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Abstract—The use of support vector machine (SVM) for 
function approximation has increased over the past few 
years. Unfortunately, the practical use of SVM is limited 
because the quality of SVM models heavily depends on a 
proper setting of SVM hyper-parameters and SVM kernel 
parameters. Therefore, it is necessary to develop an 
automated, reliable, and relatively fast approach to 
determine the values of these parameters that lead to the 
lowest generalization error. This paper presents two SVM 
parameter optimization approaches, i.e. GA-SVM and PSO-
SVM. Both of them adopt a objective function which is 
based on the leave-one-out cross-validation, and the SVM 
parameters are optimized by using GA (genetic algorithm) 
and PSO (particle swarm optimization) respectively. From 
experiment results, it can be concluded that both 
approaches, especially PSO-SVM, can solve the problem of 
estimating the optimal SVM parameter settings at a 
reasonable computational cost. Further, we point out the 
importance of a proper population size for GA/PSO-SVM, 
and present the recommended population size for GA-SVM 
and PSO-SVM. 
 
Index Terms—support vector machine, cross validation, 
genetic algorithm, particle swarm optimization 
 

I.  INTRODUCTION 

Artificial neural networks (ANN) have been proved to 
be able to approximate nonlinear functions with arbitrary 
accuracy. Nevertheless structure and types of ANN are 
usually selected by trial and error [1], and the training of 
ANN is based on the empirical risk minimization (ERM) 
principle, which only aims at minimizing the training 
error [2]. Therefore, users may be confronted with 
difficulties in the application of ANN, and the 
generalization performance of ANN models obtained is 
often far from satisfactory [3]. 

Support vector machine (SVM), which is a statistical 
learning theory based machine learning method, is 
gaining popularity due to its many attractive features and 
promising generalization performance. Some prominent 

features of SVM are: (i) the ability to model non-linear 
relationships, (ii) SVM generalization performance does 
not depend on the dimensionality of the input space, (iii) 
the regression function is related to a quadratic 
programming problem whose solution is global and in 
general unique. Apart from these features, SVM also has 
a drawback that limits the use of SVM on academic and 
industrial platforms: there are free parameters (SVM 
hyper-parameters and SVM kernel parameters) that need 
to be defined by the user. Since the quality of SVM 
regression models depends on a proper setting of these 
parameters, the main issue for practitioners trying to 
apply SVM is how to set these parameter values (to 
ensure good generalization performance) for a given 
training data set. Whereas existing sources on SVM 
regression give some recommendations on appropriate 
setting of SVM parameters, there is no general consensus 
and many contradictory opinions. Reference [4] 
summarized the existing approaches to setting SVM 
parameters and presented a practical method for selecting 
the values of C (the regularization parameter) and ε (the 
radius of the insensitive tube). However, all these 
approaches (including the one proposed in [4]) are based 
on prior knowledge, user expertise, or experimental trial, 
and hence there is no guarantee that the parameter values 
obtained are truly optimal. On the other hand, the 
problem of optimal parameter selection is further 
complicated by the fact that the SVM generalization 
performance depends on all of these parameters (both 
hyper-parameters and kernel parameters) together. This 
means that the interaction of SVM parameters has to be 
considered, and that a separate optimization of each 
parameter is not sufficient enough to find the optimal 
regression model [3, 5]. Due to all the reasons mentioned 
above, in the practical application of SVM regression, 
usually a time-consuming grid search method is invoked 
to estimate the optimal SVM parameter settings [6]. 

When applying grid search method, one might need to 
increase the parameter range and / or decrease the step 
size to increase the accuracy of the optimal solution. 
However, this will result in a cumbersome time-
consuming search process. Because the SVM parameter 
selection can be regarded as a constrained nonlinear 

 

Manuscript received October 10, 2009; revised December 5, 2009; 
accepted December 25, 2009. 
Foundation item: National high technology research and development 
program under the project No. 2006AA04Z405.  

1160 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.8.1160-1168



optimization problem, some scholars choose another way 
to solve this problem: X. F. Yuan et al. employed 
mutative scale chaos optimization algorithm to search for 
the optimal SVM parameter values [3]; Z. Y. Luo et al. 
proposed a novel SVM parameter tuning approach based 
on quantum-inspired evolutionary algorithm [7]. 

In this work, two methods, i.e. GA-SVM and PSO-
SVM, were developed as relatively fast alternatives for 
the grid search approach, and they are based on genetic 
algorithm (GA) and particle swarm optimization (PSO) 
respectively. The motivation for selecting GA and PSO is: 
(i) the error surface produced by cross-validation is full of 
sharp edges, and this kind of landscape is not suited to 
gradient-based search; (ii) neither GA nor PSO requires 
that the objective function should be smooth, and both of 
them can efficiently locate the global optima even when 
the objective function is discontinuous; (iii) both GA and 
PSO are the most representative methods among the 
present intelligent optimization techniques, and it would 
be interesting to make an experimental comparison of 
their performance in the context of SVM parameter 
optimization. Further, we investigated the effect of 
population size on the quality of solutions and algorithm 
convergence speed. 

Section II gives a brief introduction to SVM algorithm 
and discusses the crucial effects of hyper-parameters and 
kernel parameters. Section III describes the proposed 
approaches for estimating the optimal SVM parameter 
settings. In Section IV, detailed experiments are carried 
out to evaluate grid search, gradient-based search, and 
our GA/PSO-SVM method. Finally, the conclusions are 
presented in Section V. 

II.  SVM ALGORITHM AND SVM PARAMETERS 

Let the training data set be represented by 

, where is an input vector, 
 is its corresponding desired output. The input 

vector is first mapped into a high dimensional feature 
space using a nonlinear mapping 

},,1),,{( Niyii x
Ryi 

D
i Rx

 , and then a linear 
model can be constructed in the feature space 

bf  )()( T xωx                            (1) 

where ω is a m-dimensional coefficient vector and b is a 
bias term. The ε-insensitive loss function is usually 
adopted for minimizing the empirical risk on the training 
data, and it is defined as 

)|)(|,0max())(,(   xx fyfyL             (2) 

where ε is a positive hyper-parameter that will make the 
loss function equal zero when    is smaller than 
it. Then the SVM empirical risk can be obtained as 
follows: 

|)(| xfy 





N

i
ii fyL

N
R

1
emp ))(,(1)( xω  .                 (3) 

SVM performs linear regression in the high-dimensional 
feature space using ε-insensitive loss function and, at the 
same time, tries to reduce model complexity by 

minimizing ║ω║2. After introducing slack variables to 
measure the deviation of training samples outside ε-
insensitive zone, SVM regression can be formulated as 
minimization of the following functional: 
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where C is a positive hyper-parameter that is usually 
called regularization parameter. By using the Lagrange 
multipliers, this optimization formulation can be 
transformed into the following dual problem: 
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where and 
*
i  i  are Lagrange multipliers, and   

is the kernel function that satisfies Mercer’s conditions, 
which is equivalent to the dot product in the feature space: 

),( jiK xx

)()(),( T
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Several kernel functions have been proposed in literature, 
in this work the focus is put on the widely used radial 
basis function (RBF), which is defined in (7): 

)2/||||exp(),( 22 jijiK xxxx                 (7) 

where σ is the kernel parameter that is always greater 
than zero. The solution of (5) can be written as 
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The sample points that appear with non-zero coefficients 
in (8) are called support vectors (SVs). 

The SVM generalization performance strongly 
depends on the proper setting of C, ε and σ. These 
parameters affect the quality of SVM models in different 
respects, and Fig. 1 illustrates the influence of the three 
parameters on SVM regression respectively. Fig. 1(a) 
shows the true function to be approximated (fine curve), 
training samples (solid points), prediction results of SVM 
with properly chosen parameters (heavy curve), and the 
boundaries of ε-insensitive zone (dotted curves). It can be 
seen from Fig. 1(a) that SVM is able to accurately 
approximate nonlinear functions with a small quantity of 
training data as long as hyper-parameters and kernel 
parameter are properly set. 

The hyper-parameter C determines the trade-off 
between the model complexity and the degree to which 
deviations larger than ε are tolerated. A poor choice of C 
will lead to an imbalance between model complexity 
minimization (MCM) and empirical risk minimization 
(ERM), and Fig. 1(b) illustrates the situation in which 
MCM has achieved overwhelming superiority over ERM. 
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(a)  SVM with properly chosen parameters                                          (b)  SVM with a poor choice of C 
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  (c)  SVM with a poor choice of ε                                                    (d)  SVM with a poor choice of σ 

Figure 1.  Influence of C, ε, and σ on SVM regression 

The hyper-parameter ε controls the width of the ε-
insensitive zone, and its value affects the number of SVs 
used to construct the regression function. If ε is set too 
large, the insensitive zone will have ample margin to 
include data points; this would result in too few SVs 
selected and lead to unacceptable ‘flat’ regression 
estimates (see Fig. 1(c)). The parameter σ represents the 
width of RBF kernel. If σ is set too small, the SVM will 
tend to overfit the training data (see Fig. 1(d)). On the 
other hand, a too large σ would make SVM not flexible 
enough for complex function approximation. In this case 
the regression result is similar to that of Fig. 1(b). 

III.  GA-SVM AND PSO-SVM 

Since the SVM generalization performance heavily 
depends on the right setting of C, ε, and σ, these three 
parameters need to be set properly by the user. According 
to the experience from numerical experiments [3, 5], C, ε 
and σ exhibit a (strong) interaction. As a consequence, 
they should be optimized simultaneously, rather than 
separately. 

A.  Objective Function for C-ε-σ Optimization 
In order to obtain an objective function which can 

reflect SVM generalization performance without the help 
of test data, the cross-validation technique is adopted in 
this work. The procedure of cross-validation divides 
training data D at random into S distinct segments { Gs ,  s 

= 1, …, S  }, and uses (S − 1) segments for training, and 
uses the remaining one for test. This process is repeated S 
times by changing the remaining segment, and the 

generalization performance is evaluated by using the 
following MSE (mean squared error) over all test results. 
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Here Gs denotes the s-th segment for the test, and θs 
denotes the solution vector obtained by using  D − Gs  for 
training. The solution vector can be acquired through 
solving a quadratic programming problem, and it consists 
of Lagrange multipliers and the estimate of bias term: 
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When only a small sample amount is available, the 
number of segments S is usually set to value N. The 
extreme case of S = N is known as the leave-one-out (LOO) 
method, and according to this method equation (9) can be 
rearranged into 

2

1
LOO ))|((1

i

N

i
ii fy

N
MSE θx



 .              (11) 

In this equation θi denotes the solution vector obtained by 
using  D − {( xi , yi )}  for training. Because the solution to a 
quadratic programming problem is global and unique, it 
can be concluded that for a given training data set there is 
a unique solution vector θ assigned to each combination 
of (C, ε, σ). Hence equation (11) can be rewritten as 
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That is, for a given training data set, SVM MSELOO can be 
regarded as a function whose arguments are C, ε, and σ. 
In this work, we adopt MSELOO as the objective function 
for C-ε-σ optimization. In most cases, the gradient-based 
optimization algorithms such as quasi-Newton method 
and conjugate gradient method are highly efficient, and 
they might converge to the optimum within a few 
iterations. Unfortunately, SVM MSELOO surface is usually 
far from smooth and full of sharp edges [6], and a 
landscape like this is not suited to gradient-based search. 
Intelligent optimization methods, such as GA and PSO, 
do not require that the objective function should be 
smooth, and they can efficiently locate the global 
optimum even when the objective function is 
discontinuous. Therefore in this work we use GA and 
PSO to estimate the optimal SVM parameter settings. 

B.  Genetic Algorithm and Particle Swarm Optimization 
The core of GA lies on the evolution from the current 

generation to the next, and this process consists of four 
steps, which are fitness scaling, selection, crossover and 
mutation. Fitness scaling converts the raw fitness scores 
returned by the objective function to values in a range 
that is suitable for selection. In this work, the rank fitness 
scaling method, which scales the raw scores based on the 
rank of each individual instead of its score, is adopted, so 
that the effect of the spread of the raw scores can be 
removed. 

The selection uses the scaled fitness values to select 
the parents of the next generation, and it usually assigns a 
higher probability of selection to individuals with higher 
scaled values. In this work, we adopt the most commonly 
used selection method, i.e. the roulette wheel scheme. 

Crossover enables the algorithm to extract the best 
genes from different individuals and recombine them into 
potentially superior children. In this work, we adopt the 
heuristic crossover method, which returns a child that lies 
on the line containing the two parents, a small distance 
away from the parent with the better fitness value in the 
direction away from the parent with the worse fitness 
value. The child returned can be expressed as 

)21(2 cros parentparentRparentchild  ,     (13) 

where Rcros is the ratio indicating how far the child is 
from the better parent, and parent1 denotes the parent 
having the better fitness value. In addition, the parameter 
Fcros, which represents the fraction of individuals in the 
next generation (other than elite children) that are created 
by crossover, also has a significant effect on GA 
performance. 

Besides crossover children, the genetic algorithm 
creates mutation children by applying random changes to 
individual parents in the current generation. Mutation 
adds to the diversity of a population and thereby increases 
the likelihood that the algorithm will generate individuals 
with better fitness values. In this research we choose the 
uniform mutation method, and it is a two-step process: 
first, the algorithm selects a fraction of the vector entries 
of an individual for mutation, where each entry has a 
probability Pmut of being mutated; in the second step, the 

algorithm replaces each selected entry by a random 
number selected uniformly from the range for that entry. 

PSO is motivated by social behavior of organisms. As 
in GA, a population of individuals exists, and each 
individual is named as a “particle” which represents a 
potential solution. Each particle is treated as a point in a 
D-dimensional space. The i-th particle is represented 
as ),,,,,( 21 iDidiii zzzz z

,,,,,( 21 iDidiii pppp 

. The best previous position 
of any particle is recorded and represented 
as )p

),,,,,( 21 iDidiii vvvv 

. The index of the best 
particle among all the particles in the population is 
represented by the symbol g. The rate of the position 
change (velocity) for the i-th particle is represented as 

v . The updated velocity and 
position of the i-th particle at the k-th iteration are 
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where c1 and c2 are two positive constants, r1 and r2 are 
two random numbers in the range [0, 1], and w is the 
inertia weight. The second part of (14) is the “cognition” 
part, which represents the private thinking of the particle 
itself. The third part is the “social” part, which represents 
the collaboration among the particles. In addition, the 
implementation of PSO also requires placing a limit on 
the particle velocity, and the limit, i.e. the maximum 
allowed velocity vmax, determines the searching 
granularity of space. The inertia weight w plays the role 
of balancing the global search and local search, and it can 
be a positive constant or even a positive linear or 
nonlinear function of time. 

C.  Proposed Approaches 
The proposed approaches for SVM parameter 

optimization, i.e. GA-SVM and PSO-SVM, are illustrated 
in Fig. 2, and both of them were developed as relatively 
fast alternatives for the time-consuming grid search 
approach. MSELOO is adopted as the objective function for 
C-ε-σ optimization, and these three parameters are 
optimized by using GA and PSO, respectively. 

IV.  NUMERICAL EXPERIMENTS 

A.  Test Function Used in this Study 
To evaluate our proposed methods, we used a 2-D test 

function which is illustrated in Fig. 3. This test function 
was selected from [8], and its mathematical expression is 
shown in (16). A 72 full factorial design was adopted, and 
exact data values of this function were obtained at the 49 
sampling points. The training data set is consisted of the 
49 samples. 

2
1

2
2

2
1 ]99.099.0)[4)(1)(1(35.3639 21 xxxxxy    (16) 

In the initial population, the range for each design 
variable is set as follows: 

]10,1[ 8C , ]1,0( , ]10,01.0[ . 
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Figure 2.  GA/PSO-SVM procedure 

For convenience, we adopt three new design variables, 
and they are , CV 101 log 102 logV  and 103 logV

]1,

. 
The initial search ranges for the three variables are 

,  and . As a 
consequence, for a given training data set, equation (12) 
can also be rewritten as 

]8,0[1 V ] 3 V0,12[2 V 2[

),,(),,( 321LOO VVVFCFMSE    .        (17) 

B.  Comparison between MSELOO and ARE 
We adopt MSELOO as the objective function for C-ε-σ 

optimization. It is necessary to verify the inference: an 
SVM model with the lowest MSELOO has or tends to have 
the best generalization performance. The average relative 
error (ARE) is adopted to evaluate the generalization 
performance of regression models, and it is defined as: 
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where the “exact” values in the summation come from the 
evaluation of the exact function (equation (16)), and the 
“predicted” values come from the regression model 
approximation at N' test points. For the target function 
illustrated in Fig. 3   N'  is set to 441 and selected from 
equally spaced points on a 2121  square grid. Because 
the quantity of test data is sufficiently large, there is no 
doubt that ARE will accurately reflect the generalization 
performance of a regression model. 
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Figure 3.  Target function to be approximated 

According to the learning mechanism of SVM, it can 
be concluded that for a given training set and a given test 
set, the ARE of SVM model can be regarded as a function 
whose arguments are C, ε and σ (or V1, V2, and V3). That 
is, we can obtain the following equation: 

),,(),,( 321 VVVGCGARE   .            (19) 

After gaining (17) and (19), the above-mentioned 
inference about MSELOO and generalization performance 
can be verified by comparing the value of SVM MSELOO 
with that of SVM ARE. If the inference is correct, the (C, 
ε, σ) / (V1, V2, V3) point with the lowest MSELOO will have 
or tend to have the minimum ARE. 

With the help of Monte Carlo simulation, 30 points 
were randomly selected in the 3-D space defined by the 
initial search ranges for V1, V2 and V3, and these points 
are illustrated in Fig. 4. On the basis of the training set 
consisting of 49 samples, the SVM MSELOO was 
evaluated at each of the 30 (V1, V2, V3) points. In addition, 
the SVM ARE was also calculated at these points based 
on the test set containing 441 samples. The obtained 
results are illustrated in Fig. 5. 

By comparing the values of SVM MSELOO with those 
of SVM ARE, it can be seen that: (i) the MSELOO curve 
has roughly the same variation tendency as the ARE curve; 
(ii) the three (C, ε, σ) points having the lowest MSELOO, 
No. 9, No. 14 and No. 25, also have the lowest ARE. The 
details about the three points are listed in Table I, where 
IMSE is the index of a (C, ε, σ) point after sorting MSELOO 
values in ascending order, and IARE is the index of a (C, ε, 
σ) point after sorting ARE values in ascending order. 

According to Fig. 5 and Table I, it can be concluded 
that the combinations of (C, ε, σ) having the lowest 
MSELOO can make SVM models have the best 
generalization performance (or lowest prediction error on 
unseen data). Though ARE (as well as some other similar 
indices) can effectively reflect the generalization 
performance of regression models, its application is 
limited by its demand for the test data, which should be 
different from the training data. On most occasions, the 
quantity of data samples available for analysis is very 
limited, so it is usually impractical to prepare an adequate 
number of test data. In these cases, it is more suitable to 
adopt MSELOO, which is totally based on the training data, 
as the objective function for C-ε-σ optimization. 
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Figure 4.  Thirty points selected using Monte Carlo simulation 
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Figure 5.  Comparison between MSELOO and ARE 

TABLE I.   
DETAILS ABOUT THE THREE MENTIONED POINTS 

No. MSELOO ARE IMSE IARE 

9 0.001452 0.011780 1 2 

25 0.001636 0.010038 2 1 

14 0.006530 0.021789 3 3 

 

C.  Some other Methods of Minimizing MSELOO 
Before applying our proposed methods, we will try two 

other methods first, and they are grid search and gradient-
based search. The grid search method is sometimes 
referred to as the exhaustive method, and the required 
number of MSELOO evaluations depends on the parameter 
range in combination with the chosen interval size 
(resolution in the parameter space). In this work, each 
range is divided into 20 equal intervals, thus the required 
number of MSELOO evaluations is 9261. The step sizes for 
the three design variables are ΔV1 = 0.4, ΔV2 = 0.6, ΔV3 = 

0.15. The grid search method is used to find a minimum 
of MSELOO when establishing the SVM model of the 
target function illustrated in Fig. 3. All the data in the 
training set are the same as before, and the results 
returned are: V1 =  6.0, V2 = −10.2, V3 = −0.05 , MSELOO = 
6.3919E−4. 

The gradient-based search method has numerous 
variants. In this work we adopt the quasi-Newton method 
with a line search procedure. The adopted quasi-Newton 
method utilizes the BFGS formula, which is thought to be 
the most effective one among a large number of Hessian 
updating algorithms. As for the line search procedure 

which is used to determine how far to move in the search 
direction, there are two alternative strategies: the cubic 
polynomial method and the mixed quadratic and cubic 
polynomial method. The former generally requires fewer 
objective-function evaluations but more gradient 
evaluations. Because it is impossible to express SVM 
MSELOO as an explicit function of C, ε and σ, the gradient 
information can only be obtained by using finite 
difference. In this case, the cubic polynomial method 
would require more MSELOO evaluations than the mixed 
quadratic and cubic polynomial method. Therefore we 
choose the latter. 

The result returned by the gradient-based method 
largely depends on the initial point at which the 
optimization starts, and a number of repeated experiments 
are necessary to obtain a reliable conclusion. Hence the 
quasi-Newton procedure was repeated 100 times, and the 
100 initial points were randomly selected. The reasons 
why the algorithm terminates can be categorized into the 
following four types: 

Type 1: Magnitude of gradient is smaller than the 
specified tolerance (1.0E−6), and this means that the 
algorithm has terminated normally at a local optimum. 

Type 2: Numerical problems are encountered when 
evaluating finite difference gradients, and the algorithm 
fails from the beginning. Because in this case the 
optimization terminates at the initial point, we do not 
think that the algorithm has returned any valid results. 

Type  3: The algorithm terminates after some iterations 
because line search cannot find an acceptable point along 
the final search direction. 

Type   4: The number of MSELOO evaluations reaches 
the maximum value allowed (it is set to 200 in this 
research) before the algorithm converges to a solution. 

In the third case and the fourth case above, although 
the algorithm fails to converge normally, it can still return 
a (C, ε, σ) point having a lower MSELOO than the initial 
point. Statistical analysis was performed on the results of 
the 100 independent experiments, and two pie charts were 
obtained (see Fig. 6). 

From Fig. 6, it can be seen that: (i) only 13 out of 100 
trials converged to a local optimum; (ii) only 9 out of 100 
trials yielded a solution at which MSELOO is smaller than 
1.0E−3. The above facts indicate that the quasi-Newton 
method is not suitable for minimizing SVM MSELOO. We 
have also tried the steepest descent method and the 
conjugate gradient method, and results similar to Fig. 6 
were obtained. Therefore it can be concluded that the 
gradient-based search is not a good method for 
minimizing SVM MSELOO. 

D.  Application of the Proposed Methods 
The parameter settings for GA-SVM and PSO-SVM 

are both shown in Table II. To investigate the effect of 
various population sizes, three different values, i.e. 10, 20, 
and 30, are adopted in this research. The stopping criteria 
are set as follows: (a) the algorithm stops if there is no 
improvement in the minimum MSELOO for five 
consecutive iterations; (b) the algorithm stops if the 
number of iterations performed reaches the maximum 
value allowed, i.e. 50. 
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As mentioned before, three different population sizes, 
i.e. 10, 20 and 30, are considered. Hence a total of six 
cases are investigated, and they are GA-SVM-10, GA-
SVM-20, GA-SVM-30, PSO-SVM-10, PSO-SVM-20 
and PSO-SVM-30. Due to the stochastic character of the 
proposed methods, each of the above six approaches was 
repeated fifty times. 

Proportion: 9%

Type 1 (13%) Type 4 (39%)

Type 2 (23%) Type 3 (25%)

Optimization converged 
to a local optimum.

Optimization terminated at 
initial point because finite 
difference method failed.

Optimization terminated 
after    some    iterations 
because line search failed.

Number of  evaluations 
reached  the  maximum 
value  allowed  before 
optimization converged.

Proportion: 23%

Proportion: 24%

Proportion: 41%

Proportion: 3%

No valid result is returned.

3E1LOO MSE

2E13E1 LOO  MSE

1E12E1 LOO  MSE

1E1LOO MSE

 

The stopping criterion (a) was met in all 300 runs. 
Namely, all trials performed converged to a (C, ε, σ) point 
within 50 iterations. Statistics including the maximum 
(max), minimum (min), average (avg), and standard 
deviation (std), are calculated on the obtained results such 
as , , and MSELOO, and they are listed in Table 
III, Table IV, and Table V. 

*
itrN *

evaN

By examining the data from columns 2, 3 and 4 in 
Table III, we can see that for GA-SVM, the approach 
with the smallest  pop , i.e. GA-SVM-10, tends to take the 
most iterations to converge. Apparently, a similar 
conclusion can be drawn for PSO-SVM (on the basis of 
the data from columns 5, 6 and 7 in Table III). 
Comparing the data in column 5 with 2, column 6 with 3, 
and column 7 with 4 (of Table III), we can also see that 
for a given  , PSO-SVM tends to take fewer iterations 
to converge. 

S

popS
Figure 6.  Statistics on the results of the 100 independent experiments 

Not only does the calculation time consumed depend 
on the iterations executed but also on the chosen 
population size. Compared with  , the    parameter 
which is defined in (20) is more useful for measuring the 
convergence speed. By examining the second row and the 
third row of Table IV, where the maximum/minimum of  

  is shown, we can see that for both GA-SVM and 
PSO-SVM, the larger  S s, the wider the distribution of  

*
evaN lues is. 

*
itrN *

evaN

*
evaN

 

pop  i

The GA/PSO-SVM algorithm will terminate when 
either one of the two conditions is met. If the stopping 
criterion (a) is met, we think that the algorithm has 
converged to a solution, i.e. a (C, ε, σ) point. In that case, 
we take      as the number of iterations required 
to find this solution ( Nitr is the number of iterations 
executed before the algorithm terminates). In addition, 
another parameter which denotes the number of MSELOO 
evaluations is also introduced, and it is 

4itr
*
itr  NN

va
Besides, we can also see that for both GA-SVM and 

PSO-SVM, the average and standard deviation of  

values both increase as population size goes up. This 
means that (for both GA-SVM and PSO-SVM): (i) the 
larger  popS  is, the larger the expected value of calculation 
time will be; (2) the larger  popS  is, the larger the upper 
limit of calculation time will be. Thus, we can conclude 
that from the viewpoint of convergence speed, it is not 
appropriate to adopt a large pop . If we compare the data 
in column 5 with 2, column 6 with 3, and column 7 with 
4 (of Table IV), it can be seen that for a given popS , PSO-
SVM is superior to GA-SVM in convergence speed. 

*
evaN

S

pop
*
itr

*
eva )1( SNN                         (20) 

where is the size of the population. Because the 
calculation time consumed is directly proportional to the 
number of MSELOO evaluations executed,  can be 
used to measure the convergence speed of an algorithm. 
The smaller  is, the faster this algorithm converges. 

popS

*
evaN

*
evaN

TABLE II.   
PARAMETER SETTINGS FOR GA/PSO-SVM 

Initial search range for V1 0 ~ 8 
Initial search range for V2 −12 ~ 0 
Initial search range for V3 −2 ~ 1 
Population size 10, 20, 30 
Max generation/iteration 50 
Rcros 1.2 
Fcros 0.8 
Pmut 0.01 
c1 2 
c2 2 
w 0.9 
vmax for V1 8 
vmax for V2 12 
vmax for V3 3 

After analyzing the data from each row in Table IV 
separately, we find that PSO-SVM-10 has the lowest 
value for all the four statistics investigated, i.e. max of 

, min of , avg of , and std of . This fact 
implies that among the six approaches investigated, PSO-
SVM-10 tends to take the fewest MSELOO evaluations to 
converge, i.e. PSO-SVM-10 has the highest average 
convergence speed. 

*
evaN *

evaN *
evaN *

evaN

It can be seen from Table V that: (i) GA-SVM-10 has 
the highest value for all the four statistics investigated, i.e. 
max of MSELOO, min of MSELOO, avg of MSELOO, and std 
of MSELOO; (ii) the data in the other five columns are 
close together. 
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TABLE III.   
STATISTICS ON THE 

*
itrN  RESULTS OF GA-SVM AND PSO-SVM 

GA-SVM PSO-SVM 
 

10pop S  20pop S 30pop S 10pop S 20pop S 30pop S  
*
itrofmax N  30 19 20 10 8 8 
*
itrofmin N  6 3 3 3 1 1 
*
itrofavg N  14.8400 7.7200 6.6800 6.0200 4.5000 3.9800 
*
itrofstd N  7.1866 4.6425 4.5689 1.9112 1.8763 1.6224 

TABLE IV.   
STATISTICS ON THE 

*
evaN  RESULTS OF GA-SVM AND PSO-SVM 

GA-SVM PSO-SVM 
 

10pop S  20pop S 30pop S 10pop S 20pop S 30pop S  
*

evaofmax N  310 400 630 110 180 270 
*

evaofmin N  70 80 120 40 40 60 
*

evaofavg N  158.4000 174.4000 230.4000 70.2000 110 149.4000 
*

evaofstd N  71.8661 92.8497 137.0678 19.1119 37.5255 48.6726 

TABLE V.   
STATISTICS ON THE LOOMSE RESULTS OF GA-SVM AND PSO-SVM 

GA-SVM PSO-SVM 
 

10pop S 20pop S 30pop S 10pop S 20pop S  30pop S  

LOOofmax MSE ( )4E1   78.2636 7.8368 7.3383 7.7006 7.1218 6.1025 

LOOofmin MSE )4E1(   5.3872 4.9036 4.9026 4.9004 4.9005 4.9069 

LOOofavg MSE )4E1(   31.5237 5.4456 5.4219 5.2967 5.3671 5.2921 

LOOofstd MSE )4E1(   19.8315 0.6670 0.5602 0.5012 0.4712 0.4123 

 

In summary, from the viewpoint of solution quality, 
GA-SVM-10 is the worst one among the six approaches 
investigated, while there are no significant differences 
among the other five. 

We can also rank the approaches investigated in order 
of convergence speed, and the result is PSO-SVM-10 > 
PSO-SVM-20 > PSO-SVM-30 > GA-SVM-20 > GA-
SVM-30. We intentionally ignored GA-SVM-10 because 
numerical experiments prove that it is ineffective in 
minimizing SVM MSELOO. In general, PSO-SVM is 
preferred to GA-SVM. If one chooses PSO-SVM, 10 
could be suggested as a suitable value for the size of 
population. If one chooses GA-SVM, 20 could be 
suggested as a suitable value for the size of population. 

V.  CONCLUSIONS 

Because SVM generalization performance strongly 
depends on the right setting of hyper-parameters C, ε, and 
the kernel parameter σ, these three parameters need to be 
selected properly. In this paper two methods are 
presented for estimating the optimal SVM parameter 
settings, and they are GA-SVM and PSO-SVM. We used 
a 2-D test function to evaluate grid search, gradient-based 
search, and our GA/PSO-SVM method, and the 
experiment results show that: 

●  If the step sizes for C, ε, and σ are sufficiently small, 
the grid search method can achieve a solution of high 
quality. However, in that case the required number of 

MSELOO evaluations is extremely large. In the example 
presented in this paper, the required number is 9621, and 
the CPU time consumed is about 42 hours. 

● The gradient-based search is not a good method for 
finding a minimum of MSELOO. In the example presented 
in this paper, the quasi-Newton procedure was repeated 
100 times, but only 9 out of 100 trials yielded a solution 
at which MSELOO is smaller than 1.0E−3. 

● GA-SVM and PSO-SVM can both yield solutions of 
comparable quality to that achieved by the grid search 
method. GA-SVM-10, however, was the exception. 

●  From an overall point of view, the proposed methods 
(GA-SVM and PSO-SVM) are slightly inferior to 
gradient-based method in convergence speed, which is 
measured in terms of . However, when the 
population is relatively small, PSO-SVM can achieve a 
convergence speed comparable to that of gradient-based 
search. 

*
evaN

●  Both of the two proposed methods have a much 
lower computational cost when compared with the grid 
search. In the example presented in this paper, the CPU 
time consumed by GA-SVM ranges from 0.66 to 3.32 
hours, and the CPU time consumed by PSO-SVM ranges 
from 0.38 to 1.71 hours. 

●  For a given population size, PSO-SVM is superior to 
GA-SVM in convergence speed. The recommended 
population size for GA-SVM is 20, and the recommended 
population size for PSO-SVM is 10. 
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Summarizing, GA-SVM and PSO-SVM were 
developed as relatively fast alternatives for the time 
consuming grid search approach. Both methods, 
especially the latter, can efficiently solve the problem of 
estimating the optimal SVM parameter settings at a 
reasonable computational cost. 
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