
Determination of Optimal SVM Parameters by
Using GA/PSO

Yuan Ren

School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing, China
Email: renyuan116@sjp.buaa.edu.cn

Guangchen Bai

School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing, China
Email: dlxbgc@buaa.edu.cn

Abstract—The use of support vector machine (SVM) for
function approximation has increased over the past few
years. Unfortunately, the practical use of SVM is limited
because the quality of SVM models heavily depends on a
proper setting of SVM hyper-parameters and SVM kernel
parameters. Therefore, it is necessary to develop an
automated, reliable, and relatively fast approach to
determine the values of these parameters that lead to the
lowest generalization error. This paper presents two SVM
parameter optimization approaches, i.e. GA-SVM and PSO-
SVM. Both of them adopt a objective function which is
based on the leave-one-out cross-validation, and the SVM
parameters are optimized by using GA (genetic algorithm)
and PSO (particle swarm optimization) respectively. From
experiment results, it can be concluded that both
approaches, especially PSO-SVM, can solve the problem of
estimating the optimal SVM parameter settings at a
reasonable computational cost. Further, we point out the
importance of a proper population size for GA/PSO-SVM,
and present the recommended population size for GA-SVM
and PSO-SVM.

Index Terms—support vector machine, cross validation,
genetic algorithm, particle swarm optimization

I. INTRODUCTION

Artificial neural networks (ANN) have been proved to
be able to approximate nonlinear functions with arbitrary
accuracy. Nevertheless structure and types of ANN are
usually selected by trial and error [1], and the training of
ANN is based on the empirical risk minimization (ERM)
principle, which only aims at minimizing the training
error [2]. Therefore, users may be confronted with
difficulties in the application of ANN, and the
generalization performance of ANN models obtained is
often far from satisfactory [3].

Support vector machine (SVM), which is a statistical
learning theory based machine learning method, is
gaining popularity due to its many attractive features and
promising generalization performance. Some prominent

features of SVM are: (i) the ability to model non-linear
relationships, (ii) SVM generalization performance does
not depend on the dimensionality of the input space, (iii)
the regression function is related to a quadratic
programming problem whose solution is global and in
general unique. Apart from these features, SVM also has
a drawback that limits the use of SVM on academic and
industrial platforms: there are free parameters (SVM
hyper-parameters and SVM kernel parameters) that need
to be defined by the user. Since the quality of SVM
regression models depends on a proper setting of these
parameters, the main issue for practitioners trying to
apply SVM is how to set these parameter values (to
ensure good generalization performance) for a given
training data set. Whereas existing sources on SVM
regression give some recommendations on appropriate
setting of SVM parameters, there is no general consensus
and many contradictory opinions. Reference [4]
summarized the existing approaches to setting SVM
parameters and presented a practical method for selecting
the values of C (the regularization parameter) and ε (the
radius of the insensitive tube). However, all these
approaches (including the one proposed in [4]) are based
on prior knowledge, user expertise, or experimental trial,
and hence there is no guarantee that the parameter values
obtained are truly optimal. On the other hand, the
problem of optimal parameter selection is further
complicated by the fact that the SVM generalization
performance depends on all of these parameters (both
hyper-parameters and kernel parameters) together. This
means that the interaction of SVM parameters has to be
considered, and that a separate optimization of each
parameter is not sufficient enough to find the optimal
regression model [3, 5]. Due to all the reasons mentioned
above, in the practical application of SVM regression,
usually a time-consuming grid search method is invoked
to estimate the optimal SVM parameter settings [6].

When applying grid search method, one might need to
increase the parameter range and / or decrease the step
size to increase the accuracy of the optimal solution.
However, this will result in a cumbersome time-
consuming search process. Because the SVM parameter
selection can be regarded as a constrained nonlinear

Manuscript received October 10, 2009; revised December 5, 2009;
accepted December 25, 2009.
Foundation item: National high technology research and development
program under the project No. 2006AA04Z405.

1160 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.8.1160-1168

optimization problem, some scholars choose another way
to solve this problem: X. F. Yuan et al. employed
mutative scale chaos optimization algorithm to search for
the optimal SVM parameter values [3]; Z. Y. Luo et al.
proposed a novel SVM parameter tuning approach based
on quantum-inspired evolutionary algorithm [7].

In this work, two methods, i.e. GA-SVM and PSO-
SVM, were developed as relatively fast alternatives for
the grid search approach, and they are based on genetic
algorithm (GA) and particle swarm optimization (PSO)
respectively. The motivation for selecting GA and PSO is:
(i) the error surface produced by cross-validation is full of
sharp edges, and this kind of landscape is not suited to
gradient-based search; (ii) neither GA nor PSO requires
that the objective function should be smooth, and both of
them can efficiently locate the global optima even when
the objective function is discontinuous; (iii) both GA and
PSO are the most representative methods among the
present intelligent optimization techniques, and it would
be interesting to make an experimental comparison of
their performance in the context of SVM parameter
optimization. Further, we investigated the effect of
population size on the quality of solutions and algorithm
convergence speed.

Section II gives a brief introduction to SVM algorithm
and discusses the crucial effects of hyper-parameters and
kernel parameters. Section III describes the proposed
approaches for estimating the optimal SVM parameter
settings. In Section IV, detailed experiments are carried
out to evaluate grid search, gradient-based search, and
our GA/PSO-SVM method. Finally, the conclusions are
presented in Section V.

II. SVM ALGORITHM AND SVM PARAMETERS

Let the training data set be represented by

, where is an input vector,
 is its corresponding desired output. The input

vector is first mapped into a high dimensional feature
space using a nonlinear mapping

},,1),,{(Niyii x
Ryi 

D
i Rx

 , and then a linear
model can be constructed in the feature space

bf )()(T xωx  (1)

where ω is a m-dimensional coefficient vector and b is a
bias term. The ε-insensitive loss function is usually
adopted for minimizing the empirical risk on the training
data, and it is defined as

)|)(|,0max())(,(  xx fyfyL (2)

where ε is a positive hyper-parameter that will make the
loss function equal zero when is smaller than
it. Then the SVM empirical risk can be obtained as
follows:

|)(| xfy 





N

i
ii fyL

N
R

1
emp))(,(1)(xω  . (3)

SVM performs linear regression in the high-dimensional
feature space using ε-insensitive loss function and, at the
same time, tries to reduce model complexity by

minimizing ║ω║2. After introducing slack variables to
measure the deviation of training samples outside ε-
insensitive zone, SVM regression can be formulated as
minimization of the following functional:

0,)(,)(s.t.

)(||||
2
1minimize

**
1

*2



 


iiiiiiii

N

i
ii

fyyf

C





xx

ω
 (4)

where C is a positive hyper-parameter that is usually
called regularization parameter. By using the Lagrange
multipliers, this optimization formulation can be
transformed into the following dual problem:

C

K

y

ii

N

i
ii

N

ji
jijjii

N

i
ii

N

i
iii

























,0,0)(s.t.

),())((
2
1

)()(maximize

*

1

*

1,

**

1

*

1

*

xx (5)

where and
*
i i are Lagrange multipliers, and

is the kernel function that satisfies Mercer’s conditions,
which is equivalent to the dot product in the feature space:

),(jiK xx

)()(),(T
jijiK xxxx  . (6)

Several kernel functions have been proposed in literature,
in this work the focus is put on the widely used radial
basis function (RBF), which is defined in (7):

)2/||||exp(),(22 jijiK xxxx  (7)

where σ is the kernel parameter that is always greater
than zero. The solution of (5) can be written as

bKf
N

i
iii 

1

*),()()(xxx  . (8)

The sample points that appear with non-zero coefficients
in (8) are called support vectors (SVs).

The SVM generalization performance strongly
depends on the proper setting of C, ε and σ. These
parameters affect the quality of SVM models in different
respects, and Fig. 1 illustrates the influence of the three
parameters on SVM regression respectively. Fig. 1(a)
shows the true function to be approximated (fine curve),
training samples (solid points), prediction results of SVM
with properly chosen parameters (heavy curve), and the
boundaries of ε-insensitive zone (dotted curves). It can be
seen from Fig. 1(a) that SVM is able to accurately
approximate nonlinear functions with a small quantity of
training data as long as hyper-parameters and kernel
parameter are properly set.

The hyper-parameter C determines the trade-off
between the model complexity and the degree to which
deviations larger than ε are tolerated. A poor choice of C
will lead to an imbalance between model complexity
minimization (MCM) and empirical risk minimization
(ERM), and Fig. 1(b) illustrates the situation in which
MCM has achieved overwhelming superiority over ERM.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1161

© 2010 ACADEMY PUBLISHER

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) SVM with properly chosen parameters (b) SVM with a poor choice of C

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 (c) SVM with a poor choice of ε (d) SVM with a poor choice of σ

Figure 1. Influence of C, ε, and σ on SVM regression

The hyper-parameter ε controls the width of the ε-
insensitive zone, and its value affects the number of SVs
used to construct the regression function. If ε is set too
large, the insensitive zone will have ample margin to
include data points; this would result in too few SVs
selected and lead to unacceptable ‘flat’ regression
estimates (see Fig. 1(c)). The parameter σ represents the
width of RBF kernel. If σ is set too small, the SVM will
tend to overfit the training data (see Fig. 1(d)). On the
other hand, a too large σ would make SVM not flexible
enough for complex function approximation. In this case
the regression result is similar to that of Fig. 1(b).

III. GA-SVM AND PSO-SVM

Since the SVM generalization performance heavily
depends on the right setting of C, ε, and σ, these three
parameters need to be set properly by the user. According
to the experience from numerical experiments [3, 5], C, ε
and σ exhibit a (strong) interaction. As a consequence,
they should be optimized simultaneously, rather than
separately.

A. Objective Function for C-ε-σ Optimization
In order to obtain an objective function which can

reflect SVM generalization performance without the help
of test data, the cross-validation technique is adopted in
this work. The procedure of cross-validation divides
training data D at random into S distinct segments { Gs , s

= 1, …, S }, and uses (S − 1) segments for training, and
uses the remaining one for test. This process is repeated S
times by changing the remaining segment, and the

generalization performance is evaluated by using the
following MSE (mean squared error) over all test results.


 


S

s Gi
sii

s

fy
N

MSE
1

2
CV))|((1

θx (9)

Here Gs denotes the s-th segment for the test, and θs
denotes the solution vector obtained by using D − Gs for
training. The solution vector can be acquired through
solving a quadratic programming problem, and it consists
of Lagrange multipliers and the estimate of bias term:

]ˆ,,,,,,,[*
2

*
21

*
1 bNN  θ . (10)

When only a small sample amount is available, the
number of segments S is usually set to value N. The
extreme case of S = N is known as the leave-one-out (LOO)
method, and according to this method equation (9) can be
rearranged into

2

1
LOO))|((1

i

N

i
ii fy

N
MSE θx



 . (11)

In this equation θi denotes the solution vector obtained by
using D − {(xi , yi)} for training. Because the solution to a
quadratic programming problem is global and unique, it
can be concluded that for a given training data set there is
a unique solution vector θ assigned to each combination
of (C, ε, σ). Hence equation (11) can be rewritten as

),,())),,(|((1 2

1
LOO  CFCfy

N
MSE i

N

i
ii  



θx (12)

1162 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

That is, for a given training data set, SVM MSELOO can be
regarded as a function whose arguments are C, ε, and σ.
In this work, we adopt MSELOO as the objective function
for C-ε-σ optimization. In most cases, the gradient-based
optimization algorithms such as quasi-Newton method
and conjugate gradient method are highly efficient, and
they might converge to the optimum within a few
iterations. Unfortunately, SVM MSELOO surface is usually
far from smooth and full of sharp edges [6], and a
landscape like this is not suited to gradient-based search.
Intelligent optimization methods, such as GA and PSO,
do not require that the objective function should be
smooth, and they can efficiently locate the global
optimum even when the objective function is
discontinuous. Therefore in this work we use GA and
PSO to estimate the optimal SVM parameter settings.

B. Genetic Algorithm and Particle Swarm Optimization
The core of GA lies on the evolution from the current

generation to the next, and this process consists of four
steps, which are fitness scaling, selection, crossover and
mutation. Fitness scaling converts the raw fitness scores
returned by the objective function to values in a range
that is suitable for selection. In this work, the rank fitness
scaling method, which scales the raw scores based on the
rank of each individual instead of its score, is adopted, so
that the effect of the spread of the raw scores can be
removed.

The selection uses the scaled fitness values to select
the parents of the next generation, and it usually assigns a
higher probability of selection to individuals with higher
scaled values. In this work, we adopt the most commonly
used selection method, i.e. the roulette wheel scheme.

Crossover enables the algorithm to extract the best
genes from different individuals and recombine them into
potentially superior children. In this work, we adopt the
heuristic crossover method, which returns a child that lies
on the line containing the two parents, a small distance
away from the parent with the better fitness value in the
direction away from the parent with the worse fitness
value. The child returned can be expressed as

)21(2 cros parentparentRparentchild  , (13)

where Rcros is the ratio indicating how far the child is
from the better parent, and parent1 denotes the parent
having the better fitness value. In addition, the parameter
Fcros, which represents the fraction of individuals in the
next generation (other than elite children) that are created
by crossover, also has a significant effect on GA
performance.

Besides crossover children, the genetic algorithm
creates mutation children by applying random changes to
individual parents in the current generation. Mutation
adds to the diversity of a population and thereby increases
the likelihood that the algorithm will generate individuals
with better fitness values. In this research we choose the
uniform mutation method, and it is a two-step process:
first, the algorithm selects a fraction of the vector entries
of an individual for mutation, where each entry has a
probability Pmut of being mutated; in the second step, the

algorithm replaces each selected entry by a random
number selected uniformly from the range for that entry.

PSO is motivated by social behavior of organisms. As
in GA, a population of individuals exists, and each
individual is named as a “particle” which represents a
potential solution. Each particle is treated as a point in a
D-dimensional space. The i-th particle is represented
as),,,,,(21 iDidiii zzzz z

,,,,,(21 iDidiii pppp 

. The best previous position
of any particle is recorded and represented
as)p

),,,,,(21 iDidiii vvvv 

. The index of the best
particle among all the particles in the population is
represented by the symbol g. The rate of the position
change (velocity) for the i-th particle is represented as

v . The updated velocity and
position of the i-th particle at the k-th iteration are

)()(2211
1 k

idgd
k
idid

k
id

k
id zprczprcvwv  (14)

11   k
id

k
id

k
id vzz (15)

where c1 and c2 are two positive constants, r1 and r2 are
two random numbers in the range [0, 1], and w is the
inertia weight. The second part of (14) is the “cognition”
part, which represents the private thinking of the particle
itself. The third part is the “social” part, which represents
the collaboration among the particles. In addition, the
implementation of PSO also requires placing a limit on
the particle velocity, and the limit, i.e. the maximum
allowed velocity vmax, determines the searching
granularity of space. The inertia weight w plays the role
of balancing the global search and local search, and it can
be a positive constant or even a positive linear or
nonlinear function of time.

C. Proposed Approaches
The proposed approaches for SVM parameter

optimization, i.e. GA-SVM and PSO-SVM, are illustrated
in Fig. 2, and both of them were developed as relatively
fast alternatives for the time-consuming grid search
approach. MSELOO is adopted as the objective function for
C-ε-σ optimization, and these three parameters are
optimized by using GA and PSO, respectively.

IV. NUMERICAL EXPERIMENTS

A. Test Function Used in this Study
To evaluate our proposed methods, we used a 2-D test

function which is illustrated in Fig. 3. This test function
was selected from [8], and its mathematical expression is
shown in (16). A 72 full factorial design was adopted, and
exact data values of this function were obtained at the 49
sampling points. The training data set is consisted of the
49 samples.

2
1

2
2

2
1]99.099.0)[4)(1)(1(35.3639 21 xxxxxy  (16)

In the initial population, the range for each design
variable is set as follows:

]10,1[8C ,]1,0( ,]10,01.0[ .

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1163

© 2010 ACADEMY PUBLISHER

Renew p and g

Optimization of C, ε, σ

Max. Generation?

Start GA-SVM Start PSO-SVM

 Define:
 ● Initial range of C, ε, σ
 ● Size of population
 ● R , F , P
 ● Maximum generations

 Create initial population

Perform SVM on each
chromosome in population
and calculate the MSELOO

No

 Create next population:
 ● Rank fitness scaling
 ● Roulette wheel selection
 ● Heuristic crossover
 ● Uniform mutation

Optimal C, ε, σ for SVM

 Define:
 ● Initial range of C, ε, σ
 ● Quantity of particles
 ● c , c , w, v
 ● Maximum interations

 Initialize:
 ● Position of each particle
 ● Velocity of each particle

Perform SVM on each
particle in population and

compute the MSELOO

Yes

Max. Interation?Yes

 Update:
 ● Velocityof particles Eq.(14)
 ● Position of particles Eq.(15)

No

1 2 max

i

cros cros mut

Figure 2. GA/PSO-SVM procedure

For convenience, we adopt three new design variables,
and they are , CV 101 log 102 logV and 103 logV

]1,

.
The initial search ranges for the three variables are

, and . As a
consequence, for a given training data set, equation (12)
can also be rewritten as

]8,0[1 V] 3 V0,12[2 V 2[

),,(),,(321LOO VVVFCFMSE   . (17)

B. Comparison between MSELOO and ARE
We adopt MSELOO as the objective function for C-ε-σ

optimization. It is necessary to verify the inference: an
SVM model with the lowest MSELOO has or tends to have
the best generalization performance. The average relative
error (ARE) is adopted to evaluate the generalization
performance of regression models, and it is defined as:













 N

i
i

N

i
ii

exact

predictedexact
ARE

1

1

)(

)()(
 (18)

where the “exact” values in the summation come from the
evaluation of the exact function (equation (16)), and the
“predicted” values come from the regression model
approximation at N' test points. For the target function
illustrated in Fig. 3 N' is set to 441 and selected from
equally spaced points on a 2121 square grid. Because
the quantity of test data is sufficiently large, there is no
doubt that ARE will accurately reflect the generalization
performance of a regression model.

-1
-0.5

0
0.5

1

-1

0

1
0.5

-0.5

0

0.2

0.4

0.6

0.8

1

1x2x

y

Figure 3. Target function to be approximated

According to the learning mechanism of SVM, it can
be concluded that for a given training set and a given test
set, the ARE of SVM model can be regarded as a function
whose arguments are C, ε and σ (or V1, V2, and V3). That
is, we can obtain the following equation:

),,(),,(321 VVVGCGARE   . (19)

After gaining (17) and (19), the above-mentioned
inference about MSELOO and generalization performance
can be verified by comparing the value of SVM MSELOO
with that of SVM ARE. If the inference is correct, the (C,
ε, σ) / (V1, V2, V3) point with the lowest MSELOO will have
or tend to have the minimum ARE.

With the help of Monte Carlo simulation, 30 points
were randomly selected in the 3-D space defined by the
initial search ranges for V1, V2 and V3, and these points
are illustrated in Fig. 4. On the basis of the training set
consisting of 49 samples, the SVM MSELOO was
evaluated at each of the 30 (V1, V2, V3) points. In addition,
the SVM ARE was also calculated at these points based
on the test set containing 441 samples. The obtained
results are illustrated in Fig. 5.

By comparing the values of SVM MSELOO with those
of SVM ARE, it can be seen that: (i) the MSELOO curve
has roughly the same variation tendency as the ARE curve;
(ii) the three (C, ε, σ) points having the lowest MSELOO,
No. 9, No. 14 and No. 25, also have the lowest ARE. The
details about the three points are listed in Table I, where
IMSE is the index of a (C, ε, σ) point after sorting MSELOO
values in ascending order, and IARE is the index of a (C, ε,
σ) point after sorting ARE values in ascending order.

According to Fig. 5 and Table I, it can be concluded
that the combinations of (C, ε, σ) having the lowest
MSELOO can make SVM models have the best
generalization performance (or lowest prediction error on
unseen data). Though ARE (as well as some other similar
indices) can effectively reflect the generalization
performance of regression models, its application is
limited by its demand for the test data, which should be
different from the training data. On most occasions, the
quantity of data samples available for analysis is very
limited, so it is usually impractical to prepare an adequate
number of test data. In these cases, it is more suitable to
adopt MSELOO, which is totally based on the training data,
as the objective function for C-ε-σ optimization.

1164 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

0
2

4
6

8

-12
-9

-6
-3

0
-2

-1

0

1

V1 log10
()V2 log10

()
C




V3

log10
()

Figure 4. Thirty points selected using Monte Carlo simulation

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

MSEloo
ARE

AR
E

M
SE

/
SV

M
LO

O

points),,(ofnumberSequence C

LOOMSE
ARE

Figure 5. Comparison between MSELOO and ARE

TABLE I.
DETAILS ABOUT THE THREE MENTIONED POINTS

No. MSELOO ARE IMSE IARE

9 0.001452 0.011780 1 2

25 0.001636 0.010038 2 1

14 0.006530 0.021789 3 3

C. Some other Methods of Minimizing MSELOO
Before applying our proposed methods, we will try two

other methods first, and they are grid search and gradient-
based search. The grid search method is sometimes
referred to as the exhaustive method, and the required
number of MSELOO evaluations depends on the parameter
range in combination with the chosen interval size
(resolution in the parameter space). In this work, each
range is divided into 20 equal intervals, thus the required
number of MSELOO evaluations is 9261. The step sizes for
the three design variables are ΔV1 = 0.4, ΔV2 = 0.6, ΔV3 =

0.15. The grid search method is used to find a minimum
of MSELOO when establishing the SVM model of the
target function illustrated in Fig. 3. All the data in the
training set are the same as before, and the results
returned are: V1 = 6.0, V2 = −10.2, V3 = −0.05 , MSELOO =
6.3919E−4.

The gradient-based search method has numerous
variants. In this work we adopt the quasi-Newton method
with a line search procedure. The adopted quasi-Newton
method utilizes the BFGS formula, which is thought to be
the most effective one among a large number of Hessian
updating algorithms. As for the line search procedure

which is used to determine how far to move in the search
direction, there are two alternative strategies: the cubic
polynomial method and the mixed quadratic and cubic
polynomial method. The former generally requires fewer
objective-function evaluations but more gradient
evaluations. Because it is impossible to express SVM
MSELOO as an explicit function of C, ε and σ, the gradient
information can only be obtained by using finite
difference. In this case, the cubic polynomial method
would require more MSELOO evaluations than the mixed
quadratic and cubic polynomial method. Therefore we
choose the latter.

The result returned by the gradient-based method
largely depends on the initial point at which the
optimization starts, and a number of repeated experiments
are necessary to obtain a reliable conclusion. Hence the
quasi-Newton procedure was repeated 100 times, and the
100 initial points were randomly selected. The reasons
why the algorithm terminates can be categorized into the
following four types:

Type 1: Magnitude of gradient is smaller than the
specified tolerance (1.0E−6), and this means that the
algorithm has terminated normally at a local optimum.

Type 2: Numerical problems are encountered when
evaluating finite difference gradients, and the algorithm
fails from the beginning. Because in this case the
optimization terminates at the initial point, we do not
think that the algorithm has returned any valid results.

Type 3: The algorithm terminates after some iterations
because line search cannot find an acceptable point along
the final search direction.

Type 4: The number of MSELOO evaluations reaches
the maximum value allowed (it is set to 200 in this
research) before the algorithm converges to a solution.

In the third case and the fourth case above, although
the algorithm fails to converge normally, it can still return
a (C, ε, σ) point having a lower MSELOO than the initial
point. Statistical analysis was performed on the results of
the 100 independent experiments, and two pie charts were
obtained (see Fig. 6).

From Fig. 6, it can be seen that: (i) only 13 out of 100
trials converged to a local optimum; (ii) only 9 out of 100
trials yielded a solution at which MSELOO is smaller than
1.0E−3. The above facts indicate that the quasi-Newton
method is not suitable for minimizing SVM MSELOO. We
have also tried the steepest descent method and the
conjugate gradient method, and results similar to Fig. 6
were obtained. Therefore it can be concluded that the
gradient-based search is not a good method for
minimizing SVM MSELOO.

D. Application of the Proposed Methods
The parameter settings for GA-SVM and PSO-SVM

are both shown in Table II. To investigate the effect of
various population sizes, three different values, i.e. 10, 20,
and 30, are adopted in this research. The stopping criteria
are set as follows: (a) the algorithm stops if there is no
improvement in the minimum MSELOO for five
consecutive iterations; (b) the algorithm stops if the
number of iterations performed reaches the maximum
value allowed, i.e. 50.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1165

© 2010 ACADEMY PUBLISHER

As mentioned before, three different population sizes,
i.e. 10, 20 and 30, are considered. Hence a total of six
cases are investigated, and they are GA-SVM-10, GA-
SVM-20, GA-SVM-30, PSO-SVM-10, PSO-SVM-20
and PSO-SVM-30. Due to the stochastic character of the
proposed methods, each of the above six approaches was
repeated fifty times.

Proportion: 9%

Type 1 (13%) Type 4 (39%)

Type 2 (23%) Type 3 (25%)

Optimization converged
to a local optimum.

Optimization terminated at
initial point because finite
difference method failed.

Optimization terminated
after some iterations
because line search failed.

Number of evaluations
reached the maximum
value allowed before
optimization converged.

Proportion: 23%

Proportion: 24%

Proportion: 41%

Proportion: 3%

No valid result is returned.

3E1LOO MSE

2E13E1 LOO  MSE

1E12E1 LOO  MSE

1E1LOO MSE

The stopping criterion (a) was met in all 300 runs.
Namely, all trials performed converged to a (C, ε, σ) point
within 50 iterations. Statistics including the maximum
(max), minimum (min), average (avg), and standard
deviation (std), are calculated on the obtained results such
as , , and MSELOO, and they are listed in Table
III, Table IV, and Table V.

*
itrN *

evaN

By examining the data from columns 2, 3 and 4 in
Table III, we can see that for GA-SVM, the approach
with the smallest pop , i.e. GA-SVM-10, tends to take the
most iterations to converge. Apparently, a similar
conclusion can be drawn for PSO-SVM (on the basis of
the data from columns 5, 6 and 7 in Table III).
Comparing the data in column 5 with 2, column 6 with 3,
and column 7 with 4 (of Table III), we can also see that
for a given , PSO-SVM tends to take fewer iterations
to converge.

S

popS
Figure 6. Statistics on the results of the 100 independent experiments

Not only does the calculation time consumed depend
on the iterations executed but also on the chosen
population size. Compared with , the parameter
which is defined in (20) is more useful for measuring the
convergence speed. By examining the second row and the
third row of Table IV, where the maximum/minimum of

 is shown, we can see that for both GA-SVM and
PSO-SVM, the larger S s, the wider the distribution of

*
evaN lues is.

*
itrN *

evaN

*
evaN

pop i

The GA/PSO-SVM algorithm will terminate when
either one of the two conditions is met. If the stopping
criterion (a) is met, we think that the algorithm has
converged to a solution, i.e. a (C, ε, σ) point. In that case,
we take as the number of iterations required
to find this solution (Nitr is the number of iterations
executed before the algorithm terminates). In addition,
another parameter which denotes the number of MSELOO
evaluations is also introduced, and it is

4itr
*
itr  NN

va
Besides, we can also see that for both GA-SVM and

PSO-SVM, the average and standard deviation of

values both increase as population size goes up. This
means that (for both GA-SVM and PSO-SVM): (i) the
larger popS is, the larger the expected value of calculation
time will be; (2) the larger popS is, the larger the upper
limit of calculation time will be. Thus, we can conclude
that from the viewpoint of convergence speed, it is not
appropriate to adopt a large pop . If we compare the data
in column 5 with 2, column 6 with 3, and column 7 with
4 (of Table IV), it can be seen that for a given popS , PSO-
SVM is superior to GA-SVM in convergence speed.

*
evaN

S

pop
*
itr

*
eva)1(SNN  (20)

where is the size of the population. Because the
calculation time consumed is directly proportional to the
number of MSELOO evaluations executed, can be
used to measure the convergence speed of an algorithm.
The smaller is, the faster this algorithm converges.

popS

*
evaN

*
evaN

TABLE II.
PARAMETER SETTINGS FOR GA/PSO-SVM

Initial search range for V1 0 ~ 8
Initial search range for V2 −12 ~ 0
Initial search range for V3 −2 ~ 1
Population size 10, 20, 30
Max generation/iteration 50
Rcros 1.2
Fcros 0.8
Pmut 0.01
c1 2
c2 2
w 0.9
vmax for V1 8
vmax for V2 12
vmax for V3 3

After analyzing the data from each row in Table IV
separately, we find that PSO-SVM-10 has the lowest
value for all the four statistics investigated, i.e. max of

, min of , avg of , and std of . This fact
implies that among the six approaches investigated, PSO-
SVM-10 tends to take the fewest MSELOO evaluations to
converge, i.e. PSO-SVM-10 has the highest average
convergence speed.

*
evaN *

evaN *
evaN *

evaN

It can be seen from Table V that: (i) GA-SVM-10 has
the highest value for all the four statistics investigated, i.e.
max of MSELOO, min of MSELOO, avg of MSELOO, and std
of MSELOO; (ii) the data in the other five columns are
close together.

1166 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

TABLE III.
STATISTICS ON THE

*
itrN RESULTS OF GA-SVM AND PSO-SVM

GA-SVM PSO-SVM

10pop S 20pop S 30pop S 10pop S 20pop S 30pop S
*
itrofmax N 30 19 20 10 8 8
*
itrofmin N 6 3 3 3 1 1
*
itrofavg N 14.8400 7.7200 6.6800 6.0200 4.5000 3.9800
*
itrofstd N 7.1866 4.6425 4.5689 1.9112 1.8763 1.6224

TABLE IV.
STATISTICS ON THE

*
evaN RESULTS OF GA-SVM AND PSO-SVM

GA-SVM PSO-SVM

10pop S 20pop S 30pop S 10pop S 20pop S 30pop S
*

evaofmax N 310 400 630 110 180 270
*

evaofmin N 70 80 120 40 40 60
*

evaofavg N 158.4000 174.4000 230.4000 70.2000 110 149.4000
*

evaofstd N 71.8661 92.8497 137.0678 19.1119 37.5255 48.6726

TABLE V.
STATISTICS ON THE LOOMSE RESULTS OF GA-SVM AND PSO-SVM

GA-SVM PSO-SVM

10pop S 20pop S 30pop S 10pop S 20pop S 30pop S

LOOofmax MSE ()4E1  78.2636 7.8368 7.3383 7.7006 7.1218 6.1025

LOOofmin MSE)4E1( 5.3872 4.9036 4.9026 4.9004 4.9005 4.9069

LOOofavg MSE)4E1( 31.5237 5.4456 5.4219 5.2967 5.3671 5.2921

LOOofstd MSE)4E1( 19.8315 0.6670 0.5602 0.5012 0.4712 0.4123

In summary, from the viewpoint of solution quality,
GA-SVM-10 is the worst one among the six approaches
investigated, while there are no significant differences
among the other five.

We can also rank the approaches investigated in order
of convergence speed, and the result is PSO-SVM-10 >
PSO-SVM-20 > PSO-SVM-30 > GA-SVM-20 > GA-
SVM-30. We intentionally ignored GA-SVM-10 because
numerical experiments prove that it is ineffective in
minimizing SVM MSELOO. In general, PSO-SVM is
preferred to GA-SVM. If one chooses PSO-SVM, 10
could be suggested as a suitable value for the size of
population. If one chooses GA-SVM, 20 could be
suggested as a suitable value for the size of population.

V. CONCLUSIONS

Because SVM generalization performance strongly
depends on the right setting of hyper-parameters C, ε, and
the kernel parameter σ, these three parameters need to be
selected properly. In this paper two methods are
presented for estimating the optimal SVM parameter
settings, and they are GA-SVM and PSO-SVM. We used
a 2-D test function to evaluate grid search, gradient-based
search, and our GA/PSO-SVM method, and the
experiment results show that:

● If the step sizes for C, ε, and σ are sufficiently small,
the grid search method can achieve a solution of high
quality. However, in that case the required number of

MSELOO evaluations is extremely large. In the example
presented in this paper, the required number is 9621, and
the CPU time consumed is about 42 hours.

● The gradient-based search is not a good method for
finding a minimum of MSELOO. In the example presented
in this paper, the quasi-Newton procedure was repeated
100 times, but only 9 out of 100 trials yielded a solution
at which MSELOO is smaller than 1.0E−3.

● GA-SVM and PSO-SVM can both yield solutions of
comparable quality to that achieved by the grid search
method. GA-SVM-10, however, was the exception.

● From an overall point of view, the proposed methods
(GA-SVM and PSO-SVM) are slightly inferior to
gradient-based method in convergence speed, which is
measured in terms of . However, when the
population is relatively small, PSO-SVM can achieve a
convergence speed comparable to that of gradient-based
search.

*
evaN

● Both of the two proposed methods have a much
lower computational cost when compared with the grid
search. In the example presented in this paper, the CPU
time consumed by GA-SVM ranges from 0.66 to 3.32
hours, and the CPU time consumed by PSO-SVM ranges
from 0.38 to 1.71 hours.

● For a given population size, PSO-SVM is superior to
GA-SVM in convergence speed. The recommended
population size for GA-SVM is 20, and the recommended
population size for PSO-SVM is 10.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1167

© 2010 ACADEMY PUBLISHER

Summarizing, GA-SVM and PSO-SVM were
developed as relatively fast alternatives for the time
consuming grid search approach. Both methods,
especially the latter, can efficiently solve the problem of
estimating the optimal SVM parameter settings at a
reasonable computational cost.

ACKNOWLEDGMENT

This research was supported by the National High
Technology Research and Development Program under
the project No. 2006AA04Z405, which is gratefully
acknowledged by the authors.

REFERENCES
[1] E. Rigoni and A. Lovison, “Automatic sizing of neural

networks for function approximation,” IEEE International
Conference on Systems, Man and Cybernetics, pp. 2005–
2010, October 2007.

[2] R. R. Barton and M. Meckesheimer, “Metamodel-based
simulation optimization,” in Handbooks in Operations
Research and Management Science, vol. 13, Elsevier
Science, 2006, pp. 535–574.

[3] X. F. Yuan and Y. N. Wang, “Parameter selection of SVM
for function approximation based on chaos optimization,”
Journal of Systems Engineering and Electronics, vol. 19,
pp. 191–197, 2008.

[4] V. Cherkassky and Y. Ma, “Practical selection of SVM
parameters and noise estimation for SVM regression,”
Neural Networks, vol. 17, pp. 113–126, 2004.

[5] B. Üstün, W. J. Melssen, M. Oudenhuijzen and L. M. C.
Buydens, “Determination of optimal support vector
regression parameters by genetic algorithms and simplex
optimization,” Analytica Chimica Acta, vol. 54, pp. 292–
305, 2005.

[6] K. Ito and R. Nakano, “Optimizing support vector
regression hyper-parameters based on cross-validation,”
Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 2077–2082, July 2003.

[7] Z. Y. Luo, P. Wang, Y. G. Li, W. F. Zhang, W. Tang and
M. Xiang, “Quantum-inspired evolutionary tuning of SVM
parameters,” Progress in Natural Science, vol. 18, pp.
475–480, 2008.

[8] A. C. Keys, L. P. Rees and A. G. Greenwood,
“Performance measures for selection of metamodels to be
used in simulation optimization,” Decision Sciences, vol.
33, pp. 31–57, 2002.

Yuan Ren was born in Xinjiang Province, China, in 1982. He
received his B.S. degree in flight vehicle propulsion engineering
from Beijing University of aeronautics and astronautics in 2004.

Currently, he is a Ph.D. candidate at the school of jet
propulsion, Beijing University of aeronautics and astronautics.
He has already published 15 articles in academic journals and
conference proceedings. He was granted Airbus Scholarship and
Guanghua Scholarship for his research effort. His main research
interest focuses on artificial intelligence and its application in
reliability engineering and optimization design.

Mr. Ren is a student member of China Computer Federation.

Guangchen Bai was born in Heilongjiang Province, China, in
1962. He received his Ph.D. degree in mechanical engineering
from Harbin institute of technology in 1993.

Now he is a professor of Beijing University of aeronautics
and astronautics and conducts research in the areas of reliability
engineering and optimization design. His research activities
were supported by National Natural Science Foundation,
National Postdoctoral Science Foundation, Aeronautical
Supporting Technology Foundation and National High-tech
Research and Development Program of China.

1168 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

