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Abstract. The compensation of scale factor imposes significant computation overhead on the CORDIC algorithm.
In this paper we present two algorithms and the corresponding architectures (one for both rotation and vectoring
modes and the other only for rotation mode) to perform the scaling factor compensation in parallel with the classical
CORDIC iterations. With these methods, the scale factor compensation overhead is reduced to a couple of iterations
for any word length. The architectures presented have been optimized for conventional and redundant arithmetic.

1. Introduction

The CORDIC algorithm (COordinate Rotation DIgital
Computer) was introduced to compute trigonometric
functions and generalized to compute linear and hy-
perbolic functions [1, 2]. It is an iterative algorithm
suitable for VLSI implementation because it employs
only adders and shifters and it has a wide application
field. Special attention has been paid by different re-
searchers to the improvement of the algorithm in the
last few years, as referenced in [3].

By means of the CORDIC algorithm, a vector(x, y)
is rotated an angle (rotation mode) or it is taken to
the coordinate axis (vectoring mode). The algorithm
is based on rotations over prefixed known elementary
angles. These operations can be performed in linear,
circular and hyperbolic coordinate systems. For clarity
in the exposition, the hyperbolic case is not considered
here, but the procedure proposed in this paper is valid
also for the hyperbolic case. Therefore, in what fol-
lows we consider circular coordinates, in which basic

iteration ormicrorotationis

x(i + 1) = x(i )− σi · 2−i · y(i ),
y(i + 1) = y(i )+ σi · 2−i · x(i ), (1)

z(i + 1) = z(i )− σi · tan−1(2−i ),

where(x(0), y(0))are the initial coordinates of the vec-
tor and thezcoordinate accumulates the angle. The co-
efficientσi ∈ {−1,+1} specifies the direction of each
microrotation.n+ 1 iterations are needed to maintain
n bit of precision.

Each iteration introduces a scaling over both coor-
dinates given by the expressionKi =

√
1+ σ 2

i · 2−2i , and
thus, aftern+ 1 iteration the finalx andy coordinates
are scaled by the factor

K =
n∏

i=0

√
1+ σ 2

i · 2−2i (2)

Therefore, it is necessary to compensate the scale fac-
tor by multiplying x(n) and y(n) with K−1, and this
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imposes significant overhead whose minimization has
been attempted by different researchers [4–8]. As dis-
cussed further in Section 4, these methods produce an
increase in the latency of the algorithm that is depen-
dent onn and, in some cases, increase the complexity
of the CORDIC iteration. In this paper, we present two
methods to reduce this overhead.

A preliminary version of parallel compensation of
scale factor can be found in [9]. The present paper
is an improvement and an extension of that work,
where the hardware requirements have been signifi-
cantly decreased and the use of redundant arithmetic
has been incorporated. We present two algorithms to
perform the parallel compensation of the scale factor:
the carry-analysis method, which is applicable to ro-
tation and vectoring modes, and the double-rotation
method, which is only applicable to rotation mode.
The associated architectures are optimized for con-
ventional and redundant arithmetic. This way, the
scale factor compensation overhead is only one or two
iterations.

Figure 1. Evolution of the coordinatex along the CORDIC iterations.

2. Parallel Compensation by Means
of the Carry-Analysis Method

To perform thescale factor compensationwe can mul-
tiply the values obtained in iterationn by K−1. The
carry-analysis methodis based on obtaining enough
information in each iteration to perform the multipli-
cation in a distributed way

x(n+ 1) · K−1 =
n∑

j=0

δ j · 2− j K−1, (3)

where the value of the digitδ j is determined from a few
bits of x(i ), with i = j + 2, as explained later.

To make the understanding of the method easier,
Fig. 1 shows the evolution of coordinatex along
the CORDIC iterations, where the sign-and-magnitude
representation was selected, although the procedure
may be extended to any representation, as discussed
later. The initial values ofx(0) andy(0) are fractions
and two bits are used for the integer part (x1x0 bits)
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because of the scaling introduced by the CORDIC al-
gorithm. x2 andy2 are the sign bits.

Note in the figure that the nonzero MSB (Most Sig-
nificant Bit) of they expressions shifts one bit to the
right in every iteration starting fromi = 2 (i.e., for
i = 3 the nonzero MSB isy−2(3), and fori = 4 it is
y−3(4); the first two iteration have a special bound that
will be studied later). Therefore, we will see that it is
possible to obtain information about the value of the
MSBs ofx(i +1) if we know the value of the MSBs of
x(i ) and thecarry or borrowgenerated in the position
of the nonzero MSB ofy.

We now callA( j ) the sum of the weighted MSBs of
x(i ) up to the bit 2− j , with j = i − 2:

A( j ) =
k=−( j )∑

k=1

xk(i )2
k (4)

For example, in Fig. 1 we haveA(2) = x1(4)21 +
x0(4)20+ x−1(4)2−1+ x−2(4)2−2. Then, we can write
that

A(2) = [x1(4)2
1+ x0(4)2

0+ x−1(4)2
−1]

+ x−2(4)2
−2

= [x1(3)2
1+ x0(3)2

0+ x−1(3)2
−1]

+ c−22−1+ x−2(4)2
−2

= A(1)+ c−22−1+ x−2(4)2
−2, (5)

wherec−2 is the outgoingcarry or borrow of the bit
of weight 2−2 when the operationx(4) = x(3) +
σ32−3y(3) is performed (see Fig. 1).

Taking into account the development of the variable
A in Fig. 1 we can deduce the following recurrence:

A( j ) = A( j − 1)+ c− j 2
− j+1+ x− j (i )2

− j . (6)

Expression (6) can be written as

A( j ) = A( j − 1)+ δ j 2
− j , (7)

Figure 2. Addition of a negative number in true-and-complement representation(i = 3).

where

δ j = 2c− j + x− j (i ). (8)

These expressions have been obtained for a sign-and-
magnitude representation, wherex− j (i ) = {0, 1} and
cj is thecarry (for additions) orborrow (for subtrac-
tions) and thenc− j = {0,±1}, and thereforeδ j =
{0,±1,±2, 3}. However, we can follow the same rea-
soning if we use signed-digit representation in such a
way that we obtain the same expressions. Since each
digit has its own sign, the allowed values forx− j (i ) and
c− j are{0,±1} and thereforeδ j = {0,±1,±2,±3}.

In true-and-complement representation we can fol-
low a similar reasoning, but the final expression needs
to be slightly modified due to the particular way of rep-
resenting negative numbers. Ifσi−12−(i−1)y(i − 1) is
negative it has allonesfrom the MSB up to the bit of
weight 2− j+1. Then, we can write

σi−12−(i − 1)y(i − 1)=−2− j+1+
n∑

m= j

y−m(i − 1)2−m.

(9)

Figure 2 shows this fori = 3. Following this procedure
for the negative numbers we deduce the expression

δ j = 2(c− j − y2)+ x− j (i ), (10)

wherec− j is now the outgoingcarry of bit x− j (i ) and
y2 is the sign bit ofσi−12−(i−1)y(i − 1) (see Fig. 2).
Because the allowed values ofx− j (i ), c− j and y2 are
{0, 1}, the range ofδ j is {0,±1,±2, 3} (note thatcj ∈
{0, 1} since we use the complement representation for
the negative number).

The initial value of the variableA is 0 except ifx(1)
< 0 and true-and-complement representation of num-
bers is used. Because the first iteration of the recurrence
(7) is carried out wheni = 2, we must take into account
the value of the MSB ofx(1). In true-and-complement
representation this bit represents the value−2 if x(1)
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is a negative number, and therefore, we must initialize
the variableA to−2. Therefore,A(−1) = −2x2.

If we write the expression (7) fromj = 0, we have

A(n) =
n∑

j=0

δ j · 2− j (11)

BecauseA(n)has taken into account the contribution
up to the bit of weight 2−n, which is the LSB (Least
Significant Bit) ofx(n+ 1), we can write

A(n) = x(n+ 1). (12)

We now take advantage of the recurrence ofA(i )
to carry out the compensation of the scale factor. The
value of the compensated coordinatex is

x(n+ 1) · K−1 = A(n) · K−1 =
n∑

j=0

δ j · 2− j · K−1,

(13)

which corresponds to (3).
Next we find the bound of every iteration. In what

follows, we callnull the bits of value 0 if a number is
positive or 1 if a number is negative and complement
representation is used.

First we find a bound forσi 2−i y(i ):

(a) Iterationi = 0. Becausex(0) and y(0) are frac-
tions, the integer part bits are all null. This justifies
the three zeroes of they expression in the first it-
eration in Fig. 1.

(b) Iterationi = 1. From Eqs. (1) we havey(1) =
y(0)− σ0x(0). From|x(0)|< 1 and|y(0)|< 1 we
obtain that|y(1)| < 2. Therefore|σ12−1y(1)| < 1
and consequently, it is a fractional number. That
is the reason why the integer bits in the expression
|σ12−1y(1)| in the Fig. 1 are all zeroes.

(c) Iterationsi ≥ 2. The value of the scale factor that
the CORDIC algorithm introduces isK = 1.6467.
Any valuey(i ) is less than the module of the largest
possible initial vector (

√
2−2−n) scaled by 1.6467.

Therefore, we have the following bound fory(i ):

|y(i )| < K
√

2= 2.32. . . (14)

Multiplying both terms of this expression by 2−i

we can write that

|2−i y(i )| < 2−i 2.32< 2−i+2. (15)

As a consequence of (15), in every iteration we add
or subtract to each coordinate a bounded amount,
and this bound is reduced by a factor of 2−1 from
one iteration to the next. This justifies that the most
significant non-null bit possible forσi 2−i y(i ) is
shifted one bit to the right in every iteration. For
example, fori = 2 we have|σ22−1x(2)| < 1, and
then, the bits of the integer part of the expression
|σ22−1x(2)| in Fig. 1 are all null; fori = 3 we have
|σ22−1x(2)| < 0.5, and then, the 3 MSB are null,
etc.

As consequence of (a) and (b) items, the value of bit
x1 can only be modified if a carry is propagated to it
in the second iteration. Therefore, we can begin the
application of the Eq. (3) just after we knowx(2) (that
is, the bitx0 and the carryc0 of x(2), see Fig. 1).

In Appendix A we justify from a mathematical point
of view the procedure that we have just described, do-
ing it independently from the kind of representation
selected. In this appendix we prove the relationship
between the value of the weighted MSBs ofx(i + 1)
up to the bitxj (i ) ( j = i −2) and the same bits ofx(i ),
which is the base of the previous procedure.

Based on this reasoning we give the CORDIC algo-
rithm with parallel compensation of the scale factor.

Algorithm

For i = 0 to i = n+ 1 do

{
(i ≤ n)

if (rotation mode) thenσi = sign(z(i )) elseσi =
sign(y(i ));

x(i + 1) = x(i )+ σi 2−i y(i )

y(i + 1) = y(i )− σi 2−i x(i )

z(i + 1) = z(i )− σi tan−1(2−i )

(if i ≥ 2 j = i − 2)

δ j = x− j (i )+ 2(c− j − y2∗), µ j = y− j (i )

+ 2(c′− j − x2∗) (16)

xcomp( j ) = xcomp( j − 1)+ δ j 2− j K−1 (17)

ycomp( j ) = ycomp( j − 1)+ µ j 2− j K−1 (18)

}
where x− j (i ), y− j (i ) are the bits of weight 2− j of
x(i ) and y(i ), c− j , c′− j are the carries at position
2− j and y2∗, x2∗ are zeroes if sign-and-magnitude or
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signed-digit number representation is selected or they
correspond to the sign bits of the expressionsσi 2−i y(i )
andσi 2−i x(i ), respectively, if complement representa-
tion is used. The initial value ofxcompis 0 except if
true-and-complement representation is used, in which
case it is−2x2(1). Similary forycomp.

2.1. Word-Serial Architecture

Figure 3 shows the word-serial architecture for the im-
plementation of the CORDIC algorithm with parallel
compensation of the scale factor. In what follows we
will explain the operation of coordinatex; operation
on coordinatey is similar. In this figure the data paths
for the compensation of the scale factor are pointed
out in dotted line and the hardware elements added to
the conventional CORDIC are shadowed, whereas the
multiplexors for the classical scaling iterations were
eliminated.

In order to obtain coefficientδ j it is necessary to
reach bitx− j (i ) and carryc− j in each iteration (see

Figure 3. CORDIC architecture with parallel compensation.

expression (16)). To access these bits it would be in-
teresting for them to stay in fixed positions in the cor-
responding registers. In order to do this, we carry out a
rotationof one bit to the left ofx(i ) in every iteration,
in such a way that bitx− j (i ) is always in the leftmost bit
position of the registerRx, and the carryc− j is always
in the same position in the adder (see Fig. 3) Conse-
quently, the particular position of the bits in the adder
requires the outgoing carry to be connected to the in-
coming carry, as Fig. 3 shows, and therefore, a specific
number representation must be used, as we will see in
the Sections 2.1.2 and 2.1.3.

The shift to the right operation implicit inσi 2−i y(i )
(see Eq. (26)) is carried out by means of arotation
of i bits to the right (moduleEi Rotator) plus a
sign-extension ofi bits (moduleZ and the shift reg-
ister attached). This split of functions allows the use of
a single hardware to apply the sign extension to other
data. Basically, the shift register is initialized to “1” in
every bit and in every iteration a “0” is introduced from
the right side. This shift register is used by moduleZ as
a reference to know how many bits the sign extension
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has (the hardware of moduleZ will be analyzed in the
next subsections).

The parallel compensation of the scale factor is sup-
ported by the registersRxcomp and Rycomp. To
perform the Eq. (17) we need the values 2− j K−1,
2 · 2− j K−1 and 3· 2− j K−1, because|δ j | = {0, 1, 2, 3}.
Because, like coordinatex, the value of the variable
xcompis rotated one bit to the left in every iteration
we do not need to shift the initial valuesK−1, 2K−1

and 3K−1 in every iteration, and it is sufficient to make
the sign extension over the suitable bits. This last op-
eration is carried out by means of theZ module and
the shift register attached.

2.1.1. Timing. A CORDIC iteration is composed of
two sequential suboperations: a shift (with associated
delay “S”) and an addition (with delay “A”). On the
other hand, a scale factor compensation iteration is
composed of one addition only (see Eq. (17); the shift
operation overK−1 is not necessary as we have just an-
alyzed in the previous paragraph). We take advantage
of this fact and carry out the addition associated to the
scale factor compensation while the shift operation of
the classic CORDIC iteration is performed. Therefore,
in a rough approximation, the delay “D” of an iteration
is given by

D = max{S, A} + A (19)

Since the classical CORDIC delay isD = S+ A,
to keep the same delay in the architecture of Fig. 3
it is necessary that “S” and “A” be similar. This

Figure 4. Dependency graph and timing.

condition can be accomplished if redundant arithmetic
or conventional arithmetic with fast adders (CLAs) is
used.

Figure 4 shows the dependency graph and the timing
of a couple of iterations for coordinatex (coordinatey
is similar) whenS ≈ A. In the classic CORDIC ap-
proach, every iteration is performed in one cycle. We
have split the classic CORDIC cycle into two subcy-
cles: in the first one we carry out the shift suboperation,
and in the second one we carry out the addition. We
perform the first subcycle at the same time as the scale
factor compensation cycle is carried out. Observe that
in the first falling slope registerRxis loaded and Mux-3
selects the suitable input whereas in the second falling
slope registerRxcompis loaded and Mux-3 selects the
leftmost input. This way, every one of the two subcy-
cles which every CORDIC iteration is now composed
has a time approximately half of the classic CORDIC
cycle, and consequently, the time of one iteration is not
modified with regard to the classic approach.

In Fig. 5 we can see the complete sequence of
CORDIC iterations with parallel compensation of scale
factor. As we can see in this figure, the total latency
is 2n+ 5 cycles, which corresponds approximately to
the time ofn + 2.5 standard CORDIC iterations. In
contrast, the number of iterations of the CORDIC al-
gorithm without compensation of scale factor isn+ 1,
so that the overhead for compensation in the carry-
analysis method is only of about 1.5 iterations.

If A > S the CORDIC iteration delay is given by
D = 2A. Nevertheless, it is possible to reduce the
cycle time to D= S+ A if we use a separate par-
allel hardware to carry out the compensation of the
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Figure 5. Global timing for the CORDIC with parallel compensation.

scale factor. In this case, the intermediate multiplex-
ors MUX-2,3,5,6 in Fig. 3 are eliminated.

2.1.2. Implementation in Conventional Arithmetic.
We now look for a number representation that is suit-
able for the architecture shown in Fig. 3. In this ar-
chitecture we have connected the outgoing carry to the
incoming carry in the adders, in such a way that the
outgoing carry of the MSB and the incoming carry of
the LSB are always connected. In two’s complement
representation an outgoing carry can corrupt the true
value of the addition and therefore, it is not valid. On
the other hand, in the addition in one’s complement a
nonzero outgoing carry requires a correction of the re-
sult obtained. This correction consists of an addition
of the value 1 to the current result, which can be car-
ried out connecting the outgoing carry to the incoming
carry [10]. Therefore, a suitable number representa-
tion to perform the CORDIC algorithm with parallel
compensation of the scale factor using conventional
arithmetic isone’s complement.

If this representation is chosen and the input data
is in two’s complement, it is not necessary to convert

Figure 6. Sign extension in one’s complement.

the negative two’s complement data into negative one’s
complement data because the error is less than the pre-
cision we work with since we should subtract the value
1 at the LSB of the guard bit, which is out of precision.
The same happens with the output data.

Next, we analyze the sign extension needed in the
shift of coordinatey (see Eq. (26)). The moduleEi Ro-
tator is in charge of producing a rotation ofi bits to
the right of coordinatey. But, since coordinatey
stays rotatedi bits to the left in register RY (see sec-
ond paragraph of the beginning of this section), co-
ordinatey appears with the bits placed in the conven-
tional order at the output of the rotator (that is, the
MSB on the leftmost bit and the LSB on the rightmost
bit). For example, assumey(4) = 0̂01.10101111(we
have pointed out the MSB with symbolˆ and the LSB
with the symbol ). Then, registerRYholds the value
0101111̂001.1, at the output of the rotator we have the
value0̂01.10101111, and the value of 2−3y(3) is found
after the Z module as 00110100̂00.0.

In Fig. 6 we can see the order of the bits at the output
of the rotator module and the structure of theZ module.
This module is composed ofn− 1 2-to-1 multiplexors



P1: SAD/PCY P2: JSN

Journal of VLSI Signal Processing KL614-02-Villalba August 4, 1998 9:22

234 Villalba, Lang and Zapata

controlled by the shift register, that allows to place the
sign bit y2 over the suitable bits.

2.1.3. Implementation in Signed-Digit Arithmetic.
We have several possibilities to choose a redundant
number representation. Since the architecture that we
propose has the outgoing carry of the adder connected
to the incoming carry, we have to avoid the propagation
of a nonzero carry of the MSB ofx(i ) to the LSB. If
we choose carry-save representation we must use one’s
complement to avoid the problem of the outgoing carry,
as explained in the previous subsection.

In signed-digit representation there are always ze-
roes over the integer part ofσi 2−i y(i ) (see Appendix
B), and therefore, an outgoing carry will never occur.
Nevertheless, the expansion of a number represented in
signed-digit forces us to use an additional bit to avoid
an outgoing carry. We prove this in Appendix C. In
this case, the sign extension needed in the shifts of
coordinatey (see Eq. (26)) is simpler than the one’s
complement case, because we only have to force to
zero instead of to the sign. Therefore, the architecture
of module Z is similar to Fig. 6 but replacing the 2-to-1
multiplexors by two input AND gates. Consequently,
the signed-digit representation is better than the carry-
save one.

Since the same adder is used in the CORDIC itera-
tion and in the compensation, the result of the com-
pensation multiplication is obtained in signed-digit
representation. A standard conversion to conventional
representation would require a carry-propagate addi-
tion. However, this compensation can be viewed as
a “distributed” left-to-right multiplication, so that the
on-the-fly conversion [11] can be used.

2.2. Pipelined Architecture

It is possible to perform thecarry-analysis methodin
a pipelined architecture. In this case, the rotator mod-
ules of Fig. 3 are implemented in a hardwired fash-
ion and a parallel data path to carry out the parallel
compensation of the scale factor is needed. In this
case, the pipeline is composed byn + 1 stages to
perform the CORDIC iterations plusn + 1 parallel
stages to carry out the compensation of the scale fac-
tor, with a delay of two cycles between the starting
of both pipelines. Therefore, the throughput is one
full CORDIC operation per cycle (the same that the
standard CORDIC, with the same cycle time) and the
latency isn + 3 cycles. The increase in latency due

to the compensation is only of two cycles, which su-
posses a minimal latency solution for a scale factor
compensated CORDIC.

2.3. Computation of the Modulus of the Vector

If we are only interested in the computation of the mod-
ulus of the vector, we have to select the vectoring mode,
and carry out(n/2) + 1 iterations. Nevertheless, the
parallel scale factor compensation proposed needsn it-
erations. We can reduce the number of these iterations
if we modify slightly the algorithm of parallel com-
pensation. To do this, we analyze 2 bits per iteration
instead of 1 bit. This is due to the fact that the vectoring
mode has the following bound:

|2−i y(i )| < 2−i 2.32< 2−2i+3 (20)

Therefore, the amount that is added or subtracted in
every iteration is bounded, and this bound is reduced
by a factor of 2−2 instead of 2−1 as we saw in expres-
sion (15). Consequently, after iterationi = (n+ 1)/2,
coordinatex keeps the scaled module of the vec-
tor, and it is not necessary to perform more itera-
tions. Then, applying thecarry analysis methodit is
possible to obtain the module of the vector in only
n+1

2 + 2 iterations. We only need to slightly mod-
ify the hardware because now expression (8) becomes
δ j = 4c− j + 2x− j (i )+ x− j−1(i ) and therefore|δ j | can
take the new values 4 and 5. Consequently, in Fig. 3
six-input multiplexors instead of four-input multiplex-
ors are needed.

3. Double Rotation Method

This method is valid only in rotation mode, and it can be
applied in mixed radix 2-4 CORDIC systems and radix-
4 CORDIC. First, we give a brief explanation of the
double rotation method that can be found in [9]. After
this, we design the new architecture that implements
this method.

Let (x, y) be the coordinates of a vector to which we
apply a rotation ofθ . The coordinates obtained after
n+ 1 CORDIC iterations can be expressed as follows:

[
x(n+ 1)

y(n+ 1)

]
= K ·

[
cosθ sin θ

− sin θ cosθ

]
·
[

x(0)

y(0)

]
(21)
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Let us now define a new angleβ:

β = cos−1(K−1) (22)

We will now callx+(n+ 1), y+(n+ 1) andx−(n+ 1),
y−(n+ 1) the coordinates obtained aftern + 1
CORDIC iterations when we apply a rotation of(θ +β)
and(θ −β), respectively.[

x+(n+ 1)

y+(n+ 1)

]

= K ·
[

cos(θ + β) sin(θ + β)
− sin(θ + β) cos(θ + β)

]
·
[

x(0)

y(0)

]
(23)[

x−(n+ 1)

y−(n+ 1)

]

= K ·
[

cos(θ − β) sin(θ − β)
− sin(θ − β) cos(θ − β)

]
·
[

x(0)

y(0)

]
(24)

If we carry out the semi-sum ofx+(n+ 1)with x−(n+
1) and the semi-sum ofy+(n+ 1) with y−(n+ 1) and
take into account cosβ = K−1, we have

x+(n+ 1)+ x−(n+ 1)

2
= x · cosθ + y · sinθ

y+(n+ 1)+ y−(n+ 1)

2
= −x · sinθ + y · cosθ

The second terms of these expressions are the values
of the compensated coordinatesx(n+1) andy(n+1),
that isx(n+ 1)K−1 andy(n+ 1)K−1.

Summarizing, this method has three steps:

1. obtain (θ + β) and (θ − β),
2. rotate the vector(x(0), y(0)) an angle (θ + β) and

(θ − β),
3. perform the final semi-sums.

3.1. Architecture

To carry out the second step of this method two
CORDIC rotators working in parallel were used in
[9]. That solution is valid for a pipeline architecture
as well as a word-serial architecture. In this section
we present a new word-serial architecture that avoids

the hardware resource doubling of the aforementioned
previous work.

A CORDIC iteration is composed by two sequen-
tial operations: one shift plus one addition which are
performed in one cycle in the classic word-serial so-
lution. In our design, we have pipelined the CORDIC
iteration into two stages: the shift stage and the addi-
tion stage, and therefore, every CORDIC iteration is
now composed by two subcycles instead of one cycle.
This word-serial two stages pipelined architectureis
presented in Fig. 7.

Based on the architecture of Fig. 7 it is possible
that in every subcycle the first stage is performing
the shift of the coordinates related to one of the ro-
tations (i.e., 2−i y−(i )), whereas the second stage is
performing the addition related to the other rotation
(x+(i ) + σ+i 2−i y+(i )). In the next cycle, the roles
are interchanged. In this way, we avoid the use of
two CORDIC rotators, and use only one CORDIC
rotator (modified as Fig. 7 shows) with the same
functionality.

If we call S, A and R to the delay of the Shifter,
Adder and the loading of a Register respectively, the
delay of a CORDIC iteration in a classic word-serial
architecture isS+ A+ R, whereas the delay of a
CORDIC iteration for the architecture of Fig. 7 cor-
responds to the delay of two consecutive subcycles:
2· (max{S, A}+ R). In order to obtain an efficient two
stages pipelined design it is necessary that the delay of
each stage is similar. This can be achieved in imple-
mentations using redundant arithmetic or conventional
arithmetic with fast adders (i.e., CLA) since the delay
of the shifter can be similar to the delay of the Adder
(S≈ A). Thus, there is a good balance between both
stages, and considering thatR¿ S, the subcycle time
(≈S+ R) can be slightly longer than half the classic
CORDIC cycle time (≈2S+ R).

The sequence of operations can be seen in Table 1.
We show the contents of the registers of Fig. 7 and
the value of the coefficientsσi at the end of each cy-
cle. The total number of subcycles needed to obtain
the final compensated coordinates is 2n + 4, which
corresponds approximately with the equivalent time to
n + 2 cycles of the classic approach if we take into
account that the time of a classic CORDIC cycle corre-
sponds approximately with the time of two subcycles.
This results in an overhead time for the compensation
of the scale factor corresponding to only one Classic
CORDIC cycle time (overhead in the classic CORDIC:
aboutn/3).



P1: SAD/PCY P2: JSN

Journal of VLSI Signal Processing KL614-02-Villalba August 4, 1998 9:22

236 Villalba, Lang and Zapata

Table 1. Sequence of the double rotation method.

Reg. c0 c1 c2 c3 c4 2n+ 1 2n+ 2 2n+ 3

Rα β α0 α0 α1 α1 ... αn αn αn

Rz1 z+(0) z−(0) z+(1) z−(1) z+(2) ... z−(n) z+(n+ 1) z−(n+ 1)

Rz2 — z+(0) z−(0) z+(1) z−(1) ... z+(n) z−(n) z+(n+ 1)

σi σ+0 σ−0 σ+1 σ−1 σ+2 ... σ−n — —

Rx′ x(0) x(0) x+(1) x−(1) x+(2) ... x−(n) x+(n+ 1) —

Rx′′ y(0) y(0)20 y+(1)2−1 y−(1)2−1 y+(2)2−2 ... y−(n)2−n — —

Rx — x+(1) x−(1) x+(2) x−(2) ... x+(n+ 1) x−(n+ 1) 2x(n+ 1)K−1

Ry′ y(0) y(0) y+(1) y−(1) y+(2) ... y−(n) y+(n+ 1) —

Ry′′ x(0) x(0)20 x+(1)2−1 x−(1)2−1 x+(2)2−2 ... x−(n)2−n — —

Ry — y+(1) y−(1) y+(2) y−(2) ... y+(n+ 1) y−(n+ 1) 2y(n+ 1)K−1

Figure 7. Architecture of the double rotation method.

Thedouble rotation methodcan be applied directly
in mixed radix 2-4 CORDIC systems [12]. In this kind
of CORDIC systems the first(n + 1)/2 iterations are
carried out in radix-2 whereas the remaining iterations
are performed in radix-4, only needingn/4 radix-4

iterations instead ofn/2 radix-2 iterations of the clas-
sic approach, but the number of scaling iterations re-
quired for the compensation of the scale factor contin-
ues being the same. In this case, the delay associated to
the scale factor compensation has a relatively greater
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weight than in a full radix-2 CORDIC (about 45% over-
head in mixed radix and 30% overhead in radix-2),
and therefore the alternative of using the double ro-
tation method proposed in this paper seems specially
interesting.

3.2. Rotations by a Set of Known Angles

Parallel compensation of the scale factor can be spe-
cially interesting when radix-4 CORDIC is used in sys-
tems where we want to perform rotations of a set of
angles that are known beforehand. In radix-4 CORDIC
the elementary angles are tan−1 4−i and the coefficient
σi = {0,±1,±2}, which reduces to half the number of
microrotations [13]. The scale factor depends on the
sequence ofσi ’s in which each angle is decomposed
(see Eq. (2)). Unlike in the radix-2 CORDIC, in radix-
4 this sequence changes from one angle to another, and
consequently the scale factor is not constant.

However, in radix-4 the angle decomposition is re-
dundant (different sequences ofσ ′i ’s correspond to the
same angle), and thus we can select the decompositions
in such a way that the number of scale factors is min-
imized [14]. To apply the double rotation method, we
can keep the different anglesβ (see expression (22))
in a table and select the suitable one when we per-
form the corresponding rotation. This system results in
a low latency: aboutn+1

2 + 2 iterations on average, in-
cluding the scale factor compensation (in contrast, the
standard radix-2 CORDIC requires about 4n/3 itera-
tions and the standard radix-4 CORDIC aboutn + 1
iterations).

4. Comparison

In this paper we propose two algorithms and the cor-
responding architectures to carry out the parallel com-
pensation of the scale factor. In systems where only
rotation mode is needed, the best choice is thedouble-
rotation methodsince we can apply mixed radix re-
sulting in a significant reduction of the total number
of iterations. If vectoring mode or both vectoring and
rotation modes are required, we should use thecarry-
analysis method.

The word-serial architecture for the double rota-
tion method proposed in this paper reduces by about
half the hardware cost of the solution proposed in [9].
The version of the carry-analysis method (called the

bit-analysis method) that can be found in [9] needs a
couple of separate adders to carry out the compensa-
tion of the scale factor, and the coefficientδi depends
on six bits, whereas in the algorithm proposed in this
paper the coefficients depend on only three bits and no
extra adders are needed to compensate the scale fac-
tor. Furthermore, the bit-analysis method is only valid
for conventional arithmetic, whereas the carry-analysis
method is valid both in redundant and conventional
arithmetic.

The number of cycles to obtain a rotation by means
of the CORDIC algorithm including the compensation
of the scale factor is aboutn+ 1

2n if we use the tech-
nique of adding scaling iterations. Nevertheless, the
repetition of some iterations may modify the value of
the scale factor in such a way that the total number of
iterations may becomen+ 1

4n in the best case [15].
In any case, the scale factor compensation overhead
increases linearly with the word length,n. With the
algorithms and architectures proposed in this paper the
scale factor overhead is fixed to a couple of iterations,
and it is not dependent onn.

The carry-analysis method is related to the on-line
CORDIC algorithm presented in [16], wheren + 6
steps are needed including the compensation of the
nonconstant scale factor. In contrast, the carry-analysis
method uses the standard CORDIC algorithm and has
a constant scale factor. Its relation to the on-line al-
gorithm is that it can be considered as an applica-
tion of the digitalization to the traditional CORDIC,
with a left-to-right multiplier for the compensation. As
mentioned before, when redundant addition is used
in this multiplier, an on-the-fly conversion can be
used to avoid the conventional addition in the con-
version.

In [5] possibilities for the minimization of the scale
factor compensation overhead are studied. The best
strategies proposed are different for pipelined and
word-serial implementation. Two strategies are pro-
posed for the pipelined implementation. The first
consists in the canonic signed-digit encoding of the
scale factor with a minimum number of 1’s in such
a way that an additive decomposition ofK−1 is ob-
tained. If p is the number of nonzero bits ofK−1,
then the multiplication ofK−1 with x(n + 1) can be
carried out by means of a tree of log2 p levels. The
second one is based on a multiplicative representation
of K−1, which produces a more area economical so-
lution but more latency. In any case, the latency of
the resulting pipeline is greater than the latency of
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the pipeline architecture proposed in this paper (see
Section 2.2). While the overhead for scaling factor
compensation is of log2 p stages with the additive strat-
egy proposed in [5], the overhead is fixed to one stage
for any value ofn in the architecture proposed in this
paper.

The conclusion obtained in [5] for word-serial imple-
mentation is that the design of [8] is the lowest latency
solution. This work is based on a previous one [7] where
an iteration combines a standard CORDIC iteration and
a scaling iteration. The resulting system is more com-
plex, with four additions in each coordinate. To sim-
plify the hardware, the least significant-term is elimi-
nated, but this yields restrictions in the convergence that
are solved by the introduction of the repetition of some
iterations. Therefore, the resulting architecture uses
three-input adders and incorporates some additional
multiplexors, as compared to the standard CORDIC
architecture. In contrast, we use a couple of additional
registers, two-input adders and four-input multiplex-
ors. Therefore, there is not a clear gain in area or itera-
tion delay in either architecture. Nevertheless, the total
computation time is smaller in our architecture since
repetitions are needed in [8] to maintain convergence
whereas our design does not need any repetition. Fur-
thermore, a specific design for calculating the modulus
of the vector based on [8] requires several scaling iter-
ations after iterationi = (n+ 1)/2, whereas a design
based on the algorithm we propose requires only two
iterations.

Appendix

Appendix A: Relationship Between the Value of the
Weighted MSBs of x(i+ 1) and x(i) up to the Bit xj (i)
(j= i − 2)

Theorem 1. Let E and F the functions integer part
and fractional part1 respectively; along the CORDIC
iterations the following equalities are kept:

E[x(i + 1)2 j ]

= E[x(i )2 j ] + E[F [x(i )2i−2] + σi 2
−2y(i )]

E[y(i + 1)2 j ] (25)

= E[y(i )2 j ] + E[F [y(i )2i−2] + σi 2
−2x(i )]

where j= i − 2

Proof: We prove it forx(i ), being similar fory(i ).
The CORDIC equation for the coordinatex is

x(i + 1) = x(i )+ σi · 2−i · y(i ). (26)

Multiplying both terms of this expression by 2i−2 and
applying the integer part function we can write

E[x(i + 1)2i−2] = E[x(i )2i−2+ σi 2
−2y(i )]

= E[x(i )2i−2] + E[σi 2
−2y(i )]

+ E[F [x(i )2i−2] + F [σi 2
−2y(i )]]

(27)

Moreover, multiplying expression (15) by 2i−2 we have
|σi 2−2y(i )| < 1. We consider two cases:

(a) σi 2−2y(i ) ≥ 0. In this caseE[σi 2−2y(i )] = 0
and F [σi 2−2y(i )] = σi 2−2y(i ). Therefore, the
expression (27) is

E[x(i + 1)2i−2]

= E[x(i )2i−2]+ E[F [x(i )2i−2] + σi 2
−2y(i )]

(28)

(b) σi 2−2y(i ) < 0. In this caseE[σi 2−2y(i )] = −1
andF [σi 2−2y(i )] = σi 2−2y(i )+ 1. Therefore,

E[x(i + 1)2i−2]

= E[x(i )2i−2]− 1

+ E[F [x(i )2i−2] + σi 2
−2y(i )+ 1] (29)

SinceE[a+ 1] = E[a] + 1 in the expression (29), we
obtain, for any case ofσi 2−2y(i )

E[x(i + 1)2i−2]

= E[x(i )2i−2]+ E[F [x(i )2i−2] + σi 2
−2y(i )]

(30)
2

Note that the last two terms of this expression rep-
resent the amount that we add or subtract to obtain the
MSBs ofx(i + 1) from the MSBs ofx(i ), and it is the
base of the algorithm of parallel compensation of the
scale factor.
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Figure 8. First two CORDIC iterations.

Appendix B: Integer Part Bits of 2−i y(i ) are All 0
in Signed-Digit

Because|x(0)| < 1 and|y(0)| < 1, the trivial repre-
sentation in signed-digit has the digit 0 in the integer
part. In Fig. 8 we can see the operation to obtainy(1).
According to the modified rules for adding binary SD
number [10], the only possibility for the sum bit in the
position of weight 21 is 0. Nevertheless, the position
of weight 20 can be−1, 0 or 1 because a carry can be
propagated from the bits of weight 2−1. Expression
2−1y(1) means that we have to shift the value ofy(1)
one bit to the right. Therefore, after this shift operation,
the bit of weight 20 of 2−1y(1) is 0, as we can see in
Fig. 8.

The same situation takes place fory(2), as shown in
Fig. 8. We can see that in every iteration the size of the
word can increase by one bit and a right shift is carried
out. Therefore, the integer bits are always zeroes.

Appendix C: Expansion of a Signed-Digit Number

Due to the bound of the coordinatesx(i ) and y(i ), a
minimum of two bits are needed to represent the inte-
ger part (see expression (14)). Nevertheless, a num-
ber in signed-digit representation can expand one bit
to the left after an addition. Therefore, we usethree
bits for the integer part, and we are going to prove
that coordinatesx andy do not expand more than one
bit.

Because the integer bits of 2−i y(i ) are all zeroes
(see Appendix B), coordinatex is obtained in every

iteration after an addition/subtraction operation in the
following way:

x1 x0 x0 . x−1 x−2 . . .

± 0 0 0 . y−1 y−2 . . .

According to the modified rules for adding binary SD
numbers [10], the only possibilities to obtain a carry in
the MSB are:

(a)
1 1 x0 . x−1 x−2 . . .

0 0 0 . y−1 y−2 . . .

(b)
1 0 x0 . x−1 x−2 . . .

0 0 0 . y−1 y−2 . . .

(c)
1̄ 1̄ x0 . x−1 x−2 . . .

0 0 0 . y−1 y−2 . . .

We analyze each case in the following:

(a) Due to the bound ofx(i ), the value 11x0.x−1x−2 . . .

is not possible. We analyze the worst case:
111̄.1̄ . . .. The decimal value of this expression is
111̄.1̄ . . . = 4+2−1−2−1−· · · > 4> |x(i )|max,
which is an impossible situation.

(b) The bound in signed-digit for this value is 2<
10x0.x−1x−2 . . . < |x(i )|max = 2.32. . .. Taking
into account the weight of each bit, the only pos-
sibility to fulfill this bound is x0 = 1̄, x−1 = 1̄.
There are two possibilities to obtain a number like
101̄.1̄ . . . in a CORDIC algorithm, according to the
modified rules for adding binary SD numbers [10]
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Figure 9. Ways to obtain 10̄1.1̄ . . . .

and we present them in Fig. 9:

(i) In this case the valuex(i−1) = 11̄1.0x−2 . . . >

|x(i )|max for all x−2x−3 . . . , and therefore, it is
an impossible value.

(ii) As in the previous case, the initial value
x(i ) = 011.0x−2 . . . > |x(i )|max is an impossi-
ble value.

Therefore, the value 10x0.x−1x−2 . . . is impossible
to obtain.

(c) This case is similar to case (a)

Note

1. E[a] ∈ Z : E[a] ≤ a < E[a] + 1; F [a] = a− E[a].
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