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Mutual Information Approach to Blind Separation of
Stationary Sources

Dinh Tuan PhamMember, IEEE

Abstract—This paper presents a unified approach to the estimating equations, obtained by differentiating the above con-
problem of blind separation of sources, based on the concept of trast and its variants, which can be related to earlier works [7],
mutual information. This concept is applied to the whole source 9]. Our emphasis will be on the general ideas and concepts and
sequences as stationary processes and thus provides a univers . - ; .
contrast applicable to both the instantaneous and convolutive herefore details O_f |mplementf_;1t|0ns of the methods will not be
mixture cases. For practical implementation, we introduce several discussed (these implementations would depend on area of ap-
degraded forms of this contrast, computable from a finite-di- plications and can be the topics of subsequent works).
mensional distribution of the reconstructed source processes  To proceed, let us describe the problem in mathematical terms
only. From them, we derive several sets of estimating equations, and introduce some notations. We assume Faequences of
generalizing those considered earlier. . .

observations{ X (¢), t € Z}, k = 1, ..., K, are available,
Index Terms—Contrast, convolution, entropy, independent each beinga mixture df independent sourcegs; (1), t € 7},

component analysis, Kullback—Leibler divergence, mutual infor- E=1 K, either instantaneously or through a convolution
mation, separation of sources, stationary process. &Y. . ’
More precisely, in the last case

I. INTRODUCTION X(t) = Z ADS(t—1) = (A% 8)(2) 1)
LIND separation of sources is a topic which has received I—— o
much attention recently, as it has many important applica- -
tions (see, e.g., [2] for a review). Basically, one observes sevefdlereX (£) andb;(t) denote the vectorsXy(#) - -- X (#)]” and
linear instantaneous or convolutive mixtures of independent siga (£) -+ - Sk ()] 7, respectively{ A(l), I € Z} is a sequence of
nalsicalled sources, and the problemis to recover them from tH@trlces, ane Fjenotes convoll_mon. The instantaneous mixture
observationswithout relying on any specific knowledge of th&ase can be viewed as a particular case of the .abov_e where the
sources|n this blind context, a sensible method is to adopt tiEAUENCEA(l)! € Z} reduces to a single matrix of index
approach of an independent component analysis (ICA) in whilfflich we denote again by, so that
a measure of dependence between the reconstructed sources is X(t) = AS(t). )
minimized. A natural such measure is the mutual information
which has been introduced in [3] and implemented in [8]. HowFo separate the sources one naturally performs an “inverse”
ever, this measure and others which have been proposed teypsformation on the sequence of observed vectors, namely
only on the marginal distribution of the sources, thereby ig-
noring their temporal properties. The exploitation of such prop- Y(t) = BX(¢) @)
erties can yield better separation in the case of instantanegyi§ye instantaneous mixture cag@,denoting the separation
mixtures and is crucial in the case of convolutive mixtures. Thﬁatrix, and
last case has been less well investigated because of lack of a
well-understood methodology: most works in this area adopt an
ad hocapproach based on canceling cross cumulants. Recently,
this author [10] has proposed the use of the mutual information
between stationary processes as a contrast function for blindhe convolutive mixture cas€,B(l), [ € Z} denoting the
sources separation and discusses some implementation isstegpuence of separation matrices.
In this work, we further develop this proposal and provide full The idea is to determine the separating maRigr sequence
proofs of results, as the cited paper was only a short version poé-matrices{B(l), I € 7} such that the output sequence
sented at the ICA'99 Workshop. We also provide several sets{df (¢), t € Z} in (3) or (4) has components as independent as
possible. This is precisely the goal of the ICA, except that ICA
Manuscript received July 1, 2000; revised October 15, 2001. thus far has been restricted to instantaneous transformations
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The estimation problem will not be considered (for a simpl®ne then deduces the following result, which is somewhat more
case, see [8]) although we are fully aware of the difficulty gbrecise than a result in [4, pp. 64—65 and 273].
estimating the density in a high-dimensional space and we will
try to avoid it as much as possible.

For ease of reading, proofs of results will be relegated to ther[Y (1), ..., Y(m)]/m > h[Y (m)|Y(m — 1), ..., Y(1)]
Appendix.

Lemma 1: For any stationary proces¥”(¢), t € Z}

and both sides of this inequality converge nonincreasingly to the

same limit (possibly-co0) asm — oo.
II. MUTUAL INFORMATION BETWEEN STATIONARY PROCESSES (P y-o0)

Following [4], we call the common limit in Lemma 1 the

A. Some Definitions and Notations entropy (rate) of the proced¥’(¢), ¢ € Z} and denote it by

Recall that the mutual information between a sekaindom 1y (.)]. If Y (¢) is a vector with components (¢), ..., Y (t),
vectorsYy, ..., Yk, with joint and marginal density functionsit js also called joint entropy (rate) of the processes
andpy,, ..., , Is given by [4
Pyi, .., Y Pyy Py, 1SQ y [4] (Yi(t), t € 7}, k=1 . . K
K
11 pv, (Y3) and denoted byi[Y1(-), ..., Yi(-)].
I(Yy,...,Yg) =—Elog =1 2) Mutual Information Between ProcesseShe mutual
Pyi, Vi (Y1 o Vi) information between theK jointly stationary processes
K {Yru(t),t €Z}, k=1, ..., K can now be defined as [4]
:Zh(Yk)—h(Yi,..,’Y}() K
= 1Y), 5 Vi) = D7 AIGCO] = DA, -, Vi)
where i=1 )
h(Y1, ..., Yi) = —Elogpy, _vi(Y1, ..., Y&) Clearly, I[Y1(-), ..., Yx(:)] > 0 and vanishes if the processes
and {Y%(t), t € Z} are independent. For the converse, we are able to
) prove it only in the Markovian case (of arbitrary order, however)
h(Yx) = —Elog py, (Vi) but we believe it holds much more generally. We can write
are the (Shannon differential) joint and marginal entropies oj[yl(.% o Y ()]
Y1, ..., Yg, respectively. Note that the notations "
MIYE. . YEY and AV, ..., Yi) = > ABMO)Y(D). t< 1 =AY (DIY (), t<1]}
=1

are the same and will be used interchangeably. K

The mutual information is actually the Kullback-Leibler di- Z WYY (1), t<1]—h[Y (DY (), t<1] 9)
vergence between the joint density Bf, ..., Y and their — ’ ’
product densities. From the inequalityzz < « — 1 for all
z > 0, with equality attained only at = 1, one can see that whereh{Yy(1)[¥i(£), ¢ < 1] stands for
I(Yy, ..., Yx) > 0 with equality if only if Y7, ..., Yy are d"hm h[Yi(m)|Ys(m — 1), ..., Y3(1)]
independent. Thus, the mutual information is a measure of dé-""° -
pendence between a set of random vectors. = Jim A (DY), -, V(2 —m)]

1) Entropy of Stationary ProcesseShe entropy concept (ihe last equality coming from stationarity) and similarly for
can be generalized to the case of stationary (vector) proces$gs, (1)|Y(t), t < 1] andh[Y (1)|Y(¢), t < 1], Y(¢) denoting

For any proces$Y'(t), t € Z} one can write [4] the vectorY; (¢) - - - Y (£)]7. Since the conditioning decreases
m the entropy, each term in the sum on the right-hand side of (9) is
R[Y(1), ..., Y (m)] = Z RY®)|Y(t—1),...,Y(1)] (5) nhonnegative. The lastterm on this right-hand side represents the
t=1 mutual information between the components of the conditional

distribution of Y'(1) givenY(¢), t < 1 and hence is nonneg-
ative as well. ThusI[Y1(:), ..., Yk ()] = 0 implies that all
RYIY (t—1), ..., Y(1)] these terms vanish, which entails thati)1) is independent of

_ _ _ {Y;(t), t < 1, j # k}, conditionally onY%(t), t < 1 and ii)

MY @), Y= Y=, - YT (6) Y1(1),..., Yk (1) are independent conditionally &f(t), ¢ < 1.

is the conditional entropy (that is the expected entropy of t@r Markovian processes, ii) means that the transition proba-
conditional distribution) o¥ (¢) givenY (¢t—1), ..., Y(1). But bility factors into K factors and i) implies that each factor de-
the conditioning decreases the entropy (see [4]), hence if tpends only o{Y3(¢), t < 1} foranindexk. Since the transition
process is stationary probability of a stationary ergodic Markov process determines

its distribution entirely, the processé€¥;(¢), ¢ € Z} must be
AY -+ DY (), ... YD) S AY(E+ DY (E), ---. Y(2)]  independent.
=h

YOI (E-1),...,vQ)] _ N L
Our result provides further an inequality and the monotonicity of the con-
(7) vergence of its left-hand side.

where



PHAM: MUTUAL INFORMATION APPROACH TO BLIND SEPARATION OF STATIONARY SOURCES 3

B. Calculation of Entropy where {A(l),! € Z} is some sequence of matrices and

The computation of the entropy of a process through its defé(?): € Z} is a sequence of independent and identically
inition is not practical as it involves a limiting operation. Theré|IStrIbUt6d random vectors.
are some special cases where this can be avoided, which we now other words, a linear process is the output of some filter
consider. applied to atemporally independent process. Note that we allow

1) Gaussian Processedzor Gaussian processes, a closedhe filter to be noncausald(l) # 0 for I < 0), the causal
form formula for the entropy is available. Indeed, {{(t), case will receive some special attention later. Since we already
t € Z} be a Gaussian stationary vector procgk%t), t € Z}, know the entropy of a temporally independent process, it would
the conditional distribution dF (m) givenY (m~1), ..., ¥(1) pe a simple matter to compute that of a linear process if we
is a Gaussian distribution with covariance maty,, the error  knewhow to relate the entropy of a filtered process to that of
covariance matrix of the best linear predictoddfm) based on the original process. To derive such a result, we will need to

Y (m~1), ..., Y(1), hence by a direct calculation (see also [4]estrict ourselves to a class of “well-behaved” filters. We aall
f tri ), leZ}ofcl if

WY ()Y (m — 1), ... ¥(1)] = %logdet(ZweGm) sequence of square ma n:o{aB( ), L € Z} of classA i
wheree = exp(1). Then lettingm go to infinity and using the > IBO < o
extension of Szeg®'’s theorem to the multivariate case (see, e.g., l=—0o0
[6, p. 162]), one gets and

MY ()] =3 L log det(27c@) det, [ > B( J“]
l=—oc0

™

1 ) 2 for all \. It can then be seen that for such a sequence, the process
Cdw log detfdmcf(A)] dA (10) {Y(¢), t € Z} defined in (4) is well defined for any stationary
whereG is the error covariance matrix of the best linear pré2f0ces$X (#), ¢ € Z} withfinite ath absolute momerity > 1)
dictor of Y'(#) based or¥’ (s), s < ¢, andf is the spectral den- and is itself stationary with finitecth absolute moment. Further,
sity matrix of the process. the classA is closed with respect to the convolution in the sense

2) Temporally Independent and Markovian Processeer thatif it contains the sequenceB(l),l € Z} and{C(l),lc Z},

such processes, the following result, which is an easy condien it also contains their convolutiSnAnother interesting

quence of the definition of entropy and Lemma 1, is quite usef@jfoPerty of the classt is that any sequenceB(),l € 7} in
this class admits an inverse, with respect to the convolution,

Corollary 1: For a stationary procedd’(¢), ¢t € Z} which is also of this class, the inverse being precisely the
MY ()] < AY (m)|Y (m — 1), ..., ¥(1)] sequence of the Fourier coefficients of the function
-1
with equality if and only if it is Markovian of ordern — 1, - A
that is, the conditional distribution af (¢) givenY (7), 7 < ¢ Sy I_Z B(l)e )
dependsonlyolr (¢t—1), ..., ..., Y(¢t+1—m). In particular, -

This result follows from a result of Wiener which says thati§

a2w-periodic function, nonzero everywhere, and has absolutely

summable Fourier coefficients, then the same is truel fgt
Thus, the entropy of a temporally independent process(iee, e.g., [14, p. 245]).

simply its marginal entropy. Of greater interest is the fact that We shall further need a lower semi-continuity condition of

the entropy of a stationary Markovian process(t), t € 7} the entropy functional.

of orderm equals

AIY' ()] < R[Y(1)] with equality if and only if the process is
temporally independent.

Definition 2: The entropy functional is said to be lower
AY (m)[Y (m = 1), ..., Y(1)] semi-continuous, with respect to the convolution, at the process
=hlY(),...,Y(m)] =AY (),....,Y(m—1)] {Y(¥),t € Z}if for any integerm > 0, reale > 0, there exists

Because of stationarity, the last right-hand side also equals 6 gSh that
RY (1), ..., Y(m)] = A[Y(2), ..., Y(m)] AMC+Y)Q), ..., (CxY)(m)] <AY(1), ..., Y(m)] +¢
Y ’ _ 7h[Y(1)|Y(2) LY ()] for all sequence$C(l), | € 7} satisfying

3) Filtered ProcessesA general class of processes which 1C(0) = I]| + Z el < 6.
includes the widely used autoregressive moving average 1#0
(ARMA) processes is the class lifiear processesdefined as  3This can be seen from
follows.
o ) ] o > <ZZ|IBI— IMHICm)]|
Definition 1: A process{Y(¢), t € Z} is called linear if it ]
can be represented in the form _ {Z”B(l)”} {E”C(m)”}
o> 1 m.
Y() = Z ADe(t - 1) (11)  and the fact that the Fourier transform transforms a convolution into a multipli-

I=—c0 cation.
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Proposition 1: Let {X(¢), t € Z} be a vector random sta-the integration being made along the unit cir€leof the com-
tionary process admittingth absolute momentx > 1) and plex plane. Thus,
Y(¢t) = (B *X)(t), where{B(l), [ € Z} is a sequence of ma-

trices of classA. Assume that the entropy functional is lower /7T ) — an| A o
semi-continuous at bothX(t), t € Z} and{Y (¢),t € Z}, o log \det lz_% B(l)e 2 logdet [B(O)]. (14)
then B
= o ‘ Therefore, by restricting to the clagk™, one gets the same re-
RY ()] = A X ()] +/ log |det Y B(l)e'™ % sult as in Corollary 2 with the last integral in (13) replaced by
- j=—00 log det | B(0)].

Proposition 1 can be viewed as an extension of the following
result, which can be easily obtained along the same lines as in
[8] based on [8, Lemma Al]l.et X be a random vector anf® We shall assume throughout that the sequdeti@), [ € 7}

IIl. CONTRASTS

be an invertible matrix, then the entropy¥f= BX equals in (1) is of class4, hence in the reconstruction formula (4) we
R(Y) = h(X) +log | det B|. (12) will restrict ourselves to sequenceB(!), I € Z} of this class.
The lower semi-continuity condition is admittedly hard téA‘?’ mentioned earlier, to separate the source, one may mini-

mize the mutual informatiodi[Y1(-), ..., Yx (-)], whereYy(t)

are the components &f(¢) defined by (3) or (4) according to

model (2) or (1) is considered. But by Proposition 1, this crite-
Lemma 2: Let{Y'(¢), t € Z} be a vector random stationaryrion equals, up to a constant term

process admitting thath absolute momerfte > 1) such that ’

the joint densityp,,, of Y (1), ..., Y (m) exists (for allm) and - =

s differentiable With|V 1og pm (3)]| < C(1 + [ly]*1), v de-  Coe = D_ V()] /

noting the gradient operator addbeing a constarit.Then the

entropy functional is lower semi-continuous{&(t), t € Z}.  in the case of model (1), or the same expression but with the

integral replaced bjog | det B, in the case of model (3).

verify, but it is very mild. It holds under the following condi-
tion, which we believe to be far from necessary.

oo

det Z B(l)e'™

l=—00

log @ (15)
27

k=1 g

Proposition 1 is fundamental in that it describes how the e St ’ . .
tropy changes when the process is filtered. In particular, it pro- 1€ @bove criterion, by construction, iscantrast[3] in
vides the entropy of a linear process or more generally a filter}f Sense that it is minimized if the reconstructed sources
Markov process. Further, it provides a method fordeeonvo- 11x(t): ¢ € Z}, k = 1,..., K, coincide with the true

lution of a linear (or a filtered Markov) process, through the usiPUrcesup to a permutation and a filteringpr a scaling in the
of the following corollary. instantaneous mixture case). This ambiguityniserentto the

blind source separation problem (since it relies only on the
Corollary 2: Let {Y(t),t € Z} be a vector stationary independence assumption of the sources) and is manifested
process such that the entropy functional is lower semi-contiir the invariance property of’..: it is unchanged when one
uous at{(B xY)(t), t € Z}, for all sequence$B(l), I € Z}  preconvolves the sequendd(l),! € Z} with a sequence
of class.A. Then of diagonal matrices of clasg and premultiplies the result
ﬁ S ‘ with a permutation matrix, as can be easily seen by applying
RY ()] < R[(B*Y)(1)] —/ log |det Y B(l)c" % Proposition 1 to scalar filtered processes. To be useful, however,
o J=—09 C.. should be discriminating, in the sense of [3], that is, it
] o ) (13) should attain its minimuronly when the reconstructed sources
with equality if and only if the proces§(B « Y)(?), ¢ € Z}  cgincide with the true sourcemodulo the above ambiguity
is temporally independent. The same inequality holds Wi+ minimizingC., can only ensure the independence between

h[(B »Y)(1)] replaced by the reconstructed sources and thus for this contrast to be

AB*Y)m)|(BxY)(m 1), ..., (BxY)(1)]; discriminating one may need some further conditions (such as
in this case, equality is attained if and only if the procgd8 « non-Gaussianity), but since we will not actually use it, we do
Y)(¢), t € Z} is Markovian of ordern — 1. not pursue this question.

Clearly, Corollary 2 still holds if_the clagﬁ is replaced by A. Contrasts for Instantaneous Mixtures
a smaller subclass. A subclass of interest is the subgldssf ] o ) )
sequence$B(l), I € 7} which are causal and have causal in- The contrasC is of theoretical interest only, since its com-
verses, in the sense that it and its inverse sequence vanish at REEtion requires the complete knowledge of the distribution of
ative indexes. It is well known that the last condition is equigaCh ProcesgY(#), ¢ € Z}. Although one can always ap-
alent to the minimum-phase conditiodet[S"2° B(1)2] # 0 Proximater[Yy.(-)] by h[Yx(1), ..., Ya(m)]/m, the numbern
for all complex number of modulus not exceeding. Under might be very large for the approximation to be accurate, leading
this condition to the problem of estimation of a density ifegh-dimensional

oo space, which we would like to avotdT herefore, it is of interest
j{ logdet [T+ B(0)™'B(l)z'| ¢ dz/(2riz) =0  to obtain a simplified version af's..
C
5The amount of data needed for a “good” density estimation in a high-dimen-
4This constant can depend enas thes in Definition 2 can depend om. sional space growsxponentiallywith the dimension.

=1
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1) Contrasts Based on Finite Joint Distributiorinstead of ~ The criterion (20) is a joint diagonalization criterion, since
considering the mutual information between processes, we cdris nonnegative and can be zero if and onlyfif is diagonal
sider the mutual information between segments of processalsnost everywhere. This is easily seen from the Hadamard in-

Explicitly, we consider the criterion equality which says that for a positive-definite matfixdet f <
1 det diag f unlessf is diagonal in which case one has equality
o Hyi@) - vim)]*, ..., Y1) Y (m)]"} (16) (see, e.g., [4, p. 502]). Since this criterion involves only the cor-

] ) relations between the sources, it woualot permit the separa-
wherem is a (small) integer and;.(¢) are the components of o of 4 convolutive mixturet is easy to see that it vanishes
Y(t), defined in (3). But from (12) as soon a2 __ B(I)e'™*|f3/%(\) is a unitary matrix for al-

RY (1), ..., Y(m)] =mlogdet(B) + h[X(1), ..., X(m)] mostallA, £+/* being the Cholesky factor in the decomposi-
(17) tion fy = £3/°(f3/*)T. However, in the instantaneous mixture

o case, this contrast is discriminating, provided that there exists no
hence this criterion can be seen to be equal, up to a constgat of sources which have proportional spectral densities [11].
term, to Sincelogdet fy- = 2logdet B + logdet fx in this case, this

1 X contrast is equivalent to

Cn(B) = — > AL, ..., Yi(m)] - log|det B]. (18) )
=t C,(B) = 1 / log[det diag fy (A\)] dA — logdet B.

By construction, this is a contrast, which, in the case where A J_x
m = 1, has been shown to be discriminating if no more th
one source can be Gaussian [3]. ker> 1, one can allow the
sources to be Gaussian if the covariance matrices obnsec-
utive observations of the Gaussian sources are not proportioﬂ

aBne can further degrade the above contrast by considering the
Gaussian analogs of the critedg, andC?;,. This yields, after
%ﬂpping a constant term

(see [12], [13]). K
One can viewC,, as an approximation t6'-, in whichthe =« (p)y= 1 Z log |det cov {[Y4(1) - - - Yi(m)] "} |
entropy h[Y:(-)] is replaced byh[Y3(1), ..., Yi(m)]/m. An s 2m o~

alternative approach is to replace it by the conditional entropy

Y (m)|Yi(m—1), ..., Y3(1)], which is a better approxima- — log|det B| (1)
tion by Lemma 1. This leads to the criterion 1 K
. Co.m(B) =5 > logvar{Yi(m) — Ye(m|1 : m — 1)}
Cr(B) =" hYa(m)|Ya(m—1), ..., Yi(1)]-log | det B|. =
k=1 —log | det B| (22)
(19)

The following result shows that?, (B) is a contrast. It can where cov{-} refers to covariance matrixyar{-} refers to
be shown to be discriminating under the same conditions as {@friance, andy;(m|l : m — 1) denotes the best linear
the contrast;,, (see [12], [13]). predictor ofY;(m) based ot (1), ..., Yi(m — 1). It can be

Lemma 3: Under the model (2), the criterion (19) equal§h°W” that (21) and (2_2) are discriminating co_ntrasts proyided
the expected Kullback—Leibler divergence between the cdfat there exists no pajt & such that the covariance matrices
ditional distribution of ¥(m) given Y(m — 1),...,Y(1) Of [S;(1)---S;(m)]" and[Sk(1)--- Sx(m)]" are proportional
and the product of the conditional distribution &f ()
given Yi(m — 1),...,Y%(1), plus the constant term
RX(m)|X(m —1), ..., X(1)]. B. Convolutive Mixtures and/or Linear Source Processes
Unfortunately, the above approach cannot be generalized

2) The Gaussian Mutual InformationTo avoid the diffi- h - Ut ! H ‘< that th
culty in calculating the entropy and mutual information, we N e case of convo utive mlxtures. The reason is that the
nvolution is a transformation on the whole process, not

troduce the Gaussian entropy mutual information, defined as fyanVe £ it Th L . i
fore but with the random vectors or processes involved replacad Mte Eegment of it. T e_fc_nt_erl((j)_n (16) is st ‘3 contrlgkst
by the Gaussian random vectors or processes having the s ﬁl]té]oug we are not sure It it is |scr!m|nat|ng), but, unlike
covariance structure. From (8) and (10), the Gaussian mut g instantaneous mixture case, would involve the joint entropy

information between the stationary processgg(t), t € z}, °© Y(1), ..., Y(m); Proposition 1 is not applicab_lg since it
E=1. . . Kis ' *concerns the entropy of a whole process, not of a finite segment
Y of it. Thus, the use of (16) would require the estimation of
LYi(), ..., Y ()] the entropy of anmk-dimensional distribution, which we
1 /= would like to avoid. By the same reason, there is no analog of
= [log det diag fy-(A) —logdet fy-(A)]dr  (20) the contrast (19) for the convolutive mixture case; Lemma 3
= applies only to the instantaneous mixture case.

where fy- is the spectral density matrix of the vector process However, if one restricts oneself to the class of linear or
{Y(t) = [Yi(t) -- - Y ()]F, t € Z} anddiag denotes the diag- Markovian source processes, then simple contrasts can be
onal matrix with the same diagonal as its argument. constructed.
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1) Convolutive Mixtures of Linear Sources: (m — 1)th-order Markov process. Then, similarly to Proposi-
Proposition 2: Assume that the sources are linear process¢i®n 2, one can show that the criterion
specifically

K
CrBO)] =Y hlYa(m)[Ya(m = 1), ..., Yi(1)]
k=1

Sk(t) = Z ar(Der(t — 1) (23) ~ - "
I=—oo ' QA
- /_ lozlder 3 B 5 (26)
where{ex(t), t € Z} are temporally independent processes and t==oo
{ar (1), I € Z} are sequences of clagk then the criterion is minimized if and only if the processé¥7(t),t € Z} are in-
dependent among themselves and are Markovian of audér.
K - 00 an The proof of this result is very similar to that of Proposition 2,
Ci[B()] = hYi(1)] - / log |det > B(l)e™| -=.  substitutingh[Yy.(1)] by ~[Ya(m)|Yi(m—1), ..., Yi(1)].
k=1 - I=—co 2m As before, minimizingCy,[B(-)] not only separates the

(24) sources but actually extracts the underlying Markov processes
which generate them. In practice, it is likely that the sources
is minimized if and only if the processdd(t), t € Z} are are themselves Markovian and not filtered Markov processes;

independent among themselves and are temporally independénthis case, they are recovered exactly up to a permutation,
a scaling, and a time shift. The ambiguity with respect to

oo

Z bi (Z)Cil)\

I=—o0

log

—TT

The preceding result shows that the criterion (24) is acontrqﬁtering is lifted because one has thepriori information that
since it is minimized when the reconstructed sources coinCigg sources are Markovian.
with the true sources up to a permutation and a convolution.3) Instantaneous Mixture of Linear Sources1 the previous
However, it is not necessarily discriminating since there is sti{ psection, we have focused on the convolutive mixture case,
the possibility that the processg; (t), t € Z}, despite being ¢ the approach there can be also applied to the instantaneous
independent, do not coincide with the sources up to a permuigix;re case. By Corollary Z/.., in this case is bounded above
tion and a filtering (an example is the case where the sources
Gaussian). Nevertheless, it can be proved by a different meth%gl
in [12] (and mentioned in [13]) that the contrast (24) is discri 4 dX
inating if no more than one source can be Gaussian. mz: nf {h[(b’“ * V) (L] - / %}

As made clear by Proposition 2, minimizing (24) not="
only separates the sources but deconvolves them as well. If —log|det B| (27)
there can be no more than one Ggussmn source, one WOWILre the infimum is taken over all sequendés(l), | € 7}
recover the sequencgsy(t), t € Z} in (23) up to a scaling, o o355 4. Further, equality can be achieved if and only if the
a permutauon, and a time shift. More precisely, m'n'm'z'nﬁrocess{Yk(t), ¢ € ZV is linear. SinceC.. is a contrast and
(24) yields Yi(t) = awer,(t — 7i) for some permutation o sy rces are linear processes, this shows that (27) is indeed a
{m1, ..., 7k }, Some nonzero constants, ..., ag, and some contrast.
integersry, ..., 7x. Note that, unlike the contrast (15) which is Clearly, by (14),C. is also bounded above by
invariant with respect to filtering, the contrast (3¢ not X

A more restrictive assumption on the distribution of the )
sources is that they atimear causal processes with minimum Z inf {A{(B * Y1) (1)] — log[bx(0)} — log | det B (28)
phase By this we mean that the sequendes,(!), ! € z} in ~ *=!
the representation (23) are of clads. Assume further that the Where the infimum is taken over all sequengés(l), [ € 7}
sequencdA(l), 1 € Z} in (1) is also of this class; then it makesOf class A*. Further, by Corollary 2 again, equality can be
sense to restrict the sequerd(!), I € Z} in (4) to this class achieved if and only if the processe¥;.(t), ¢ € Z} are linear
as well. Therefore, the contrast (24), by (14), reduces to causal with minimum phase. Thus, in the case where the sources
are linear causal with minimum phase processes, (28) is indeed

K a contrast.
CF[B()] = Z h[Y%(1)] — log | det B(0)). (25) It is worthwhile to note that the coefficientg(0) in (27) and
k=1 (28) can be taken equal ig that is, the infima there are taken

over all sequencef (1), I € Z}in A or AT with b;(0) = 1.
As before, minimizing iamong all sequences of clags® not  This is because multiplying the sequenég(/), € Z} by a
only separates the sources but deconvolves them as well. Thastant does not change the expression inside the curly bracket
contrast (25), however, relies on somewhat artificial assump; in (27) and (28).
tions on the sources and the mixing matrix sequence. Butit has | ]
the advantage of being simple. C. Discussion
2) Convolutive Mixtures of Markovian Sources: weaker The contrast’; is well known (see, e.g., [3], [8]). But it ex-
assumption on the sources is that they are filtered Markov pigeits only the marginal distribution of the sources at a given
cesses. More precisely, it is assumed that the sources cartilme point. Our contrast§’,,, andC*, , m > 1, involve their

m?

represented by (23) but withex(¢), ¢t € 7} now being an temporal dependence as well and thus could have better per-
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formance especially in the case where the sources are stronglyhe functionyy- will play a fundamental role in the sequel.
temporally dependent (note that if they are white, = C, = In the case of a real random variable, it is usually referred to
C1). However,m should be small due to the difficulty of esti-(in the statistical literature) as the score function. For a random
mating the entropy of a high-dimensional random vector. Thugctor, we therefore cally the multivariate score function of

it might be of interest to consider the contrasts (27) and (28)e density ofy".

which requires only the entropy of random variables and yet

taking into account the temporal dependence of the sources. Phelnstantaneous Mixtures

drawback is that they rely on the linearity assumption of the We now apply the above result to obtain necessary conditions
sources and require an extra minimization. Another possibilifgr the contrasts (18) and (19) to be minimized.

is to focus only on the second-order dependence of the source
as implied by the use of the contrasts, 4, C;, ,, andC,. The
use of correlations only, but including lagged correlations, f
blind sources separation, has been proposed, for example, in]ijﬂyj(l) Y )k m Y1), .., Ya(m)]} =0,

and [9]. The use of’; andC7, in the convolutive mixtures case )

is new. 1<j#k<K (29)

S
F‘roposition 3: A necessary condition fof’,,, to be mini-
(5pized atB is

and forC?%, to be minimized aiB is

E{[Y;(1) - Y;(m)]¥5 . [¥x(1), ..., Ya(m)]} =0,
By differentiating the above contrasts, one obtains a system 0#[ i) Sl m Y1) ;(< ?,]} k<K (30)
equations to be satisfied, called estimating equations (see [5]). =j#ks
For this purpose, the following result plays a central role.  wherey)y, ,,, andyy; ,, are the multivarate score functions of the
Lemma 4: Let Y and Z be two random vectors admittingl©int density ofY%(1), ..., Y (m) and of the conditional den-

absoluteath moment for somer > 1. Assume thay’ and Sty Of Ya(m) givenYi(m — 1), ..., Ya(1). (Here the condi-
Y + £Z, € being a matrix for which the productZ makes tional density is considered as a function of both the dependent

sense and has the same dimensiol aadmit densitiegy and and the conditioning variables.)

IV. ESTIMATING EQUATIONS

py+¢z satisfying the following conditions. Note: It can be seen from the proof of the preceding result
Cl) As¢ — 0 that the conditions
/10g[pY(u)/pY+sz(U)] pytez(u)du — 0 E{[Yi(1) - - Ya(m)] ok, m[Ya(1) - -5 Ya(m)]} =m

faster thar(€]. E{IR(1) - Yilm)li u[V2(2), .. Yidm)]} =1

C2) The function- log py admits almost everywhere a gra-2€ also necessary. But these conditions are actually always sat-

dient (column) vectogyy such that isfied because of the definitions 4, ,,, andv;, . This is an
) easy consequence of the following result which can be obtained
by ()| < O+ lul|*77),  forallw through an integration by parts.
for some constant. Lemma 5: Let Y be a random vector having a density
Thenasf — 0 such thatfy (y)y — 0 asy — oo and —log fy admits a

B _ T gradientyy. ThenE[Yi¢w, v(Y)] = 1, Yz, andi)y, y denots
WY +£2) - MY) = E(¢y£2) + o(€) the kth component o™ and+y-.

whereo(£) denotes a term tending @faster thare. Consider now the Gaussian contrasts (21), (22), and (20).
Note: Condition C1) could be hard to verify, but it is quite

Proposition 4: A necessary condition fof', ,,, to be mini-
reasonable. Indeed p y 9,m

() mized atB is
L % u) du m m
/ og py+SZ(U,) pY-I—SZ( ) Z cov {Y;(t), Z bk,m(t, S)Yk(s)} =0,
_ Copy(w) py(w) t=1 pu
- / [bg Praca()  pyacg(u) | PTrERO 1<j#k<K (31)

For small£, one would expect that the expression inside ther Cs . to be minimized aB is

bracket ] is of the ordet|£]|? and thus the whole integral would ’ )

be of this order. The difficulty is thaty- andpy ;¢ convergeto i

zero at infinity and hence the behavior of trJ;e ratio/py 4z ZCOV Yi(®), ar,m—1(m—1) Z “k:m—l(l)yk(m_l)} =0,
near infinity is difficult to predict. The expression inside thé=" =0

bracket is in general of the ordg€]|? for fixed «, but not uni- 1<j#k<K (32)
formly in «. This uniformity is, however, not at all necessary, i torc* to be minimized af is

since we will integrate with respecttg- ¢z, which can be ex- g
pected to converge to zero with a fast rate. But we have been / i

unable to find simple conditions to ensure that C1) is satisfied. vy, N/ friveW]dA =0, 1<j#E<K (33)

—T
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where by (¢, s) are the general elements of the inversamong all sequence®;(1),!cZ} of classA™ with b,(0)=1,

of cov{[Ya(1) - Ya(m)|'}, ar m—1(l) are the coeffi- is attained at some sequengds(7),! € Z}, then (37) is again
cients in the representatioﬁj?;_ojL ar, m—1()Yx(m — 1) of satisfied. In both caseg); denotes the score function of the
Yi(m) — Ya(m|l : m — 1) and fy,y, is the cross-spectral density of(b}, x Y3)(1).

density between the procesd@s (t), t€ Z} and{Y;(t),t€ Z}.

One can see that (33) is alimiting form of (32yas— . In- C. Discussion

deed g, 1 (1) converges tay (1) such tha ;> ap(1)Yi(t— It can be seen from the preceding results that, in the instanta-
1) is the error of the best linear predictor bf.(t) based on Neous mixtures case, the estimating equations (29)—(32) are of
Yi(s), s < t. Hence, the right-hand side of (32) converges e form

a constant times that of (33), singe, y, (1) is proportional to  prry-(1y...v- V(1 Y -0

/)37 ar(Det™ 2. It is also possible to prove that (33) is a ;) - Yi(m)ler, m[Ya(1), ..., Ya(m)]} =0,

limiting form of (31) as well. 1<j#k<K (38)

where ¢ ., is a function fromIR™ to IR™. The estimating
equations (33) associated with the Gaussian contrasan be
viewed as a limiting form of the above, as shown before. This

Proposition 5: Assume that the sources are linear processésalso true for the estimating equations (37) associated with the
A necessary condition for the contrast (24) to be minimized &@ntrasts (27) and (28), as they can be put into the form (38) if

B. Linear and Markovian Sources
We first consider the convolutive mixture case.

the sequencéB(l), [ € Z} of classA is one truncates the sequen@dg (l), [ € Z} to a finite sequence
(which one must in practice). In this cass, ., takes the form
E{Y;(1 — n)yn[Ya(D]} =0,
B, 1 m
‘77 k = 17 Tt K7 TE Zv 7 7£ k orr 7£ 0 (34) <Pk,m(y(1), Y. ., y(m)) = Sak [Z bk71y(l)] (39)
and if the sources are also causal with minimum phase, a nec- Bk, m =1
essary condition for the contraJsrt.(ZS) to be minimized at & @ some real functior;, of a real variable and some real num-
quence{B(l), [ € Z} of classA™ is bersf. 1, - -, Br.m. In all cases, the functions, ., referred
E{Y;(1 — ") [Ya(1)]} =0, to as separating fgnctlons, are relt_;lted to the densm.es of the
sources in a specific way (they are linear in the Gaussian case).
k=1 ..., K, 7>0,j#korr >0 (35) Turning to the convolutive mixture case, we see that the esti-

) / mating equations (34)—(36) are of the form
where, in both casesy, denotes the score function of the den-

sity of Y3, (t). E{[Y;(1 = 7) - ¥;(m = D), m[Y&(1), .-, Ye(m)]} =0,

A similar result, concerning the contrast (26), can be obtained S k=1,... . K. 7€Z, j4£korr A0 (40)

by a combination of the proofs of Propositions 5 and 3. wheregs, . is a function fromR™ to R™, with m = 1 in the

Proposition 6: Assume that the sources are filtere¢ase of linear sources amatonstrained to be nonnegative in the
(m — 1)th-order Markov processes. A necessary condition fease where the sources are further causal with minimum phase
the contrast (26) to be minimized at the sequefB¢/),/ € Z}  and the reconstruction sequence of matrigBgl), [ € 7} is

of class A is that restricted to the clasglt. Note that the system (40) contains
. an infinite number of equations with an infinite number of un-
EAY; (1 =) Yi(m = D)]ih m[Ye(D), -, Ye(m)I} = 0, nownst In practice, one may restriBy{!) to be zero forl out-
jk=1,....K,7€Z,j+korr#0 (36) sidesomegivenrangé;, L,]and restrict tothe same range,
so as to have judt equations less than the number of unknowns
wherey;, ,, is as in Proposition 3. (which accounts for the indeterminacy of scale). Note, however,

takingL; = 0 is not enough to ensure that the sequence
),l € Z} is of classA™. This constraint is actually not
easy to enforce.
Proposition 7: Assume that the source processes are linear.The use of a system of estimating equations of the form (38)
If B minimizes (27) and the infimum of or (40) is much more flexible than that of contrasts, since such
oo a systenmeeds not arise from the differentiation of a contrast
Z bi(1)e™| dX/(2n) In the context of blind source separation, it is simply a system
oo of equations, which is satisfied when the reconstructed sources
are independent [5]. (Note that the system generally includes
the expectation operator, which should be replaced by appro-
E{(bj+Y))(Dpu[(bi+Y)(D]} =0, 1<j#k<K (37) priate sample average before being so_lved to obtain the esti-
mates of the parameters.) It can be easily seen that any system
and if the sources are also causal with minimum phaseBndof the form (38) or (40) is a system of estimating equations,
minimizes (25) and the infimum of[>;2, 0x())Yx(1 — )], as soon as the sources (or the . [Yx(1), ..., Yi(m)]) have

For the instantaneous mixtures case, the estimating equatiggsll
associated with (27) and (28) are somewhat more complex. ! (

A(by * Y3)(1)] — /7T log

-7

is attained at some sequeni@g (1), I € Z} of classA, then
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zero mean. Note that taking = 1 in (38) yields the set of es- B. Proof of Proposition 1

timating functiqns introd.uced i_n [9], which can be traceq back The proof relies on the following result.

to the method in [7], while taking;, ,, of the form (39) with

¢k being the identity function yields the method for separating Lemma 6: Let {X(¢), ¢ € Z} be a vector random stationary
correlated sources in [9]. Also, maayg hocmethods for blind Process admittingrth absolute momertr > 1) and¥ (¢) =
source separation consist in equating to zero the cross cumul&fts X)(¢) where{B(l), | € Z} is a sequence of matrices with
of higher order, possibly with lag, between the reconstruct@dly a finite number of nonzero terms. Then

sources. This amounts roughly to solving a system of the form

@3or@0). _— MY () 2 HXO)+ [ logfder - BO)CM|
But there is a price to pay for the above flexibility. First, the — e 2m

system of estimating equations constitutes only a necessary con-

dition, it can (and often does) lead to spurious reconstructed Proof: Consider the random vectors

sources, as such equations often have multiple solutions. We o0

believe that by deriving them from a contrast one has a better Y (t) = Z B(OX[(t—1) (mod m)]

chance of avoiding this problem. The fact that they come from a l=—00

contrast makes it possible to monitor the calculation algorithm m_1 [ oo

S0 as to ensure that the contrast is decreased at each step of the = Z l Z B(t—7 +1m)| X(7).

algorithm (and thus the reconstructed sources are closer to inde- =0 lie—eo

pendence after each step in some sense). Second, the choice of | .. . .

the separating functions;, ,, can have great impact on the perﬁ%'s(ggfmes a Imegl;ransforma.tlon fral0), ..., X(m_ 1).

formance of the method: a bad choice could severely degra{ éz (0), ..., ¥ (m — 1) with the transformation matrix

the performance. Our results provide a set of good candidates ' being block circular Toeplitz with,Z_ oo B(t—7-+im)
for the separating functions, as they are derived from the mftkthe(7 ?) place. Thus, by (12)

tual information contrast, which is related to the maximum-likeﬁ[y(m)(o)? LYy (m —1)]

lihood principle (see [2]). These functions need not be exactly _ BIX(0 Xim— 1 loz | det B(™
the ones given in our propositions though. They can be simply = hX(0), ..., X(m—1)] +log|det ;
some rough estimates of them. Note that the general form (38)rg compute the determinant @™ note that iflU is the
or (40) requires the specification @&m real functions ofmr:  plock matrix withe *27t7/™ [ /, /m atthe(r, t) place, thed is

real variables and thus allows many degrees of freedom. If agitary and/—* B“™ U is block diagonal with diagonal blocks
believes that the sources are linear processes, or may be \?fflo G2 /mB(1),t =0, ..., m — 1. Therefore,

approximated by such processes, one may settle for separafing —
functions of the form (39) or (40) withh = 1, which requires
the specification of only real functions, butX” linear filters

m—1 [e9)

log|det B™| = " log|det Y 2T B(1)|.

need also to be estimated or specified. = l==o0
On the other hand, by assumptidB(/) = 0 as soon a§| is
APPENDIX greater than some integer, sayThen it is easily seen that for
PROOFS OFRESULTS m>2q, Y@ =Y(@®)ift € {q, ..., m—1—q}. Thus,

A Proof of Lemma 1 since the mutual information is nonnegative

By (7) A (0), ..., Y (m-1)]

<hlY(q), ... Y(m—-1—q)|+ RIY ™ (4)].
MY ()Y (t-1), ..., Y(1)] 2 hY (m)[Y (m—1), ..., Y(1)]. ¥{), ... Y( ) oqu,;qum Y(#)]
1<t<m. (41)
By assumption, the random vectd€™ (¢) admit ath abso-
Therefore, from (5) one gets the inequality of the lemma. On thé&e moment bounded by a constant not depending.andt.
other hand, by (5) again We shall show in what follows that for a random vectbwith
boundedvth absolute moment,( %) is bounded above, regard-
R[Y (1), ..., Y(m)]/m — h[Y(1),...,Y(m —1)]/(m —1) less of the density af. From this and the preceding results

= %IL[Y(mNY(m —-1),...,Y(1)] Y (q),...,Y(m—1-¢)] > h[X(0), ..., X(m —1)]
m—1 / loe |det — ei?wlt/rnB Dl —c
- m ; AY®Y (¢ —1), ..., Y(1)]. + ; g l;m )

C being a constant not dependingan Dividing both sides of
But from (41) the above right-hand side is nonpositive. Thuthe preceding inequality by, then lettingm — oo, one gets
AlY (1), ..., Y(m)]/m is nonincreasing inm, as well as the result of the lemma.
RY (m)|Y(m—1), ..., Y(1)],asimplied by (7). Thisimplies To complete the proof, we need to show the assertion
their convergence (a result already proved in [4]). O mentioned earlier. Letp; be the density ofZ and put
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I

q(z) = C,e~I*I” where|| - || denotes a vector norm ardd, is ~ for positivea, b, A, one has
the normalizing constant so thais a density. Then
| log py (Y) —log py (Y))|

h(Z) =Elog[¢(Z)/pz(Z)] — Elog q(Z) <O 2nx@=20y |2t = Y|* D) - Y.

<E[¢(2)/pz(Z2) - 1] + E||Z||* - log C.. But by the Holder inequality, the last expression has expectation

But the first term on the last right-hand side vanishes beC@uskeJounded by a constant timpe'(0) — 1| +El¢0 ICOI, Wh'g

is a density, yielding the announced result. o Y lelds the result

Proof of the Proposition:Let m, ¢, ands be as in Definition D. Proof of Lemma 3
2 and{BT( [),l € Z} be the inverse sequence (with respect to | et DY (m)|Vs (m—1), . Y (1) AN DY (o) ¥ (m1), . Y1) dE-
the convolution) of B(1),1 € Z}. Write B(l) = B,,(1)+B,.(I) note the conditional densities df,(m) givenY;(m — 1), ...,
whereB, (1) = B(l) if [I| < n, = 0 otherwise. Then Yi(m — 1) and ofY (m) givenY (m — 1), ..., Y(1). Then the
Yo () = (B, % X)(t) = Y(t) — (B, B LY. expected divergence mentioned in Lemma 3 is
K

Therefore, since IT 2y, ) yi m=1), ., v [Y2(1), + o o5 Ya(m)]
—Elog *=t
o PYm)|Y (m—1), .. Y() Y 2(1), -, Yi(m)]
> B+ BHYDI< | Y IBO) [Z 1B() ||] But th o can be easily seen o b
= o Bt ut this expression can be easily seen to be
K
one can choose sufficiently large such that it is bounded b h v 1 Yi(1
¢, and the continuity condition of Proposition 1 entails thag— Fi(m)i(m = 1), ..., Yi(L)]
h[Yn(l), ey Y,,(m)] < h[Y(l), ey Y(m)] + e. Therefore, _h[Y(m)|Y(m _ 1)’ . Y(l)]
by Lemma 1h[Y (1), ..., Y (m)]+¢ = mh[Y,.(-)]. Applying
now Lemma 6 to the procesd ,.(¢), t € Z}, one gets and the last term (without the minus sign), by (6) and (12),
equalsh[X(m)|X(m — 1), ..., Y(1)] — logdet B, yielding
AY (1), ..., Y(m)]/m +e/m = h[X(:)] the result. O
+/ log |det Z GilA dA  E. Proof of Proposition 2
- j=—o0 2 Let {D(I), I € Z} be any sequence of diagonal matrices of

classA and putB(l) = (D« B)(1), Yx(t) = (dg* Yz )(t) where
Lettingn — oo and thenn — oo, one gets the same inequality, ) are the diagonal elements B1). Then one can write

as in Lemma 6. But sincX (t) = (B « Y)(t), one may apply
the result just proved and obtains the reverse inequality - LS -
CLIB()] = Cuoe [BQ)] + 2 S AYR(D] = A [1i()]

T k=1
PXON 20O+ [ osfaet 3 Bt | 2
-7 j=—0o0 2m zl)\ d)‘
4 log det Z .
§ = dA - =0
:h[Y(~)]—/ log |det > B(l)e'™? 7 Each term in the sum in the above right-hand side is nonnegative
- j=—o00 since, by Corollary 2
It follows that the last inequality is an equality. O . d)\
h[ )] < b+ [ log S a0 L @
C. Proof of Lemma 2 - l=—0c0

For convenience, put Further,C..(B) is no other thad [Y1(), ..., Yu()]+R[X ()],
T T T hence,C,[B(-)] is bounded below by (the constam)X(-)].
Y=¥"(1) Y (m)] This bound will be attained if the processgs,(¢),t € Z} are

=[(C+Y)T(1)---(Cx ) (m)]* temporally independent and independent among themselves and
_ a it is possible to choosé€B(l),! € Z} so that these processes
and denote byy, py- their densities. Then are so, since the sources are independent linear processes and
R(Y") = h(Y) = E[log py (Y) — log py (Y")] LT:SSSTuencesak(l),l € Z} in their representation (23) are of
~Eloglpy (Y")/py(Y")]. |t remains to show tha®’ [B(-)] can attain its minimum only

The last term is nonnegative since it is a Kullback—Leibler dif the ProcessesYs(#), ¢ € 7} are temporally independent and
vergence. As for the first term, by the mean value theorem affePendent among themselves. We observe that, by Corollary

our assumption and the fact that 2,(42) can_be an equality only if the proce{é:i_( ) te Z} is
temporally independent. ThuS; [B(-)] can attain its minimum

(a4 D) < 2maxA=L0) (oA 4 ) only if this happens for alk andI[Y1(-), ..., Yx(-)] = 0. But
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by Proposition 1I[Y1(-), ..., Ya(-)] = I[Yi(), ..., Ya(-)] H. Proof of Proposition 4
and because the procesq@$(t), t € Z} are temporally in-  qpserve that
dependent

1 T T asé — 0, tr denoting the trace. Hence, whéhis changed to
=1 {1 viml*, .., [Yr (1) Ye(m)]'} B+ £B wheref is a matrix with only a nonzero tersy, ; with
J # k, one gets from (21) that the change®yf ,, is

log | det(M + 8)| = tr(M~6) + o(||8]])

for all m. Thus, the last right-hand side vanishes forraland
hence the processés}.(t), t € Z} are independent. O Exjtrfcov(Yy)"teov(Y;, Yi)l/m + o(E;)

where we have plt';, = [Y(1) - - - Yi(m)]T while cov(-) and
, . ~ cov(-, -) refer to the covariance and cross covariance matrices,
PutY' =Y + £Z, then by the same calculation as in th@espectively. FoB to maximizeC,, ., it is necessary that the

F. Proof of Lemma 4

proof of Lemma 2 and using C1) last expression be nonpositive for &l;. Therefore,
h(Y') = h(Y) = E[logpy (Y) — log py (Y")] + o(€). trfeov(Ys) teov(Y;, Yi)] =0
Therefore, one gets the result of the proposition if one haich is no other than the condition (31).
proved that Onthe other hand, by (22), the changé€jgf,,, corresponding
, T to the same above changeBf is, puttinge,(m) = Yi(m) —
E {[log py (Y) — logpy (¥') — ¢ E(¥)eZ)/|I€]|} — 0, Ye(mlL s m—1) = S a0 ()Y i(m — 1)
as||€|| — 0. m—1

) ) o cov { ex(m), Z [k, m—1(D&Ek;Y;(m — 1)

Since the random variable inside the curly bracket converges =

to 0 almost surely a§/£|] — 0, by the Lebesgue dominated
convergence theorem, one needs only to show that it is bounded '
for all £ small enough by a fixed integrable random variable. O ma (D¥i(m = l)]}/var{ek(m)} o)
But, repeating again the argument in the proof of Lemma 2, this
random variable is bounded by where 65, —1({) represents the change af, ,,—1(!) when
Y5 (t) is changed td7(¢t) + &,;Y;(¢). But the terms involving
O[2 4 20 @=20(||y |2 +¢|Z||*~Y) + |[Y|* )1 Z]|.  the 6k, m_1(I) disappear sinceoviecy(m), Yi(m — 1)} = 0
i ~ by the definition ofY3(m|1 : m — 1). Therefore, by the same
for all £ such thal1|8||. <e T_he Igst random variable is inte-argument as before, one obtains (32).
grable by the Holder inequality, yielding the result. O Finally, with the same change @& as before, the process
" {Yi(t), t € Z} is changed tq Y, (t) + &;Y;(2), t € Z} while
G. Proof of Proposition 3 the processe$Y;(t), t € 7}, i # k, are imchanged. It then
For C,,, to be minimized aB one must have’,,(B+£B) > follows from (20) that the corresponding changecifis
C(B) for all matrices€. Take& having a single nonzero el-

ement, say;, and putY’, = [Yi(1)---Yi(m)]*. One gets Erj / | [Fviy; N/ Frv (V]dA/(2m) + o(Ex; ).
from (18) —n
This yields (33). O

MYy + &Y ;) — B(Y )] /m — log | det(I + E)| > 0.

But by Proposition 4, the first term in the preceding Ieft—hanld Proof QEPropositioge

side equalsi, E[Y 4%, m(Yi)/m + o(&;) and if k # 7, Suppose that the contrast (34) is minimized B(!),l € 7},

det(I 4 €)| = 1. Therefore, foi5;,; small enough then adding to this sequence the sequefiéex B)(1),! € Z},
where {£(1),l € Z} is any sequence of matrices, must not
EGEY v, m (Y1) > 0 decrease this contrast. Choose this sequence to have only one

nonzero terng (+) which has only one nonzero elemént (),

and sincey,; is arbitrary, one must haveY ;45 . (Y%)] =0, then the change of this contrast is

which yields (29).
SinceC;, = mCp, — (m — 1)Cy,_1, a completely similar 2[Yz(1) + Ex;(7)Y5(1 — 7)] — h[Ya(2)]

argument yields that a necessary condition for it to be minimized

at B is that (30) holds with —/

log | det[I + S(T)e”)‘“;l—)\.
s

Vi, m Y1), - y(m)] = Yu,mly(1), ..., y(m)] If either  # 0 or j # Fk, the last term of the above ex-
(D). 1 pression iso[€;(7)] asé&;(r) — 0. As for the contribution
_ | ol )’0 »y(m=1)] of the other terms, using Proposition 4, it can be seen to be
Ey (M)E{Y;(1 — M)e[Y(1)]} + o[&x;(7)]. This yields the
But one can easily see thaf ,, as defined here is the same aéirst result of the proposition. The proof for the other result is
the one in the proposition. O similar. O
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J. Proof of Proposition 7
For the contrast (27), wheR is changed tdB + £B with £

having a single nonzero elemef;, the corresponding change

of this contrast is the infimum of

Bl(bi % Yi)(1) + Eny(be » V) (L] - R[(B7  ¥i)(1)]

X et

l=—c0

+/ log | —(——— ;l—)\—log|det(f+8)|
- S bp(Deit w

l=—o0

over all sequencef (1), I € Z} of class.A. As B minimizes

the contrast, the above expression must be nonnegative; henfé]

takingj # k (so thatdet(I + &) = 1) andb (1) = b;.(1)
AI(bF > Y3 )(F) + Exj (b » Y;) ()] — R[(by, x Ya) ()] = 0.
The above right-hand side, by Proposition 4, is

E{(br > Y5) (D [(0r x Vi) (D]} + o(Exj)
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