
Mining tree-based association rules from XML

documents∗

Mirjana Mazuran
Politecnico di Milano

Italy
mazuran@elet.polimi.it

Elisa Quintarelli
Politecnico di Milano

Italy
quintarelli@elet.polimi.it

Letizia Tanca
Politecnico di Milano

Italy
tanca@elet.polimi.it

February 6, 2009

Abstract

The increasing amount of very large XML datasets available to casual
users is a most challenging problem for our community, and calls for an
appropriate support to efficiently gather knowledge from these data. Data
mining, already widely applied to extract frequent correlations of values
from both structured and semi-structured datasets, is the appropriate tool
for knowledge elicitation. In this work we describe an approach to extract
Tree-based association rules from XML documents. Such rules provide
approximate, intensional information on both the structure and the con-
tent of XML documents, and can be stored in XML format to be queried
later on. The mined knowledge is used to provide: (i) quick, approximate
answers to queries and (ii) information about structural regularities. A
prototype system demonstrates the effectiveness of the approach.

1 Introduction

In the recent years the database research field has concentrated on XML (eX-
tensible Markup Language [25]) as an expressive and flexible hierarchical model
suitable to represent huge amounts of data with no absolute and fixed schema,
and with a possibly irregular and incomplete structure. Despite its impres-
sive growth in popularity, XML is still lacking efficient techniques to query the

∗This research is partially supported by the Italian MIUR project ARTDECO and by the
European Commission, Programme IDEAS-ERC, Project 227077-SMScom

1

many datasets available to casual users, since such datasets, on one hand, have
a limited or absent structure, and on the other hand contain a huge amount of
data.

Together with intrinsically unstructured documents, there is a significant
portion of XML documents which have only an implicit structure, that is, their
structure has not been declared in advance, for example via a DTD or an XML-
Schema [22]. Querying such documents is quite difficult for users for two main
reasons: 1) they are not able to specify a reasonably likely structure in the
query conditions and 2) they are very often confused by the large amount of
information available.

This limitation of XML is a crucial problem, which did not emerge in the past
years in the context of traditional (relational) database management systems,
and thus must be addressed in order to provide access to these data to a wider
set of users.

The application of data mining techniques to extract useful knowledge from
XML has received a lot of attention in the recent years due to the wide avail-
ability of these datasets. In particular, the process of mining association rules to
provide summarized representations of XML documents has been investigated
in many proposals and in particular either by using languages (e.g. XQuery) and
techniques developed in the XML context, or by implementing graph/tree-based
algorithms.

By mining frequent patterns from XML documents, we provide the users
with partial, and often approximate, information both on the document struc-
ture and on its content. Such patterns can be useful for the users to obtain
information and implicit knowledge on the documents and to be more effective
in query formulation. Moreover, this information is also useful for the system,
which is provided with discovered information, like hidden integrity constraints,
which can be used for semantic optimization.

Goal and contributions

The goal of this paper is to provide a method for mining intensional knowledge
from XML datasets expressed by means of association rules. In particular, we
propose Tree-based association rules (TAR) as a means to represent such an
intensional knowledge in native XML language. A TAR represents intensional
knowledge in the form SB ⇒ SH , where SB is the body tree and SH the head
tree of the rule. Indeed, the rule SB ⇒ SH states that if the tree SB appears
in an XML document D, it is likely that the “wider”, or more “detailed”, tree
SH also appears. In our graphical representation, we will render the nodes of
the body of a rule by black circles, and the nodes of the head by empty circles.

We introduce a proposal for mining, and also storing TARs for two main
purposes: 1) to get a concise view of both the structure and the content of
XML documents, and 2) to use them for intensional query answering. Our min-
ing procedure is characterized by the following key aspects: a) it works directly
on the XML documents, without transforming the data into relational or any
other intermediate format, b) it looks for general association rules, without the

2

need to impose what should be contained in the antecedent and consequent of
the rule, and c) it stores association rules in XML format.

Structure of the paper

The paper is organized as follows. Section 2 explains what tree-based associa-
tion rules are, then Section 3 presents how tree-based rules are extracted from
XML documents. Section 4 presents two possible applications of tree-based
association rules and shows how they are used to answer intensional queries.
Section 5 describes a prototype that implements our proposal whereas Section
6 explains the experimental results obtained by testing our prototype on real
XML datasets. Section 7 introduces other work related to XML association rule
mining and usage. Section 8, at last, states the possible follow-ups of this work.

2 Tree-based Association Rules

Association rules [1] describe the co-occurrence of data items in a large amount
of collected data and are usually represented as implications in the form X ⇒ Y ,
where X and Y are two arbitrary sets of data items, such that X ∩ Y = ∅.
The quality of an association rule is usually measured by means of support
and confidence. Support corresponds to the frequency of the set X ∪ Y in the
dataset, while confidence corresponds to the conditional probability of finding
Y , having found X and is given by sup(X ∪ Y)/sup(X).

In this work we extend the notion of association rule originally introduced
in the context of relational databases, in order to adapt it to the hierarchical
nature of XML documents.

In particular, we consider the element-only Infoset content model [23], which
allows an XML nonterminal tag to include only other elements and/or at-
tributes, while the text is confined to terminal elements. Furthermore, with-
out loss of generality, we do not consider some features of the Infoset that are
not relevant to the present work, such as namespaces, the ordering label, the
referencing formalism through ID-IDREF attributes, URIs, and Links.

Following the Infoset conventions, we represent an XML document by a
labeled tree1 〈N,E, r〉 where N is the set of nodes, r ∈ N is the root of the
tree (i.e. the root of the XML document), E is the set of edges. Moreover,
the following properties on nodes and edges hold: 1) Each node ni has a tuple
of labels NLi = 〈Ntagi, Ntypei, Ncontenti〉; the type label Ntypei indicates
whether the node is the root, an element, text, or attribute 2, whereas the label
Ncontenti can assume as value a PCDATA or ⊥ (undefined, for nonterminals).

1Note that XML documents are here tree-like structures (and not generic graphs) because
we do not include referencing.

2XML documents may also contain ENTITY nodes (not unlike macro calls that must be
expanded when parsing) or processing instructions or comments. We do not consider such
elements in this paper.

3

A

B DC

F

C

B

D

E

F

(b)

A

B

E

C

D

F

B C

(c)

<A>

 <E></E>
 <F> x </F>

 <C>

 <D></D>
 </C>
 <D>

 <F>
 y
 <C></C>

 </F>
 </D>

(a)

"x"
"y"

"y"

Figure 1: a) an example of XML document, b) its tree-based representation,
and c) three induced subtrees

2) Each edge ej = 〈(nh, nk), ELj〉, with nh and nk in N , has a label ELj =
〈Etypej〉, Etypej ∈ {attribute of, sub-element of}. Note that edges represent
the “containment” relationship between different items of an XML document,
thus edges do not have names.

We are interested in finding relationships among subtrees of XML docu-
ments. Thus, we do not distinguish between textual content of leaf elements
and value of attributes. As a consequence, in order to draw graphical concepts
in a more readable way, we do not report the edge label and the node type label.
Attributes and elements are characterized by empty circles, whereas the textual
content of elements, or the value of attributes, is reported under the outgoing
edge of the element or attribute it refers to.

2.1 Fundamental concepts

Given two labeled trees T = 〈NT , ET , rT 〉 and S = 〈NS , ES ,
rS〉, S is said to be an induced subtree of T [31] if and only if there exists a
mapping θ : NS → NT such that ∀ni ∈ NS , NLi = NLj , where θ(ni) = nj and
for each edge ej = 〈(n1, n2), ELj〉 ∈ ES , 〈(θ(n1), θ(n2)), ELj〉 ∈ ET .

Given a tree T = 〈NT , ET , rT 〉, a subtree of T t = 〈Nt, Et, rt〉 and a user
fixed support threshold smin:

• t is frequent if its support is greater or at least equal to smin;

• t is maximal if it is frequent and none of its proper supertrees is frequent.

Moreover, t is closed if none of its proper supertrees has support greater than
t’s

Figure 1 shows an example of an XML document (Figure 1(a)), its tree-
based rappresentation (Figure 1(b)) and three induced subtrees of the document
(Figure 1(c)).

4

A Tree-based Association Rule (TAR) is a tuple of the form Tr =
〈SB , SH , sTr , cTr 〉, where SB = 〈NB , EB , rB〉 and SH = 〈NH , EH , rH〉 are trees
and sTr

and cTr
are real numbers representing the support and confidence of

the rule respectively. Furthermore, SB is an induced subtree of SH with an
additional property on the node labels. Therefore, altogether, the following
properties must hold:

• NB ⊆ NH

• EB ⊆ EH and ∀n,m ∈ NB , 〈(n,m), EL〉 ∈ EB iff 〈(n,m), EL〉 ∈ EH

• the set of tags of SB is equal to the set of tags of SH with the addition of
the empty label “ε”.

The empty label is introduced because the body of a rule may contain nodes
with unspecified tags (a sort of placeholder nodes) and these tags will be declared
in the head part of the rule (see the rule (4) of Figure 5). For the sake of clarity
the label ε is omitted in the figures and all nodes with empty labels do not
present any label at all.

It is worth to point out that Tree-based association rules are different from
XML association rules [18], because the latter require that (X 6⊆ Y)∧ (Y 6⊆ X),
i.e. the two trees X and Y have to be disjunct; on the contrary Tree-based
association rules require X to be an induced subtree of Y .

Thus, every tree-based association rule is characterized by two measures:

sTr
support, measures the frequency of the tree SH in the XML document

cTr
confidence, measures the reliability of a rule, that is the frequency of the

tree SH , once SB has already been found

Given the function count(S,D) denoting the number of occurrences of a
subtree S in the tree D and the function cardinality(D) denoting the number
of nodes of D, it is possible to define formally the two measures as:

support(SB ⇒ SH) =
count(SH , D)
cardinality(D)

confidence(SB ⇒ SH) =
count(SH , D)
count(SB , D)

Furthermore, given an XML document it is possible to extract two types of
tree-based association rules:

• iTARs: instance TARs are association rules providing information both
on the structure and on the PCDATA values contained in a target XML
document (see Figure 3).

• sTARs: structure TARs are association rules on the structure of the XML
document. An sTAR is a tuple Ti = 〈SB , SH , sTi

, cTi
〉 where, for each

node n either in SB or in SH , n has as label a triple 〈TAG, TYPE,⊥〉, i.e.
no PCDATA is present in an sTAR (see Figure 5).

5

conferences

conference year

place
articles

article
"2008"

"Milan"
author

author
title

"On the problem
of pollution"

name

"POLLU"

"John
Black" "Mark

Green"

conference year

place
articles

article
"2008"

"Rome"
author

author
title

"Tree growth in
urban areas"

name

"TGUA"

"Rufus
White" "Mark

Green"

conference
year

place
articles

article
"2008"

"Milan"
author

author
title

"A study of tourism
dynamics"

name

"ToDy"

"John
Black" "Mark

Green"

Figure 2: XML sample file: “conferences.xml”

rule rule support body support rule confidence
(1) 3/28 = 0.10 3/28 = 0.10 3/3 = 1.00
(2) 2/28 = 0.07 3/28 = 0.10 2/3 = 0.66
(3) 3/28 = 0.07 3/28 = 0.10 3/3 = 1.00

Table 1: Support and confidence of rules in Fig 3

Figure 3 shows some examples of iTARs referred to the XML document
in Figure 2. Rule (1) states that if there is a node labeled conference in
the document, it probably has a child labeled year whose value is “2008”.
Rule (2) states that if there is a path composed by the following sequence of
nodes: conference/articles/article/author, and the content of author is
“Mark Green”, then node authors probably has another child labeled author
whose content is “John Black”. Finally, rule (3), states that if there is a path
composed by the following sequence of nodes: conference/articles/article
and the node article has two children labeled author whose contents are
“Mark Green” and “John Black”, then node conference probably has two other
children labeled year and place whose contents are respectively “2008” and
“Milan”. Table 1 shows, for each one of these rules, its support and confidence.

It is possible to notice, from the examples, that tree-based association rules,
in addition to correlation of PCDATA values, provide information about the
structure of frequent portions of XML documents; thus they are more expressive
than classical association rules which only provide us with frequent correlations
of flat values.

Similarly, Figure 5 shows some examples of sTARs referred to the XML
document in Figure 4. Such dataset is intentionally more complex and irregular
than the dataset in Figure 3, in order to better show the potential of sTARs.
In particular, rule (1) states that if there is a node labeled A in the document,
probably that node has a child labeled B. Rule (2) states that if there is a node
labeled B, probably its parent is labeled A. Rule (3) states that if a node C
has a child labeled B, it probably also has a child labeled E. To conclude, Rule
(4) states that if a node A is the grandparent of a node C (note, in the body of

6

"2008"

⇒
conference

conference

year

"John
Black"

"Mark
Green"

⇒

conference

articlesarticles

author author

⇒

(1) (2)

(3)

"Mark
Green"

article

author

conference

"John
Black"

"Mark
Green"

articles

author author

conference

"John
Black"

"Mark
Green"

articles

author author

conference

placeyear

"2008" "Milan"

article

article article

Figure 3: Sample iTARs (instance Tree-based Association Rules)

rule rule support body support rule confidence
(1) 4/34 = 0.11 7/34 = 0.2 4/7 = 0.57
(2) 4/34 = 0.11 12/34 = 0.35 4/12 = 0.33
(3) 3/34 = 0.08 5/34 = 0.14 3/5 = 0.6
(4) 2/34 = 0.05 6/34 = 0.17 2/6 = 0.33

Table 2: Support and confidence of rules in Fig 5

the rule, the empty label of the parent of node C), probably the child of A and
parent of C, is labeled B. Table 2 shows, for each mined rule, its support and
confidence.

3 TARs extraction

Mining tree-based association rules is a process composed of two steps:

1. mining frequent subtrees from the XML document;

2. computing interesting rules from the previously mined frequent subtrees.

As already said, the problem of finding frequent subtrees has been widely
discussed in the literature [2, 27, 29–31]. The problem of computing interesting

7

A

B

C

A

B

C

E D
B

BA

B

D

C

B B

A B

A

C

E C A
B

B

E

B

E

C A

D

C

B E

Figure 4: Sample dataset

A

B

A

⇒
A

B

B

⇒ ⇒
C

B

C

B E

A

C

A

C

B⇒

(1) (2) (3) (4)

Figure 5: Sample sTARs (structure Tree-based Association Rules)

8

rules from frequent subtrees can be compared with the problem of extracting
classical association rules from large sets of elements, initially introduced in [1].

Algorithm 1 presents the extension we introduce to CMTreeMiner in or-
der to compute interesting TARs from frequent maximal subtrees. The au-
thors of CMTreeMiner provide the C++ implementation for both ordered and
unordered subtree extraction, which can be downoaded from http://www.nec-
labs.com/ ychi/. In this work we provide a general extension which can be
applied to both versions of CMTreeMiner but at this moment we focus on im-
plementing such extension only to the ordered version.

In particular, Algorithm 1 shows how tree-based association rules are mined.
The inputs of the algorithm are the set of frequent subtrees, FS , and the minimal
threshold for the confidence of the rules, minconf .

Algorithm 1 Get-Interesting-Rules (FS , minconf)
1: ruleSet = ∅
2: for all s ∈ FS do
3: tempSet = Compute-Rules(s,minconf)
4: ruleSet = ruleSet ∪ tempSet
5: end for
6: return ruleSet

Algorithm 2 Compute-Rules (s,minconf)
1: ruleSet = ∅
2: for all cs subtrees of s do
3: conf = supp(s) / supp(cs)
4: if conf ≥ minconf then
5: newRule = 〈cs, s, conf, supp(s)〉
6: ruleSet = ruleSet ∪ {newRule}
7: end if
8: end for
9: return ruleSet

Depending on the amount of frequent subtrees and their cardinality, the
amount of generated rules may be very high. The explosion of the number of
mined association rules w.r.t. the number of frequent itemsets occurs also in
the relational context; an optimization of the basic algorithm has been proposed
in [1]. Such optimization will be adapted to our XML context, for mining tree-
based association rules.

In fact, given a frequent subtree S, all rules derived from that tree have the
same support and different confidences. Since the confidence of a rule SB ⇒ SH

can be computed as support(SH)/support(SB), the support of SB influences the
confidence of rules having the same body tree; the higher the support of the body
tree, the lower is the confidence of the rule.

9

(a)

A

B C

D E

(1)

A

C

D

B

A

C

E

B

D

⇒

(2)

A

CB

A

C

E

B

D

⇒
A

B

A

C

E

B

D

⇒

(3)

Figure 6: Rules optimization example

Figure 6 shows a frequent subtree (Figure 6 (a)) and three possible tree-
based rules mined from the tree; all three rules have the same support k and
confidence to be determined.

Let the support of the body tree of rule (1) be s. Since the body trees of
rules (2) and (3) are subtrees of the body tree of rule (1), their support is at
least s, and possibly higher. This means that the confidences of rule (2) and
(3) are equal, or lower, than the confidence of rule (1).

Starting from this consideration, it is possible to state the following property,
that allows us to optimize Algorithm 2:

Property If the confidence of a rule T is below the established threshold c
then the confidence of every other rule Ti, such that its body SBTi

is an
induced subtree of the body SBT

, is no greater than c.

Algorithm 3 shows how tree-based rules are mined exploiting the introduced
optimization. Note that it is advisable to first generate the rules with the highest
number of nodes in the body tree. For example, let us consider two rules Tr1 and
Tr2 whose body trees contain 1 and 3 nodes respectively, as shown in Figure 7(a).
Suppose both rules have confidence below the fixed threshold. If the algorithm
considers rule Tr2 first, all rules that have the bodies shown in Figure 7(b) will
be discarded when Tr2 is eliminated. On the other hand, since the body tree
of Tr1 has only one node and therefore has no induced subtree different from
itself, starting from Tr1 will not produce any optimization. Therefore, it is more
convenient to first generate rule Tr2 and in general, to start the mining process
from the rules with a larger body.

Once the mining process has been performed and frequent tree-based rules
have been extracted, we store them in XML format. This decision has been
taken to allow the use of the same language (e.g. XQuery) for both the original

10

X

Y

Z

X

(a)

X

X

Y

X

Z

Y

Z

(b)

Y Z

Figure 7: Rules optimization example

Algorithm 3 Compute-Rules (s,minconf)
1: ruleSet = ∅
2: blackList = ∅
3: for all cs, subtrees of s do
4: if cs is not an induced subtree of any element in blackList then
5: conf = supp(s) / supp(cs)
6: if conf ≥ minconf then
7: newRule = 〈cs, s, conf, supp(s)〉
8: ruleSet = ruleSet ∪ {newRule}
9: else

10: blackList = blackList ∪ cs
11: end if
12: end if
13: end for
14: return ruleSet

dataset, and the mined rules.
Figure 8 shows the two DTDs representing the structure of iTARs (Figure

8(a)) and sTARs (Figure 8(b)). In order to save space, only the head tree of a
rule is stored. We exploit the fact that the body of the rule is a subtree of the
head and use two attributes in the Node element to identify 1) the nodes that
are also part of the body tree (the role attribute), and 2) those that have an
empty label in the body (the isGeneric attribute).

4 TARs usage

Tree-based association rules provide an approximate view of both the content
and the structure of an XML document. In this section we explain how such
features can be used for:

1. providing intensional, although approximate, answers to user queries;

2. providing an approximate DataGuide [10,11] for the document.

11

<!ELEMENT instanceRules (Rule+) >
<!ELEMENT Rule (Node) >
<!ELEMENT Node (Value, Node*) >
<!ELEMENT Value (#PCDATA) >

<!ATTLIST Rule ID #PCDATA #REQUIRED >
<!ATTLIST Rule support #PCDATA #REQUIRED >
<!ATTLIST Rule confidence #PCDATA #REQUIRED >

<!ATTLIST Node label #REQUIRED >
<!ATTLIST Node role (head) >
<!ATTLIST Node isGeneric (true | false) >

<!ELEMENT structureRules (Rule+) >
<!ELEMENT Rule (Node) >
<!ELEMENT Node (Node*) >

<!ATTLIST Rule ID #PCDATA #REQUIRED >
<!ATTLIST Rule support #PCDATA #REQUIRED >
<!ATTLIST Rule confidence #PCDATA #REQUIRED >

<!ATTLIST Node label #REQUIRED >
<!ATTLIST Node role (body | head) >

(a) (b)

Figure 8: DTD of the XML document containing tree-based rules

4.1 Intensional answers to queries

The classes of queries that can be managed with our approach have been intro-
duced in [8] and further analyzed in the relational database context in [3]. We
show some simple examples for four classes of queries, discussed in the following.

Class 1: used to impose a simple, or complex (containing AND and OR opera-
tors), restriction on the value of an attribute or the content of a leaf node.
An example is “Retrieve the articles written by Mark Green”. The query
imposes a constraint on the content of the author element; the XQuery
expression over the original XML dataset is:

for $a in document("conferences.xml")//article
where $a/author = ‘‘Mark Green’’
return $a

Class 2: used to retrieve some properties described in the subtrees rooted in
a specified element, possibly ordering the result. An example is “Retrieve
in an ascending order the titles of all articles”. The XQuery expression,
which does not specify any constraint on the content of elements, is:

for $t in document("conference.xml")//title
order by $t ascending
return $t

Class 3: used to count the number of elements with a specific content. An
example is “Retrieve the number of articles written by Mark Green” and
the XQuery expression is:

for $a in document("conference.xml")//article
where $a/author = ‘‘Mark Green’’
return count($a)

12

Class 4: used to select the best k answers satisfying a counting and group-
ing condition, for example “Retrieve the k authors who wrote the highest
number of articles”. The XQuery expression is:

(for $t in document("conference.xml")//author
order by score (count(
for $s in document("conference.xml")//author
where $s/text()[=$a/text()]
return $s)) descending

return $a
)[position()<=k]

iTARs can be used to provide intensional information about the actual data
contained in the mined XML documents, when these documents are no available
or reachable any more, or when the user prefers to obtain a faster (possibly
partial) answer. Of course, this choice is worthwhile only if intensional queries
processing is faster than extensional query processing. Therefore we introduce
indices on tree-based association rules in order to improve the access to mined
trees and in general the process of intensional query answering. We consider
indices on both structure TARs and instance TARs.

Given a set of rules, the index associates with every distinct node n in this
set, the references to those rules which contain n. Therefore, an index is a
set of tuples 〈n, rif〉 where n is a node and rif is a list of references to the
rules. Algorithm 4 shows how the data structure for the index, which is then
translated in XML format, is constructed, given the set of rules R.

Algorithm 4 Create-Index (R)
1: Index ← ∅
2: for all rule ri ∈ R do
3: for all node nj ∈ ri do
4: if 6 ∃〈n, rif〉 ∈ Index: n = nj then
5: Index = Index ∪{〈nj , ∅〉}
6: end if
7: 〈nj , rif〉 = 〈nj , rif ∪ {ri}〉
8: end for
9: end for

10: return Index

Algorithm 4 is used to create both the index on sTARs and the index
on iTARs. The difference between the two indices is that while for sTARs
a node is identified only by its label, for iTARs a node is identified by the pair
〈label, value〉, where value is the content of the node labeled label.

Indices, like rules, are stored in XML format. Figure 9 shows the two DTDs
for the index on instance rules (Figure 9(a)) and the index on structure rules
(Figure 9(b)).

13

<!ELEMENT instanceIndex (Node+) >
<!ELEMENT Node (Value, Reference+) >
<!ELEMENT Value (#PCDATA) >

<!ATTLIST Node label #PCDATA #REQUIRED >
<!ATTLIST Reference RuleID #PCDATA #REQUIRED >

<!ELEMENT structureIndex (Node+) >
<!ELEMENT Node (Value, Reference+) >

<!ATTLIST Node label #PCDATA #REQUIRED >
<!ATTLIST Reference RuleID #PCDATA #REQUIRED >

(a) (b)

Figure 9: DTD of the XML document containing indices

Given a query q and the intensional data represented by the file containing
instance TARs and the file containing the index on such rules, it is possible to
obtain the intensional answer in two steps:

1. query the index file, with a rewriting of the query q, looking for the ref-
erences to the rules which satisfy the conditions imposed by the query
q;

2. query the TARs file in order to return the rules whose reference was found
in the previous step;

In this section we show the process of obtaining an intensional answer when
the user composes an XQuery expression. In order to perform the two steps
described above we introduce the XQuery definition of the following functions:

• references: given a pair (name, content), describing a node of an XML
tree, the function returns a set of references of the rules containing the
node. The XQuery implementation of the function is:

define function references (element $name, element $content,
bool $onlyName) returns element {

for $node in document("index.xml")//Node
where $node/@label = $name and

($node/Value = $content or $onlyName = true)
return $node/Reference

}

• setinclusion: given a set of elements and a specific element e, the func-
tion returns true when the element e is in the set, false otherwise. The
XQuery implementation of the function is:

define function setinclusion(element $elem, element $set)
as xs:boolean {

for $s in $set
where $s = $elem
return true;

14

}

• union: the following XQuery function returns the union of two sets of
elements:

define function union (element $rif1, element $rif2)
returns element {

let $ins := (
for $r2 in $rif2
where every $r1 in $rif1 satisfies $r1 != $r2
return $r2)

return $rif1 union $ins
}

• intersection: the following XQuery function returns the intersection of
two sets of elements:

define function intersection (element $rif1, element $rif2)
returns element {

for $r1 in $rif1
where setinclusion($r1, $rif2)
return $r1

}

• ruleset: given a set of references, the function returns the set of ref-
erences of the rules associated with the input references. The XQuery
implementation of the function is:

define function ruleset(element $rif) returns element {
for $r in document("rules.xml")//Rule
where setinclusion ($r/@ID, $rif//RuleID)
return $r

}

These functions allow us to easily obtain the intensional answer to the classes
of XQuery expressions we have analyzed. Indeed the intensional answer for an
XQuery e is obtained by applying such functions to the XML document of
previously mined tree-based rules.

Class 1 the intensional answer to the query “Retrieve the articles written by
Mark Green”, is obtained by the following generic function:

15

define function query (element $name, element $content)
returns element {

let $Rif=references($name, $content, false)
let $Rule=ruleset ($Rif)
return $Rule }

where $name = “author” and $content = “Mark Green”. This expression
retrieves the intensional information by performing the two steps 1 and 2
described above: first, the variable $Rif is initialized with the set of index
references of the rules containing the element author with content “Mark
Green”. Then, the variable $Rule is initialized with the set of rules whose
reference is in $Rif.

Class 2 the intensional answer to the query “Retrieve in an ascending order
the titles of all articles” is:

define function query (element $name) returns element {
let $Rif = references($name, NULL, true)
let $Rule = ruleset ($Rif)
for $n in $Rule/Rule/Node[@label=$name]
order by $n/Value ascending
return $n/Value }

where $name = “title”.

Class 3 the intensional answer to the query “Retrieve the number of articles
written by Mark Green” is:

define function query (element $name, element $content)
returns element {

let $Rif = references($name, $content)
let $Rule = ruleset ($Rif)
return count($Rule) }

where $name = “author” and $content = “Mark Green”. To answer these
queries we use an association rule whose body matches the query condi-
tions, and obtain as answer sup

conf (where sup and conf are support and
confidence of the rule). More specifically, to count the elements satisfying a
condition on their content, we use the equality conf(A⇒ B) = sup(A⇒B)

sup(A) ,
where A ⇒ B is an association rule. With respect to the example we
can count the different articles written by “Mark Green” by using an
association rule A ⇒ B that has the path article - author (with con-
tent “Mark Green”) in the body, thus the number of articles is given by
sup(A) = sup(A⇒B)

conf (A⇒B)
.

Class 4 the intensional answer to the query “Retrieve the k authors who wrote
the highest number of articles” is:

16

conference

year

place articles

article

author title

nameconference

articles
⇒

Figure 10: A sTAR mined from the XML dataset in Figure 2

define function query (element $name) returns element {
let $Rif = references($name, NULL, true)
let $Rule = ruleset ($Rif)
(for $a in $Rule//Node[@label=‘‘author’’]
order by score (count(

for $s in $Rule//Node[@label=‘‘article’’]
where $s//Value[=$a/text()]
return $s)) descending

return $a
)[position()<=k] }

4.2 Provide a DataGuide

The extracted sTARs can be used as a sort of approximate, but also partial,
DataGuide [10] of the original document; these rules can help the user to gain
knowledge about the structure of the most frequent subtrees and to formulate
queries on these subtrees. As an example, the sTAR mined from the XML
dataset in Figure 2 with support 0.03 and confidence 1, is shown in Figure
10: whenever there is a conference element with an articles sub-element
(see the antecedent), then the structure of the XML document rooted in the
conference node is the one represented by the tree in the consequent part of
the rule (right-hand-side of the figure).

5 The TreeRuler prototype

TreeRuler is a prototype tool that integrates all the functionalities proposed in
our approach. Given an XML document, the tool is able to extract intensional
knowledge, and allows the user to compose traditional queries as well as queries
over the intensional knowledge.

Figure 11 shows the architecture of the tool. In particular, given an XML
document, it is possible to extract Tree-based rules and the corresponding index
file. The user formulates XQuery expressions on the data, and these queries are
automatically translated in order to be executed on the intensional knowledge.

17

XML
file Index TARs

Query Intensional
Query

extraction

translation

intensional knowledge

User

intensional answer

extensional
answer

Figure 11: TreeRuler architecture

The answer is given in terms of the set of Tree-based rules which reflect the
search criteria.

A schreenshot of the tool is shown in Figure 12: it is composed by several
tabs for performing different tasks. In particular, there are three tabs:

• get the Gist (Figure 12) allows intensional information extraction from
an XML document, given the desired support, confidence and the files
where the extracted tree-based rules and their index must be stored.

• get the Idea allows the visualization of the intensional information as
well as the original document, in order to give the user the possibility to
compare the two kinds of information.

• get the Answers (Figure 13) allows to query the intensional knowledge
and the original XML document. The user has to write an extensional
query in the box on the left; when the query belongs to the classes we
have analyzed it is translated into the intensional form, shown to the user
in the right part of the form. Finally, once the query is executed, the
Tree-based rules that reflect the search criteria are shown in the box at
the bottom of the form.

5.1 Technical aspects

TreeRuler is implemented in C++ with the use of the eXpat3 library for XML
parsing, and of the wxWidgets4 tools for the GUI. At present, TreeRuler imple-
ments the CMTTreeMiner [5] algorithm for the extraction of frequent subtrees
from the XML document.

3http://expat.sourceforge.net
4http://www.wxwidgets.org/

18

Figure 12: TreeRuler “get the Gist” tab

19

Figure 13: TreeRuler “get the Answers” tab

20

6 Experimental results

In this section we introduce three types of experiments we performed with
TreeRuler to evaluate the proposed underlying approach:

• experiments performed in order to monitor the time required for the ex-
traction of the intensional knowledge from an XML database;

• experiments performed in order to monitor the time needed to answer
intensional and extensional queries over an XML file;

• a use case scenario on the DocBook5 XML database, in order to monitor
extraction times given a specific support or confidence.

6.1 Extraction time

We have performed some experiments on real XML datasets. First we tried to
execute TreeRuler on the datasets found at the XMLData Respository6 but all
the documents were too structured and the extracted intensional knowledge was
very poor. Moreover the DTD for all document was already provided. Then we
used GCC XML7 in order to create XML documents starting from C++ source
code. The documents produced by GCC XML were unstructured and without a
DTD.

In particular, we used these XML datasets to monitor the time TreeRuler
takes to extract intensional knowledge, i.e. tree-based association rules and the
corresponding index, from the XML file. Figure 14 shows how extraction time
depends on the number of nodes in the XML document. It is possible to notice
that extraction time growth is almost linear with respect to the cardinality of
an XML tree. Moreover, the compression factor provided by the XML represen-
tation of TARs, compared to the size of the original XML dataset, is significant
(e.g. 264 KB w.r.t. 4 KB).

6.2 Answer time

We have performed some experiments to monitor the time needed to obtain both
intensional and extensional answers to user queries. Figure 15 shows, for each
XML document we considered, the time TreeRuler took to give an intensional
and extensional answer to the query of Class 2 introduced in Section 4. With
respect to that query, which was evaluated on all XML datasets, $name is the
name of a node contained in the document (such name changes on the basis of
the XML document).

It is possible to notice that intensional times are always significantly smaller
than extensional ones (actually almost constant), thus proving the effectiveness
of our approach.

5http://www.docbook.org/
6http://www.cs.washington.edu/research/xmldatasets/
7http://www.gccxml.org/HTML/Index.html

21

0 500 100
0

150
0

200
0

250
0

300
0

0,05

0,1

0,15

0,2

Figure 14: Extraction time growth (y = seconds), w.r.t. the number of nodes
(x) in the XML tree

0 500 100
0

150
0

200
0

250
0

300
0

0,04

0,08

0,12

0,16

Figure 15: Extensional (curve with squares) and intensional (curve with dia-
monds) time answering (y = seconds) w.r.t. each document (x = number of
nodes)

22

0 0,01 0,02 0,03 0,04 0,05 0,06

0,1

0,2

0,3

0,4

0,5

Figure 16: Extraction time growth (y = seconds), w.r.t. the support (x), given
confidence = 0.95

Recall and precision are commonly used to evaluate the accuracy of ap-
proaches which return approximate answers. Recall measures the fraction of
data in the extensional query result which is actually returned by querying
TARs. Precision measures the fraction of the returned data which correctly
matches the query. TARs are characterized by 100% precision for all query
classes described in Section 4.1, while recall depends on the support threshold
established before applying the mining algorithm. Indeed, the application of
our mining algorithm returns only frequent subtrees and the number of such
trees depends on the support threshold. Thus, the minimum support threshold
strongly influences query recall, it is a relevant parameter for the intensional
representation design.

6.3 Use case scenario

In this section we report the results we have obtained by applying TreeRuler on
the DocBook XML database. In particular we show the relationships between
support, confidence, and the extraction time of tree-based rules.

By setting the confidence at 0.95, Figure 16 shows how the extraction time
changes with respect to the support. Similarly, by setting the support at 0.02,
Figure 17 shows how the extraction time changes with respect to the confidence.

7 Related work

The problem of association rule mining was initially proposed in [1] and suc-
cessively many implementations of the algorithms, downloadable from [9], were
developed and described in the database literature. More recently the problem
has been investigated also in the XML context [4, 6, 7, 16,18,26,28]. In [26] the
authors use XQuery [24] to extract association rules from simple XML docu-
ments. They propose a set of functions written only in XQuery which implement
together the Apriori algorithm [1]. The same authors show in [26] that their
approach performs well on simple XML documents; however it is very difficult
to apply this proposal to complex XML documents with an irregular structure.

23

0
0,2

5 0,5 0,7
5 1

0,295

0,3

0,305

0,31

Figure 17: Extraction time growth (y = seconds), w.r.t. the confidence (x),
given support = 0.02

This limitation has been overcome in [4], where the authors introduce a pro-
posal to enrich XQuery with data mining and knowledge discovery capabilities,
by introducing XMINE RULE, a specific operator for mining association rules for
native XML documents. They formalize the syntax and an intuitive semantics
for the operator and propose some examples of complex association rules.

However, the operator proposed in [4] uses the MINE RULE operator, which
works on relational data only. This means that, after a step of pruning of
unnecessary information, the XML document is translated into the relational
format. Moreover, both [4] and [26] force the designer to specify the structure
of the rule to be extracted and then to mine it, if possible. This means that
the designer has to specify what should be contained in the body and head of
the rule, i.e. the designer has to know the structure of the XML document in
advance, and this is an unreasonable requirement when the document has not an
explicit DTD. Another limitation of these approaches is that the extracted rules
have a fixed root, thus once the root node of the rules to mine has been fixed,
only its descendants are analyzed. Let us consider the dataset in Figure 2 to
explain this consideration. In order to infer the co-author relationship among
authors of conferences it is necessary to fix the root node of the rules in the
article element, the body and head in author. In such way it is possible to
learn that “John Black” and “Mark Green” frequently write papers together.
However, once we fix the root of the rule in the article element, we can not
mine itemsets stating that frequently, during “2008” conferences have been held
in “Milan”. Indeed, to mine such property the body of the rules should be fixed
in the year element, which is not contained in the subtree of the article node,
and the head in place.

Our idea is to take a more general approach to the problem of extracting
association rules from XML documents, i.e. to mine all frequent rules, without
having any a-priori knowledge of the XML dataset. A similar idea was presented
in [18] where the authors introduced HoPS, an algorithm for extracting associa-
tion rules in a set of XML documents. Such rules are called XML association
rules and are implications of the form X ⇒ Y , where X and Y are fragments
of an XML document. In particular the two trees X and Y have to be disjunct.

24

Moreover both X and Y are embedded subtrees fo the XML documents which
means that they do not always represent the actual structure of the data.

Another limitation of the proposal in [18] is that it does not contemplate the
possibility to mine general association rules within a single XML dataset, while
achieving this feature is one of our goals.

The idea of using association rules as summarized representations of XML
documents was also introduced in [3] where the XML summary is based on
the extraction of association rules both on the structure (schema patterns) and
on content values (instance patterns) from XML datasets. The limitation of
such an approach are that: i) the root of the rule is established a-priori and ii)
the so-called schema patterns, used to describe general properties of the schema
applying to all instances, are not mined, but derived as an abstraction of similar
instance patterns and are therefore less precise and reliable.

In our work, XML association rules are mined starting from maximal fre-
quent subtrees of the tree-based representation of a document. In the database
literature it is possible to find many proposals of algorithms to extract frequent
structures both from graph-based data representations [12,15,30] and tree-based
data representations [5, 13, 14, 17, 19–21, 29, 31]. In this paper we focus on tree
mining since XML documents are represented using a tree shaped structure.

Table 3 shows a brief overview of the most frequent tree mining algorithms
with respect to the features of the input tree (ordered, unordered) and the
features of the mined patterns (induced, embedded, maximal, closed).

We remark here that we are not interested in proposing yet another algo-
rithm, but in extending an existing one in order to extract association rules
within a single XML document. We choose to consider unorder XML trees,
however, as desribed in Section 3, the algorithm at the basis of our work can
mine also ordered trees.

Table 3: Tree mining algorithms overview

Algorithm O
rd

er
ed

U
no

rd
er

ed

In
du

ce
d

E
m

be
dd

ed

M
ax

im
al

C
lo

se
d

TreeMiner [31] ? ?
PathJoin [29] ? ? ? ?
FREQT [19] ? ?
DRYADE [20] ? ? ?
DRYADEPARENT [21] ? ? ?
CMTTreeMiner [5] ? ? ? ? ?
POTMiner [13] ? ? ? ? ? ?

In [21] the authors show that DRYADEPARENT is the current fastest tree
mining algorithm and CMTTreeMiner is the second with respect to the effi-

25

ciency. However, DRYADEPARENT extracts embedded subtrees wich means
that the extracted tree maintains the ancestor relashionship between nodes and
not the parent relashionship. In this work we are interested in extracting sub-
trees which maintain the parent-child relashionship. In particular we are inter-
ested in extracting induced, maximal (and therefore closed) frequent subtrees
from unordered XML documents. Therefore, we propose an algorithm that ex-
tends CMTTreeMiner to mine generic tree-based association rules directly from
XML documents.

8 Conclusions and future work

In this work we have proposed an algorithm that extends CMTTreeMiner [5] and
allows us to extract frequent tree-based association rules from XML documents.
The main goals we have achieved are: 1) we mine frequent association rules
without imposing any a-priori restriction on the structure and the content of
the rules; 2) we store mined information in XML format; as a consequence, 3) we
can effectively use the extracted knowledge to gain information, by using query
languages for XML, about the original datasets where the mining algorithm has
been applied.

We have developed a C++ prototype that has been used to test the effec-
tiveness of our proposal. As an ongoing work, we are studying how to further
optimize our mining algorithm; moreover, we would like to find the exact frag-
ment of XQuery expressions we can manage with intensional knowledge.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[2] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent sub-
structures in large unordered trees, 2003.

[3] E. Baralis, P. Garza, E. Quintarelli, and L. Tanca. Answering xml queries
by means of data summaries. ACM Transactions of Information Systems,
25(3):10, 2007.

[4] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. Lanzi. Discovering
interesting information in xml data with association rules. In SAC ’03:
Proceedings of the 2003 ACM symposium on Applied computing, pages 450–
454, New York, NY, USA, 2003. ACM Press.

[5] Yun Chi, Yirong Yang, Yi Xia, and Richard R. Muntz. Cmtreeminer:
Mining both closed and maximal frequent subtrees. In PAKDD, pages
63–73, 2004.

26

[6] C. Combi, B. Oliboni, and R. Rossato. Querying xml documents by using
association rules. In 16th International Workshop on Database and Expert
Systems Applications (DEXA’05), pages 1020–1024, 2005.

[7] L. Feng, T. S. Dillon, H. Weigand, and E. Chang. An xml-enabled associ-
ation rule framework. In 14th International Conference on Database and
Expert Systems Applications (DEXA ’03), pages 88–97, 2003.

[8] S. Gasparini and E. Quintarelli. Intensional query answering to xquery
expressions. In 16th International Conference on Database and Expert Sys-
tems Applications (DEXA ’05), pages 544–553, 2005.

[9] B. Goethals and M. J. Zaki. Advances in frequent itemset mining imple-
mentations: report on FIMI’03. SIGKDD Explor. Newsl., 6(1):109–117,
2004.

[10] R. Goldman and J. Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In VLDB ’97: Proceedings of the
23rd International Conference on Very Large Data Bases, pages 436–445,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[11] R. Goldman and J. Widom. Approximate DataGuides, 1999.

[12] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining
of frequent patterns from graphs: Mining graph data. Machine Learning,
50(3):321–354, 2003.

[13] Aı́da Jiménez, Fernando Berzal, and Juan C. Cubero. Mining induced and
embedded subtrees in ordered, unordered, and partially-ordered trees. In
ISMIS, pages 111–120, 2008.

[14] D. Katsaros, A. Nanopoulos, and Y. Manolopoulos. Fast mining of fre-
quent tree structures by hashing and indexing. Information & Software
Technology, 47(2):129–140, 2005.

[15] Michihiro Kuramochi and George Karypis. An efficient algorithm for dis-
covering frequent subgraphs. IEEE Trans. Knowl. Data Eng., 16(9):1038–
1051, 2004.

[16] H. C. Liu and J. Zeleznikow. Relational computation for mining associa-
tion rules from xml data. In ACM 14th Conference on Information and
Knowledge Management, pages 253–254, 2005.

[17] S. Nijssen and J.N. Kok. Efficient discovery of frequent unordered trees. In
Proceedings of the first International Workshop on Mining Graphs, Trees
and Sequences (MGTS’03), 2003.

[18] J. Paik, H. Y. Youn, and U. M. Kim. A new method for mining association
rules from a collection of xml documents. In Computational Science and
Its Applications ICCSA 2005, pages 936–945, 2005.

27

[19] et al. T. Asai. Efficient substructure discovery from large semi-structured
data.

[20] Alexandre Termier, Marie-Christine Rousset, and Michèle Sebag. Dryade:
A new approach for discovering closed frequent trees in heterogeneous tree
databases. In ICDM, pages 543–546, 2004.

[21] Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou
Ohara, Takashi Washio, and Hiroshi Motoda. Dryadeparent, an efficient
and robust closed attribute tree mining algorithm. IEEE Trans. Knowl.
Data Eng., 20(3):300–320, 2008.

[22] World Wide Web Consortium. XML Schema, 2001.
http://www.w3C.org/TR/xmlschema-1/.

[23] World Wide Web Consortium. XML Information Set, 2001.
http://www.w3C.org/xml-infoset/.

[24] World Wide Web Consortium. XQuery 1.0: An XML query language, 2007.
http://www.w3C.org/TR/xquery.

[25] World Wide Web Consortium. Extensible Markup Language (XML) 1.0,
1998. http://www.w3C.org/TR/REC-xml/.

[26] J. W. W. Wan and G. Dobbie. Extracting association rules from xml doc-
uments using xquery. In WIDM ’03: Proceedings of the 5th ACM interna-
tional workshop on Web information and data management, pages 94–97,
New York, NY, USA, 2003. ACM Press.

[27] K. Wang and H. Liu. Discovering typical structures of documents: a road
map approach. In SIGIR ’98: Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 146–154. ACM Press, 1998.

[28] K. Wang and H. Liu. Discovering structural association of semistructured
data. IEEE Transactions on Knowledge and Data Engineering, 12(3):353–
371, 2000.

[29] Y. Xiao, J. F. Yao, Z. Li, and M. H. Dunham. Efficient data mining
for maximal frequent subtrees. In ICDM ’03: Proceedings of the Third
IEEE International Conference on Data Mining, page 379, Washington,
DC, USA, 2003. IEEE Computer Society.

[30] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns.
In KDD ’03: Proceedings of the ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 286–295. ACM
Press, 2003.

[31] M. J. Zaki. Efficiently mining frequent trees in a forest: algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering,
17(8):1021–1035, 2005.

28

