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Abstract. Kutylowski et al. have introduced a voter-verifiable electronic voting
scheme “a practical voting scheme with receipts”, which provides each voter with
a receipt. The voter can use her receipt to check whether her vote has been prop-
erly counted in the final tally, but she cannot use the receipt to prove others how
she has voted. Another interesting property of this scheme is that, thanks to the
repetitive robustness mix network, the ballot tallying phase only needs to be au-
dited if the final results fail to achieve some conditions. However, this paper will
show that this scheme is vulnerable to some threats, adversaries can not only
violate voter privacy, but also forge the election result.

1 Introduction

Recently, voter-verifiable e-voting schemes have attracted a lot of interest. These schemes
guarantee voter privacy and meanwhile achieve end-to-end verifiability. The first pro-
totype was introduced by Chaum in [3], followed by Neff’s scheme [10], [9], the Prét a
Voter schemes [4], [12], the Scratch & Vote scheme [2], Punchscan [1], etc.

In voter-verifiable election schemes, voters need to cast their votes in a secure place,
e.g. in a voting booth, where the ballot form is either printed on a paper or displayed
on the DRE screen. Because the whole ballot form is available to the voter, she knows
how she has voted. After that, some part of the ballot form needs to be destroyed and
the voter can keep the remaining part as the receipt. The voter can use the receipt to
verify that her vote has been correctly counted, but she cannot use the receipt to prove
others how she has voted, therefore preventing coercion, intimidation and ballot selling.
Furthermore, the accuracy of the final result in these schemes is mainly relying on some
hard problems, therefore voters do not need to trust the participants who run the election
or equipment used in the election.

The scheme introduced by Kutylowski et al. in [7] is one of these voter-verifiable
schemes. But compared to the other schemes, it enjoys two special properties:

— Thanks to the repetitive robustness mix networks, the ballot tallying phase only
needs to be audited if the final result fail to achieve some conditions, therefore,
Randomised Partial Checking mechanism [5] or Neff’s mix [8] can be eliminated.

— The verification process is much simpler, ordinary voters can verify that their votes
have been counted without special knowledge. If all votes are properly recorded
and tallied, voters will see that some information in their receipts (the identifiers)
are correctly displayed on the bulletin board in the final result. Otherwise, their
receipts can be used as the proof to make accusation.



In this paper, we will first briefly review the election scheme introduced in [7],
then the scheme will be analysed using some threat based system perspectives. We will
show that the scheme is vulnerable to a number of attacks. Because of some technical
drawbacks or improper implementation, adversaries can not only violate voter privacy,
but also forge the election result.

2 The voting scheme

2.1 An overview of the scheme

1. Ballot construction: when the voter enters the voting booth, the voting machine
will generate two ballots and displays them on the screen, one row per ballot. Each
ballot contains the encryptions (Onions) of the candidate names and an identifier in
a random order. The voting machine commits to the ballots by printing hashes of
the whole encrypted data on the so-called hash ballot, in the same order.

2. Ballot casting and ballot checking: the voter chooses one of the two ballots, and
then she selects both the ciphertexts corresponding to her favourite candidate and
the identifier from the chosen ballot. At this time, the voting machine prints these
ciphertexts on the voting ballot. The voter can also ask the voting machine to open
the second ballot, by printing a control ballot which contains the random data used
for the encryptions on the second ballot, and the candidate names as well as the
identifier, in the same order as they appear on the screen. This control ballot can
be checked afterwards by any watch dog organisation. Thus, if a voter checks her
control ballot, a dishonest voting machine will be caught with probability %

3. Ballot tallying: After the end of the election day, the votes on the bulletin board are
sent to a mixnet which applies several partial decryptions. This optimistic mixnet is
making use of signatures embedded in the (plaintext) votes. These signatures from
the voting machines prevent dishonest mixes to remove some votes or forge new

ones. The result of the tally will be announced under the following two conditions:
— There are as many tallied votes as votes on the bulletin board (in fact there

will be exactly twice as much, and this is also true for the identifiers, see the
following point (4));
— All signatures for the plaintexts are valid.
4. Voter verification: Each voter will be convinced that her vote has not been manip-

ulated, and it is in the final tally. Indeed, each voting ballot is made up with two
ciphertexts of the chosen candidate and two ciphertexts of the voter identifier. After
the ballot tallying phase, if no manipulation has been done, each voter can check
that her identifier appears exactly twice. Moreover, the four Onions of the voting
ballot cannot be distinguished by others, hence even if a mix server, for instance the
first one, is able to modify the four Onions of a given ballot, she has only a 1-in-6

chance (6 = (3)) to successfully cheat, that is substituting the encryptions of the

candidate name while leaving the encrypted identifiers untouched. In the case of a
successful manipulation, the voter cannot detect it but the backtracking procedure
will find the mix server cheating.

5. Receipt freeness: It should be noted that this scheme is receipt-free, since the iden-
tifier is not embedded in the encryptions of the candidate name.



2.2 Some technical details

Encryption and decryption Let us briefly describe the encryption scheme. Denote by
G a cyclic group of prime order p with hard discrete logarithm problem, and let g be a
generator of GG. Suppose there are A mix servers, and each mix server has a secret key
x;, and the corresponding public key is y; = ¢g*7. An Onion, which is an encryption of
a message m, is given by the formula ¢ = (m - (y1 - - - ya)**, g**), where k; (modulo
p) is chosen uniformly at random.

The inputs to the first mix server are couples (a, 3) = (m - (yy - --ya)*, g**) and
the outputs are (ay, £1) = (B " (ya---ya)™, Bg™) = (m - (y2 - - - yx)*2, g*2) with
r1 chosen at random and ky = ki + 7.

Similarly, the inputs to the ith mix server are (ay, 3;) = (m - (y; ---yx)¥e, g*).
And in particular, the last mix server receives (ax, 3x) = (m - yx**, g**), and she can
recover the original message as m = a8y~ .

Note that the first and the last mix server have more power than the others as the
first mix server knows the relationships between voters and received votes, and the last
mix server can compute all plaintext messages.

The ballot construction Suppose there are two candidates in the election, the Blue
Party and the Yellow Party, denoted as B and Y respectively. Once a voter is authorised
to enter the voting booth, the voting machine will generate the following virtual ballot
(it exists only in the voting machine’s memory), with couples ordered at random:

rry (BiY,B.Y) MY vRY) (LY. LY)

q . (ME YRR (LY LY (B, BY)

The random string r is an identifier, and [ is its encrypted ciphertext. The random
string ¢ is a seed for all random exponents. The random strings rx with X = U, L
allow to distinguish the votes for a given candidate.

Each voting machine has two key pairs for signature schemes. One private key K is
used for signing the plaintexts using the signature scheme sig’. For each ciphertext z:x,
where Z = B,Y,I, i =1,2and X = U, L, after decoding, if Z;X isan encryption of
a vote for candidate B or Y, we will get the plaintext

(Z,rx,sery,sig (2, rx,1))
and the decryption of ;X gives us the identifier
(r, sery, sig' i (r,i, X))

The other private key K is used for creating seeds for the Onion construction. Z; ™~ is
an ElGamal ciphertext built with random exponent ky as Z; = (m-(y1 - - - y)**, g*1),
where k1 = sigk (q,1, X, Z) and sig is a deterministic signature scheme.

The serial number sevy of the voting machine allows to know which is the public
key to use in order to verify the signature sig’ ..

After that, the voting machine has to creates and prints a hash ballot, which is the
commitment to the above virtual ballot. Denote o as the signature with secret key K of



the whole data on the hash ballot and h represents a hash function. The voting machine
will print the following hash ballot:

) [pBY) hBRMY) G AT ALY [h(g)
R [h(ro) [AORT) AR5 (AT R(@5 [(BE) h(B5)] o

~—

Casting a vote In the voting booth, the voting machine will display these two ballots
on the screen in the same order as in the virtual ballot:

Blue  Yellow Identifier
Yellow Identifier  Blue

Suppose this voter chooses the upper line on the screen and the Blue Party, the
voting machine will print the voting ballot which contains two ciphertexts for the Blue
Party, two ciphertexts of the identifier r, and the signature of the voting machine.

BlU BQU IlU IQU‘SigK(BlU,BQU711U7IQU)‘

The voter can also asks the voting machine to generate and print a control ballot for
the ballot in the lower line as

r Yellow Party Identifier Blue Party
TL Y1L YzL IlL IzL BlL BzL
o(1,L,Y) o(2,L,Y)|c(1,L,I) o(2,L,I)|0(1,L,B) o(2,L,B)

where o (i, L, Z) = sigi(q,i, L, Z).

In the voting booth, the signature on the voting ballot is verified before registration
of the vote. Thus no vote on the bulletin board has been forged by dishonest voters.

Finally, the voter leaves the polling place with his three ballots (voting ballot, con-
trol ballot and hash ballot) and she can give them to a trusted organisation for verifica-
tion. The organisation should help this voter to verify the following points:

— The signatures on all these three ballots are valid.
— The hash ballot contains the right commitment of the control ballot.
— Onions on the control ballot will be verified without the private key as:

ZX =(m-(y1---y)k,g")

where k1 = 0(i, X, Z), and m = (Z,rx, serv, sig' . (Z,rx,4))if Z = B,Y, or
m = (r, sery, sig’ . (r,i, X)) if Z = I. In the control ballot, each party and the
identifier should appear exactly once, and their order must be the same as in the
hash ballot.

— The identifier value must be the same on the hash ballot and the opened control
ballot.

The voter can also look at the bulletin board to be sure that his voting ballot has been
accurately recorded.



Bulletin board, ballot tallying and backtracking After the last decoding, one has to
check the following points:

All signatures sig’ i, (Z;~ ) for the plaintexts are valid.

The number of votes counted on the bulletin board is exactly half the number of

votes (Z,rx, serv, sig’ i (Z,rx,4)) and the number of identifiers (r, sery, sig’ i (r, i, X)).
No vote or identifier has been duplicated.

Each identifier and each triple (Z, rx, sery ) appears twice.

If all these conditions are satisfied, the results are announced. If at least one vote or
identifier is invalid, the last mix server must indicate where it comes from, and she
has to prove that she has decoded correctly using equality of discrete logarithm proof
[14]. This is repeated with the preceding mix server until one finds a mix server unable
to prove her correct behaviour. This procedure together with the embedded signatures
prevent any manipulation from mix servers such as removing, inserting, duplicating or
modifying an Onion.

3 Weaknesses of the scheme

There are four minor technical errors in the description of the scheme:

1. The random string q is printed nowhere, although it is absolutely necessary to check
the signature on the control ballot, since o (i, X, Z) = sigk(q, i, X, Z). Therefore,
it needs to be printed at least on the control ballot, it should be printed on the hash
ballot as well.

2. The authors have not explained how to print the ciphertexts on the voting ballot. If
they are printed as explained in the previous section, the probability of a successful
vote replacement by the first mix server is not %, but % because the first mix server
can distinguish the four Onions into two groups, although she does not know the
content for each group. The correct implementation of this point is that the voting
machine has to randomly permute the ciphertexts of candidate and the ciphertexts
of identifier before printing them on the voting ballot.

3. Even if the voting machine is honest to print the four ciphertexts in a random order
on the voting ballot, it is still possible for the first mix server to classify the four
ciphertexts into two groups if provided with the corresponding hash ballot, because
the hashed ciphertexts in the hash ballot are all grouped, the first mix server can
hash the ciphertexts on the voting ballot and compare the result with the hash bal-
lot. Therefore, in this case, the first mix server still can replace the vote without
changing the identifier with § possibility.

4. It is not the hash ballot that should be marked as used, but the control ballot which
contains opened Onions. We will illustrate this point in the next section.

4 Threat analysis

Some papers [6], [11] have shown that electronic voting schemes are very complex and
different attacks may be applied by adversaries. Some of these attacks are because of



technical drawbacks, while others can be caused by improperly implementation of the
e-voting systems. In this paper, we will classify our threats to the scheme in [7] into
three categories:

4.1

Threats against anonymity: these attacks only try to find out how a certain voter
has casted her vote, breaking the voter-vote links.

Threats against correctness: the purpose of these attacks is to violate the correct-
ness of the final result. Sometimes, the adversaries cannot forge the result as their
wish, but they can make the result random.

Attacks against reliability: these attacks neither wish to learn the voter’s choice
nor forge the result. Their main purpose is to make the election system break down
or violate user’s trust to the election system.

Threats against anonymity

Side channel and subliminal channel attack

Since voters cast their votes through a voting machine, the voting machine will
know the choice of the voter. An adversaries can use a corrupted voting machine,
and some side channel or subliminal channel to learn this voter’s choice, e.g. a
corrupted voting machine can print ciphertexts such that the space between the first
and second letters is larger than the space between the second and third letters when
the plaintext is a vote for the Blue Party, otherwise Yellow Party. Hence by looking
at the voting ballot, the adversaries can learn the choices of the voters.
Kleptographic channel attack

The voting machine can carefully choose the random values so that the ciphertext
can be read by colluding adversaries without decoding. An example, a corrupted
voting machine can generate ciphertexts such that the seventh most significant bit
is odd exactly when the plaintext is a vote for the Blue Party, otherwise Yellow
Party.

Authority knowledge attack

Even if the voting machine is honest in the previous two attacks, it has the power
to retrieve voter’s choice just by reading the voting ballot. The voting machine
can implement this attack using two methods. One is to record all relationships
between ciphertexts and their plaintexts when generating ballots. The other is to
remember all relationships between the identifier r and the seed generator g of this
ballot. Then by reading r on the voting ballot, the voting machine can find out the
plaintext using the signature sigx (g,, X, Z).

Duplicating onion attack

Suppose now that an honest voter v uses a perfectly honest voting machine to cast
her vote. A collusion between a corrupted voter v’, the first mix server and the last
mix server allows to learn the choice of v.

Step 1: Before the mixing procedure, the corrupted voter v’ casts her encrypted
Vote Cqyy (four Onions) which is put on the bulletin board, and she sends a valid
vote Mgy, (four opened Onions, e.g. taken from her control ballot' or from any

! The authors have not described any procedure to prevent reusing a control ballot



4.2

corrupted voting machine) to the last mix. Note that ¢, is not supposed to be an
encryption of mgy,z-

Step 2: The first mix server removes ¢4, and duplicates (with re-encryption) four
Onions of voter v.

Step 3: The last mix server opens all Onions and recognised the duplicated votes of
v. Then she replaces one of the duplicated results by m ..

Using ElGamal malleability — 1

Let (v;)1<i<n be the set of all voters. The first mix multiplies the four Onions
(¢i,j)1<j<a of v; by ¢ (that is, multiply the first vote by 1, the second vote by 2,
and so on). The last mix server decrypts all the votes and for any fixed k& < n,
she divides all the obtained results (i - m; ;) by k. She will recognise exactly the
two votes of vy (beginning by B or Y), e.g. (B, ry, sery, sig’ . (B,ry, 1)) and
(B,ru, serv, sig’ k. (B, ry,2)), and the serial number sery allows the last mix

server to recover the two identifiers (r, sery, sig’ i/ (r,1,U)) and (r, sery, sig’ i (r, 2,U)).

Hence the last mix correctly outputs all the votes, but she knows the choice of each
voter.

Using ElGamal malleability — 2

The attack is not as practical as the above one, but it should work in theory. If the
first mix server colludes with the last server, they can find out how a voter v has
voted as follows: the first mix server replaces all four received Onions (¢;)1<i<4
of v by ¢;2 = (m;? - (y1---yxn)?*, g%%1). After decoding, the last mix server
will obtain four messages which are not readable. Then m; can be retrieved by
calculating the square root of m;2. Thus, the last mix server can read this voter’s
choice.

Suicide attack

Suppose that the first mix server is the only dishonest one. By using the methods
of the previous two attacks, e.g. multiplying the Onions and dividing them after the
final decryption step, the first mix server learns the choice of each voter. Since the
decrypted votes are not valid ones, she will be caught thanks to the backtracking
procedure, but it is too late.

Hidden camera attack

The authors have mentioned this attack in [7], that if the voting booth is monitored
by hidden cameras, or if voters successfully bring cameras into the voting booth,
voter privacy can be violated.

Threats against correctness

. Voting machine colludes with the first mix server

A corrupted voting machine can always place the ciphertexts for the identifier after
the ciphertexts for candidate (or it uses a subliminal channel to indicate the position
of ciphertexts for the identifier), and the first mix replaces the first two Onions
(ciphertexts for candidate) by Onions forged by the voting machine.

Voting machine colludes with the last mix server

The last mix server can replace some votes (but not identifiers) by valid votes forged
by a corrupted voting machine.



3. Voting machine colludes with any mix server
Since the voting machine has the ability to retrieve all identifiers just by reading
the ciphertexts (before decoded by the first mix server) on the bulletin board, if it
colludes with any mix server, it can generate a whole batch of forged votes (with the
same identifiers). And the faulty mix server can use these forged votes to replace
the original ones.

4. Discarded receipt attack
When some voters are forced to surrender all their ballots, if the first mix server
wish Blue Party to win, she can use the ciphertexts in the control ballot (for Blue
Party and identifier) to replace the original Onions. Besides, if the voting machine
colludes with the first mix server, they can forge valid votes to replace the discarded
ones.

5. Cast votes for absent voters
If some voters do not cast their votes, adversaries (especially some election author-
ities) may use their identity to cast votes.

6. Voting machine generate faulty ballots
Because the ballots are generated on demand and they are not distributed to voters
randomly. Therefore, if some voters are coerced to cast their votes at some particu-
lar time (e.g. between 3pm and 4pm), and these voters are not allowed to audit their
control ballots, the voting machine can forge ballots during this period without be-
ing detected. Another possibility of this attack is similar as introduced in [6], when
voters cast their votes in the voting booth, the voting machine has to print the hash
ballot before voters make their choices. Otherwise, the hash ballot may not contain
commitment to the voting ballot. If some voters do not notice the difference, they
may be provided with faulty ballots.

4.3 Threats against reliability

1. Early publishing
Since the voting machine has the ability to retrieve any voter’s choice just by read-
ing the bulletin board. It can reveal partial result which may affect voters before
they cast their votes.

2. Invalid signature
If the voting machine generate invalid signature on control ballot or hash ballot
(since they will not be checked in the voting booth), it will be difficult to determine
afterwards the invalid ballot is forged by the voting machine or by the faulty voter.

3. Denial of service
The authors have not suggested that the private keys (z1, 22, - - , ) are threshold
distributed among all mix servers. Hence the absence of at least one mix server will
result in denial of service for the whole election system.

5 Conclusion and discussion

We have shown a number of attacks to the scheme in [7]. Generally speaking, the rea-
sons for these attacks include:



— The voting machine has too much power. It generate all ballots not in a distribute

fashion and it has the ability to learn voter’s choice. The security of this scheme is
heavily relying on that the voting machine is honest.

The mixnet suggested in the scheme is not fully verified. Therefore, some attacks
can succeed without being detected. A suggested mitigation to some attacks is that
the first and the last mix server have to be verified immediately after their decoding.
Note that this cannot completely solve the problem, as the first and the last mix
server may collude with the mix servers next to them. To ensure the correctness of
the result, the mixnet needs to be fully verified, e.g. using techniques in [13].

The authors have not described any procedure to prevent reusing the control ballots.
Thus if they are improperly used, the final result will be inaccurate. We suggest that
all opened control ballots should be published onto the bulletin board as well, and
one has to ensure that no unit in the final result is duplicated from the opened
control ballots.
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