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Mutual Information Approach to Blind Separation of
Stationary Sources

Dinh Tuan Pham, Member, IEEE

Abstract—This paper presents a unified approach to the
problem of blind separation of sources, based on the concept of
mutual information. This concept is applied to the whole source
sequences as stationary processes and thus provides a universal
contrast applicable to both the instantaneous and convolutive
mixture cases. For practical implementation, we introduce several
degraded forms of this contrast, computable from a finite-di-
mensional distribution of the reconstructed source processes
only. From them, we derive several sets of estimating equations,
generalizing those considered earlier.

Index Terms—Contrast, convolution, entropy, independent
component analysis, Kullback–Leibler divergence, mutual infor-
mation, separation of sources, stationary process.

I. INTRODUCTION

B LIND separation of sources is a topic which has received
much attention recently, as it has many important applica-

tions (see, e.g., [2] for a review). Basically, one observes several
linear instantaneous or convolutive mixtures of independent sig-
nals,1called sources, and the problem is to recover them from the
observations,without relying on any specific knowledge of the
sources. In this blind context, a sensible method is to adopt the
approach of an independent component analysis (ICA) in which
a measure of dependence between the reconstructed sources is
minimized. A natural such measure is the mutual information
which has been introduced in [3] and implemented in [8]. How-
ever, this measure and others which have been proposed rely
only on the marginal distribution of the sources, thereby ig-
noring their temporal properties. The exploitation of such prop-
erties can yield better separation in the case of instantaneous
mixtures and is crucial in the case of convolutive mixtures. The
last case has been less well investigated because of lack of a
well-understood methodology: most works in this area adopt an
ad hocapproach based on canceling cross cumulants. Recently,
this author [10] has proposed the use of the mutual information
between stationary processes as a contrast function for blind
sources separation and discusses some implementation issues.
In this work, we further develop this proposal and provide full
proofs of results, as the cited paper was only a short version pre-
sented at the ICA’99 Workshop. We also provide several sets of
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1In a more general setup, the output channels may be corrupted with noises,
but in this paper we shall restrict ourselves to the pure mixture case.

estimating equations, obtained by differentiating the above con-
trast and its variants, which can be related to earlier works [7],
[9]. Our emphasis will be on the general ideas and concepts and
therefore details of implementations of the methods will not be
discussed (these implementations would depend on area of ap-
plications and can be the topics of subsequent works).

To proceed, let us describe the problem in mathematical terms
and introduce some notations. We assume thatsequences of
observations , , are available,
each being a mixture of independent sources, ,

, either instantaneously or through a convolution.
More precisely, in the last case

(1)

where and denote the vectors and
, respectively, is a sequence of

matrices, and denotes convolution. The instantaneous mixture
case can be viewed as a particular case of the above where the
sequence reduces to a single matrix of index,
which we denote again by, so that

(2)

To separate the sources one naturally performs an “inverse”
transformation on the sequence of observed vectors, namely

(3)

in the instantaneous mixture case,denoting the separation
matrix, and

(4)

in the convolutive mixture case, denoting the
sequence of separation matrices.

The idea is to determine the separating matrixor sequence
of matrices such that the output sequence

in (3) or (4) has components as independent as
possible. This is precisely the goal of the ICA, except that ICA
thus far has been restricted to instantaneous transformations
and the observed sequence is not necessarily a
mixture of independent sources. Clearly, our approach requires
a good measure of dependence between random stationary
processes (as we assume that the sources are stationary), which
we take to be the mutual information. This is a theoretical
measure as it involves the density functions of the source
processes, which in practice must be estimated from the data.

0018-9448/02$17.00 © 2002 IEEE
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The estimation problem will not be considered (for a simple
case, see [8]) although we are fully aware of the difficulty of
estimating the density in a high-dimensional space and we will
try to avoid it as much as possible.

For ease of reading, proofs of results will be relegated to the
Appendix.

II. M UTUAL INFORMATION BETWEENSTATIONARY PROCESSES

A. Some Definitions and Notations

Recall that the mutual information between a set ofrandom
vectors , with joint and marginal density functions

and , is given by [4]

where

and

are the (Shannon differential) joint and marginal entropies of
, respectively. Note that the notations

and

are the same and will be used interchangeably.
The mutual information is actually the Kullback–Leibler di-

vergence between the joint density of and their
product densities. From the inequality for all

, with equality attained only at , one can see that
with equality if only if are

independent. Thus, the mutual information is a measure of de-
pendence between a set of random vectors.

1) Entropy of Stationary Processes:The entropy concept
can be generalized to the case of stationary (vector) processes.
For any process one can write [4]

(5)

where

(6)

is the conditional entropy (that is the expected entropy of the
conditional distribution) of given . But
the conditioning decreases the entropy (see [4]), hence if the
process is stationary

(7)

One then deduces the following result, which is somewhat more
precise than a result in [4, pp. 64–65 and 273].2

Lemma 1: For any stationary process

and both sides of this inequality converge nonincreasingly to the
same limit (possibly ) as .

Following [4], we call the common limit in Lemma 1 the
entropy (rate) of the process and denote it by

. If is a vector with components ,
it is also called joint entropy (rate) of the processes

and denoted by .
2) Mutual Information Between Processes:The mutual

information between the jointly stationary processes
, can now be defined as [4]

(8)
Clearly, and vanishes if the processes

are independent. For the converse, we are able to
prove it only in the Markovian case (of arbitrary order, however)
but we believe it holds much more generally. We can write

(9)

where stands for

(the last equality coming from stationarity) and similarly for
and , denoting

the vector . Since the conditioning decreases
the entropy, each term in the sum on the right-hand side of (9) is
nonnegative. The last term on this right-hand side represents the
mutual information between the components of the conditional
distribution of given and hence is nonneg-
ative as well. Thus, implies that all
these terms vanish, which entails that i) is independent of

, conditionally on and ii)
are independent conditionally on

For Markovian processes, ii) means that the transition proba-
bility factors into factors and i) implies that each factor de-
pends only on for an index . Since the transition
probability of a stationary ergodic Markov process determines
its distribution entirely, the processes must be
independent.

2Our result provides further an inequality and the monotonicity of the con-
vergence of its left-hand side.
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B. Calculation of Entropy

The computation of the entropy of a process through its def-
inition is not practical as it involves a limiting operation. There
are some special cases where this can be avoided, which we now
consider.

1) Gaussian Processes:For Gaussian processes, a closed-
form formula for the entropy is available. Indeed, let

be a Gaussian stationary vector process ,
the conditional distribution of given
is a Gaussian distribution with covariance matrix , the error
covariance matrix of the best linear predictor of based on

, hence by a direct calculation (see also [4])

where . Then letting go to infinity and using the
extension of Szegö’s theorem to the multivariate case (see, e.g.,
[6, p. 162]), one gets

(10)

where is the error covariance matrix of the best linear pre-
dictor of based on , , and is the spectral den-
sity matrix of the process.

2) Temporally Independent and Markovian Processes:For
such processes, the following result, which is an easy conse-
quence of the definition of entropy and Lemma 1, is quite useful.

Corollary 1: For a stationary process

with equality if and only if it is Markovian of order ,
that is, the conditional distribution of given ,
depends only on . In particular,

with equality if and only if the process is
temporally independent.

Thus, the entropy of a temporally independent process is
simply its marginal entropy. Of greater interest is the fact that
the entropy of a stationary Markovian process
of order equals

Because of stationarity, the last right-hand side also equals

3) Filtered Processes:A general class of processes which
includes the widely used autoregressive moving average
(ARMA) processes is the class oflinear processes, defined as
follows.

Definition 1: A process is called linear if it
can be represented in the form

(11)

where is some sequence of matrices and
is a sequence of independent and identically

distributed random vectors.

In other words, a linear process is the output of some filter
applied to a temporally independent process. Note that we allow
the filter to be noncausal ( for ), the causal
case will receive some special attention later. Since we already
know the entropy of a temporally independent process, it would
be a simple matter to compute that of a linear process if we
knewhow to relate the entropy of a filtered process to that of
the original process. To derive such a result, we will need to
restrict ourselves to a class of “well-behaved” filters. We calla
sequence of square matrices of class if

and

for all . It can then be seen that for such a sequence, the process
defined in (4) is well defined for any stationary

process with finite th absolute moment
and is itself stationary with finite th absolute moment. Further,
the class is closed with respect to the convolution in the sense
that if it contains the sequences and
then it also contains their convolution.3 Another interesting
property of the class is that any sequence in
this class admits an inverse, with respect to the convolution,
which is also of this class, the inverse being precisely the
sequence of the Fourier coefficients of the function

This result follows from a result of Wiener which says that ifis
a -periodic function, nonzero everywhere, and has absolutely
summable Fourier coefficients, then the same is true for
(see, e.g., [14, p. 245]).

We shall further need a lower semi-continuity condition of
the entropy functional.

Definition 2: The entropy functional is said to be lower
semi-continuous, with respect to the convolution, at the process

if for any integer , real , there exists
such that

for all sequences satisfying

3This can be seen from

BBB(l �m)CCC(m) � kBBB(l�m)kkCCC(m)k

= kBBB(l)k kCCC(m)k

and the fact that the Fourier transform transforms a convolution into a multipli-
cation.
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Proposition 1: Let be a vector random sta-
tionary process admittingth absolute moment and

, where is a sequence of ma-
trices of class . Assume that the entropy functional is lower
semi-continuous at both and ,
then

Proposition 1 can be viewed as an extension of the following
result, which can be easily obtained along the same lines as in
[8] based on [8, Lemma A1]:Let be a random vector and
be an invertible matrix, then the entropy of equals

(12)

The lower semi-continuity condition is admittedly hard to
verify, but it is very mild. It holds under the following condi-
tion, which we believe to be far from necessary.

Lemma 2: Let be a vector random stationary
process admitting theth absolute moment such that
the joint density of exists (for all ) and
is differentiable with , de-
noting the gradient operator andbeing a constant.4 Then the
entropy functional is lower semi-continuous at .

Proposition 1 is fundamental in that it describes how the en-
tropy changes when the process is filtered. In particular, it pro-
vides the entropy of a linear process or more generally a filtered
Markov process. Further, it provides a method for thedeconvo-
lution of a linear (or a filtered Markov) process, through the use
of the following corollary.

Corollary 2: Let be a vector stationary
process such that the entropy functional is lower semi-contin-
uous at , for all sequences
of class . Then

(13)
with equality if and only if the process
is temporally independent. The same inequality holds with

replaced by

in this case, equality is attained if and only if the process
is Markovian of order .

Clearly, Corollary 2 still holds if the class is replaced by
a smaller subclass. A subclass of interest is the subclassof
sequences which are causal and have causal in-
verses, in the sense that it and its inverse sequence vanish at neg-
ative indexes. It is well known that the last condition is equiv-
alent to the minimum-phase condition:
for all complex number of modulus not exceeding. Under
this condition

4This constant can depend onm as the� in Definition 2 can depend onm.

the integration being made along the unit circleof the com-
plex plane. Thus,

(14)

Therefore, by restricting to the class , one gets the same re-
sult as in Corollary 2 with the last integral in (13) replaced by

.

III. CONTRASTS

We shall assume throughout that the sequence
in (1) is of class , hence in the reconstruction formula (4) we
will restrict ourselves to sequences of this class.
As mentioned earlier, to separate the source, one may mini-
mize the mutual information , where
are the components of defined by (3) or (4) according to
model (2) or (1) is considered. But by Proposition 1, this crite-
rion equals, up to a constant term

(15)

in the case of model (1), or the same expression but with the
integral replaced by , in the case of model (3).

The above criterion, by construction, is acontrast [3] in
the sense that it is minimized if the reconstructed sources

, , coincide with the true
sourcesup to a permutation and a filtering(or a scaling in the
instantaneous mixture case). This ambiguity isinherentto the
blind source separation problem (since it relies only on the
independence assumption of the sources) and is manifested
in the invariance property of : it is unchanged when one
preconvolves the sequence with a sequence
of diagonal matrices of class and premultiplies the result
with a permutation matrix, as can be easily seen by applying
Proposition 1 to scalar filtered processes. To be useful, however,

should be discriminating, in the sense of [3], that is, it
should attain its minimumonlywhen the reconstructed sources
coincide with the true sourcesmodulo the above ambiguity.
But minimizing can only ensure the independence between
the reconstructed sources and thus for this contrast to be
discriminating one may need some further conditions (such as
non-Gaussianity), but since we will not actually use it, we do
not pursue this question.

A. Contrasts for Instantaneous Mixtures

The contrast is of theoretical interest only, since its com-
putation requires the complete knowledge of the distribution of
each process . Although one can always ap-
proximate by , the number
might be very large for the approximation to be accurate, leading
to the problem of estimation of a density in ahigh-dimensional
space, which we would like to avoid.5 Therefore, it is of interest
to obtain a simplified version of .

5The amount of data needed for a “good” density estimation in a high-dimen-
sional space growsexponentiallywith the dimension.
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1) Contrasts Based on Finite Joint Distribution:Instead of
considering the mutual information between processes, we con-
sider the mutual information between segments of processes.
Explicitly, we consider the criterion

(16)

where is a (small) integer and are the components of
, defined in (3). But from (12)

(17)

hence this criterion can be seen to be equal, up to a constant
term, to

(18)

By construction, this is a contrast, which, in the case where
, has been shown to be discriminating if no more than

one source can be Gaussian [3]. For , one can allow the
sources to be Gaussian if the covariance matrices ofconsec-
utive observations of the Gaussian sources are not proportional
(see [12], [13]).

One can view as an approximation to , in which the
entropy is replaced by . An
alternative approach is to replace it by the conditional entropy

, which is a better approxima-
tion by Lemma 1. This leads to the criterion

(19)
The following result shows that is a contrast. It can

be shown to be discriminating under the same conditions as for
the contrast (see [12], [13]).

Lemma 3: Under the model (2), the criterion (19) equals
the expected Kullback–Leibler divergence between the con-
ditional distribution of given
and the product of the conditional distribution of
given , plus the constant term

.

2) The Gaussian Mutual Information:To avoid the diffi-
culty in calculating the entropy and mutual information, we in-
troduce the Gaussian entropy mutual information, defined as be-
fore but with the random vectors or processes involved replaced
by the Gaussian random vectors or processes having the same
covariance structure. From (8) and (10), the Gaussian mutual
information between the stationary processes ,

is

(20)

where is the spectral density matrix of the vector process
and denotes the diag-

onal matrix with the same diagonal as its argument.

The criterion (20) is a joint diagonalization criterion, since
it is nonnegative and can be zero if and only if is diagonal
almost everywhere. This is easily seen from the Hadamard in-
equality which says that for a positive-definite matrix,

unless is diagonal in which case one has equality
(see, e.g., [4, p. 502]). Since this criterion involves only the cor-
relations between the sources, it wouldnot permit the separa-
tion of a convolutive mixture: It is easy to see that it vanishes
as soon as is a unitary matrix for al-

most all , being the Cholesky factor in the decomposi-
tion . However, in the instantaneous mixture
case, this contrast is discriminating, provided that there exists no
pair of sources which have proportional spectral densities [11].
Since in this case, this
contrast is equivalent to

One can further degrade the above contrast by considering the
Gaussian analogs of the criteria and . This yields, after
dropping a constant term

(21)

(22)

where refers to covariance matrix, refers to
variance, and denotes the best linear
predictor of based on . It can be
shown that (21) and (22) are discriminating contrasts provided
that there exists no pair such that the covariance matrices
of and are proportional
[11].

B. Convolutive Mixtures and/or Linear Source Processes

Unfortunately, the above approach cannot be generalized
to the case of convolutive mixtures. The reason is that the
convolution is a transformation on the whole process, not
a finite segment of it. The criterion (16) is still a contrast
(although we are not sure if it is discriminating), but, unlike
the instantaneous mixture case, would involve the joint entropy
of ; Proposition 1 is not applicable since it
concerns the entropy of a whole process, not of a finite segment
of it. Thus, the use of (16) would require the estimation of
the entropy of an -dimensional distribution, which we
would like to avoid. By the same reason, there is no analog of
the contrast (19) for the convolutive mixture case; Lemma 3
applies only to the instantaneous mixture case.

However, if one restricts oneself to the class of linear or
Markovian source processes, then simple contrasts can be
constructed.



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

1) Convolutive Mixtures of Linear Sources:
Proposition 2: Assume that the sources are linear processes,

specifically

(23)

where are temporally independent processes and
are sequences of class, then the criterion

(24)

is minimized if and only if the processes are
independent among themselves and are temporally independent.

The preceding result shows that the criterion (24) is a contrast
since it is minimized when the reconstructed sources coincide
with the true sources up to a permutation and a convolution.
However, it is not necessarily discriminating since there is still
the possibility that the processes , despite being
independent, do not coincide with the sources up to a permuta-
tion and a filtering (an example is the case where the sources are
Gaussian). Nevertheless, it can be proved by a different method
in [12] (and mentioned in [13]) that the contrast (24) is discrim-
inating if no more than one source can be Gaussian.

As made clear by Proposition 2, minimizing (24) not
only separates the sources but deconvolves them as well. If
there can be no more than one Gaussian source, one would
recover the sequences in (23) up to a scaling,
a permutation, and a time shift. More precisely, minimizing
(24) yields for some permutation

, some nonzero constants , and some
integers . Note that, unlike the contrast (15) which is
invariant with respect to filtering, the contrast (24)is not.

A more restrictive assumption on the distribution of the
sources is that they arelinear causal processes with minimum
phase. By this we mean that the sequences in
the representation (23) are of class . Assume further that the
sequence in (1) is also of this class; then it makes
sense to restrict the sequence in (4) to this class
as well. Therefore, the contrast (24), by (14), reduces to

(25)

As before, minimizing itamong all sequences of class not
only separates the sources but deconvolves them as well. The
contrast (25), however, relies on somewhat artificial assump-
tions on the sources and the mixing matrix sequence. But it has
the advantage of being simple.

2) Convolutive Mixtures of Markovian Sources:A weaker
assumption on the sources is that they are filtered Markov pro-
cesses. More precisely, it is assumed that the sources can be
represented by (23) but with now being an

th-order Markov process. Then, similarly to Proposi-
tion 2, one can show that the criterion

(26)

is minimized if and only if the processes are in-
dependent among themselves and are Markovian of order

The proof of this result is very similar to that of Proposition 2,
substituting by .

As before, minimizing not only separates the
sources but actually extracts the underlying Markov processes
which generate them. In practice, it is likely that the sources
are themselves Markovian and not filtered Markov processes;
in this case, they are recovered exactly up to a permutation,
a scaling, and a time shift. The ambiguity with respect to
filtering is lifted because one has thea priori information that
the sources are Markovian.

3) Instantaneous Mixture of Linear Sources:In the previous
subsection, we have focused on the convolutive mixture case,
but the approach there can be also applied to the instantaneous
mixture case. By Corollary 2, in this case is bounded above
by

(27)

where the infimum is taken over all sequences
of class . Further, equality can be achieved if and only if the
process is linear. Since is a contrast and
the sources are linear processes, this shows that (27) is indeed a
contrast.

Clearly, by (14), is also bounded above by

(28)

where the infimum is taken over all sequences
of class . Further, by Corollary 2 again, equality can be
achieved if and only if the processes are linear
causal with minimum phase. Thus, in the case where the sources
are linear causal with minimum phase processes, (28) is indeed
a contrast.

It is worthwhile to note that the coefficients in (27) and
(28) can be taken equal to, that is, the infima there are taken
over all sequences in or with .
This is because multiplying the sequence by a
constant does not change the expression inside the curly bracket

in (27) and (28).

C. Discussion

The contrast is well known (see, e.g., [3], [8]). But it ex-
ploits only the marginal distribution of the sources at a given
time point. Our contrasts and , , involve their
temporal dependence as well and thus could have better per-
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formance especially in the case where the sources are strongly
temporally dependent (note that if they are white,

). However, should be small due to the difficulty of esti-
mating the entropy of a high-dimensional random vector. Thus,
it might be of interest to consider the contrasts (27) and (28)
which requires only the entropy of random variables and yet
taking into account the temporal dependence of the sources. The
drawback is that they rely on the linearity assumption of the
sources and require an extra minimization. Another possibility
is to focus only on the second-order dependence of the sources,
as implied by the use of the contrasts , , and . The
use of correlations only, but including lagged correlations, for
blind sources separation, has been proposed, for example, in [1]
and [9]. The use of and in the convolutive mixtures case
is new.

IV. ESTIMATING EQUATIONS

By differentiating the above contrasts, one obtains a system of
equations to be satisfied, called estimating equations (see [5]).
For this purpose, the following result plays a central role.

Lemma 4: Let and be two random vectors admitting
absolute th moment for some . Assume that and

, being a matrix for which the product makes
sense and has the same dimension as, admit densities and

satisfying the following conditions.

C1) As

faster than .

C2) The function admits almost everywhere a gra-
dient (column) vector such that

for all

for some constant .
Then as

where denotes a term tending tofaster than .

Note: Condition C1) could be hard to verify, but it is quite
reasonable. Indeed

For small , one would expect that the expression inside the
bracket is of the order and thus the whole integral would
be of this order. The difficulty is that and converge to
zero at infinity and hence the behavior of the ratio
near infinity is difficult to predict. The expression inside the
bracket is in general of the order for fixed , but not uni-
formly in . This uniformity is, however, not at all necessary
since we will integrate with respect to , which can be ex-
pected to converge to zero with a fast rate. But we have been
unable to find simple conditions to ensure that C1) is satisfied.

The function will play a fundamental role in the sequel.
In the case of a real random variable, it is usually referred to
(in the statistical literature) as the score function. For a random
vector, we therefore call the multivariate score function of
the density of .

A. Instantaneous Mixtures

We now apply the above result to obtain necessary conditions
for the contrasts (18) and (19) to be minimized.

Proposition 3: A necessary condition for to be mini-
mized at is

(29)

and for to be minimized at is

(30)

where and are the multivarate score functions of the
joint density of and of the conditional den-
sity of given . (Here the condi-
tional density is considered as a function of both the dependent
and the conditioning variables.)

Note: It can be seen from the proof of the preceding result
that the conditions

are also necessary. But these conditions are actually always sat-
isfied because of the definitions of and . This is an
easy consequence of the following result which can be obtained
through an integration by parts.

Lemma 5: Let be a random vector having a density
such that as and admits a
gradient . Then , , and denots
the th component of and .

Consider now the Gaussian contrasts (21), (22), and (20).

Proposition 4: A necessary condition for to be mini-
mized at is

(31)

for to be minimized at is

(32)

and for to be minimized at is

(33)



IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

where are the general elements of the inverse
of , are the coeffi-
cients in the representation of

and is the cross-spectral
density between the processes and

One can see that (33) is a limiting form of (32) as . In-
deed, converges to such that

is the error of the best linear predictor of based on
. Hence, the right-hand side of (32) converges to

a constant times that of (33), since is proportional to
. It is also possible to prove that (33) is a

limiting form of (31) as well.

B. Linear and Markovian Sources

We first consider the convolutive mixture case.

Proposition 5: Assume that the sources are linear processes.
A necessary condition for the contrast (24) to be minimized at
the sequence of class is

or (34)

and if the sources are also causal with minimum phase, a nec-
essary condition for the contrast (25) to be minimized at a se-
quence of class is

or (35)

where, in both cases, denotes the score function of the den-
sity of .

A similar result, concerning the contrast (26), can be obtained
by a combination of the proofs of Propositions 5 and 3.

Proposition 6: Assume that the sources are filtered
th-order Markov processes. A necessary condition for

the contrast (26) to be minimized at the sequence
of class is that

or (36)

where is as in Proposition 3.

For the instantaneous mixtures case, the estimating equations
associated with (27) and (28) are somewhat more complex.

Proposition 7: Assume that the source processes are linear.
If minimizes (27) and the infimum of

is attained at some sequence of class , then

(37)

and if the sources are also causal with minimum phase and
minimizes (25) and the infimum of ,

among all sequences of class with ,
is attained at some sequence , then (37) is again
satisfied. In both cases, denotes the score function of the
density of .

C. Discussion

It can be seen from the preceding results that, in the instanta-
neous mixtures case, the estimating equations (29)–(32) are of
the form

(38)

where is a function from to . The estimating
equations (33) associated with the Gaussian contrastcan be
viewed as a limiting form of the above, as shown before. This
is also true for the estimating equations (37) associated with the
contrasts (27) and (28), as they can be put into the form (38) if
one truncates the sequence to a finite sequence
(which one must in practice). In this case, takes the form

... (39)

for some real function of a real variable and some real num-
bers . In all cases, the functions , referred
to as separating functions, are related to the densities of the
sources in a specific way (they are linear in the Gaussian case).

Turning to the convolutive mixture case, we see that the esti-
mating equations (34)–(36) are of the form

or (40)

where is a function from to , with in the
case of linear sources andconstrained to be nonnegative in the
case where the sources are further causal with minimum phase
and the reconstruction sequence of matrices is
restricted to the class . Note that the system (40) contains
an infinite number of equations with an infinite number of un-
knowns! In practice, one may restrict to be zero for out-
side some given range and restrict to the same range,
so as to have just equations less than the number of unknowns
(which accounts for the indeterminacy of scale). Note, however,
that taking is not enough to ensure that the sequence

is of class . This constraint is actually not
easy to enforce.

The use of a system of estimating equations of the form (38)
or (40) is much more flexible than that of contrasts, since such
a systemneeds not arise from the differentiation of a contrast.
In the context of blind source separation, it is simply a system
of equations, which is satisfied when the reconstructed sources
are independent [5]. (Note that the system generally includes
the expectation operator, which should be replaced by appro-
priate sample average before being solved to obtain the esti-
mates of the parameters.) It can be easily seen that any system
of the form (38) or (40) is a system of estimating equations,
as soon as the sources (or the ) have
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zero mean. Note that taking in (38) yields the set of es-
timating functions introduced in [9], which can be traced back
to the method in [7], while taking of the form (39) with

being the identity function yields the method for separating
correlated sources in [9]. Also, manyad hocmethods for blind
source separation consist in equating to zero the cross cumulants
of higher order, possibly with lag, between the reconstructed
sources. This amounts roughly to solving a system of the form
(38) or (40).

But there is a price to pay for the above flexibility. First, the
system of estimating equations constitutes only a necessary con-
dition, it can (and often does) lead to spurious reconstructed
sources, as such equations often have multiple solutions. We
believe that by deriving them from a contrast one has a better
chance of avoiding this problem. The fact that they come from a
contrast makes it possible to monitor the calculation algorithm
so as to ensure that the contrast is decreased at each step of the
algorithm (and thus the reconstructed sources are closer to inde-
pendence after each step in some sense). Second, the choice of
the separating functions can have great impact on the per-
formance of the method: a bad choice could severely degrade
the performance. Our results provide a set of good candidates
for the separating functions, as they are derived from the mu-
tual information contrast, which is related to the maximum-like-
lihood principle (see [2]). These functions need not be exactly
the ones given in our propositions though. They can be simply
some rough estimates of them. Note that the general form (38)
or (40) requires the specification of real functions of
real variables and thus allows many degrees of freedom. If one
believes that the sources are linear processes, or may be well
approximated by such processes, one may settle for separating
functions of the form (39) or (40) with , which requires
the specification of only real functions, but linear filters
need also to be estimated or specified.

APPENDIX

PROOFS OFRESULTS

A. Proof of Lemma 1

By (7)

(41)

Therefore, from (5) one gets the inequality of the lemma. On the
other hand, by (5) again

But from (41) the above right-hand side is nonpositive. Thus,
is nonincreasing in , as well as

, as implied by (7). This implies
their convergence (a result already proved in [4]).

B. Proof of Proposition 1

The proof relies on the following result.

Lemma 6: Let be a vector random stationary
process admitting th absolute moment and

where is a sequence of matrices with
only a finite number of nonzero terms. Then

Proof: Consider the random vectors

This defines a linear transformation from
to with the transformation matrix

being block circular Toeplitz with
at the place. Thus, by (12)

To compute the determinant of , note that if is the
block matrix with at the place, then is
unitary and is block diagonal with diagonal blocks

, . Therefore,

On the other hand, by assumption, as soon as is
greater than some integer, say. Then it is easily seen that for

, if . Thus,
since the mutual information is nonnegative

By assumption, the random vectors admit th abso-
lute moment bounded by a constant not depending onand .
We shall show in what follows that for a random vectorwith
bounded th absolute moment, is bounded above, regard-
less of the density of . From this and the preceding results

being a constant not depending on. Dividing both sides of
the preceding inequality by , then letting , one gets
the result of the lemma.

To complete the proof, we need to show the assertion
mentioned earlier. Let be the density of and put
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where denotes a vector norm and is
the normalizing constant so thatis a density. Then

But the first term on the last right-hand side vanishes because
is a density, yielding the announced result.

Proof of the Proposition:Let , , and be as in Definition
2 and be the inverse sequence (with respect to
the convolution) of . Write
where if otherwise. Then

Therefore, since

one can choose sufficiently large such that it is bounded by
, and the continuity condition of Proposition 1 entails that

. Therefore,
by Lemma 1, . Applying
now Lemma 6 to the process , one gets

Letting and then , one gets the same inequality
as in Lemma 6. But since , one may apply
the result just proved and obtains the reverse inequality

It follows that the last inequality is an equality.

C. Proof of Lemma 2

For convenience, put

and denote by , their densities. Then

The last term is nonnegative since it is a Kullback–Leibler di-
vergence. As for the first term, by the mean value theorem and
our assumption and the fact that

for positive , , , one has

But by the Hölder inequality, the last expression has expectation
bounded by a constant times , which
yields the result.

D. Proof of Lemma 3

Let and de-
note the conditional densities of given

and of given . Then the
expected divergence mentioned in Lemma 3 is

But this expression can be easily seen to be

and the last term (without the minus sign), by (6) and (12),
equals , yielding
the result.

E. Proof of Proposition 2

Let be any sequence of diagonal matrices of
class and put , where

are the diagonal elements of . Then one can write

Each term in the sum in the above right-hand side is nonnegative
since, by Corollary 2

(42)

Further, is no other than ,
hence, is bounded below by (the constant) .
This bound will be attained if the processes are
temporally independent and independent among themselves and
it is possible to choose so that these processes
are so, since the sources are independent linear processes and
the sequences in their representation (23) are of
class .

It remains to show that can attain its minimum only
if the processes are temporally independent and
independent among themselves. We observe that, by Corollary
2, (42) can be an equality only if the process is
temporally independent. Thus, can attain its minimum
only if this happens for all and . But
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by Proposition 1,
and because the processes are temporally in-
dependent

for all . Thus, the last right-hand side vanishes for alland
hence the processes are independent.

F. Proof of Lemma 4

Put , then by the same calculation as in the
proof of Lemma 2 and using C1)

Therefore, one gets the result of the proposition if one has
proved that

as

Since the random variable inside the curly bracket converges
to almost surely as , by the Lebesgue dominated
convergence theorem, one needs only to show that it is bounded
for all small enough by a fixed integrable random variable.
But, repeating again the argument in the proof of Lemma 2, this
random variable is bounded by

for all such that . The last random variable is inte-
grable by the Hölder inequality, yielding the result.

G. Proof of Proposition 3

For to be minimized at one must have
for all matrices . Take having a single nonzero el-

ement, say , and put . One gets
from (18)

But by Proposition 4, the first term in the preceding left-hand
side equals and if

. Therefore, for small enough

and since is arbitrary, one must have ,
which yields (29).

Since , a completely similar
argument yields that a necessary condition for it to be minimized
at is that (30) holds with

But one can easily see that as defined here is the same as
the one in the proposition.

H. Proof of Proposition 4

Observe that

as , denoting the trace. Hence, whenis changed to
where is a matrix with only a nonzero term with

, one gets from (21) that the change of is

where we have put while and
refer to the covariance and cross covariance matrices,

respectively. For to maximize , it is necessary that the
last expression be nonpositive for all . Therefore,

which is no other than the condition (31).
On the other hand, by (22), the change of corresponding

to the same above change of, is, putting

where represents the change of when
is changed to . But the terms involving

the disappear since
by the definition of . Therefore, by the same
argument as before, one obtains (32).

Finally, with the same change of as before, the process
is changed to while

the processes , , are unchanged. It then
follows from (20) that the corresponding change of is

This yields (33).

I. Proof of Proposition 5

Suppose that the contrast (34) is minimized at
then adding to this sequence the sequence ,
where is any sequence of matrices, must not
decrease this contrast. Choose this sequence to have only one
nonzero term which has only one nonzero element ,
then the change of this contrast is

If either or , the last term of the above ex-
pression is as . As for the contribution
of the other terms, using Proposition 4, it can be seen to be

. This yields the
first result of the proposition. The proof for the other result is
similar.
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J. Proof of Proposition 7

For the contrast (27), when is changed to with
having a single nonzero element , the corresponding change
of this contrast is the infimum of

over all sequences of class . As minimizes
the contrast, the above expression must be nonnegative; hence,
taking (so that ) and

The above right-hand side, by Proposition 4, is

yielding the first result of the proposition. The proof for the other
result is similar.
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