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To understand the regulatory dynamics of transcription factors (TFs) and their interplay with

other cellular components we have integrated transcriptional, protein–protein and the allosteric or

equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To

study this integrated network we computed a set of network measurements followed by principal

component analysis (PCA), investigated the correlations between network structure and dynamics,

and carried out a procedure for motif detection. In particular, we show that outliers identified in

the integrated network based on their network properties correspond to previously characterized

global transcriptional regulators. Furthermore, outliers are highly and widely expressed across

conditions, thus supporting their global nature in controlling many genes in the cell. Motifs

revealed that TFs not only interact physically with each other but also obtain feedback from

signals delivered by signaling proteins supporting the extensive cross-talk between different types

of networks. Our analysis can lead to the development of a general framework for detecting and

understanding global regulatory factors in regulatory networks and reinforces the importance of

integrating multiple types of interactions in underpinning the interrelationships between them.

1 Introduction

The field of complex networks provides robust tools that

researchers in biology can use to represent, characterize and

model several problems of interest.1,2 This is possible since the

mathematical concept of graph can be employed whenever a

group of interrelated discrete entities are present. In the

context of a cell, many different processes such as those driven

by metabolic pathways, protein–protein and transcriptional

regulatory interactions can be represented as networks.3–5

However, while the majority of the studies in this area use

these networks in an isolated manner, a more comprehensive

understanding of the cell requires an integration of different

types of cellular interactions – one of the goals of systems

biology. Although developments have been made in this

direction,6–11 most studies are limited to understanding parti-

cular sub-systems.

One of the fundamental processes even in a simple uni-

cellular biological system such as bacteria is the process of

transcriptional regulation. Recent years have seen abundant

information accumulating for transcriptional regulation,

which has enabled us to model the resulting interactions as a

network of transcriptional interactions in bacteria such as

Escherichia coli and Bacillus subtilis.12–14 While a number of

studies have understood these transcriptional networks, most

of them have been limited to modeling them as transcription

factors (TFs) controlling a set of target genes (TGs).5,15–18 An

additional limitation to the current studies is the employment

of only a small set of relatively simple network measurements

(e.g. degree distribution and clustering coefficient) in a

mutually exclusive manner, to understand the local properties

of a node.19–21 Consequently, questions have been raised on

the generality of the trends.15 Also of relevance in this context

is the link between the structure and dynamics of a network

which is most often neglected when studying global properties.

Understanding this link becomes important as is demonstrated

in the case of network synchronization in cortical network

analyses.22,23 Another area of complex networks which is

extensively explored is the very organization of biological

networks into modules and motifs, following the notion that

cellular processes are modular in nature.24 This has given

rise to recurring subgraphs or patterns (motifs) which can

perform independent functions. For instance, motifs have
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been investigated in transcription regulatory networks5 and

protein–protein interaction networks.25

In this study, we take an integrated approach to study

feedback mechanisms in the transcriptional network of a

bacterium by incorporating the different aspects discussed

above – namely (i) integration of different kinds of networks,

(ii) use of more sophisticated network measurements, (iii)

understanding the structure–dynamics link and (iv) network

motif discovery. We constructed a unified network formed

by transcriptional regulatory interactions,12 metabolic and

signaling feedback26 and protein–protein interactions21,27 in

the bacterium E. coli. The transcriptional regulatory network

was taken as the base network to which new edges defined by

the metabolic and protein interactions were added, resulting in

what we call an integrated network. We first analyzed the

structural organization of the integrated network as well as of

the three individual networks considered, which is done by

using traditional network measurements, such as degree,

clustering coefficient and length of shortest path, as well as

more sophisticated metrics such as hierarchical measure-

ments.28 This approach allowed a global characterization of

the structural properties of these networks, i.e. it provided

parameters to assess their overall organization. In order to

complement the characterization of the integrated network we

identified nodes having structural properties deviating from

the rest of the network. These structural outliers form a group

of uncommon nodes that can then be analyzed according to

their biological function. To identify them, we calculated a set

of measurements for each node, including local (degree and

clustering coefficient) and non-local (betweenness centrality,

shortest paths and hierarchically-based) features, which were

taken as input to principal component analysis.29 Further-

more, the integrated network was investigated with respect to

dynamics (diffusion). More specifically, we used the random

walk model30 to simulate the interaction between genes in

terms of the relative frequency of node activation (called here

activity). With the purpose of investigating how the structure is

related to the activation dynamics we evaluated the correlation

between in-/out-degrees and activity, thus allowing the

identification of dynamical outliers: a group of uncommon

genes that are weakly activated even though they control many

other genes. Our analysis revealed that outliers identified in the

integrated network are global regulators in the transcriptional

regulatory network. In addition, we show that outliers are also

significantly highly and widely expressed across conditions

therefore supporting their deviation from the general trend

at the network level. Finally, we identified motifs of sizes up to

four in the integrated network and performed a detailed

analysis of the origins of 3-node motifs, i.e. we investigated

how each of the underlying feedback mechanisms contributed

to the formation of these motifs in the integrated network.

This motif analysis allowed us to show that there is a dense

cross-talk between transcriptional regulation and protein–

protein interactions in the cell.

2 Methods

In this work we first generated an integrated network formed

by transcriptional, protein–protein and metabolic feedback

interactions and then focused on understanding this network

from both structural and dynamical perspectives. The first step

involved the construction of the network, where we integrated

the three aforementioned types of biological interactions. The

second step involved a structural outlier investigation that

employs a set of network measurements and principal compo-

nent analysis. The third step involved understanding the link

between structure and function of TFs by relating diffusion

activity to structural network measurements (namely, in- and

out-degrees). The last step comprised the identification of motifs

to analyze particularly relevant subgraph patterns in the inte-

grated network. We describe each of these steps in detail in the

following sections and depict them as flow charts in Fig. 1–4.

2.1 Data integration

We have employed a transcriptional regulatory network

(TRN) as the basis for the integrated network developed in

this work (Fig. 1). The TRN has directed edges, encoding

transcription factors (TFs) regulating protein coding genes in

E. coli, and has been obtained from the RegulonDB database.12

Note that by definition some genes, which do not encode for

TFs, do not regulate other genes in such a network and are

called target genes (TGs); in contrast, genes regulating other

genes are called transcription factors (TFs). For TFs which

work as heteromeric dimers we have considered the regulation

by both the subunits to simplify the simulations. This network

has N = 1521 nodes (1352 TGs, 169 TFs) and average in- and

out-degrees hkini= hkouti= 2.32. In- and out-degrees are the

number of in- and out-going connections of a node, respec-

tively. Notice that the averages of these measurements are

always equal for any directed network.

The TRN was then complemented with edges derived from

a metabolic and signaling feedback network (MSFN) of E. coli

published earlier.26 This is another directed network, with

N = 437 nodes and average in- and out-degrees hkini =

hkouti= 0.91. It is essentially comprised of signal genes which

have the ability to produce cellular signals (either metabolites

Fig. 1 Flow chart describing integration of the different types of

networks (TRN, MSFN, PPIN) to generate the final network used in

this study.
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transported from the exterior of the cell or produced within

the cell or metabolites that have the ability to phosphorylate a

response regulator) and hence are responsible for modulating

the activity of the TFs. Signal genes as defined in this study are

enzymes, transporters or histidine kinases which are respon-

sible for producing these signals. Only interactions between

nodes already present in the TRN were taken into account in

the process of network integration. Therefore, 240 edges from

the MSFN were included into the TRN. We then added the

protein–protein interaction network (PPIN) of E. coli

obtained from a recent large-scale experimental screen, having

N = 1930 and hki = 10.07.27 This is the only undirected

structure considered here. Therefore there is no differentiation

between in- and out-degrees in this case. In order to make this

network directed and therefore to properly merge it with our

directed integrated network we took each undirected edge as a

symmetric pair of directed ones (Fig. 1). As earlier, only the

nodes already present in the TRN were considered when

looking for edges in the PPIN. As a result, 2620 PPIN directed

edges (or 1310 undirected) were incorporated into the inte-

grated network.

The whole integrated network (TRN + MSFN + PPIN)

has N = 1521 nodes and average in- and out-degrees hkini =
hkouti= 4.20. Since traditional simple random walks require a

network to be connected (see Section 2.3), we used the largest

strongly connected component of the integrated network in

our simulation experiments. This restriction was applied to

other analyses as well (such as for structural outlier identifi-

cation) to make the object of study uniform throughout

experiments and also to allow proper comparisons between

different analysis approaches. Furthermore, since other com-

ponents are too small (at most with three nodes where 97% of

them have only one node) the integrated network is heavily

fragmented outside the largest component. This network may

be complemented in the future when more data becomes

available, possibly allowing the growth of the largest compo-

nent. Henceforth, when we refer to the integrated network we

mean its largest component. This final integrated network has

average in- and out-degrees hkini = hkouti = 6.67 and N =

635 nodes, of which 525 are TGs and 110 are TFs.

2.2 Structural outlier analysis

When investigating the properties of the integrated network

we looked for nodes having structural properties deviating

from the rest of the network (i.e. structural outliers). The

properties of each node are represented in this study by a

feature vector composed of F structural measurements.

Principal component analysis (PCA),31 a multivariate method,

was chosen to analyze this F-dimensional space (in this work

F = 12, see Section 3.2). PCA is a common statistical

technique that performs a dimensionality reduction through

linear combinations that project the original vectors into a new

space (see the complete procedure in the ESIw). Since the first
dimensions of the projected vectors preserve most of the

information (in terms of data dispersion), we only used the

two first dimensions of the projected vectors to visually

identify outliers, a method later justified by a detailed analysis

of the properties of outliers. Since PCA maximizes data

dispersion along its first dimensions and completely removes

the correlations (redundancy) between features, we are able to

detect outliers using fewer dimensions. Fig. 2 illustrates the

whole process of structural outlier detection by combining

the computation of structural node measurements and PCA.

The measurements are: in- and out-degrees, hierarchical in- and

out-degrees, in- and out-clustering coefficients, hierarchical

in- and out-clustering coefficients, length of shortest path and

betweenness centrality. The ESIw contains further details

regarding these measurements.

2.3 Structure–dynamics analysis

The method presented in this section concerns the relationship

between a dynamical property and structural measurements.

The dynamics occurring on a given node is represented by the

frequency of visits of a simple random walker and the struc-

tural properties correspond to the in- and out-degrees (see the

flow chart in Fig. 3). It is important to bear in mind that such

random walk dynamics is intrinsically related to diffusion of

activations in the network. In other words, the diffusion

corresponds to the average of visits to nodes performed by

moving agents along a large number of random walk simula-

tions. Therefore, we are interested in relating the diffusion of

activations in the network, as modeled by random walks, and

the intrinsic properties of nodes. For instance, it is interesting

to check if nodes with many connections are more frequently

activated or not.32,33 Formal definitions of random walk and

activity can be seen in the ESI.w
We are interested in analyzing the relationships between

in- or out-degrees and diffusion of activity (Fig. S1, ESIw). If
the structure is well correlated with dynamics, one of these can

be obtained from the other with fairly good precision, allowing

the prediction of dynamics from structural measurements.

Fig. 2 Flow chart showing the structural outlier detection. Briefly

this involved the computation of vectors composed of structural

measurements for each node in the integrated network, which were

further projected into two dimensions by using PCA.
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In fact, perfect correlation always occurs in undirected net-

works, where the activities can be exactly calculated by

knowing only the degrees (see Fig. S1A and C, ESIw for

example).33 In the case of directed networks, perfect correla-

tion is implied when the in-degree is equal to the out-degree for

every node.33 Otherwise, in- and out-degrees tend to be

uncorrelated or poorly correlated with activity (see Fig. S1B,

D and E, ESIw). We use the Pearson correlation coefficient r in

order to assess the strength of linear correlation,34 where

strong correlations have |r| - 1 and weak correlations result

in |r| - 0. The sign of r indicates whether the correlation is

positive or negative. In addition to the Pearson coefficient, we

also generated the respective scatter-plots in order to provide a

complementary means through which weak or medium corre-

lations can be analyzed (as in the examples of Fig. S1, ESIw).
In this manner, nodes deviating from the main correlation line

can be understood as dynamical outliers, thus complementing

the structural outlier analysis (Section 2.2).

2.4 Motif analysis

In order to identify connectivity patterns occurring more often

than expected by chance in the integrated network we com-

puted motifs of sizes up to four using the motif detection tool

mfinder35 (Fig. 4). Full enumeration of subgraphs was chosen

as the motif detection method with 100 random network

realizations for comparisons.36 For a given motif its number

of occurrences Mint in the integrated network was counted, as

well as the average number of occurrences mrand in the randomized

counterparts (plus the respective standard deviation srand).
The Z-score of a motif, given by (Mint � mrand)/srand, was used
as the main quantifier of motif relevance where only motifs

with Z-score > 2 were considered. Other parameters were

also used to select relevant motifs: M-factor > 1.1 and

uniqueness Z 4, which define, respectively, the minimum

fraction Mint/mrand and the minimum number of motif occur-

rences with different sets of nodes. Besides depicting the general

procedure for motif detection, Fig. 4 also illustrates some

examples of relevant motifs found in the integrated network.

3 Results

3.1 Analysis of the integrated network

Table S1 (ESIw) presents the averages and standard deviations

of the structural measurements calculated for networks TRN,

MSFN and PPIN. The measurements are: in- and out-degrees

(kin and kout), hierarchical in- and out-degrees at levels 2 and 3

(k2in, k
3
out, k

3
in and k3out), in- and out-clustering coefficients (ccin

and ccout), hierarchical in- and out-clustering coefficients at

level 2 (cc2in and cc2out), length of shortest paths (C) and

betweenness centrality (bc) – see the ESIw for definitions.

Not surprisingly, the MSFN is the sparsest structure, highly

disconnected, with very low degrees and null hierarchical

measurements due to the nature of the low-throughput manu-

ally curated dataset.26 On the other hand, the PPIN is the

densest network with second and third hierarchies well con-

nected. Nevertheless, shortest paths tend to be longer and

centrality values tend to be lower in this network. The TRN

has even longer paths, with very low betweenness scores. It is

moderately connected along its hierarchies with out-going

hierarchies being more sparsely interconnected (see the smaller

out-clustering coefficients). Table 1 shows the same measure-

ments computed for the entire integrated network and its

largest strongly connected component. Nearly 42% of all nodes

were included in the largest component, while 97% of the other

components are composed of a single node (the few remaining

components have two or three nodes – results not shown).

Fig. 3 Flow chart showing the analysis performed to assess structure-

dynamics correlations and dynamical outliers. In- and out-degrees

correspond to the structure, and the steady-state frequency of visits of

a simple random walker represents the dynamics (called activity here).

Fig. 4 Motif discovery in the integrated network using the software

tool mfinder. Motifs with high Z-score found in the integrated network

are included as examples.
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These numbers indicate that the integrated network is formed

by a big component plus a variety of disconnected nodes. This

observation is also corroborated by other measurements:

degrees at all levels and betweenness centrality are greater

for the largest component than in the whole integrated

network, while shortest paths are smaller at the largest com-

ponent. Table 1 also shows how each individual network

(TRN, MSFN and PPIN) contributed to the integrated

network connectivity. One can notice that almost all MSFN

and PPIN edges are preserved in the largest component of the

integrated network, whereas more than a half TRN edges are

excluded. This fact shows (i) the importance of MSFN and

PPIN edges in forming the largest component (i.e. intercon-

necting a considerable share of nodes) and also that (ii) outside

the largest component (i.e. inside the fragmented portion)

almost only TRN edges remain. The later observation indeed

supports the notion that there are several peripheral regula-

tory modules disconnected from the core regulatory network

of E. coli, either due to the incompleteness of the network or

due to their distinct biological roles in contrast to the central

metabolism, as has been noted previously.37

3.2 Structural and dynamical outliers of the integrated

network are composed of global transcriptional regulators

PCA was carried out using feature vectors composed of F =

12 structural measurements: kin, kout, k
2
in, k

2
out, k

3
in, k

3
out, ccin,

ccout, cc
2
in, cc

2
out, C and bc, each one calculated individually for

every node of the integrated network (only largest component,

as explained before). The ESIw contains the specific values of

these measurements for each node. Measurements were

projected into two-dimensions using PCA, therefore largely

preserving the original variation between vectors (89% of total

variation) and also making measurements uncorrelated.

Fig. 5A shows the projection of all network nodes considering

the two first components of PCA. By visually inspecting this

plot, we are able to find outliers in the upper part of the figure

(gray area in Fig. 5A), i.e. nodes whose structure deviates

from what is commonly found in the integrated network.

This outlier selection is later justified through a detailed

analysis of their network properties – see the remainder of

this paragraph. Seven of these structural outliers, highlighted

in Fig. 5A (crp, fnr, ihfA, ihfB, fis, arcA and hns) are also

dynamical outliers (see gray area in Fig. 5C). Note that some

structural outliers such as rplC, expB and rplV (they are

positioned inside the gray area in Fig. 5A – labels not shown)

were not detected as dynamical outliers in Fig. 5C. It is worth

noting that each of the highlighted TFs has been described as a

global regulator in the transcriptional network of E. coli by at

least one of the previously published studies.15,37,38 This

observation suggests that dynamical outliers (which are also

identified as structural outliers) are very likely to be global

transcription factors. Many distinct features distinguish these

factors from the rest of the integrated network: (i) all the

factors have a much higher out-degree than in-degree, i.e.

there are many more edges leaving these nodes than coming to

them, mostly because of their unusually high out-degree; (ii)

their second hierarchical level also presents an unusually high

number of out-links (i.e. high k2out) and (iii) C is smaller for

these nodes than for other nodes, i.e. these outliers can reach

Table 1 Structural measurements (average and standard deviations)
calculated for the integrated network TRN + MSFN+ PPIN and its
largest strongly connected component

TRN + MSFN + PPIN
TRN + MSFN + PPIN
(largest component)

N 1521 635
TRN edges 3529 1428
MSFN edges 240 205
PPIN edges 2620 2600
kin 4.20 � 6.05 6.67 � 8.45
kout 4.20 � 19.36 6.67 � 15.31
k2in 51.52 � 92.23 98.98 � 125.28

k2out 51.52 � 147.95 98.98 � 152.01

k3in 298.18 � 250.22 424.51 � 237.06

k3out 257.49 � 467.90 415.73 � 321.56

ccin 0.14 � 0.18 0.16 � 0.18
ccout 0.04 � 0.16 0.10 � 0.22
cc2in 0.10 � 0.13 0.09 � 0.08

cc2out 0.02 � 0.06 0.06 � 0.09

C 910.54 � 680.72 3.89 � 0.84
bc 8.68 � 10�4 � 4.05 � 10�3 4.57 � 10�3 � 1.36 � 10�2

Fig. 5 Structural and dynamical outlier analysis. (A) PCA of the

integrated network. Percentage of data variance is 77% in the first axis

and 12% in the second. Points falling under the gray area are

structural outliers, whereas highlighted points are both structural

and dynamical outliers. (B) Correlations in-degree vs. activity and

(C) out-degree vs. activity in the integrated network with dynamical

outliers shown under the gray area.Pu
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other nodes by taking only a few steps. Furthermore, we found

that outliers can be divided into two groups: (i) crp, ihfA, ihfB,

fis and hns, which present very high betweenness centrality,

that is, these nodes take part in a considerable share of

shortest paths occurring in the network; and (ii) fnr and arcA,

with uncommonly small k2in, indicating that their in-going

connectivity does not grow as expected when considering a

higher hierarchical level. Interestingly, the former is a set of

global regulators identified by all of the previous global net-

work analysis surveys.15,37,38 The latter group is formed by

TFs specific to oxygen limitation and/or anaerobic condition

that have been found to be more conditionally specific.39,40

These observations suggest that the structural and dynamical

outlier approach presented here can predict global regulators in a

given integrated transcriptional network. In particular, we were

able to isolate conditionally specific global regulators, a feature

which none of the previous methods have been able to achieve.

Dynamical outliers were found in the out-degree vs. activity

scatter-plot (Fig. 5C). They are nodes which have high out-

degree and low activity, therefore departing from the more

general correlation occurring among the remaining nodes.

Notice that the Pearson correlation coefficient for Fig. 5C is

r = 0.52. When outliers are removed from the scatter-plot the

coefficient increases to r=0.89, thus corroborating the outlier

tendency of departing from the more general linear relation-

ship between out-degree and activity. In biological terms, the

activity can be understood as the rate at which each gene is

regulated, where the regulatory interactions occur randomly

over a known network of possible interactions (i.e. simple

random walk model). Therefore, these outliers not only have

structural features different from the remaining nodes

(Fig. 5A) but also present a very odd behavior concerning

structure–dynamics correlation. At this point we speculate the

main reason for structural outliers being also dynamical out-

liers: they only receive a few edges at the first hierarchy (and

second in some cases) despite being important regulators (i.e.

with high out-degree) and very close to other nodes (i.e. with

small paths). Another interesting fact is that many outliers

have high betweenness centralities (see the previous paragraph),

which means that a great portion of all possible shortest paths

includes these nodes. Even being central nodes they fail to be

highly active nodes, probably because of their degree imbalance.

Finally, in-degree and activity (Fig. 5B) are highly correlated,

with Pearson r = 0.97, therefore presenting no outliers. This

also means that in the integrated network the activity of a

node can be predicted with a very high confidence while taking

only its in-degree into account. On the other hand, outliers in

the activity versus out-degree plot aid in the identification of

global regulators.

3.3 Structural and dynamical outliers in the integrated

network are both highly and widely expressed across different

experimental conditions

Further analysis of the seven selected outliers (i.e. those being

simultaneously structural and dynamical outliers) was con-

ducted using data related to the intensity of gene expression in

E. coli across 302 different conditions available from the M3D

database.41 This procedure allowed us to evaluate outliers not

only according to network parameters, but also with respect to

their expression context in response to perturbations. In

particular we asked whether network outliers are also expres-

sion outliers. In order to do so, we summed up normalized

expression intensities for each gene considering all expression

conditions from the publicly available gene expression atlas

and separated results into outliers and non-outliers. The box

plot of Fig. 6A shows that outliers are more expressed than

most non-outliers (p-value o 10�7, Wilcoxon rank sum test).

This result builds a strong link between uncommon network

features (both structural and dynamical) and expression

intensities, therefore supporting a previous observation indi-

cating that the degree of a TF and its expression level are

correlated.17 We also filtered the expression intensity data by

defining a threshold above which a given gene expression is

present or absent. The threshold is equal to the average expres-

sion intensity considering all genes under a given condition.

Notice that, though there is one threshold for each condition,

we refer to them in the singular for the sake of simplicity. Fig. 6B

shows the corresponding boxplot, from which we can observe

that the outliers are still more expressed than non-outliers

(p-valueB 0.05, Wilcoxon rank sum test), although with a larger

dispersion (see coefficients of variation in the legend of Fig. 6).

This expression variance possibly indicates the presence of global

regulators which are specific to a handful of conditions. These

findings show that the outliers, besides being structurally and

dynamically distinct from the other nodes, also correspond to

genes with different expression characteristics.

3.4 Integrated network is abundant in novel motif structures

which indicate a dense cross-talk between transcriptional

regulation and protein complexes

To complement the outlier and expression analyses, we carried

out a motif detection procedure on the integrated network – full

Fig. 6 Box plots of gene expression considering structural and

dynamical outliers and the remaining genes, identified here by ‘‘non-

outliers’’. (A) refers to the raw expression data, while (B) results from

thresholding the gene expression data using the average expression.

The ESIw contains the expression intensities used to generate these box

plots. Coefficients of variation are: (A) 0.07 for outliers and 0.14 for

non-outliers; (B) 0.21 for outliers and 0.15 for non-outliers.
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motif statistics were included in the ESI.w While outliers are

nodes having unusual features, motifs are well-defined inter-

connected groups of nodes that occur in a network more than

expected by chance. Results for 2-node motifs indicated that

symmetric links between pairs of nodes frequently occur in the

integrated network (with a Z-score = 147.72) because of the

inclusion of many symmetric links from the PPIN (see Table 1).

Relevant 3-node motifs are depicted in Fig. 7A along with

their Z-scores – ESIw also contains the complete list of 3-node

motifs. The feed-forward motif36 appears with Z-score = 2.61

(motif III) and two other motifs with higher Z-scores also

occur (notice that these two motifs are in fact the feed-forward

with one additional edge leading to the formation of a super-

posed motif). Fig. S2 (ESIw) shows the integrated network

containing only the nodes and edges participating in these

3-node motifs. TRN edges are the most frequent ones with

1041 edges, followed by PPIN edges (713) and MSFN ones

(69). Therefore, most part of PPIN and MSFN edges do not

take part in 3-node motifs. Moreover, motif types I and III are

mainly composed of TRN edges (Fig. 7B), while motif II is

strongly based on both TRN and PPI edges. Motif II showed a

clear over-representation of instances where transcriptional

regulatory and protein–protein interactions were found to be

cross-talk. It is noteworthy to mention that in this type of

motif the transcriptionally controlled target genes are physi-

cally interacting, therefore forming the basis of this motif.

Likewise, we also found a significant occurrence of a motif

within this type where transcriptional and signaling inter-

actions mutually feedback the target genes controlled by the

TFs. Motif III shows the already known feed-forward loop

composed entirely of transcription regulations. Additionally,

it exhibited a motif structure where a signaling interaction

connects the target genes, therefore indicating that the second

gene produces a signal which controls the activity of the third

gene in the feed-forward loop. These motif instances demon-

strate the interplay between metabolic and transcriptional

levels via the metabolites/signals produced by the signaling

genes. Finally, we also found 20 instances of the type I motif

where TFs physically interact with each other to control their

target gene. Specific instances of 3-node motifs belonging to

each of the motif types discussed here are shown in Fig. S3

(ESIw).

These observations suggest that there is dense networking

between transcriptional, physical and signaling interactions of

TFs enabling them to integrate diverse cellular processes and

stimuli. Motifs with four nodes were also detected in the

integrated network (Fig. S4, ESIw also contains the complete

list of 4-node motifs). Seven relevant patterns were identified,

with three of them having Z-scores much higher than those of

the 3-node motifs. Symmetric links occur in almost every

4-node motif, especially in motifs I and V, and most 4-node

motifs (except types I and VI) include the feed-forward 3-node

motif. Further analysis reveals that outliers (simultaneously

structural and dynamical) are also important building blocks

of motifs. Table 2 contains the 10 nodes more frequently

occurring in 3-node motifs, most of them being the seven

outliers crp, fnr, ihfA, ihfB, fis, arcA and hns. Outliers also

frequently appear in 4-node motifs (Table S2, ESIw), mostly in

types II, III and VII. Therefore, structural/dynamical outliers

in the integrated network present many distinctive features: (i)

they are uncommon nodes with very specific structural and

dynamical properties, (ii) they represent genes with different

expression characteristics and (iii) they form the foundations

of relevant subgraph patterns.

4 Conclusions

Most studies using gene regulatory networks of model organisms

have shown the importance of hierarchy and the presence of

feed-forward loops. However, there is to our knowledge no

study which integrates different processes to unveil the under-

lying mechanisms controlling the feedback processes of TFs

on a global scale. Our observation that there is an extensive

cross-talk between TFs and their target genes using protein–

protein interactions and signaling interactions suggests that

feedback control of TFs is governed by both protein–protein

and signaling molecules. Furthermore, the employed method

for outlier detection, encompassing structural analysis with

dimensionality reduction and structure–dynamics correlations,

allowed identification of global regulators. To reinforce the

importance of these regulators we showed that they corre-

spond to genes which are both highly and widely expressed

across hundreds of conditions, as well as being important

building blocks of motifs. We suggest that the analysis

employed here can be used as a method to detect global

Fig. 7 (A) Three-node motifs and their Z-scores. (B) Three-node

motifs separated according to edge type (blue: TRN edge, orange:

MSFN edge, green: PPIN edge); the number of occurrences of each

motif is also indicated.

Table 2 Ten most frequent nodes/genes in each type of the 3-node
motif. For each gene, its absolute (AbsF) and relative (RelF, in %)
frequencies of occurrence in each motif type are given. Notice that
genes in bold are the outliers of Fig. 5

Motif Type I Motif Type II Motif Type III

Gene AbsF RelF Gene AbsF RelF Gene AbsF RelF

ihfB 92 42.4 crp 170 26.4 crp 115 32.8

ihfA 91 41.9 fnr 160 24.9 fnr 82 23.4

crp 47 21.7 arcA 95 14.8 fis 52 14.8

arcA 45 20.7 aceE 74 11.5 narL 49 14.0
fis 45 20.7 aceF 53 8.2 fhlA 42 12.0
fnr 45 20.7 lpd 45 7.0 ihfA 42 12.0

gadX 13 6.0 ihfA 39 6.1 ihfB 42 12.0

hupB 11 5.1 ihfB 39 6.1 pdhR 33 9.4
hns 10 4.6 fis 37 5.8 fur 19 5.4
gadE 9 4.1 sucC 29 4.5 hyfR 16 4.6
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regulators in regulatory networks of other organisms. To

summarize, all these findings illustrate the importance of data

integration between different cellular processes.
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