
Topics: Computational complexity.Resource-Bounded Dense Genericity, Stochasticity and Weak RandomnessExtended AbstractKlaus Ambos-Spies1, Elvira Mayordomo2, Yongge Wang1, Xizhong Zheng1AbstractWe introduce dense t(n)-genericity which is a re�nement of the genericity concept of Ambos-Spies,Fleichhack and Huwig [3] and which in addition controls the frequency with which a condition is met.We show that this concept coincides with the resource-bounded version of Curch's stochasticity [7]. Byuniformly describing these concepts and weaker notions of stochasticity introduced by Wilber [24] and Ko[13] in terms of prediction functions, we clarify the relations among these resource-bounded stochasticityconcepts. Moreover, we give descriptions of these concepts in the framework of Lutz's resource boundedmeasure theory [16] based on martingales: We show that t(n)-stochasticity coincides with a weak notion oft(n)-randomness based on so called simple martingales but that it is strictly weaker than t(n)-randomnessin the sense of Lutz.1 IntroductionOver the last years resource bounded versions of Baire category and Lebesgue measure have been intro-duced in complexity theory. These concepts allow a quantitative analysis of the structural properties ofcomplexity classes. In most cases the concepts were introduced for deterministic time classes, where in gen-eral the t(n)-time bounded concepts correspond to the class DTIME(t(2n)). In particular, polynomial timebounded versions of these concepts have been used to analyse the structure of the class E of the deterministicexponential time sets.Many applications of category and measure can be reduced to questions about the typical sets for theseconcepts, i.e., the generic sets in case of Baire category and the random sets in the case of Lebesgue measure.These typical sets have all properties which are shared by a large class of sets, i.e., by a comeager respectivelymeasure-1 class (in the corresponding resource-bounded sense).Resource-bounded genericity concepts have been introduced by Ambos-Spies, Fleischhack and Huwig([2, 3]), Lutz [16], Fenner ([9, 10]), Ambos-Spies [1], and others. Resource-bounded randomness conceptscan be found e.g. in Wilber [24], Ko [13] and Lutz [16]. While an attempt to clarify the relations among thevarious genericity notions has been recently made by Ambos-Spies in [1], it seems that the relations amongthe di�erent resource-bounded randomness notions have not yet been explored systematically, though someisolated results have been obtained.As also shown in [1], as in the classical case, most of the genericity concepts are incompatible withthe randomness concepts in the resource bounded case too. There is a notable exception, however: thegenericity concept of Ambos-Spies, Fleischhack and Huwig [3] is compatible with Lutz's randomness [16].In fact, Ambos-Spies, Neis and Terwijn [4] have used this type of genericity to get new measure results andsimpler proofs of certain older measure results. As observed by them too, however, genericity cannot controlthe density of a set whereas random sets are exponentially dense. More generally, in case of genericitycertain events which may happen in�nitely often are forced to actually happen in�nitely often. Beyond this,however, genericity cannot determine the relative frequency with which the events will happen, i.e., which1Mathematisches Institut, Universit�at Heidelberg, D-69120 Heidelberg, Germany. Supported by the Human Capital andMobility Program of the European Community under grant CHRX-CT93-0415(COLORET)2Universidad de Zaragoza, Dept. Ingenier�ia Inform�atica, CPS, Mar��a de Luna 3, E-50015 Zaragoza, Spain. Supported in partby the EC through the Esprit Bra project 7141 (ALCOM II), and by the Spanish gov. through project DGICYT PB94{0564and Accion Integrada HA{119. 1



fractions of the chances are actually realized. In contrast, for a random set, the distribution of the events(captured by the measure concept) will be determined.These observations have motivated our investigations here. We address the question, whether the gapbetween t(n)-genericity (in the sense of [3]) and t(n)-randomness (in the sense of [16]) can be bridged byconsidering an extension of the former which in addition controls the frequency. The answer we obtain isnegative, but we hope that our investigations help to better understand the relations among some of theresource-bounded randomness notions in the literature. We show that our new dense t(n)-genericity conceptcoincides with the resource-bounded version of some other, weaker, randomness concept, namely that ofChurch [7]. According to the classi�cation of randomness concepts by Kolmogorov (see [14]), Church'srandomness, which is based on the distribution of the 0s and 1s in e�ectively chosen subsequences, is astochasticity notion, while Lutz's concept, a resource-bounded version of Schnorr's randomness conceptbased on martingales [21], is a notion of typicalness. Our equivalence proof is based on the characterizationof genericity and stochasticity in terms of prediction functions. By giving characterizations of other, weaker,resource-bounded stochasticity notions in terms of prediction functions too, we clarify the relations amongthese concepts, which originally were de�ned in quite di�erent terms, and we prove some new separationresults for these notions.Finally we compare stochasticity and typicalness. We show that the expressive power of predictionfunctions is that of so-called simple martingales. So, t(n)-stochasticity, hence dense t(n)-genericty, coincideswith weak t(n)-randomness, where t(n)-randomness is de�ned by simple martingales. We also show, however,that general martingales are more powerful, i.e., that there are weakly t(n)-random sets which are not t(n)-random.The outline of the paper is as follows. In Section 2 we review the t(n)-genericity concept of Ambos-Spieset al. [3] and introduce its dense counterpart. Section 3 is devoted to the equivalence of dense-t(n)-generictyand t(n)-stochasticity and a classi�cation of stochasticity concepts. Finally, in Section 4, we derive fromLutz's t(n)-randomness the new, weaker concept of weak-t(n)-randomness, and show the equivalence of thisconcept with stochasticity.We close this section by introducing some notation. Let ! be the set of natural numbers and letf0; 1g� be the set of (�nite) binary strings. For a string x, x(m) denotes the (m + 1)th bit in x, i.e.,x = x(0):::x(n�1), where n = jxj is the length of x. � is the empty string. We identify strings with numbersby letting n be the (n+1)th string under the canonical ordering. Note that jnj � log(n). Lower case letters� � � ; k; l;m; n; � � � ; x; y; z from the middle and the end of the alphabet will denote numbers and strings. Theletters i and j are reserved for elements of f0; 1g, and lower case Greek letters denote nonnegative realnumbers.A set of strings is called a problem or shortly a set, while sets of sets are called classes. Capital lettersdenote sets, kAk denotes the cardinality of A. We identify a set with its in�nite characteristic string, i.e.,n 2 A i� A(n) = 1 and n =2 A i� A(n) = 0, so that f0; 1g!, the set of in�nite binary sequences, is identi�edwith the power class of f0; 1g�. We let A j�n denote the initial segment A(0):::A(n � 1) 2 f0; 1g� of A oflength n. I.e., interpreted as a set, A j�n = fx : x < n & x 2 Ag.We will use strings in two di�erent meanings: as elements of sets and as �nite initial segments of sets.In an attempt to avoid confusion, usually we will write X j�x for strings intended to denote initial segments.Then X j�x denotes a string of length x and, for y < x, X(y) or (X j�x)(y) will denote the (y + 1)th bitof X j�x. Also note the di�erence in the length of an initial segment A j�x and the length of its boundx : 2jxj � 1 � jA j�xj � 2jxj+1 � 1. Since, as mentioned before, many of the genericity and randomnessconcepts we discuss in this paper are based on functions de�ned on initial segments, this will be responsiblefor the fact that the DTIME(t(n)) bounded concepts will correspond to the class DTIME(t(2n)).Throughout this paper, t(n) is an arbitrary recursive function such that t(n) is nondecreasing and t(n) > nfor all n. Finally, for a partial function f , we let f(x) # (f(x) ") denote that f(x) is (un)de�ned.
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2 Genericity and Dense GenericityAmbos-Spies, Fleischhack and Huwig [3] introduced resource bounded genericity notions corresponding to�nite-extension diagonalization arguments in which every single diagonalization step requires only a one-string extension. The properties enforced by the single diagonalization steps are formalized by conditions inthese concepts.De�nition 2.1 A condition C is a set C � f0; 1g�. A t(n)-condition is a condition C 2 DTIME(t(n)). Acondition C is dense along a set A if there are in�nitely many x such that (A j�x)i 2 C for some i 2 f0; 1g.A set A meets a condition C if A j�x 2 C for some x. A is t(n)-generic if A meets every t(n)-condition whichis dense along A.Intuitively, a condition C is dense along a set A if in the inductive de�nition of A there are in�nitelymany chances to extend A j�x to A j�(x+ 1) in such a way that A j�(x+ 1) will force the property encoded byC for A. So a t(n)-generic set A has all properties which can be encoded by DTIME(t(n))-conditions andwhich can be forced in�nitely often along the construction of A. In the following lemma we give an example.Lemma 2.2 [3] Let A be t(n)-generic, then A is P -bi-immune.Proof. By symmetry, it su�ces to show that A is P -immune. So let B 2 P be in�nite. De�ne a conditionC by C = f(X j�x)0 : x 2 Bg: Then, by B 2 P , C is an n- (hence t(n)-) condition and, by in�nity of B, Cis dense along all sets. Morever, by de�nition, no superset of B meets C. So by t(n)-genericity, A meets Cwhence B is not contained in A. 2As observed already in [3], a t(n)-generic set A meets a condition C which is dense along A not just oncebut in�nitely often.Lemma 2.3 [3] Let A be t(n)-generic and let C be a t(n)-condition which is dense along A. There arein�nitely many strings x such that A j�x 2 C.For analyzing the frequency with which a set meets conditions which are dense along it, it is convenientto consider only proper conditions.De�nition 2.4 A condition C is proper if for every string x, x0 =2 C or x1 =2 C. A set A meets (avoids) aproper condition at x if (A j�x)A(x) 2 C ((A j�x)(1�A(x)) 2 C).As the following observation shows, in the de�nition of t(n)-genericity, it su�ces to consider properconditons.Lemma 2.5 Let C be a t(n)-condition. Then C 0 de�ned byC 0 = fx0 : x0 2 Cg [ fx1 : x1 2 C & x0 =2 Cg;(1)is a proper t(n)-condition such that, for any x,9i 2 f0; 1g (xi 2 C) () 9i 2 f0; 1g (xi 2 C 0);and x 2 C 0 implies that x 2 C. Hence, for any set A, C is dense along A i� C 0 is dense along A, and Ameets C if A meets C 0.Proof. Straightforward. 2Lemma 2.6 For any set A, the following are equivalent.1. A is t(n)-generic.2. A meets every proper t(n)-codition C which is dense along A.3



3. A in�nitely often meets every proper t(n)-codition C which is dense along A.Proof. 1) 3 holds by Lemma 2.3, 3) 2 is obvious, and 2) 1 holds by Lemma 2.5. 2Moreover, we can replace \meets" by \avoids" in 2 and 3 of Lemma 2.6.Lemma 2.7 Let C be a proper t(n)-condition. Then, for Ĉ de�ned byĈ = fx(1� i) : xi 2 Cg;(2)Ĉ is a proper t(n)-condition and, for any set A and any string x, A meets (avoids) Ĉ at x i� A avoids(meets) C at x.Proof. Straightforward. 2So a t(n)-generic set in�nitely often meets and in�nitely often avoids every proper t(n)-condition whichis dense along A. As the following theorem shows, however, we cannot say anything about the relativefrequency of these events.Theorem 2.8 Let C be a proper t(n)-condition and let f be an unbounded, nondecreasing recursive function.There is a t(n)-generic set A such that kfy < n : A meets C at ygk � f(n) for all n.We omit the proof of the theorem which is similar to the proofs of related results on the possible densitiesof t(n)-generic sets in [3] and [4].Corollary 2.9 [3] There is a sparse t(n)-generic set.Proof. Apply Theorem 2.8 to C = fx1 : x 2 f0; 1g�g and f(n) = logn. 2As the above results show, t(n)-genericity can force events to happen in�nitely often but it cannotcontrol the frequency distribution of these events. To overcome this shortcoming we introduce the followingstrengthening of t(n)-genericity.De�nition 2.10 A set A meets a condition C densely iflimn kfy < n : A j�(y + 1) 2 Cgkkfy < n : 9i ((A j�y)i 2 C)gk = 12 :(3)A set A is densely t(n)-generic if A meets densely every proper t(n)-condition which is dense along A.Note that A meets a proper t(n)-condition C densely if and only iflimn kfy < n : A meets C at ygkkfy < n : A avoids C at ygk = 1;i.e., i� the frequency of A meeting and avoiding C is the same. The following lemma gives a characterizationof dense genericity in terms of arbitrary (not necessarily proper) conditions.Lemma 2.11 For any set A, the following are equivalent.1. A is densely t(n)-generic.2. For any t(n)-condition C which is dense along A,lim infn kfy < n : A j�(y + 1) 2 Cgkkfy < n : 9i ((A j�y)i 2 C)gk � 12 :(4)The following theorem demonstrates the additional power of dense genericity compared with genericity.Theorem 2.12 Let A be densely t(n)-generic. Then A is exponentially dense, i.e., there exits a real " > 0such that kA�nk � 2n" for almost all n.Corollary 2.13 There is a t(n)-generic set which is not densely n-generic, whence not densely t(n)-generic.Proof. By Corollary 2.9 and by Theorem 2.12. 2 4



3 Resource Bounded StochasticityThe �rst notion of randomness based on formal computability was introduced by Church [7] in 1940. Churchcalled an in�nite 0-1-sequence A a random sequence, if, for every in�nite subsequence S of A selected bya recursive rule, the numbers of occurences of 0s and 1s in the sequences are asymptotically the same.Following Uspenskii et al. [22] we call randomness in the sense of Church stochasticity.For a formal de�nition of stochasticity, we �rst formalize the notion of a selective rule.De�nition 3.1 A selection function f is a total recursive function f : f0; 1g� ! f0; 1g. A selection functionf is dense along A if f(A j�x) = 1 for in�nitely many x.By interpreting A as the in�nite 0-1-sequence A(0)A(1)A(2) � � �, a selection function f selects the sub-sequence A(x0)A(x1)A(x2) � � � of A where x0 < x1 < x2 < � � � are the strings x such that f(A j�x) = 1. Inparticular, f selects an in�nite subsequence S of A i� f is dense along A. So Church's stochasticity conceptcan be de�ned as followsDe�nition 3.2 (Church [7]) A set A is stochastic if, for every selection function f which is dense along Aand for i 2 f0; 1g, limn kfy < n : f(A j�y) = 1 & A(y) = igkkfy < n : f(A j�y) = 1gk = 12 :(5) Di Paola [8] studied subrecursive versions of Church stochasticity corresponding to the Ritchie andGrzegorczyk hierarchies. Here we will consider t(n)-time bounded Church stochasticity corresponding toDTIME(t(2n)).De�nition 3.3 A t(n)-selection function f is a selection function f 2 DTIME(t(n)). A set A is t(n)-stochastic if, for every t(n)-selection function f which is dense along A and for i 2 f0; 1g, (5) holds.To show that t(n)-stochasticity and dense t(n)-genericity coincide, we characterize these concepts interms of prediction functions. A prediction function f is a procedure which, given a �nite initial segment ofa 0-1-sequence, predicts the value of the next member of the sequence. We will show that a sequence A isstochastic (densely generic) i�, for every partial prediction function which makes in�nitely many predictionsalong A, the number of the correct and incorrect predictions is asymptotically the same.De�nition 3.4 A prediction function f is a partial function f : f0; 1g� ! f0; 1g . A t(n)-predictionfunction f is a prediction function f such that f 2 DTIME(t(n)) and domain(f) 2 DTIME(t(n)). Aprediction function f is dense along A if f(A j�x) is de�ned for in�nitely many x. A meets (avoids) f at xif f(A j�x) is de�ned and f(A j�x) = A(x) (f(A j�x) = 1�A(x)). A meets f densely iflimn kfy < n : f(A j�y) = A(y)gkkfy < n : f(A j�y) #gk = 12 :(6) Note that (6) can be rephrased bylimn kfy < n : A meets f at ygkkfy < n : A avoids f at ygk = 1:(7)Theorem 3.5 For any set A, the following are equivalent.1. A is densely t(n)-generic.2. A is t(n)-stochastic.3. A meets densely every t(n)-prediction function which is dense along A.5



Proof. We prove the implications 1) 3) 2) 1.1) 3. Assume that A is densely t(n)-generic and let f be a t(n)-prediction function which is dense alongA. De�ne a proper t(n)-condition Cf byCf = f(X j�x)f(X j�x) : f(X j�x) #g:Then Cf is dense along A, whence, by t(n)-genericity of A, (3) holds for Cf (in place of C). By de�nitionof Cf , this is equivalent to (6), whence A meets f densely.3)2. Assume that A meets densely every t(n)-prediction function which is dense along A, and let fbe any t(n)-selection function which is dense along A. To show that (5) holds, �x i 2 f0; 1g and de�nethe t(n)-prediction function f 0 by letting f 0(X j�x) = i if f(X j�x) = 1 and by letting f 0(X j�x) be unde�nedotherwise. Then f 0 is dense along A, whence, by assumption, (6) holds for f 0 (in place of f). But this isequivalent to (5) (for f).2)1. Assume that A is t(n)-stochastic and let C be a proper t(n)-condition which is dense along A.We have to show that (3) holds. De�ne t(n)-selection functions fi; i = 0; 1; by letting fi(X j�x) = 1 for(X j�x)i 2 C and letting fi(X j�x) = 0 otherwise. Thenfy : A j�(y + 1) 2 Cg = [i=0;1 fy : fi(A j�y) = 1 & A(y) = igand fy : 9i 2 f0; 1g ((A j�y)i 2 C)g = [i=0;1 fy : fi(A j�y) = 1gwhere the unions of the right hand sides of the equations are disjoint. Hencekfy < n : A j�(y + 1) 2 Cgkkfy < n : 9i 2 f0; 1g ((A j�y)i 2 C)gk = Pi=0;1 kfy < n : fi(A j�y) = 1 & A(y) = igkPi=0;1 kfy < n : fi(A j�y) = 1gk :(8) Now distinguish the following two cases.First assume that, for some i 2 f0; 1g, fi is not dense along A. Then f1�i is dense along A andfy : fi(A j�y) = 1g is �nite. So, by (8),kfy < n : A j�(y + 1) 2 Cgkkfy < n : 9i 2 f0; 1g ((A j�y)i 2 C)gk = kfy < n : f1�i(A j�y) = 1 & A(y) = 1� igkkfy < n : f1�i(A j�y) = 1gkin the limit and, by t(n)-stochasticity of A, the right hand side has limit 12 . So (3) holds.Otherwise, f0 and f1 are dense along A whence, by t(n)-stochasticity, (5) holds for fi in place of f(i = 0; 1). It follows that the right hand side of (8) has limit 12 , whence (3) holds in this case too. 2In the remainder of this section we shortly discuss some other, weaker resource-bounded stochasticityconcepts. We will characterize these concepts by di�erent types of prediction functions thereby clarifyingthe relations among these notions. The �rst concept we will consider, was introduced by Ko in [13] and wasde�ned in terms of prediction functions already.De�nition 3.6 (Ko [13]) A set A is Ko-t(n)-stochastic if, for every total t(n)-prediction function f , Ameets f densely, i.e., limn kfy < n : f(A j�y) = A(y)gkn = 12 :(9)Lemma 3.7 Every t(n)-stochastic set is Ko-t(n)-stochastic.Proof. Since, obviously, a total prediction function is dense along all sets, this follows from Theorem 3.5immediately. 2A still older notion of stochasticity can be found in [24].6



De�nition 3.8 (Wilber [24]) A set A is Wilber-t(n)-stochastic if, for every set B 2 DTIME(t(n)),limn kfy < n : A(y) = B(y)gkn = 12 :(10)To relate Wilber's notion to the other stochasticity concepts, we need the following property of predictionfunctions.De�nition 3.9 A prediction function f is oblivious if, for all strings x and y with jxj = jyj, f(x) is de�nedif and only if f(y) is de�ned, and, if f(x) is de�ned, then f(x) = f(y).Intuitively, for an oblivious prediction function f , the predicted value A(y) of a set A does not dependon the previously seen values A j�y of A, so that f makes the same predictions for all sets.Lemma 3.10 For any set A the following are equivalent.1. A is Wilber-t(2n)-stochastic.2. A meets densely every total oblivious t(n)-prediction function.De�nition 3.11 A set A is weakly t(n)-stochastic if, for every in�nite set B 2 DTIME(t(n)),limn kA \ B j�nkkB j�nk = 12 :(11)Loveland [15] called a set A which satis�es (11) unbiased with respect to B. Also note that weakt(n)-stochasticity may be viewed as dense DTIME(t(n))-bi-immunity: If A is weakly t(n)-stochastic andB 2 DTIME(t(n)) is in�nite then A \ B and A \ B are in�nite and, moreover, kfy < n : y 2 A \Bgk andkfy < n : y 2 A \ Bgk grow at the same rate.Lemma 3.12 For any set A, the following are equivalent.1. A is weakly t(2n)-stochastic.2. A meets densely every oblivious t(n)-prediction function which is dense along A.The relation between stochasticity and weak-stochasticity can be further illustrated by the followingcharacterization of t(n)-stochasticity in the style of De�nition 3.11.Lemma 3.13 A set A is t(n)-stochastic i�, for every in�nite set B 2 DTIME<A(t(2n)), (11) holds. HereB 2 DTIME<A(t(2n)) means that there is a t(2n)-time bounded deterministic oracle Turing machine Msuch that B(x) =M(A j�x;x) for all x.The above characterizations of the stochasticity concepts in terms of prediction functions imply thefollowing relations: Ko-t(n)-stochastic% &t(n)-stochastic Wilber-t(2n)-stochastic& %weakly-t(2n)-stochastic(12)To show that no other implications hold, we analyze some closure properties of the stochasticity concepts.We �rst extend an observation of Huynh [11] on Wilber-stochasticity to Ko-stochasticity.Theorem 3.14 Let A be Ko-t(n)-stochastic where t(n) � n2 and let B 2 P be sparse. Then A [ B isKo-t(n)-stochastic too. 7



Corollary 3.15 There is a Ko-t(n)-stochastic set which is not weakly-n-stochastic.Proof. Let B = f0g�. By Theorem 3.14 there is a Ko-t(n)-stochastic set A which contains B. So A is notDTIME(n)-immune. As observed above, however, every weakly-n-stochastic set is DTIME(n)-bi-immune.2Theorem 3.16 Let A be weakly-t(n)-stochastic. Then ~A = f2n; 2n+1 : 2n+1 2 Ag is weakly t(n)-stochastictoo.Corollary 3.17 There is a weakly t(n)-stochastic set which is not Ko-n-stochastic.Proof. By Theorem 3.16, it su�ces to show that there is no set A such that ~A = f2n; 2n+1 : 2n+1 2 Agis Ko-n-stochastic. So �x A. We have to give a total n-prediction function f such that ~A does not meet fdensely.De�ne total n-prediction functions f0 and f1 by letting fi(X j�2n) = i and fi(X j�2n + 1) = 1 � X(2n).Then, for all n 2 ! and for i 2 f0; 1g, fi( ~A j�2n+ 1) 6= ~A(2n+ 1) = ~A(2n). Since f0( ~A j�2n) 6= f1( ~A j�2n) forall n, it follows that ~A cannot meet both f0 and f1 densely. 2Lutz and Mayordomo [18] have introduced another stochasticity notion which resembles our weak-stochasticity notion here but does not coincide with it. As one can easily check, a set A is weakly t(n)-stochastic i� there are sets B;C 2 DTIME(t(n)) such that B is in�nite andlimn k(A�C) \ B j�nkkB j�nk = 12 :Now Lutz and Mayordomo's stochasticity notion is more liberal in allowing a linear advice for computing Cbut also more restrictive in requiring that B is exponentially dense. By the latter, a variant of the proof oflemma 3.14 shows that, in contrast to weak stochasticity, Lutz and Mayordomo stochasticity does not implybi-immunity.We should remark that many results in this section have some parallels in the theory of genericity. Thereprediction functions are usually viewed as extension functions. Corresponding to Theorem 3.5, Ambos-Spies[1] has shown that a set A is t(n)-generic i� A meets every t(n)-prediction function which is dense along A.As shown in [1] too, total t(n)-prediction functions yield an almost trivial genericity concept (cf Lemma 6.6of [1]), while in [3], it was implicitly shown that genericity for oblivious t(n)-prediction functions coincideswith DTIME(t(2n))-bi-immunity. Finally, a characterization of t(n)-genericity corresponding to Lemma3.13 was given by Balcazar and Mayordomo in [6].4 Randomness and Weak RandomnessSchnorr [20, 21] de�ned a randomness concept based on computable martingales, where martingale is abetting strategy. In classical measure theory, a class has measure 0 i� there is a martingale which succeedson all members of the class. Schnorr calls a set random if no recursive martingale e�ectively succeeds on it.Lutz [17] introduced a resource-bounded version of this concept by imposing time or space bounds on themartingales.De�nition 4.1 [17] A martingale is a function d : f0; 1g� ! Q+, where Q+ is the set of nonnegativerationals, such that 8x 2 f0; 1g� (d(x0) + d(x1) = 2d(x)):(13)A martingale d succeeds on a set A if lim supn d(A j�n) = 1: A martingale d is a t(n)-martingale ifd 2 DTIME(t(n)). A set A is t(n)-random if no t(n)-martingale succeeds on A.In the following, S1[d] denotes the class of the sets on which the martingale d succeeds. Originally, Lutzused t(n)-time computable approximations of real valued martingales, but the above, technically simpler,8



de�nition is equivalent to his concept. This was already shown by Schnorr [21] for the recursive case and,as observed independently in [5], [12] and [19], this equivalence holds in the resource bounded case too.The existence of recursive t(n)-random sets was proved by Schnorr [21]. Later Lutz [17] obtained someexistence result for p-randomness, and Ambos-Spies et al. [5] have proved the following general existenceresult for t(n)-random sets.Theorem 4.2 ([5]) There is a t(n)-random set in DTIME(t0(2n)), where t0(n) = n2t(n) log t(n).The following de�nition will allow us to give a martingale characterization of stochasticity, hence densegenericity.De�nition 4.3 A martingale d is simple if there is a rational number � 2 (0; 1) such that8x 2 f0; 1g� 8i 2 f0; 1g (d(xi) 2 fd(x); (1 + �)d(x); (1 � �)d(x)g):(14)A martingale d is almost simple if there is a �nite set F = f�0; � � � ; �mg of rational numbers �k 2 (0; 1)such that 8x 2 f0; 1g� 8i 2 f0; 1g 9k 2 f0; � � � ;mg (d(xi) 2 fd(x); (1 + �k)d(x); (1 � �k)d(x)g):(15)A set A is weakly t(n)-random if there is no simple t(n)-martingale which succeeds on A.Lemma 4.4 Every t(n)-random set is weakly t(n)-random.Before we show that weak randomness and stochasticity coincide, we observe that weak randomness canbe de�ned by almost simple martingales too.Theorem 4.5 For any set A, the following are equivalent.1. A is weakly t(n)-random.2. There is no almost simple t(n)-martingale which succeeds on A.The nontrivial implication of the theorem follows from the next lemma immediately.Lemma 4.6 Let d be an almost simple t(n)-martingale. There are �nitely many simple t(n)-martingalesd0; � � � ; dm such that S1[d] � m[k=0S1[dk]:We now state our main theorem.Theorem 4.7 For any set A, the following are equivalent.1. A is densely t(n)-generic.2. A is t(n)-stochastic.3. A is weakly t(n)-random.By Theorem 3.5, for a proof of Theorem 4.7 it su�ces to show the equivalence of the prediction functionand simple martingale concepts. Since the weak stochasticity notions in Section 3 could be characterizedby special types of prediction functions, we �rst de�ne corresponding restrictions for martingales. Then theequivalence proof will also yield martingale characterizations of these stochasticity concepts.De�nition 4.8 A martingale d is strict, if, for all x 2 f0; 1g� and i 2 f0; 1g, d(xi) 6= d(x). A martingale dis oblivious if, for all numbers n there is a rational �n such that d(x0) = �nd(x) for all strings x of lengthn. 9



Note that d((A j�x)i) = d(A j�x), i.e., d((A j�x)0) = d((A j�x)1) = d(A j�x) by (13) expresses that the strategyd does not bet on A(x). For prediction functions, this corresponds to making no prediction for A(x). So, aswe will show below, strictness of a martingale corresponds to totality of a prediction function.Lemma 4.9 For any set A, the following are equivalent.1. A meets densely every (total, oblivious, total and oblivious) t(n)-prediction function which is densealong A.2. No simple (strict, oblivious, strict and oblivious) t(n)-martingale succeeds on A.Proof. 1)2. For a contradiction, assume that 1 holds but the simple t(n)-martingale d succeeds onA. Fix a rational number � 2 (0; 1) such that (14) holds. De�ne a t(n)-prediction function f by lettingf(X j�x) = i if d((X j�x)i) = (1 + �)d(X j�x) and by letting f(X j�x) be unde�ned if d((X j�x)0) = d(X j�x).Then f is total and oblivious if d is strict and oblivious, respectively. Morever, since d succeeds on A,lim supn kfy < n : d((A j�y)A(y)) = (1 + �)d(A j�y)gkkfy < n : d((A j�y)A(y)) = (1� �)d(A j�y)gk > 1:So, by de�nition of f , lim supn kfy < n : A meets f at ygkkfy < n : A avoids f at ygk > 1;whence (7) fails. So A does not meet f densely, contrary to assumption.2)1. For a contradiction assume that 2 holds but there is a t(n)-prediction funtion f such that f isdense along A but A does not meet f densely. Then (7) fails. So, by symmetry, w.l.o.g. we may assumethat there is a rational number " 2 (0; 1) such thatlim infn kfy < n : f(A j�y) = A(y)gkkfy < n : f(A j�y) = 1�A(y)gk < 1� ":(16)Fix such an " and let p(n) = kfy < n : f(A j�y) = A(y)gk and q(n) = kfy < n : f(A j�y) = 1�A(y)gk. Notethat for � 2 (0; 1); lim�!0� log(1 + �)log(1� �) = 1whence we may choose a rational number � 2 (0; 1) such that� log(1 + �)log(1� �) > 1� "2whence (1 + �) � � 11� ��1� "2 :(17)De�ne a t(n)-martingale d by letting d(�) = 1 andd(xi) = 8<: (1� �)d(x) if f(x) = i;(1 + �)d(x) if f(x) = 1� i;d(x) if f(x) " :Then d is strict and oblivious if f is total and oblivious, respectively. Moreover,d(A j�n) = (1� �)p(n)(1 + �)q(n)� (1� �)p(n) � 11���(1� "2 )q(n) by (17)= � 11���(1� "2 )q(n)�p(n) :10
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