∣∣∣∣

=

∣∣∣∣∫ [H (y|u− Uhn)−H (y|u)]K (U) dU

∣∣∣∣ .
The first equality is obtained by a change of variables and the second one is just rewritten in terms

of H (y|u). Notice that U ∈ [0, 1]. By Assumption (S̃) (ii) and Lemma 8.5 in Korostelev and

Korosteleva (2011), we have

H (y|u− Uhn)−H (y|u) = UhnH
′
(y|u) + ρ (u, U)

with |ρ (u, U) | ≤ Lh2n
2 , for an L independent of u or y. The result follows immediately from As-

sumption (K). Q.E.D

Let

F̃n (·|x) =

1
nhn

∑n
i=1 1{Yi ≤ ·}K

(
FX(x)−FX(Xi)

hn

)
1
nhn

∑n
i=1K

(
FX(x)−FX(Xi)

hn

) .

The lemma below shows that F̃n (·|·) and F̂n (·|·) are uniformly close to each other. This also
demonstrates that instead of treating F̂n (·|·) as the nearest neighbor estimator based on ranks, it
could also be viewed as a feasible kernel estimator after probability integral transformation.
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Lemma A.3 Under our Assumptions (H), (K), and (X̃), we have:

sup
y∈Y

sup
x∈J

√
nhn
log n

∣∣∣F̂n (y|x)− F̃n (y|x)
∣∣∣ = op (1) . (A.1)

Proof. Decompose F̂n (y|x)− F̃n (y|x) as in the following standard way,

F̂n (y|x)− FY |X (y|x) + FY |X (y|x)− F̃n (y|x)

=
1

nhnf̂U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
Fn(x)− Fn(Xi)

hn

)
− 1

nhnf̃U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
FX(x)− FX(Xi)

hn

)
=

1

nhnf̂U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

] [
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
+

1

nhn

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
FX(x)− FX(Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)
.

In order to handle the denominator and the term in parenthesis in the above decomposition, we

need to bound the difference f̂U (x)− f̃U (x):

f̂U (x)− f̃U (x) =
1

nhn

∑[
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
=

1

nh2
n

∑
K
′
(
FX(x)− FX(Xi)

hn

)
[Fn(x)− FX(x)− Fn(Xi) + FX(Xi)]

+
1

nh3
n

∑
K
′′

(∆) [Bn (x,Xi)]
2 .

It would be clear in a moment that the above difference could be shown as Op
(√

logn
nhn

)
uniformly.

For the present purpose, it suffi ces that the difference is uniformly op (1) . Hence we could just focus

on the first term’s numerator.

Similarly, the numerator for the first term admits the following decomposition,

1

nhn

∑[
1{Yi ≤ y} − FY |X (y|x)

] [
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
=

1

nh2
n

∑[
1{Yi ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)− FX(Xi)

hn

)
[Fn(x)− FX(x)− Fn(Xi) + FX(Xi)]

+
1

nh3
n

∑[
1{Yi ≤ y} − FY |X (y|x)

]
K
′′

(∆) [Bn (x,Xi)]
2

=̇ In + IIn

For IIn, as argued in Lemma 1 in Stute (1984b), for any x, we only need to consider those sample

points for which |Fn(x) − Fn(Xi)| ≤ hn and by the Kvorezky-Kiefer-Wolfowitz bound, we have

supx |F (x) − Fn(x)| ≤ Cn−1/2. Therefore we only need to consider the oscillation restricted by

supx |FX(x)− FX(X)| ≤ Chn, so

IIn ≤ Op
(
hn log n

n

)
|K ′′ (∆) |
nh3

n

∑∣∣1{Yi ≤ y} − FY |X (y|x)
∣∣ = Op

(
log n

nh2
n

)
.
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To handle In, we first show that it could be written as a scaled U-statistic plus some smaller order

term, and then we characterize the approximation order of the U-statistic by its Hajek projection.

Finally we end the derivation by showing that the Hajek projection is op
(√

logn
nhn

)
.

Let F in−1(x) be the leave-one-out empirical distribution function and define Bi
n−1 (x,Xi) simi-

larly. Proceeding as Lemma 2 in Stute (1984b), we have

Fn (x) = F in−1(x)− n−1F in−1(x) + n−11{Xi ≤ x}.

Therefore, Bn (x,Xi) = Bi
n−1 (x,Xi) + Op

(
n−1

)
, where the residual term’s order is uniform w.r.t.

x by standard Glivenko-Cantelli result.

Now it suffi ces to consider the following U-process indexed by x: IIn = h−2
n Un2 hy,x+s.o., where

Un2 hy,x

=
2

n (n− 1)

∑
i 6=j

1

2


[
1{Yi ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)−FX(Xi)

hn

)[ 1{Xj ≤ x} − FX (x)
−1{Xj ≤ Xi}+ FX (Xi)

]
+
[
1{Yj ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)−FX(Xj)

hn

)[ 1{Xi ≤ x} − FX (x)
−1{Xi ≤ Xj}+ FX (Xj)

]
 .

Consider the function class:

Fy,x = {1{Yi ≤ y}K
′
(
FX(x)− FX(Xi)

hn

)
[1{Xj ≤ x} − FX (x)− 1{Xj ≤ Xi}+ FX (Xi)] |y ∈ R, x ∈ J }.

Because K
′
(·) has bounded variation, 1{Yi ≤ y} and [1{Xj ≤ x} − FX (x)] (FX (x) is uniformly

continuous by Assumption (X̃)) are both VC classes, we have

logNp (ε,Fy,x, Q) ≤M log

(
1

ε

)
, for p ∈ (0,∞) ,

for any probability measure Q. Therefore, by Lemma A.1 in Ghosal, Sen, and van der Vaart

(2000), we can approximate Un2 hy,x by its Hajek Projection with an error of order n
−1, i.e.,

1

h2
n

Un2 hy,x =
1

h2
n

Un1 Π1hy,x +Op

(
1

nh2
n

)
.

Next, we compute the projection explicitly. Let Uj = FX (Xj), Ui = FX (Xi), and u = FX(x).
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Then

1

h2
n

Un1 Π1hy,x =
1

nh2
n

n∑
j=1

∫ [
FY |X (y|Xi)− FY |X (y|x)

]
K
′
(
FX(x)− FX(Xi)

hn

)
×

[1{FX (Xj) ≤ FX (x)} − FX (x)− 1{FX (Xj) ≤ FX (Xi)}+ FX (Xi)] dFX (Xi)

=
1

nhn

n∑
j=1

∫
[H (y|Ui)−H (y|u)] [1{Uj ≤ u} − u− 1{Uj ≤ Ui}+ Ui] dK

(
u− Ui
hn

)

=
1

n

n∑
j=1

∫
[H (y|u− vhn)−H (y|u)] [1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn] dK (v)

≤ Mhn

∫
sup

|u−v|≤hn

∣∣∣∣∣∣ 1n
n∑
j=1

1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn

∣∣∣∣∣∣ d|K (v) |

= Op

(
hn

√
log n

nhn

)
= op

(√
log n

nhn

)
,

where u = FX(x). Notice that |H (y|U)−H (y|u) | ≤Mhn for U satisfying |U −u| ≤ hn
2 . The term

after the sup in the above inequality is nothing but the local oscillation of the uniform empirical

process, whose order is given in Lemma A.1. Also K (v) is of bounded variation, hence the integral

term is of order Op
(√

logn
nhn

)
.

In sum, by our Assumption (H), we have

sup
y∈Y

sup
x∈J
|F̂n (y|x)− F̃n (y|x) |

=

[
Op

(
hn

√
log n

nhn

)
+Op

(
log n

nh2
n

)]
+Op

(√
log n

nhn

)
op (1) = op

(√
log n

nhn

)
.

Q.E.D

Lemma A.4 Under our Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(iii), it holds that for any

cn = O
(√

logn
nhn

)
, supx∈J

∣∣∣F̂−1
n (p+ cn|x)− F−1 (p|x)

∣∣∣ = Op

(√
(nhn)−1 log n

)
.

Proof. First of all we have

sup
y∈Y

sup
x∈J

∣∣∣F̃n (y|x)− FY |X (y|x)
∣∣∣ = Op

(√
log n

nhn

)
.

This follows directly from Theorem 3 in Einmahl and Mason (2005). Actually it is even easier,

because the transformation makes the covariate uniformly distributed, and there is no denominator

of any kernel function. Note that we always use an undersmoothing bandwidth to kill the bias

(uniformly over x) as shown in Lemma A.2.

It follows from Lemmas A.3 and A.4 that

sup
y∈Y

sup
x∈J

∣∣∣F̂n (y|x)− FY |X (y|x)
∣∣∣ = Op

(√
log n

nhn

)
. (A.2)
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Hence,

Pr

[
F̂−1
n (p+ cn|x)− F−1 (p|x) > M

√
nhn
log n

]

= Pr

[
p+ cn > F̂n

(
F−1 (p|x) +M

√
nhn
log n

|x
)]

= Pr

 p− F
(
F−1 (p|x) +M

√
nhn
logn |x

)
> cn + F̂n

(
F−1 (p|x) +M

√
nhn
logn |x

)
− F

(
F−1 (p|x) +M

√
nhn
logn |x

) 
= Pr

[
−fY |X (∆|x)M >√

logn
nhn

(
cn + F̂n

(
F−1 (p|x) +M

√
nhn
logn |x

)
− F

(
F−1 (p|x) +M

√
nhn
logn |x

)) ] .
Therefore we obtain

lim
M→∞

lim sup
n

Pr

[
F̂−1
n (p+ cn|x)− F−1 (p|x) ≥M

√
nhn
log n

]
= 0

by the requirement on cn and (A.2). Analogous argument shows that

lim
M→∞

lim sup
n

Pr

[
F̂−1
n (p+ cn|x)− F−1 (p|x) < −M

√
nhn
log n

]
= 0

and the conclusion follows. Q.E.D

Lemma A.5 Under our Assumptions (H), (K), (X̃), and (S̃)(ii), uniformly in y and x ∈ J and

for any an = Op

(√
logn
nhn

)
, it holds that

∣∣∣F̂n (y + an|x)− F̂n (y|x)− F̃n (y + an|x) + F̃n (y|x)
∣∣∣ = op

(
log n

nhn

)
.

Proof. The proof follows that of Lemma A.3 closely, except that we have 1{Yi ≤ y} replaced
by 1{y < Yi ≤ y+ an} (say an ≥ 0 w.l.o.g.). Everything works through straightforwardly up to the

Hajek projection. Now the projection becomes

1

h2
n

Un1 Π1hy,x =
1

nhn

n∑
j=1

∫
[H (y + an|U)−H (y|U)]×

[1{Uj ≤ u} − u− 1{Uj ≤ Ui}+ Ui] dK

(
u− Ui
hn

)
+ s.o.

≤ anM sup

∫ ∣∣∣∣∣∣ 1n
n∑
j=1

1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn

∣∣∣∣∣∣ d|K (v) |

= op

(
log n

nhn

)
,

where the integral term in the above inequality is handled similarly as the proof of Lemma A.3.
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For IIn, this anM term could also be factored out:

IIn = Op

(
hn log n

n

)
K
′′

(∆)

nh3
n

∑[
1{y < Yi ≤ y + an} − FY |X (y + an|x) + FY |X (y|x)

]
= Op

(
hn log n

n

)
K
′′

(∆)

h3
n

Pr{y < Yi ≤ y + an} − anfY |X (y|x)

= Op

(
an log n

nh2
n

)
.

Q.E.D

Lemma A.6 Under our Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(iii)(iv),

sup
x∈J

sup
|y′ |≤an

∣∣∣[F̃n (F−1 (p|x) + y
′ |x
)
− F̃n

(
F−1 (p|x) |x

)]
−
[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)]∣∣∣
= Op

((
log n

nhn

)3/4
)
,

where an is any positive sequence of order O
(√

logn
nhn

)
.

Proof. The standard decomposition shows that the problem could be simplified a bit:

|
[
F̃n

(
F−1 (p|x) + y

′ |x
)
− F̃n

(
F−1 (p|x) |x

)]
−
[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)]
|

=
1

nhnf̃U (x)

∑n

i=1

[
1{Yi ≤ F−1 (p|x) + y

′} − 1{Yi ≤ F−1 (p|x)}
−
[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)] ]K (FX(x)− FX(Xi)

hn

)

=
1

f̃U (x)

 1
nhn

∑n
i=1

[
1{Yi ≤ F−1 (p|x) + y

′} − 1{Yi ≤ F−1 (p|x)}
]
K
(
FX(x)−FX(Xi)

hn

)
−
[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)]


+

[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)]
f̃U (x)

×
[
1− f̃U (x)

]
.

It is clear from the above decomposition that we only need to work with the first term’s numerator.

Another simplification is that we could modulo the bias term along the derivation. By the standard

kernel technique one could get (uniformly)

E
[
F̃n

(
F−1 (p|x) + y

′ |x
)
− F̃n

(
F−1 (p|x) |x

)]
−
[
F
(
F−1 (p|x) + y

′ |x
)
− F

(
F−1 (p|x) |x

)]
= Op

(√
log n

nhn
× h2

n

)
= op

((
log n

nhn

)3/4
)
,

by Taylor expansion w.r.t x, (S̃)(ii) and applying Assumption (B)(iii) to getting linearization w.r.t

y. Hence it suffi ces to characterize the stochastic order of the following term uniformly:

ω (x, y;hn, an) =
1

nhn

∑n

i=1

[
1{Yi ≤ y + y

′} − 1{Yi ≤ y}
]
K

(
FX(x)− FX(Xi)

hn

)
−E

(
1

nhn

∑n

i=1

[
1{Yi ≤ y + y

′} − 1{Yi ≤ y}
]
K

(
FX(x)− FX(Xi)

hn

))
.
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Notice that by Lipschitz continuity of FY (·), the shrinkage along y axis could be translated to
FY (·) upon multiplying some finite Lipschitz constant L in front:

|ω (x, y;hn, an) |

≤ M

hn

∫ FY (y)∨
(
FY (y)+Ly

′)
FY (y)∧(FY (y)+Ly′)

∫ ∣∣∣∣K (FX(x)− FX(X)

hn

)∣∣∣∣ d |Cn (FX (X) , FY (Y ))− C (FX (X) , FY (Y ))|

≤ M

hn

∫ FY (y)∨
(
FY (y)+Ly

′)
FY (y)∧(FY (y)+Ly′)

∫ FX(x)+Mhn

FX(x)−Mhn

d |Cn (u, v)− C (u, v)| ,

where Cn and C denote the empirical and population copula function between (Y,X) respectively.

The double integral term corresponds to the multivariate local oscillation of empirical process within

a shrinking rectangle studied by Stute (1984b). By Theorem 1.5 or Theorem 3.1 in Stute (1984a)

and existence and boundedness of the copula density we have

sup
y,x

∫ FY (y)∨
(
FY (y)+Ly

′)
FY (y)∧(FY (y)+Ly′)

∫ FX(x)+Mhn

FX(x)−Mhn

d |Cn (u, v)− C (u, v)|

= Op

√hnan
√

log (hnan)−1

√
n

 = Op

(√
hn
√

log n√
n

×
(

log n

nhn

)1/4
)
.

Hence overall, we get:

sup |ω (x, y;hn, an) | ≤ Op

(
1

hn
×
√
hn
√

log n√
n

×
(

log n

nhn

)1/4
)

= Op

((
log n

nhn

)3/4
)
.

Q.E.D

Lemma A.7 Under Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(ii)(iii)(iv), we have

F̂−1
n (p+ cn|x)− F−1 (p|x) =

1

fY |X
(
ξp (x) |x

) [p+ cn − F̂−1
n (p|x)

]
+Rn (x)

for any cn = O
(√

logn
nhn

)
, where Rn (x) satisfies: supx∈J |Rn (x) | = Op

((
(nhn)−1 log n

)3/4
)
given

uniform (w.r.t x ∈ J ) second order differentiability of FY |X (y|x) at y = ξp (x).

Proof. Setting an = F̂−1
n (p+ cn|x) − F−1 (p|x), we have the following successive approxima-

tions,

F̂n
(
F−1 (p|x) + an|x

)
− F̂n

(
F−1 (p|x) |x

)
= F̃n

(
F−1 (p|x) + an|x

)
− F̃n

(
F−1 (p|x) |x

)
+ op

(
log n

nhn

)
=

[
F
(
F−1 (p|x) + an|x

)
− F

(
F−1 (p|x) |x

)]
+ ∆n(x) + op

(
log n

nhn

)
= fY |X

(
ξp (x) |x

)
an + ∆n(x) + ∆

′
n(x) + op

(
log n

nhn

)
(A.3)
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where the first equality follows from Lemma A.5, the second from Lemma A.6, and

∆n(x) = F̃n
(
F−1 (p|x) + an|x

)
− F̃n

(
F−1 (p|x) |x

)
−
[
F
(
F−1 (p|x) + an|x

)
− F

(
F−1 (p|x) |x

)]
,

∆
′
n(x) =

[
F
(
F−1 (p|x) + an|x

)
− F

(
F−1 (p|x) |x

)]
− fY |X

(
ξp (x) |x

)
an.

Thus we have supx∈J |∆n(x)| = Op

((
logn
nh

)3/4
)
and supx∈J |∆

′
n(x)| = Op

(
logn
nh

)
given uniform

(w.r.t x ∈ J ) second order differentiability of FY |X (y|x) when y = ξp (x)(without the second

order differentiability supx∈J |∆
′
n(x)| = op

(√
logn
nh

)
, which does not affect the asymptotic validity

of our inference procedure whatsoever. This assumption is merely imposed in accordance with

usual Bahadur Representation, see Theorem 2.5.1 in Serfling, 1980). Overall Op

((
logn
nh

)3/4
)
is

the dominating term. The result follows from noting that the LHS expression in (A.3) becomes[
p+ cn − F̂n

(
F−1 (p|x) |x

)]
. Q.E.D

Proof of Theorem 2.3. The following string of equalities shall be self-explaining:

Pr
[
F−1 (p|x) ≤ F̂−1

n (p+ cnδ (α,K)σnp (K) |x) for all x ∈ J
]

= Pr
[
F−1 (p|x)− F̂−1

n (p|x) ≤ F̂−1
n (p+ cnδ (α,K)σnp (K) |x)− F̂−1

n (p|x) for all x ∈ J
]

= Pr

[
F−1 (p|x)− F̂−1

n (p|x) ≤ 1

fY |X
(
ξp (x) |x

)cnδ (α,K)σnp (K) +Op

((
log n

nh

)3/4
)
for all x ∈ J

]

= Pr

[
F−1 (p|x)− F̃−1

n (p|x) ≤ 1

fY |X
(
ξp (x) |x

)cnδ (α,K)σnp (K) + op

(√
log n

nh

)
for all x ∈ J

]

= Pr

[
(2δ log n)1/2

[
sup
x∈J

fY |X
(
ξp (x) |x

)
σ−1
np (K)

(
F−1 (p|x)− F̃−1

n (p|x)
)
− dn

]
≤ c (α)

]
.

Similarly,

Pr
[
F−1 (p|x) ≥ F̂−1

n (p− cnδ (α,K)σnp (K) |x) for all x ∈ J
]

= Pr

[
(2δ log n)1/2

[
sup
x∈J

fY |X
(
ξp (x) |x

)
σ−1
np (K) (

(
F̃−1
n (p|x)− F−1 (p|x)

)
− dn

]
≤ c (α)

]
.

Hence the result follows from Lemma 2.4. Q.E.D

Proof of Lemma 2.4. The proof follows from Lemma A.3 and Lemma A.7 with cn = 0.

Therefore uniformly over x ∈ J , we have

F̂−1
n (p|x)− F−1 (p|x)

=
1

fY |X
(
ξp (x) |x

) [p− 1

nhn

∑
1{Yi ≤ F−1 (p|x)}K

(
FX(x)− FX(Xi)

hn

)]
+ op

((
log n

nhn

)1/2
)
.

Hence we could apply the strong approximation result in Hardle and Song (2010). For completeness

we give sketch on the successive approximation steps in Appendix C. Q.E.D
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Appendix B. Technical Proofs For Section 3

We first present a lemma used in the proof of Theorem 3.1.

Lemma B.1 Under Assumptions (H), (K), and (PL), the following class of functions indexed by

s = (β, y) is P -Donsker, where β ∈ B ⊂ Rd and y ∈ Y ⊂ R:

Fn.s =

{
fn,s|fn,s = 1{Yi − Z

′
iβ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
: β ∈ B and y ∈ Y

}
.

Proof. We denote fn,s = fs
1√
hn
K
(
FX(x0)−FX(Xi)

hn

)
, with fs = 1{Yi − Z

′
iβ ≤ y}. Define

Fs =
{
fs|fs = 1{Yi − Z

′
iβ ≤ y} : β ∈ B and y ∈ Y

}
. Note that the family of sets Ds = {(Y, Z) :

Y − Z ′β ≤ y, (β, y) ∈ Rd+1} is a VC class with VC dimension V (Ds) bounded up by d + 2 (see

Chapter 2 in Pollard, 1984). Hence fs belongs to VC subgraph class and by Theorem 2.6.7 in Van

der Vaart and Wellner (1996), we could have the following bound for the entropy (w.r.t. Lp (Q)

norm) for any probability measure Q:

logNP (ε,Fs, Q) ≤M (V (Ds) , p) log

(
1

ε

)
for p ∈ (0,∞) ,

where M is a universal finite constant depending only on V (Ds) and p.
Now we are ready to use Theorem 2.11.22 in Van der Vaart and Wellner (1996) to prove that

Fn.s is P -Donsker. We begin by verifying three conditions in (2.11.21).
(i) The envelope function is Fn = 1√

hn
K
(
FX(x0)−FX(Xi)

hn

)
satisfying PF 2

n =
∫
K2 (u) du <∞;

(ii) PF 2
n1{Fn > η

√
n} ≤

∫
K(u)>η

√
nhn

K2 (u) du→ 0,∀η > 0, as n→∞;

(iii) Let ρ (s, t) be the usual Euclidean norm in Rd+1, further denote s = (β, y) and t =
(
β
′
, y
′
)

and the conditional measure as dQ·|X . Then

P (fn,s − fn,t)2 =

∫∫
(fs − ft)2 dQ·|X

1

hn
K2

(
FX(x0)− FX(X)

hn

)
dFX

≤
∫∫

Md

[(
y − y′

)2
+ Z2

1 (β1 − β
′
1)2 + · · ·+ Z2

d(βd − β
′
d)

2

]
dQ·|X

1

hn
K2

(
FX(x0)− FX(X)

hn

)
dFX

≤ M ·R (K) ρ2 (s, t)

where we have used the fact that |fs − ft| ≤ |y − y
′ |+ |Z1(β1 − β

′
1)|+ · · ·+ |Zd(βd − β

′
d)| and Md

is a finite constant depending on d. The last equality follows from assumption (PL) as Z has finite

conditional (on X) second moment. Therefore supρ(s,t)<δn P (fn,s − fn,t)2 → 0 as δn → 0.

When it comes to the L2 (Q) entropy, for any probability measure Q, we have

logNP (ε||K||2,Fn,s, Q) ≤ logNP

(
ε,Fs, Q·|X

)
≤M (V (Ds) , p) log

(
1

ε

)
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by the simple fact that
∫

(fn,s − fn,t)2 dQ =
∫∫

(fs − ft)2 dQ·|X
1
hn
K2
(
FX(x0)−FX(X)

hn

)
dFX .

In sum, the conditions in Theorem 2.11.22 in Van der Vaart and Wellner (1996) is satisfied for

Fn.s. Q.E.D
Proof of Theorem 3.1. Let

Fn,PL (y|x0) =

∑n
i=1 1{Yi − Z

′
iβ0 ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) .

We will complete the proof in two steps:

Step 1. We show that
√
nhn

[
F̂n,PL(·|x0)− F(Y−Z′β0)|X(·|x0)

]
converges weakly to the same

Gaussian process as
√
nhn

[
Fn,PL(·|x0)− F(Y−Z′β0)|X(·|x0)

]
;

Step 2. We show that (F̂−1
n,PL

(
p− zα/2σnp (K) |x0

)
+ z

′
0β̂0, F̂

−1
n,PL

(
p+ zα/2σnp (K) |x0

)
+ z

′
0β̂0]

is an asymptotically valid confidence interval for
[
z
′
0β0 + g(x0)

]
with confidence level 1− α.

Proof of Step 1. As the denominator will converge to 1 in probability as in Stute (1986), it

is suffi cient to show that

1√
nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K

(
Fn(x0)− Fn(Xi)

hn

)
= op (1) . (B.1)

Again taking the second order Taylor expansion, the left hand side of (B.1) becomes:

1√
nhn

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

(
FX(x0)− FX(Xi)

hn

)
+

1√
nhnhn

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

′
(
FX(x0)− FX(Xi)

hn

)
Bn (x0, Xi)

+
1√

nhnh2
n

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

′′
(∆)B2

n (x0, Xi)

= An1 +An2 +An3. (B.2)

Again An3 is the easiest term to handle. It follows from the argument in Lemma 1 in Stute

(1984b) that as the kernel is of bounded support, we can first restrict on considering those Xi’s

s.t. |Fn(x0)−Fn(Xi)| ≤Mhn, for some constant M . By DKW bound, this implies that |FX(x0)−
FX(Xi)| ≤Mhn almost surely. Hence we could apply Lemma B.1 to bound the local oscillation of

the empirical processes.

The third term in (B.2) could be bounded up by

|An3| ≤
(
n

hn
sup

|FX(x0)−FX(Xi)|≤Mhn

B2
n (x0, Xi)

)
2|K ′′ (∆) |
√
nh

3/2
n

= op (1) .

It converges to zero in probability following our assumption on the bandwidth and boundedness of

the second order derivatives of the kernel function.

Similar as the proof of Lemma A.3, we write the rescaled An2 as a U-statistics plus a smaller

order term,

1√
nhn

An2 =
1

h2
n

Un2

[
h(β̂,y) − h(β,y)

]
+Op

(
1

nh2
n

)
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with symmetric kernel function

h(β,y)(·, ·)

=
1

2


[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K
′
(
FX(x)−FX(Xi)

hn

)[ 1{Xj ≤ x0} − FX (x0)
−1{Xj ≤ Xi}+ FX (Xi)

]
+
[
1{Yj − Z

′
j β̂ ≤ y} − 1{Yj − Z

′
jβ0 ≤ y}

]
K
′
(
FX(x)−FX(Xj)

hn

)[ 1{Xi ≤ x0} − FX (x0)
−1{Xi ≤ Xj}+ FX (Xj)

]
 .

Similar as Lemma 3.1 in Ghosal, Sen, and van der Vaart (2000), we first approximate the U-process

Un2 h(β,y) by its projection uniformly for (β, y). We only need to consider one part in the summation

of h(β,y)(·, ·). Define the following classes (F2 only serves as a scaling factor when we fix x = x0,

its entropy would come into play when we consider uniformity issue when x varies across J ),

F1 = {1{Yi − Z
′
iβ0 ≤ y} : (β, y) ∈ Rd+1},

F2 = {K ′
(
FX(x)− FX(Xi)

hn

)
, x ∈ J },

F3 = {[1{Xi ≤ Xj} − FX (Xj)]}.

By Lemma A.1 in Ghosal, Sen, and van der Vaart (2000) and the entropy bound in our Lemma

B.1 for F1, we have: supQ logN
(
ε||K ′ ||2,F1F2F3, L2(Q)

)
≤M log

(
1
ε

)
. Hence it follows that

nE

[
sup
(β,y)
|Un2 h(β,y) − 2Un1 Π1h(β,y)|

]
≤M

∫ 1

0
log

(
1

ε

)
dε = O (1) .

Therefore sup(β,y) |Un2 h(β,y) − 2Un1 Π1h(β,y)| = Op
(

1
n

)
and sup(β,y)

1
h2n
|Un2 h(β,y) − 2Un1 Π1h(β,y)| =

Op

(
1
nh2n

)
= op (1) under Assumption (H).

Now we work with the projection term:

1

h2
n

2Un1

[
Π1h(β̂,y) −Π1h(β,y)

]
=

1

nh2
n

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
K
′
(
FX(x0)− FX(Xi)

hn

)
×

[1{FX (Xj) ≤ FX (x0)} − FX (x0)− 1{FX (Xj) ≤ FX (Xi)}+ FX (Xi)] dFX (Xi)

=
1

nhn

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
×

[1{Uj ≤ u0} − u0 − 1{Uj ≤ Ui}+ Ui] dK

(
u0 − Ui
hn

)
=

1

nhn

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
×

[1{Uj ≤ u0} − u0 − 1{Uj ≤ u0 − vhn}+ u0 − vhn] dK (v)

= Op

(
1√
n

)
op

(
1√
nhn

)
.
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When it comes to An1, we make use of Lemma B.2 which states that the class of functions Fn
below is Donsker:

Fn,s =

{
fn,s|fn,s = 1{Yi − Z

′
iβ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
: β ∈ B and y ∈ Y

}
.

Let

f̂n = 1{Yi − Z
′
i β̂ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
and

f0 = 1{Yi − Z
′
iβ0 ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
.

Because β̂−β0 = op (1) and E
[
(f̂n − f0)2

]
→ 0, by Lemma 19.24 in van der Vaart (1998), we have

Gn(f̂n − f0)→p 0, where Gn denotes the empirical process operator.

An1 = Gn(f̂n − f0) +

√
nE

[(
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

) 1√
hn
K

(
FX(x0)− FX(Xi)

hn

)]
= E

{
E
[√

n[1{Yi − Z
′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

] 1√
hn
K

(
FX(x0)− FX(Xi)

hn

)}
+ oP (1)

= Op (1)E

[
1√
hn
K

(
FX(x0)− FX(Xi)

hn

)]
+ oP (1) = oP (1) ,

where the third equality follows from E
[√

n[1{Yi − Z
′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
= Op (1) as

β̂ − β0 = Op

(
1√
n

)
and we assume E

[
1{Yi − Z

′
iβ ≤ y|Zi}

]
has bounded derivative w.r.t β and the

last equality follows from the fact that E
[

1√
hn
K
(
FX(x0)−FX(Xi)

hn

)]
= O(

√
hn).

Proof of Step 2. It follows from the same proof as that of Theorem 2.1 that

Pr
(
g (x0) ∈ (F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, F̂−1

n,PL

(
p+ zα/2σnp (K) |x0

)
]
)
→ 1− α.

So

Pr
(
z
′
0β0 + g (x0) ∈ (z

′
0β0 + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, z
′
0β0 + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

))
= Pr

(
z
′
0β0 + g (x0) ∈ (z

′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, z
′
0β + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

))
+ o (1)

→ 1− α,

where in the first equality above, we have replaced β0 with its root-n consistent estimator. This is

valid since the length of the interval is of order (nhn)−1/2, wider than n−1/2. Q.E.D

The following lemma is used in the proof of Theorem 3.3.

Lemma B.2 (Stute and Zhu, 2005) Referring to the notation in Section 3.2, given Assumptions

(Z2), (HS) and a root-n consistent estimator β̂ in the single index model, uniformly for any z,

sup
n1/2||β̂−β0||≤M,n1/2−1/γ |Z′i β̂−Z

′
iβ0|≤M

|Fn(z
′
β̂)−Fn(Z

′
i β̂)−F (z

′
β0)+F (Z

′
iβ0)| = Op

(
n−3/4+1/2γ

√
lnn

)
.
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Proof. We refer the readers to Lemma 4.2 and its proof in Stute and Zhu (2005). Q.E.D

Proof of Theorem 3.3. We will prove the result focusing on the estimator without the

denominator, as it would follow along the proof that the denominator converges to 1 in probability.

First we claim that

1√
nhn

[∑n

i=1
1{Yi ≤ y}

(
K

(
Fn(z

′
0β̂)− Fn(Z

′
i β̂)

hn

)
−K

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

))]
= op (1) .

(B.3)

Given (B.3), after normalizing, our conditional empirical process converges to the same Brownian

Bridge as 1√
nhn

∑n
i=1

[
1{Yi ≤ y}K

(
F (z
′
0β0)−F (Z

′
iβ0)

hn

)
− FY |X̃(·|x̃0)

]
does, where x̃0 = z

′
0β0. Going

over the proofs of Theorems 2.1 and 3.1, we have (F̂−1
n,SI

(
p− zα/2σnp (K) |z0

)
, F̂−1

n,SI

(
p+ zα/2σnp (K) |z0

)
]

as the confidence interval for g(x̃0) with asymptotic nominal size 1− α.
Now we show the claim in (B.3). Taking a second order Taylor expansion, we obtain:

1√
nhn

[∑n

i=1
K

(
Fn(z

′
0β̂)− Fn(Z

′
i β̂)

hn

)
−K

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)]

=
1√
nhn

∑n

i=1

1

hn
K
′

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]
+

1√
nhn

∑n

i=1

1

h2
n

K
′′

(∆)
[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]2

Recall Lemma B.3, under our assumptions we have,

sup
n1/2||β̂−β0||≤M,n1/2−1/γ |Z′i β̂−Z

′
iβ0|≤M

|Fn(z
′
0β̂)−Fn(Z

′
i β̂)−F (z

′
0β0)+F (Z

′
iβ0)| = Op

(
n−3/4+1/2γ

√
lnn

)
.

Hence,

1√
nhn

∑n

i=1

∣∣∣∣∣ 1

hn
K
′

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)∣∣∣∣∣ · |Fn(z
′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)|

=
n−1/4+1/2γ

√
lnn√

hn

[
1

nhn

∑n

i=1
|K ′

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)
|
]

= h−1/2
n n−1/4+1/2γ

√
lnnOp (1)

= op (1) ,

where the second equality use the fact that 1
nhn

∑n
i=1

∣∣∣∣K ′ (F (z
′
0β0)−F (Z

′
iβ0)

hn

)∣∣∣∣ = Op (1) by standard

kernel convergence result.

The last equality follows from the assumption of the bandwidth.

1√
nhn

∑n

i=1

1

h2
n

K
′′

(∆)
[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]2

=

(
1

√
nh

5/2
n

n−3/2+1/γ lnn

)
Op (1) = h−5/2

n n−1+1/γ lnn = op (1) .
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Hence the claim is indeed satisfied.

In the above proof, take y = ∞, we also get the desired convergence (to 1 in probability) for
the denominator. Q.E.D

Proofs of Theorems 3.2 and 3.4. We only give a sketch of the changes needed here. It suffi ces

to show that F̂n,PL (y|x) and F̂n,SI (y|z) can be uniformly approximated well by the corresponding
F̃n,PL (y|x) and F̃n,SI (y|z). Then the results would follow after going over Lemmas A.2-A.7. Notice
that the sup-norm convergence rate is in fact slower by a factor of

√
log n, which corresponds to

the compensating factor along these uniform approximations.

Similar to f̂U (x) and f̃U (x) defined earlier, we introduce the following notations:

f̂U ,SI (z) =
1

nhn

∑n

i=1
K

(
Fn(z

′
β̂)− Fn(Z

′
i β̂)

hn

)
and

f̃U ,SI (z) =
1

nhn

∑n

i=1
K

(
F (z

′
β0)− F (Z

′
iβ0)

hn

)
.

For Theorem 3.4, we have:

F̂n,SI (y|z)− F̃n,SI (y|z)

=

1
nhn

∑n
i=1

[
1{Yi ≤ y} − FY |X̃ (y|x̃)

] [
K

(
Fn(z

′
β̂)−Fn(Z

′
i β̂)

hn

)
−K

(
F (z
′
β0)−F (Z

′
iβ0)

hn

)]
f̂U ,SI (z)

+

1

nhn

∑n

i=1

[
1{Yi ≤ y} − FY |X̃ (y|x̃)

]
K

(
F (z

′
β0)− F (Z

′
iβ0)

hn

)(
1

f̂U ,SI (z)
− 1

f̃U ,SI (z)

)

with x̃ = z
′
β0, The proof about switching from Fn(z

′
β̂) to F (z

′
β0) follows directly, since when

we characterize the two smaller terms, the bound in Lemma B.2 holds uniformly in x̃. Also the

denominator converges to 1 with a rate Op
(√

logn
nhn

)
. The rest would be the same.
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For Theorem 3.2, we have:

F̂n,PL (y|x)− F̃n,PL (y|x)

=

1
nhn

∑n
i=1

[
1{Yi − Z

′
i β̂ ≤ y} − FỸ |X (ỹ|x)

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
F (x)−F (Xi)

hn

)]
f̂U (x)

+

1

nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − FỸ |X (ỹ|x)

]
K

(
F (x)− F (Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)

=

1
nhn

∑n
i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
F (x)−F (Xi)

hn

)]
f̂U (x)

+

1
nhn

∑n
i=1

[
1{Yi − Z

′
iβ0 ≤ y} − FỸ |X (ỹ|x)

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
F (x)−F (Xi)

hn

)]
f̂U (x)

+
1

nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K

(
F (x)− F (Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)

+
1

nhn

∑n

i=1

[
1{Yi − Z

′
iβ0 ≤ y} − FỸ |X (ỹ|x)

]
K

(
F (x)− F (Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)
= Pn1 + Pn2 + Pn3 + Pn4

where ỹ = y − z′β0. The terms Pn2 and Pn4 could be dealt with just as in the univariate nonpara-

metric case.

When it comes to Pn1 and Pn3, the only change occurs at the first order Taylor expansion term

where the approximation of the U-statistics by the Hajek projection holds uniformly in x, i.e., we

need to incorporate the class F2 = {K ′
(
FX(x)−FX(Xi)

hn

)
, x ∈ J } indexed by x now. As K ′′ exists

and is bounded, hence K
′
has bounded variation, the conclusion in Ghosal, Sen, and van der Vaart

(2000) still holds. For the Fn.s introduced in Lemma B.1, the additional index x could be handled
as in Einmahl and Mason (2005) once we incorporate the additional factor

√
log n. Q.E.D

8 Appendix C. Strong Approximation Results

The strong approximation used in this paper follows from Hardle and Song (2010) upon changing

X to FX (X) and removing the X’s density fX (·). For completeness we sketch the successive
approximation steps according to our notation, and refer the readers to Hardle and Song (2010)

for a detailed proof.

Recall our conditional quantile estimator admits the following linear representation uniformly

over x ∈ J , after replacing Fn (·) with FX (·) inside the kernel function and applying Bahadur
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representation:

F̂−1
n (p|x)− F−1 (p|x)

=
1

fY |X
(
ξp (x) |x

)
 1

nhn

∑n
i=1

[
p− 1{Yi ≤ ξp (x)}

]
K
(
FX(x)−FX(Xi)

hn

)
−

E
[
p− 1{Yi ≤ ξp (x)}

]
1
hn
K
(
FX(x)−FX(Xi)

hn

) + op

(√
log n

nhn

)
.

Define the dominating linear term times
√

nhn
p(1−p) as Yn (u), with u = FX(x). Also let T (v, y) =[

FU |y (v|y) , FY (y)
]
be the Rosenblatt transformation and ψ (s) = p− 1{s ≤ 0}. Now we have the

following successive approximating processes:

Y0,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dZn (v, y) ,

Y1,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dBn [T (v, y)] ,

Y2,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dWn [T (v, y)] ,

Y3,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (v)

))
dWn [T (v, y)] ,

Y4,n (u) =

√
p(1− p)√
hng (u)

∫
K

(
u− v
hn

)
dW (v) ,

Y5,n (u) =
1√
hn

∫
K

(
u− v
hn

)
dW (v) ,

where Γn = {|y| ≤ an} and g (u) = E
[
ψ
(
y − ξp

(
F−1
X (u)

))
× 1{|y| ≤ an}|U = u

]
. Zn (·, ·) denotes

bivariate empirical processes, {Bn} being a sequence of Brownian bridges, {Wn} being a sequence
of Wiener processes and W (·) being the Wiener process.

The proof goes by approximating the linear term by Y0,n (u) up to Y3,n (u), confirming Y3,n (u)

and Y4,n (u) having the same distribution, and finally approximating Y4,n (u) by Y5,n (u). The lim-

iting distribution and normalizing and centering sequences are from Bickel and Rosenblatt (1973).

Claeskens and Van Keilegom (2003) obtain similar strong approximation result in local likelihood

models without truncating the range of Y , however their results rely on stronger differentiability

assumption on the sample objective function which is not directly applicable in our context.
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Table 1: Coverage Rate in Nonparametric Models (n = 200)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9674 0.9514 0.9358 0.9834 0.9894 0.9846 0.9692 0.9316 0.9556
Asy CI 0.9832 0.9546 0.9350 0.9884 0.9918 0.9552 0.9738 0.9380 0.9398
New NW 0.9232 0.9630 0.9386 0.9434 0.9498 0.9678 0.9598 0.9632 0.9074
New CI 0.9372 0.9656 0.9678 0.9508 0.9558 0.9566 0.9682 0.9654 0.9436
Boot Nm 0.8824 0.8670 0.8586 0.8938 0.8844 0.884 0.8602 0.856 0.879
Boot Perc 0.9584 0.9466 0.9320 0.9096 0.9600 0.8968 0.8586 0.931 0.9584

Model-2 Linear Hetero
Asy NW 0.9556 0.9424 0.9068 0.9650 0.9532 0.9254 0.9550 0.9294 0.8920
Asy CI 0.9610 0.9452 0.8918 0.9756 0.9582 0.9084 0.9532 0.9382 0.8850
New NW 0.9518 0.9550 0.9606 0.9546 0.9566 0.9554 0.9594 0.9584 0.9568
New CI 0.9534 0.9582 0.9358 0.9566 0.9582 0.9454 0.9646 0.9598 0.9524
Boot Nm 0.8952 0.9066 0.8958 0.8964 0.9026 0.8988 0.8884 0.8860 0.8808
Boot Perc 0.9552 0.9576 0.9532 0.9534 0.9552 0.9486 0.9390 0.9456 0.9246

Table 2: Coverage Rate in Nonparametric Models (n = 500)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9664 0.9440 0.9430 0.9870 0.9780 0.9890 0.9830 0.9432 0.9536
Asy CI 0.9814 0.9516 0.9474 0.9892 0.9808 0.9646 0.9836 0.9466 0.9402
New NW 0.9382 0.9580 0.9634 0.9492 0.9546 0.9422 0.9584 0.9570 0.9598
New CI 0.9548 0.9570 0.9594 0.9580 0.9584 0.9582 0.9608 0.9626 0.9526
Boot Nm 0.8944 0.8944 0.8810 0.9030 0.8986 0.8908 0.8940 0.8986 0.8998
Boot Perc 0.9626 0.9532 0.9418 0.9608 0.9660 0.9544 0.9322 0.9534 0.9618

Model-2 Linear Hetero
Asy NW 0.9514 0.9476 0.9278 0.9642 0.9540 0.9486 0.9606 0.9460 0.9170
Asy CI 0.9544 0.9462 0.9148 0.9672 0.9612 0.9362 0.9574 0.9452 0.9090
New NW 0.9396 0.9420 0.9542 0.9546 0.9484 0.9610 0.9520 0.9584 0.9652
New CI 0.9528 0.9558 0.9428 0.9568 0.9586 0.9532 0.9538 0.9610 0.9522
Boot Nm 0.907 0.9136 0.903 0.9086 0.9158 0.8986 0.9088 0.9086 0, 8998
Boot Perc 0.953 0.9556 0.943 0.9568 0.9612 0.9446 0.9506 0.9562 0.9336
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Table 3: Coverage Rate in Nonparametric Models (n = 1000)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9602 0.9494 0.9508 0.9896 0.9704 0.9832 0.9864 0.9536 0.9574
Asy CI 0.9714 0.9518 0.9572 0.9910 0.9748 0.9700 0.9838 0.9536 0.9554
New NW 0.9512 0.9598 0.9634 0.9512 0.9570 0.9474 0.9578 0.9560 0.9598
New CI 0.9540 0.9618 0.9612 0.9538 0.9582 0.9620 0.9632 0.9600 0.9554
Boot Nm 0.9092 0.8894 0.8916 0.9068 0.9140 0.9052 0.9000 0.9066 0.9094
Boot Perc 0.9614 0.9554 0.9480 0.9566 0.9614 0.9596 0.9444 0.9572 0.9628

Model-2 Linear Hetero
Asy NW 0.9602 0.9518 0.9302 0.9522 0.9642 0.9540 0.9622 0.9526 0.9398
Asy CI 0.9642 0.9552 0.9254 0.9572 0.9672 0.9612 0.9602 0.9554 0.9280
New NW 0.9526 0.9504 0.9602 0.9602 0.9586 0.9630 0.9586 0.9572 0.9606
New CI 0.9548 0.9516 0.9460 0.9604 0.9602 0.9518 0.9600 0.9616 0.9488
Boot Nm 0.9186 0.9170 0.9025 0.9146 0.9178 0.9098 0.9138 0.9166 0.9004
Boot Perc 0.9633 0.9546 0.9418 0.9576 0.9560 0.9488 0.9516 0.9538 0.9434

Table 4: Coverage Rate in Nonparametric Models (n = 1000, One Bandwidth)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.7858 0.7488 0.5634 0.8000 0.7748 0.5906 0.7852 0.7464 0.5560
Asy CI 0.7728 0.7470 0.6980 0.7894 0.7778 0.7260 0.7772 0.7484 0.7084
New NW 0.9522 0.9626 0.9672 0.9518 0.9598 0.9572 0.9582 0.9594 0.9672
New CI 0.9540 0.9618 0.9612 0.9538 0.9582 0.9620 0.9632 0.9600 0.9554

Model-2 Linear Hetero
Asy NW 0.9522 0.9416 0.9162 0.9518 0.9442 0.9264 0.9518 0.9408 0.9116
Asy CI 0.9508 0.9414 0.9204 0.9570 0.9480 0.9234 0.9472 0.9448 0.9140
New NW 0.9516 0.9502 0.9610 0.9612 0.9586 0.9644 0.9588 0.9578 0.9602
New CI 0.9548 0.9516 0.9460 0.9604 0.9602 0.9518 0.9600 0.9616 0.9488

Table 5: Coverage Rate in Partial Linear Model (n = 500)
Q-Level p = 0.25 p = 0.5 p = 0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.9180 0.9334 0.9172 0.9278 0.9384 0.9272 0.9164 0.9288 0.9196
Asy CI 0.9192 0.9320 0.9224 0.9262 0.9422 0.9276 0.9152 0.9286 0.9174
New NW 0.9486 0.9612 0.9482 0.9506 0.9582 0.9512 0.9502 0.9568 0.9462
New CI 0.9482 0.9600 0.9460 0.9502 0.9558 0.9506 0.9510 0.9560 0.9494
Boot Nm 0.9370 0.9448 0.9484 0.9366 0.9490 0.9478 0.9290 0.9486 0.9412
Boot Perc 0.9822 0.9800 0.9708 0.9816 0.9796 0.9714 0.9804 0.9798 0.9712
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Table 6: Coverage Rate in Partial Linear Model (n = 1000)
Q-Level p = 0.25 p = 0.5 p=0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.9278 0.9382 0.9282 0.9324 0.9410 0.9382 0.9274 0.9374 0.9290
Asy CI 0.9262 0.9414 0.9284 0.9328 0.9434 0.9368 0.9282 0.9344 0.9302
New NW 0.9536 0.9530 0.9564 0.9502 0.9604 0.9514 0.9484 0.9598 0.9482
New CI 0.9496 0.9532 0.9534 0.9506 0.9566 0.9492 0.9512 0.9570 0.9462
Boot Nm 0.9394 0.9536 0.947 0.9418 0.954 0.9470 0.9410 0.9506 0.9464
Boot Perc 0.9800 0.9782 0.972 0.9762 0.978 0.9722 0.9766 0.9778 0.9716

Table 7: Coverage Rate in Partial Linear Model (n = 1000, One Bandwidth)
Q-Level p = 0.25 p = 0.5 p = 0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.7972 0.8040 0.7946 0.8142 0.8266 0.8168 0.7982 0.8068 0.7962
Asy CI 0.8060 0.8014 0.7940 0.8164 0.8276 0.8168 0.8002 0.8096 0.7980
New NW 0.9526 0.9534 0.9562 0.9512 0.9598 0.9524 0.9498 0.9594 0.9470
New CI 0.9496 0.9532 0.9534 0.9506 0.9566 0.9492 0.9512 0.9570 0.9462
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