
ALERT CLASSIFICATION TO REDUCE FALSE
POSITIVES IN INTRUSION DETECTION

July 2006

Dissertation zur Erlangung des Doktorgrades
der Fakultät für Angewandte Wissenschaften

der Albert-Ludwigs-Universität Freiburg im Breisgau

Tadeusz Pietraszek
tadek@pietraszek.org

Institut für Informatik, Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 52, 79110 Freiburg i. Br., Germany

Dekan: Prof. Dr. Jan G. Korvink

Erstreferent: Prof. Dr. Luc De Raedt

Zweitreferent: Prof. Dr. Johannes Fürnkranz

Tag der Disputation: 05.12.2006

“A new star has been discovered,
which doesn’t mean that things have gotten brighter
or that something we’ve been missing has appeared.
. . . ”

Wis lawa Szymborska, “Surplus” [Szy00]

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quel-
len direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs-
oder Beratungsdiensten (Promotionsberaterinnen oder Promotionsberater oder anderer Per-
sonen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte
Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dis-
sertation stehen. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Desweitern habe ich mich nicht bereits und bewerbe ich mich auch nicht gleichzeitig an
einer in- oder ausländischen wissenschaftlichen Hochschule um die Promotion.

I hereby certify that the work embodied in this thesis is the result of original research and
has not been submitted for a higher degree to any other university or institution.

Tadeusz Pietraszek
Zürich, Switzerland
July 4, 2006

5

6

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 False Positives . 2
1.1.2 Existing Solutions . 2
1.1.3 Introducing the Analyst: The Global Picture of Alert Management . . 4

1.2 Why Learning Alert Classifiers Works and Why It is a Difficult Learning Problem 7
1.3 Classifying Alerts: False Positives, True Positives or Other Classes? 8
1.4 Thesis Statement and Contributions . 9
1.5 Overview . 10

2 Intrusion Detection and Machine-Learning Background 13
2.1 Intrusion Detection . 13

2.1.1 Intrusion Detection Systems . 14
2.1.2 Two examples of IDSs . 17
2.1.3 Conclusions . 22

2.2 Machine Learning . 22
2.2.1 Classification . 22
2.2.2 Basic Techniques . 25
2.2.3 Evaluating Classifiers . 28
2.2.4 ROC Analysis . 29
2.2.5 Unsupervised Techniques . 31

2.3 Summary . 32

3 State of the Art 33
3.1 Multiple Facets of Related Work . 33
3.2 Building IDSs Using Machine Learning . 34
3.3 Spam Filtering . 34

i

ii CONTENTS

3.4 Interface Agents . 35
3.5 Alert Correlation . 35
3.6 Frequent Episodes & Association Rules . 38
3.7 Sensor Profiling . 39
3.8 CLARAty—Data Mining and Root Cause Analysis 39
3.9 Summary . 40

4 Datasets Used 41
4.1 Datasets Available . 41
4.2 Datasets Used & Alert Labeling . 43

4.2.1 Alert Representation . 43
4.2.2 DARPA 1999 Data Set . 44
4.2.3 Data Set B . 45
4.2.4 MSSP Datasets . 46

4.3 Summary . 48

5 Adaptive Alert Classification 49
5.1 ALAC—Adaptive Learner for Alert Classification 49

5.1.1 Recommender Mode . 50
5.1.2 Agent Mode . 51

5.2 Background Knowledge . 53
5.3 Choosing Machine-Learning Techniques . 55

5.3.1 Learning an Interpretable Classifier from Examples. 55
5.3.2 Background Knowledge and Efficiency. 56
5.3.3 Confidence of Classification. 56

5.4 Applying RIPPER to ALAC . 57
5.4.1 Cost-Sensitive and Binary vs. Multi-Class Classification 58
5.4.2 Batch-Incremental Learning. 61

5.5 ALAC Evaluation . 61
5.5.1 Evaluation Methodology . 62
5.5.2 Background Knowledge . 62
5.5.3 Results Obtained with DARPA 1999 Data Set 63
5.5.4 Results Obtained with Data Set B . 66
5.5.5 Understanding the Rules . 68
5.5.6 Conclusions . 69

5.6 Summary . 70

6 Abstaining Classifiers using ROC Analysis 71
6.1 Introduction . 71
6.2 Background . 72
6.3 ROC-Optimal Abstaining Classifier . 72
6.4 Cost-Based Model . 74
6.5 Bounded Models . 76

6.5.1 Bounded-Abstention Model . 77
6.5.2 Bounded-Improvement Model . 83

6.6 Experiments . 86
6.6.1 Constructing an Abstaining Classifier 87

CONTENTS iii

6.6.2 Testing Methodology . 87
6.6.3 Results—Cost-Based Model . 88
6.6.4 Results—Bounded Models . 89

6.7 Alternative Representations to ROC Curves 92
6.7.1 Precision-Recall and ROC Curves . 92
6.7.2 DET Curves . 94
6.7.3 Cost Curves . 95

6.8 Related Work . 95
6.9 Conclusions and Future Work . 96

7 ALAC+—An Alert Classifier with Abstaining Classifiers 99
7.1 ALAC Meets with Abstaining Classifiers . 99

7.1.1 The Problem with Rule Learners . 101
7.2 ALAC+ Evaluation . 103

7.2.1 Choosing Evaluation Models for ALAC+ 103
7.2.2 Setting System Parameters . 104
7.2.3 Cost Results . 106
7.2.4 Conclusions . 108

7.3 Summary . 109

8 Combining Unsupervised and Supervised Learning 111
8.1 Why Unsupervised Learning Makes Sense . 111

8.1.1 Retrospective Alert Analysis . 111
8.1.2 Subsequent Alert Classification . 113

8.2 CLARAty—Algorithm Description . 114
8.2.1 Generalization Hierarchies . 114
8.2.2 CLARAty Algorithm . 115
8.2.3 Cluster Descriptions and Filtering . 117

8.3 Automated Cluster-Processing System . 117
8.4 CLARAty Evaluation . 119

8.4.1 Evaluation Methodology . 120
8.4.2 Setting System Parameters . 120
8.4.3 Cluster Persistency . 121
8.4.4 Number of Clusters and Total Coverage 123
8.4.5 Automated Cluster Processing . 125
8.4.6 Cluster Precision and Recall . 126
8.4.7 Clustering Precision and Recall Charts 129
8.4.8 Conclusions . 135

8.5 Combining Clustering with ALAC in a Two-Stage Alert-Classification System 136
8.6 CLARAty and ALAC Evaluation . 136

8.6.1 ROC analysis . 137
8.6.2 DARPA 1999 Data Set . 138
8.6.3 Data Set B . 139
8.6.4 MSSP Datasets . 140
8.6.5 Conclusions . 142

8.7 Summary . 143

iv CONTENTS

9 Summary, Conclusions and Future Work 145
9.1 Summary . 145
9.2 Conclusions . 147
9.3 Future Work . 149

A Alert Correlation 151
A.1 Correlation Terminology . 151
A.2 Alert Correlation Systems . 153

A.2.1 Tivoli Aggregation and Correlation Component 153
A.2.2 Probabilistic Alert Correlation . 154
A.2.3 Alert-Stream Fusion . 155
A.2.4 Hyper-alert Correlation . 155
A.2.5 Cooperative Intrusion Detection Framework 156
A.2.6 Correlated Hacking Behavior . 157
A.2.7 M2D2 Formal Data Model . 158
A.2.8 Statistical Correlation Models . 159
A.2.9 Comprehensive IDS Alert Correlation 159

B Abstaining Classifier Evaluation Results 161

C Clustering MSSP Datasets Results 173

Bibliography 184

Table of Symbols 199

Index 201

Acknowledgments

D
efending a PhD is a one-man show, however, the process of pursuing one is definitely
not a one-person effort and I have a lot of people to thank for helping me in this stage

of my life.
First of all, I would like to thank my professor, Luc De Raedt, who saw value in my

research and agreed to supervise it, providing support and giving directions for research.
Being a remote PhD student working at IBM Zurich Research Lab is a special situation and
I am really grateful that such an arrangement was possible. For all this and more, thank you,
Luc.

I would also like to thank Andreas Wespi, my former manager and mentor at IBM, for
hiring me and supporting me during my PhD quest, always finding time for meetings and
very thoroughly scrutinizing my work. I had greatly benefited from his experience in the field
of intrusion detection and computer security. I would also like to thank Lucas Heusler, my
current manager for giving me a lot of flexibility in doing my research, making the finishing
of my PhD possible.

During my PhD work I was greatly supported by my mentor, Klaus Julisch, who spent
a considerable amount of time explaining the arcane of scientific work, forcing me to write
and tirelessly correcting my scribbles. He also never hesitated to ask those difficult questions,
which helped me to become a more mature researcher.

I would like to thank the IBM Global Services Managed Security Services team, in par-
ticular Mike Fiori and Chris Calvert for allowing me to use their data and Jim Treinen and
Ken Farmer for providing support on the technical side.

I would also like to thank my friends at IBM, James Riordan & Daniela Bourges-Waldegg
for being great friends, expanding my horizons (both scientific and non-scientific) through
always interesting discussions and giving me (and other PhD students) a motto “The goal of
PhD is to finish it”. I have had a great time with Diego Zamboni who, in spite of (or maybe
rather because of) thinking of me as a very apt procrastinator and giving me motivation to
work on my numerous pet projects, always found time to say “Tadek, work on your thesis”.

During my stay in the lab, I have also met many interesting friends and colleagues: Chris
Giblin, Marcel Graf, Christian Hörtnagl, Ulf Nielsen, Mike Nidd, René Pawlitzek, Ulrich
Schimpel, Morton Schwimmer, Abhi Shelat, Dieter Sommer, Axel Tanner, and others, who
provided an excellent and stimulating working environment and always had time for inter-
esting discussions. Among my colleagues, special thanks go to my office-mate, Chris Vanden
Berghe for putting up with me in one office during these three years, always-interesting dis-
cussions and arguments, and many interesting ideas that got born this way.

I am also grateful to the friendly people who volunteered to read through, and give me
invaluable comments on this dissertation and its earlier versions: my professor Luc De Raedt,
Birgit Baum-Waidner, Axel Tanner (also for the help with the German abstract) and Andreas

v

vi Preface

Wespi. Without your help this thesis would not have gotten to this stage. Clearly, I am solely
responsible for any mistakes that had remained in the report.

Last but not least, I am deeply indebted to my family for their everlasting support while
abroad and having by far more faith in me than anybody else, including myself! My special
thanks go to Annie for being the best girlfriend and a wonderful life companion and for
putting up with me during the hectic time while working on my PhD.

Tadeusz Pietraszek
Zürich, Switzerland
July 4, 2006

Abstract

Intrusion Detection Systems (IDSs) aim at detecting intrusions, that is actions that attempt
to compromise the confidentiality, integrity and availability of computer resources. With
the proliferation of the Internet and the increase in the number of networked computers,
coupled with the surge of unauthorized activities, IDSs have become an integral part of
today’s security infrastructures. However, in real environments IDSs have been observed to
trigger an abundance of alerts. Most of them are false positives, i.e., alerts not related to
security incidents. This dissertation deals with the problem of false positives in intrusion
detection.

We propose the novel concept of training an alert classifier using a human analyst’s feedback
and show how to build an efficient alert classifier using machine-learning techniques. We
analyze the desired properties of such a system from the domain perspective and introduce
ALAC, an Adaptive Learner for Alert Classification, and its two modes of operation: a
recommender mode, in which all alerts with their classification are forwarded to the analyst,
and an agent mode, in which the system uses autonomous alert processing. We evaluate
ALAC in both modes on real and synthetic intrusion detection datasets and obtain promising
results: In our experiments ALAC reduced the number of false positives by up to 60% with
acceptable misclassification rates.

Abstaining classifiers are classifiers that in certain cases can refrain from classification,
which is similar to a domain expert saying “I don’t know”. Abstaining classifiers are advan-
tageous over normal classifiers if they perform better than normal classifiers when they make
a decision.

In this dissertation we provide a clarification of the concept of optimal abstaining classifiers
and introduce three different models, in which normal and abstaining classifiers can be com-
pared: the cost-based model, the bounded-abstention model, and the bounded-improvement
model. In the first cost-based model, the classifier uses an extended 2×3 cost matrix, whereas
in the bounded models, the classifier uses a standard 2× 2 cost matrix and boundary condi-
tions: the abstention window or the desired cost improvement. Looking at a common type of
abstaining classifiers, namely classifiers constructed from a single ROC curve, we provide effi-
cient algorithms for selecting these classifiers optimally in each of these models. We perform
an experimental validation of these methods on a variety of common benchmark datasets.

Applying abstaining classifiers to ALAC, we introduce ALAC+, an extension of our alert-
classification system. We select the most suitable abstaining classifier models and show that by
using abstaining classifiers one can significantly reduce the misclassification cost. For example,
in our experiments with a 10% abstention the system reduced the overall misclassification cost
by up to 87%. This makes abstaining classifiers particularly suitable for alert classification.

vii

viii Preface

In the final part of this dissertation, we extend CLARAty, the state-of-the-art alert clus-
tering system by introducing automated cluster processing, and show how the system can
be used to investigate missed intrusions and correct initial analyst’s classifications. Based
on this, we build a two-stage alert-classification system in which alerts are processed by the
automated cluster-processing system and then forwarded to ALAC. Our experiments with
real and synthetic datasets showed that the automated cluster-processing system is robust
and on average reduces the total number of alerts by 63% which further reduces the analyst’s
workload.

Zusammenfassung

Eindringerkennungssysteme (Intrusion Detection Systems, abgekürzt IDSs) zielen auf die
Erkennung von Angriffen, d.h. Aktionen, die versuchen die Konfidenzialität, Integrität und
Verfügbarkeit von Computer-Resourcen zu kompromittieren. Durch das enorme Wachstum
des Internets und der Zahl der vernetzten Computer bei gleichzeitiger starker Zunahme von
nicht-autorisierten Aktivitäten sind IDSs zu einem integralen Bestandteil der typischen ak-
tuellen Sicherheits-Infrastruktur geworden. In realen Umgebungen beobachtet man jedoch,
daß IDSs sehr viele Alarme produzieren, dabei zu einem großen Teil auch Fehlalarme (false
positives), d.h. Alarme, die keinen Sicherheits-Zwischenfällen entsprechen. Diese Dissertation
beschäftigt sich mit dem Problem von Fehlalarmen in der Intrusion Detektion.

Wir schlagen hierzu ein neuartiges Konzept vor, bei dem ein Alarm-Klassifizierer aus der
Rückmeldung eines menschlichen Analysten lernen kann, und zeigen, wie ein solcher effizienter
Alarm-Klassifizierer mit Hilfe der Techniken maschinellen Lernens erstellt werden kann. Wir
analysieren die wünschenswerten Eigenschaften eines solchen Systems aus dem Blickwinkel
der Domäne der Intrusion Detektion und stellen ALAC vor, den Adaptiven Lerner für Alarm-
Klassifikation (Adaptive Learner for Alert Classification). ALAC hat zwei Betriebsarten: eine
empfehlende Betriebsart (recommender mode), bei der alle Alarme mit ihrer Klassifikation an
den Analysten weitergeleitet werden, und eine Betriebsart als Agent (agent mode), in welcher
das System Alarme teilweise eigenständig verarbeitet. Wir evaluieren ALAC in beiden Modi
mit realen und synthetischen Daten aus dem Gebiet der Intrusion Detektion und erhalten
dabei viel versprechende Ergebnisse: ALAC reduziert in diesen Experimenten die Zahl der
Fehlalarme um bis zu 60% bei annehmbaren Raten der Fehlklassifikation.

Sich-enthaltende Klassifizierer (abstaining classifiers) nehmen in bestimmten Fällen keine
Klassifizierung vor, ähnlich einem “Ich weiß nicht” eines Domain-Experten. Es besteht die
Annahme, daß ein solcher Klassifizierer, der sich enthalten kann, insgesamt eine bessere Lei-
stung bringen kann als normale Klassifizierer, die in jedem Fall eine Entscheidung treffen
müssen.

In dieser Dissertation klären wir das Konzept des optimalen sich-enthaltenden Klassifi-
zierers und stellen drei verschiedene Modelle vor, in denen sie mit normalen Klassifizierern
verglichen werden können: ein kosten-basiertes Modell, ein Modell mit begrenzter Enthal-
tung und ein Modell mit begrenzter Verbesserung. Im kosten-basierten Modell benutzt der
Klassifizierer eine erweiterte 2×3 Kosten-Matrix, während in den anderen Modellen der Klas-
sifizierer eine normale 2×2 Kosten-Matrix verwendet mit zusätzlichen Randbedingungen: der
Menge der Alarme, bei denen sich der Klassifizierer enthält, beziehungsweise die gewünschte
Verbesserung der Kosten. Für eine übliche Gruppe von sich-enthaltenden Klassifizierern, die

ix

x Preface

aus einer einzelnen ROC-Kurve hervorgehen, zeigen wir effiziente Algorithmen um diese Klas-
sifizierer in optimaler Art auszuwählen in allen genannten Modellen. Diese Methoden werden
experimentell bestätigt mit einer großen Zahl von Benchmark-Daten.

Unter Anwendung von sich-enthaltenden Klassifizierern auf ALAC führen wir ALAC+ ein,
eine Erweiterung unseres Alarm-Klassifikations-Systems. Wir wählen die am besten geeigne-
ten sich-enthaltenden Klassifizierer und zeigen, daß dadurch die Fehlklassifikations-Kosten
signifikant reduziert werden können. So reduzieren sich beispielsweise in unseren Experimen-
ten bei 10% Enthaltung die allgemeinen Fehlklassifikations-Kosten um bis zu 87%. Dies macht
sich-enthaltende Klassifizierer besonders geeignet für die Alarm-Klassifizierung.

Im letzten Teil der Arbeit erweitern wir CLARAty, ein aktuelles Alarm-Clustering-System,
durch die Einführung einer automatisierten Cluster-Verarbeitung und zeigen, wie das System
dazu benutzt werden kann eventuell übersehene Angriffe zu untersuchen und initiale Klassi-
fikationen eines Analysten zu korrigieren. Hierauf aufbauend entwickeln wir ein zweistufiges
Alarm-Klassifikations-System, in welchen Alarme zuerst durch die automatisierte Cluster-
Verarbeitung prozessiert und dann an ALAC weitergeleitet werden. Unsere Experimente mit
realen und synthetischen Daten zeigen, daß das automatisierte Cluster-Verarbeitungs-System
robust ist und die Gesamtzahl von Alarmen, und damit auch die Arbeitslast des Analysten,
durchschnittlich um 63% reduziert.

List of Figures

1.1 Evolution of the scope for addressing false positives in intrusion detection.
Shaded areas represent the scope discussed in the text. 3

1.2 The global picture of alert management. 4
1.3 Thesis outline. 11

2.1 The general architecture of an IDS (based on [Axe05]). 15
2.2 Using CSSE to preserve the metadata of string representations and to allow late

string evaluation. Shaded areas represent string fragments originating from the
user. 22

2.3 A sample decision tree. 26
2.4 Examples of ROC and ROCCH curves and the cost-optimal classifier. 30

3.1 Multiple facets of related work. 33
3.2 Entity-relationship diagram of concepts used by CLARAty [Jul03b]. 39

5.1 Architecture of ALAC in agent and recommender modes. 50
5.2 Three types of background knowledge for classifying IDS alerts. 54
5.3 ROC curves for the base classifier used with different types of background

knowledge. The fragments represent areas of practical interest (low false-
positive rates and high true-positive rates) . 64

5.4 False negatives and false positives for ALAC in agent and recommender modes
(DARPA1999 dataset, w = 50). 65

5.5 Number of alerts processed autonomously by ALAC in agent mode. 66
5.6 False negatives and false positives for ALAC in agent and recommender modes

(Data Set B, w = 50). 67
5.7 ROC performance for algorithms inducing rules for different classes: “+” and

“−”. 69

6.1 Abstaining classifier Aα,β constructed using two classifiers Cα and Cβ 73
6.2 Optimal classifier paths in a bounded-abstention model. 80
6.3 Finding the optimal classifier in a bounded model: visualization of X. 83
6.4 Optimal classifier paths in a bounded-improvement model. 85
6.5 Building an abstaining classifier Aα,β. 88
6.6 Cost-based model: Relative cost improvement and fraction of nonclassified

instances for a representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2). 89
6.7 Bounded-abstention model: Relative cost improvement and the absolute cost

for one representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2). 90

xi

xii LIST OF FIGURES

6.8 Bounded-improvement model: Fraction of nonclassified instances for a repre-
sentative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2). 91

6.9 Conversion between sample ROC and P-R curves (N/P = 5). 93
6.10 Conversion between sample P-R and ROC curves (N/P = 5). The ROCCH

has been transferred back to the P-R curve. 94
6.11 Conversion between sample ROC and DET curves. Grid shows iso-cost lines

at CR = 2 and 0.5. 95

7.1 Simplified architecture of ALAC with abstaining classifiers. 100
7.2 Classifiers for three different misclassification costs ICR = 1, ICR = 50 (used

in the remaining experiments) and ICR = 200 (DARPA 1999, BA 0.1). 105

8.1 Three main types of clusters: false-alert candidates, true-alert candidates, and
mixed clusters for further analysis. 113

8.2 Semi-automated cluster processing. 113
8.3 Sample generalization hierarchies for address, port and time attributes. . . . 115
8.4 Automated cluster processing—creating features. 118
8.5 Automated cluster processing—filtering. 119
8.6 The evaluation of alert clustering and filtering. 120
8.7 Cluster persistency for DARPA 1999 Data Set and Data Set B—relative and

absolute values. Arrows show cumulative cluster coverage in the clustering
(begin of an arrow) and the filtering (end of an arrow) stages for individual
clustering runs. 123

8.8 Estimating the fraction of alerts clustered and the fraction of alerts filtered as
a function of the number of clusters learned. Curves correspond to individual
clustering runs. Verticals line show the smallest argument for which the target
function reaches 95% of its maximum value. 124

8.9 Clusters as filters for DARPA 1999 Data Set and Data Set B—relative and ab-
solute values. Missed positives in Figures 8.9b and 8.9d are calculated relative
to the number of true alerts (P). 126

8.10 Total alert reduction for clusters as filters for all datasets—relative and absolute
values. 127

8.11 Clustering and filtering precision and recall for DARPA 1999 Data Set. Data
shown cumulatively for all clustering runs, with FA-clusters suppressed. . . . 131

8.12 Cluster 72194, describing a part of a portsweep attack. 132
8.13 ROC curves for two types of two-stage alert-classification systems: 2FC and

2FI, for DARPA 1999 Data Set and Data Set B. 137
8.14 Two-stage alert-classification system: False negatives and false positives for

ALAC and two-stage ALAC (2FC, 2FI) in agent and recommender modes
(DARPA1999 Data Set, ICR =50). 138

8.15 Two-stage alert-classification system: Number of alerts processed autonomously
by ALAC and two-stage ALAC (2FC, 2FI) in agent mode. 139

8.16 Two-stage alert-classification system: False negatives and false positives for
ALAC and two-stage ALAC (2FC, 2FI) in agent and recommender modes
(Data Set B, ICR =50). 139

8.17 ROC curve for sample MSSP datasets. 141

LIST OF FIGURES xiii

B.1 Cost-Based Model: Experimental results with abstaining classifiers—relative
cost improvement. 162

B.2 Cost-based model: Experimental results with abstaining classifiers—fraction
of skipped instances. 163

B.3 Bounded model: Experimental results with abstaining classifiers—relative cost
improvement. 164

B.4 Bounded model: Experimental results with abstaining classifiers—absolute
cost values. 165

B.5 Expected improvement model: Experimental results with abstaining classifiers—
desired relative cost improvement vs. fraction of nonclassified instances. . . . 166

B.6 Expected improvement model: Experimental results with abstaining classifiers—
desired absolute cost improvement vs. fraction of nonclassified instances. . . . 167

B.7 ALAC+, DARPA 1999 Data Set, BA0.1: False-positive rates, false-negative
rates, the abstention window and the fraction of discarded alerts in both agent
and recommender modes. 168

B.8 ALAC+, Data Set B, BA0.1: False-positive rates, false-negative rates, the
abstention window and the fraction of discarded alerts in both agent and rec-
ommender modes. 169

B.9 ALAC+, DARPA 1999 Data Set, BI0.5: False-positive rates, false-negative
rates, the abstention window and the fraction of discarded alerts in both agent
and recommender modes. 170

B.10 ALAC+, Data Set B, BI0.5: False-positive rates, false-negative rates, the ab-
stention window and the fraction of discarded alerts in both agent and recom-
mender modes. 171

C.1 Cluster persistency for 20 MSSP customers—absolute values. X and Y axes
labels are the same as in Figs. 8.7a and 8.7c. 174

C.2 Cluster persistency for 20 MSSP customers—relative values. X and Y axes
labels are the same as in Figs. 8.7b and 8.7d. 175

C.3 Estimating the fraction of instances clustered as a function of the number of
clusters learned for 20 MSSP customers. X and Y axes labels are the same as
in Figs. 8.8a and 8.8c. 176

C.4 Estimating the fraction of instances clustered as a function of the fraction of
instances filtered for 20 MSSP customers. X and Y axes labels are the same
as in Figs. 8.8b and 8.8d. 177

C.5 Cluster filtering for 20 MSSP customers—absolute values. X and Y axes labels
are the same as in Figs. 8.9a and 8.9c. 178

C.6 Cluster filtering for 20 MSSP customers—relative values. X and Y axes labels
are the same as in Figs. 8.9b and 8.9d. 179

C.7 Clustering precision for 20 MSSP customers—clustering stage. X and Y axes
are the same as in Fig. 8.11a. 180

C.8 Clustering precision for 20 MSSP customers—filtering stage. X and Y axes are
the same as in Fig. 8.11b. 181

C.9 Clustering recall for 20 MSSP customers—clustering stage. X and Y axes are
the same as in Fig. 8.11c. 182

C.10 Clustering recall for 20 MSSP customers—filtering stage. X and Y axes are
the same as in Fig. 8.11d. 183

xiv LIST OF FIGURES

List of Tables

2.1 The confusion and cost matrices for binary classification. The columns (C)
represent classes assigned by the classifier; the rows (A) represent actual classes. 28

4.1 Statistics generated by the Snort sensor with DARPA 1999 Data Set and Data
Set B. 43

4.2 Statistics generated for 20 companies from MSSP database. Customer are
identified by means of a unique identifier. 47

4.3 Comparison of properties of three datasets used in this dissertation. 48

5.1 Comparison of properties of different machine learning algorithms with respect
to ALAC requirements. 57

6.1 Cost matrix Co for an abstaining classifier. Columns and rows are the same as
in Table 2.1. The third column denotes the abstention class. 74

6.2 Fraction of nonclassified instances (k) and relative cost improvement (f) for a
cost-based model (CR = 1, c13 = {0.1, 0.2}). 89

6.3 Relative cost improvement (f) as a function of a fraction of nonclassified in-
stances (kmax) for a bounded-abstention model (CR = 1, kmax = {0.1, 0.5}). . 91

7.1 Calculating weights w for the optimal binary classifier and abstaining classifiers
in the bounded abstention and the bounded improvement models. 105

7.2 Misclassifications for ALAC and ALAC+ in the recommender and agent for
DARPA 1999 Data Set. 107

7.3 Misclassifications for ALAC and ALAC+ in the recommender and agent modes
for Data Set B. 107

8.1 Cluster persistency PC for MSSP customers, DARPA 1999 Data Set and Data
Set B. 122

8.2 Clustering precision for the clustering stage—the cumulative number of clusters
containing only false alerts, only true alerts and mixed clusters. Right columns
show the distribution of the alerts among the three cluster types. 128

8.3 Clustering precision for the filtering stage. Columns are identical to those in
Table 8.2. Two additional columns show the number of clusters containing false
negatives (erroneously removed alerts relating to incidents) and the absolute
number of false negatives. 129

8.4 Clustering recall—clustering and filtering stage. 130

xv

xvi LIST OF TABLES

8.5 Statistics for a subset of 10 MSSP customers for a period of one month used
in a two-stage ALAC experiment. 140

8.6 Two-stage classification system (2FI) with MSSP datasets. The last column
shows improvement ALAC+ (BI0.1) over ALAC with ICR = 50. 142

Chapter 1

Introduction

“There was once a shepherd-boy who kept his flock at a little distance from the
village. Once he thought he would play a trick on the villagers and have some
fun at their expense. So he ran toward the village crying out, with all his might,–
‘Wolf ! Wolf ! Come and help! The wolves are at my lambs!’

The kind villagers left their work and ran to the field to help him. But when they
got there the boy laughed at them for their pains; there was no wolf there.

Still another day the boy tried the same trick, and the villagers came running to
help and got laughed at again. Then one day a wolf did break into the fold and
began killing the lambs. In great fright, the boy ran for help. ‘Wolf ! Wolf !’ he
screamed. ‘There is a wolf in the flock! Help!’

The villagers heard him, but they thought it was another mean trick; no one paid
the least attention, or went near him. And the shepherd-boy lost all his sheep.

There is no believing a liar, even when he speaks the truth.” [Aes]

1.1 Motivation

Intrusion Detection Systems (IDSs), a concept originally introduced by Anderson [And80]
and later formalized by Denning [Den87], have received increasing attention over the past 15
years. IDSs are systems that aim at detecting intrusions, i.e., sets of actions that attempt
to compromise the integrity, confidentiality or availability of a computer resource [HLMS90].
The explosive increase in the number of networked machines and the use of the Internet in
every organization have lead to an increase of unauthorized activities, not only from external
attackers but also from internal sources, such as fraudulent employees or people misusing their
privileges for personal gain. On the other hand, with the massive deployment of IDSs, their
operational limits and problems have become apparent [Axe99, BHC+00, Jul03b, MCZH00].

One of the most important problems faced by intrusion detection today [MMDD02] are so-
called false positives, i.e., alerts that mistakenly indicate security issues and require attention
from the intrusion-detection analyst. In fact, it has been estimated that up to 99% of alerts
reported by IDSs are not related to security issues [Axe99, BHC+00, Jul03b]. The challenge
is to reduce the number of false positives and improve the quality of alerts.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 False Positives

One of the most important requirements for IDSs is that they should be effective, that is,
detect a substantial percentage of intrusions, while keeping the false-positive rate at an ac-
ceptable level. Clearly, these requirements are contradictory, and in the pursuit of detecting
as many intrusions as possible current IDSs produce too many false positives.

However, building an effective IDS that generates only a small number of false positives
is an extremely difficult task. Reasons for this include:

Runtime limitations: In many cases an intrusion differs only slightly from normal activi-
ties; sometimes even only the context in which the activity occurs determines whether it
is intrusive. However, owing to the harsh real-time requirements, IDSs cannot analyze
the context of all activities to the extent required [PN98].

Specificity of detection signatures: Writing signatures that describe intrusive patterns
for misuse-based IDSs (cf. Section 2.1.1) is a very difficult task [Pax99]. In some cases,
the right balance between an overly specific signature (which is not able to capture all
attacks or their variations) and an overly general one (which classifies legitimate actions
as intrusions) can be difficult to determine.

Dependence on the environment: Actions that are normal in certain environments may
be malicious in others [Bel93]. For example, performing a network scan is malicious
unless the computer performing it has been authorized to do so. IDSs deployed with a
standard out-of-the-box configuration will most likely identify many normal activities
as malicious.

Base-rate fallacy: From the statistical point of view, even very low false-positive rates of a
detector do not result in equally favorable Bayesian detection rates because intrusions
are rare phenomena.

Following an example by Axelsson [Axe99], assuming that an IDS analyzes 1,000,000
packets a day, which contain 20 intrusion packets, this yields a probability of intrusion
P (I) = 2 · 10−5. Knowing the sensor’s detection rate (P (A | I)) and its false-positive
rate (P (A | ¬I)), we can use Bayes theorem to calculate the Bayesian detection rate
(P (I | A)) or, in other words, the probability that an alarm really indicates an intrusion:

P (I | A) =
P (I) · P (A | I)

P (I) · P (A | I) + P (¬I) · P (A | ¬I)
. (1.1)

Using the above intrusion probability P (I) = 2 · 10−5 and assuming an unrealistically
high detection rate P (A | I) = 1.0 and a very low false-positive rate P (A | ¬I) = 10−5,
we obtain P (I | A) = 0.66, which means that one third of all alerts are not related to
intrusive activities. With the same false alarm rate and a more realistic detection rate
of 0.7, we obtain that 42% of the alerts will be false positives.

1.1.2 Existing Solutions

The problem of false positives is critical in intrusion detection and has received considerable
attention from researchers as well as practitioners. We have grouped these approaches into
four levels as shown in Figure 1.1. We will provide a basic introduction to intrusion detection
in Chapter 2 and further discuss these approaches in Chapter 3 in more detail. Here we will
show the hierarchy of different solutions and the position of our work within this hierarchy.

1.1. MOTIVATION 3

Alerts

ID Analyst
IDS

Level 1

Level 4
Level 3

Level 2

Figure 1.1: Evolution of the scope for addressing false positives in intrusion detection. Shaded
areas represent the scope discussed in the text.

Level 1: Improving IDSs themselves At first, most of the efforts focused on building
better sensors, i.e., sensors that detect more intrusions or sensors with very low false-positive
rates. In network-based intrusion detection, the sensors evolved from simple pattern-matching
engines to specialized sensors that understand the underlying transport protocols and some
of the possible obfuscation techniques (e.g., IP-level fragmentation, TCP-level fragmenta-
tion). With the increasing number of application-level vulnerabilities [NIS04], IDSs started
to understand different application-level protocols (e.g., HTTP, RPC). At the same time,
the signature languages became increasingly powerful, supporting regular expressions (e.g.,
Snort [Roe05]) or even complex protocol interactions (e.g., Bro [Pax99]).

In contrast to building general, all-purpose IDSs, specialized IDSs focus on particular
types of intrusions or attacks promising very low false-positive rates. For example, Sekar et
al. [SGVS99] proposed a network-based IDS that exclusively focuses on low-level attacks such
as reconnaissance scans and denial-of-service attacks. Billygoat [RZD05], in contrast, focuses
on detecting worms and viruses. Finally, Pietraszek and Vanden Berghe [PV05] and Valeur
et al. [VMV05] proposed IDSs targeted at detecting application-level SQL injection attacks.

Note that these special-purpose IDSs need to be complemented by additional IDSs to
achieve a comprehensive attack coverage, which then creates the need to deploy and maintain
a heterogeneous network of complementary IDSs.

Level 2: Leveraging the Environment IDSs have a limited view of the environment and,
in many cases, cannot distinguish between attacks and nonattacks with certainty. By using
information about the environment (provided by vulnerability scanners, OS-fingerprinting or
asset databases), IDSs can better understand the environment and significantly lower their
false-positive rates.

For example, Ptacek and Newsham [PN98] showed that without knowing how target
hosts handle certain anomalies in network packets, intruders can efficiently use fragmenta-
tion to avoid being detected by network-based IDS. Addressing these concerns, Active Map-
ping [SP01] builds profiles of the environment, which can then be leveraged by IDSs. Context
signatures [SP03], on the other hand, can understand application-level protocol interactions
and thus determine the impact of an attack. A similar effect can be achieved by correlating
alerts with vulnerabilities [LWS02, VVCK04].

Level 3: Alert Postprocessing Alert postprocessing uses alerts generated by an IDS as
input and tries to improve their quality by processing them. This includes systems using
data mining and so-called alert correlation systems. For example, in the data-mining space
Julisch [Jul03b] showed how root cause analysis can be used to effectively discover large groups

4 CHAPTER 1. INTRODUCTION

of false positives and remove up to 70% of reoccurring false positives in the future.
Moreover, alert correlation, in addition to false positives, addresses another problem of

IDS, namely, the redundancy in alert stream. Alert correlation systems (e.g., [CAMB02,
DW01, VS01, VVCK04]) aim at producing high-level events and thus reduce the total number
of events the system generates.

Level 4: Analyst’s Involvement Very few of the systems operating on the previous levels
take advantage of the fact that alerts generated by IDSs are passed to the human analyst to
be analyzed in real time or with only a short delay.

This dissertation introduces a novel paradigm of using machine-learning techniques to
reduce the number of false positives in intrusion detection by building a classifier learning
from a human analyst and assisting in the alert classification.

The idea is orthogonal to and can be used with all the techniques discussed above: im-
proving IDSs, leveraging the environment and most other alert postprocessing techniques.

1.1.3 Introducing the Analyst: The Global Picture of Alert Management

On the practical side, in spite of their operational limits, IDSs have been developed and
deployed in different environments, forming an integral part of defense in depth. In fact,
there are a few dozens of IDSs available [Cuf05], including many commercial and open source
IDSs (e.g., Bro [Pax99], Snort [Roe05]).

Clearly, IDSs can only be useful if the alerts generated by them are collected and reviewed.
In practice, many companies use Security Operations Centers (SOCs) (either in-house or
outsourced), where security analysts review alerts typically 24 hours a day and 7 days a
week, so that they can respond to intrusions as soon as possible.

This architecture is depicted in Figure 1.2, in which alerts generated by IDSs are passed
on to a human security analyst. The analyst uses his or her knowledge to distinguish between
false and true positives and to understand the severity of the alerts. We will refer to this
process as alert classification or classification for short.

Depending on this classification, the analyst may report security incidents, investigate
intrusions, or identify network and configuration problems. The analyst may also try to
modify bad IDS signatures or install alert filters to remove alerts matching some predefined
criteria.

Alerts

ID Analyst
IDS

Environment:
- investigating intrusions

IDS:
- modifying signatures
- installing filtering/
 classification rules

Environment:
- identifying network and
 configuration problems

Figure 1.2: The global picture of alert management.

1.1. MOTIVATION 5

Note that in this conventional setup, manual knowledge acquisition (shown by dashed lines
in the figures) is separated from, or not directly used for, classifying alerts. The conventional
setup does not take advantage of two facts: First, usually a large database of historical
alerts exists that can be used for automatic knowledge acquisition and, second, an analyst is
analyzing the alerts as they occur.

These two facts form the basis of the alert-handling paradigm using two different ap-
proaches: unsupervised learning (descriptive modeling) and supervised learning (predictive
modeling). While the first paradigm alone has been introduced and validated by Julisch [Jul03b],
this dissertation proposes the second alert-handling paradigm, namely, using machine learn-
ing on alerts labeled by the operator. We then proceed to evaluate how these approaches can
be combined and used together in a two-stage alert-processing system.

In this thesis we propose to address the problem of false positives in intrusion detection
by building an alert classifier (or classifier for short) to assist the human analyst classifying
alerts. The idea is the following: the classifier classifies alerts into a set of predefined classes
in real-time and presents these classifications to the intrusion detection analyst. Based on the
analyst’s feedback, the system generates new training examples, which are used to initially
build and subsequently update the classifier. The resulting classifier is then used to classify
new alerts. This process is continuously repeated to improve the classification accuracy. We
require that the classification algorithm use explicit and symbolic knowledge representation,
so that the analyst can inspect it and verify its correctness.

More formally we formulate the problem as:

Given – A sequence of alerts: (A1, A2, . . . , Ai, . . .) in the alert log L,
– a set of classes C = {C1, C2, . . . , Cn},
– an intrusion detection analyst O sequentially and in real-time assigning classes
to alerts,
– a utility function U describing the value of a classifier to the analyst O.

Find A classifier classifying alerts, maximizing the utility function U .

This specification may look like a normal incremental classification task; however, the
desired solution depends on the definition of the utility function U , which is based on the
assumptions how the system will be used in practical settings. More specifically, we identified
the following three components of the utility function U :

Misclassified alerts: classifiers that make a smaller number of misclassifications are better,
however, not all misclassifications are the same. This can be modeled by the confusion
and cost matrices or a scalar misclassification cost.

Analyst’s workload: assuming that the alerts are analyzed by the human analysts, systems
automatically processing some of the alerts reduce the analyst’s workload, which can
be quantified.

Abstentions: if the classifier does not attempt to classify certain alerts, these remaining
alerts will have to be classified by the human analysts, hence it increases the analysts
workload. However, if such a classifier has a lower misclassification cost, it might be
preferred over the one that classifies all alerts, but it sometimes wrong.

Ultimately, the goal is to combine all these components into a single utility value and
design the system that maximizes it. The problem, however, is that such a model would

6 CHAPTER 1. INTRODUCTION

require a number of ad-hoc assumptions (e.g., a linear combination of cost and workload) and
introduce a number of parameters, which are difficult to quantify or estimate. As a result
such a model would have a low practical value.

Therefore, we do not attempt to provide guarantees that all models presented in this dis-
sertation are optimal in terms of the global utility function U . Instead we use heuristics, based
of our expertise in intrusion detection, which ensure that the system is easy to understand
by the domain experts and can be used in practice. We then focus on the local optimization:
the optimal model selection and model parameters to ensure that the system yields a high
utility function U .

To motivate the reader and show different definitions of the utility function U used in this
dissertation, we show the following four examples.

In the first setting, assuming that the human analyst will ultimately analyze all alerts
classified by the system (analyzing both alerts and their predicted classification and correct-
ing it), the desired solution is in fact an incremental classification system minimizing the
misclassification cost (e.g., the utility function is the inverse of the misclassification cost).
From the utility standpoint, the analyst would receive some suggestion as to how the alerts
should be classified, but at the end he will need to analyze the same number of alerts as
before.

In the second setting, assuming that the work of the analyst is a costly resource, a better
system could process some alerts automatically, thus limiting the amount of work the analyst
has to perform. A natural candidate for this automatic processing is to automatically discard
some false positives, such as those are alerts that do not report any security-related problems.
Clearly, such a system may incur a higher risk of missing an attack, namely, in the case when
an alert gets erroneously discarded.

In the third setting, the system may allow abstentions, that is the target classifier, in
addition to classifying alerts into a set of classes C, may also assign an additional class
“?” representing abstention. Such alerts would then be classified by the analyst as if the
alert-classification system was not used. The system would be advantageous if alerts that
are classified are classified with a much higher precision (i.e., the probability that the alert
classified as class Ci belongs in fact to the class Ci is high). In this way a human analyst
would gain confidence regarding the reliability of the system.

Finally, in the last setting by using unsupervised learning, mining for patterns in historical
alert logs and correlating them with assigned class labels, we can ensure the quality and
consistency in alert labeling (i.e., similar alerts receive similar classification). This would
require additional work from the human analyst, but in turn provide a higher assurance that
the classification was correct. Pursuing this idea further, one can build an abstaining classifier
using those mined patterns as the classification rules, and cascade it with any of the settings
discussed above. In this way, some alerts can be reliably classified and discarded early on.

By means of these examples we showed that building a usable alert-classification system is
more complex than merely designing a machine-learning technique supporting it. Giving the
reader a preview, these examples are based on the techniques and the systems developed in the
course of the dissertation: The first and the second example describe an alert-classification
system called ALAC, introduced in Chapter 5, the third example describes ALAC+, an
alert-classification system using abstaining classifiers introduced in Chapter 7, and the fourth
example describes a two-stage alert-classification system with CLARAty (Chapter 8).

1.2. WHY LEARNING ALERT CLASSIFIERS WORKS AND WHY IT IS A . . . 7

1.2 Why Learning Alert Classifiers Works and Why It is a
Difficult Learning Problem

Our approach is based on the following two assumptions: (i) the analyst is able to classify
alerts correctly, and (ii) it is possible to learn a classifier based on historical alerts. The
first assumption is justified because the analyst must be an expert in intrusion detection to
perform incident analysis and initiate appropriate responses. Nonetheless, the analyst may
not be accurate in all cases, introducing an error in the classification. As for the second
assumption, it has been shown [Jul03b, MCZH00] that a large fraction of alerts has a clear
structure and that the learner should be able to generalize so that future “similar” alerts are
classified correctly.

If these assumptions hold, this raises the question of why analysts do not write alert
classification rules themselves or do not write them more frequently. An explanation of these
issues can be based on the following facts:

Analysts’ knowledge is implicit: Analysts find it hard to generalize, i.e., to formulate
more general rules, based on individual alert classifications. For example, the analyst
might be able to individually classify some alerts as false positives, but may not be able
to write a general rule that characterizes the whole set of these alerts. Nonetheless we
observed that in the MSSP environment analysts do write rules for removing the most
frequently reoccurring alerts.

Environments are dynamic: In real-world environments the characteristics of alerts change,
e.g., different alerts occur as new computers and services are installed or as certain
worms or attacks gain and lose popularity. The classification of alerts may also change.
As a result, rules need to be maintained and managed. This process is labor-intensive
and error-prone.

This shows that it is possible to learn an alert classifier from examples; however, viewed
as a machine-learning problem, alert classification poses several challenges.

First, the distribution of classes is often skewed, i.e., false positives are more frequent than
true positives. Second, it is also common that the cost of misclassifying alerts is asymmetric
i.e., misclassifying attacks for non-attacks is usually more costly than vice versa. Third,
because the characteristics of the alert stream changes, the classifier should work in real-
time and update its logic as new alerts become available. The learning technique should be
efficient enough to perform in real-time and work incrementally, i.e., be able to modify its
classifier as new data becomes available. Fourth, we require the machine-learning technique
to use background knowledge, i.e., additional information such as network topology, alert
database, alert context, etc., which is not contained in alerts, but allows us to build more
accurate classifiers (e.g., classifiers using generalized concepts). In fact, research in machine
learning has shown that the use of background knowledge frequently leads to more natural
and concise rules [LD94]. However, the use of background knowledge increases the complexity
of a learning task and only some machine-learning techniques support it.

So we are facing a highly challenging machine learning problem that requires great care
to solve properly. We revisit these challenges in Section 5.3, in which we present a suitable
learning technique.

8 CHAPTER 1. INTRODUCTION

1.3 Classifying Alerts: False Positives, True Positives or Other
Classes?

So far we have introduced the problem of false positives in intrusion detection and have
informally defined false positives alerts that mistakenly indicate security issues and require
attention from the intrusion detection analyst. This would suggest that we are facing a
binary classification problem. However, this may not necessarily be the case, and to better
understand the nature of the problem let us look at alert classification in more detail.

Looking at alerts the intrusion-detection analyst tries to determine (i) the root cause of
an alert, and (ii) its impact on the environment and based on this, (iii) the actions that need
to be taken.

The root cause of an alert explains how it came into existence. More formally, according
to Paradies and Busch [PB88] “a root cause is the most basic cause that can be reasonably
identified and that management has control to fix”. Clearly, determining the root cause plays
an important role in analyzing alerts.

It might be tempting to try to classify all possible root causes, in order to determine
the classes that can be used by an alert-classification system. However, building taxonomies
of root causes and attacks is an extremely difficult and controversial task [How97, Jul03b,
Krs98, LBMC94]. Moreover, we have no evidence that the actual analysts use any systematic
classification.

On the other hand, analysts typically use ad-hoc classifications determining the intent of
an activity that triggered it (intentional, inadvertent) and its type, for example:

intentional/malicious: Possible types of activities in this category include scanning (re-
connaissance), unauthorized access (attempt), privilege escalation and malware infec-
tion, policy violation, DoS attack and suspicious activity.

inadvertent/non-malicious: Possible types of activities in this category include: network
misconfiguration and normal activity (underspecified or intent-guessing signature).

The second important factor is determining the impact the activity has on the environ-
ment. To illustrate this with an example, an Internet-facing server may receive hundreds of
automated attacks every day, coming from worm-infected computers around the world. In
spite of being malicious, such alerts have only a marginal impact on the environment (unless
of course the server is vulnerable to the attack being analyzed) and typically do not constitute
security threats.

On the other hand, if the same worm-infected machines were performing a distributed
denial of service (DoS) attack on the same server, the impact would be high, and such an
incident would need to be reported. Continuing with the first example, if the worm infection
attempt was launched against an internal web-server, this may be either as the result of an
internal machine being infected with a worm or there could be a covert channel, allowing
external machines to access internal machines. In both cases, the impact on the environment
is high, and such incidents should be reported.

Finally, a scanning/reconnaissance incident is intentional and typically malicious unless
performed by authorized sources. On the other hand, some machines are being notoriously
scanned, and thus the scanning is not considered a security incident.

1.4. THESIS STATEMENT AND CONTRIBUTIONS 9

To summarize, whereas many ad-hoc classifications exist and can be used in classifying
alerts, defining a taxonomy of alert root causes is difficult. On the other hand, it is a com-
bination of the root cause and the impact on the environment that determines whether the
alert is actionable and constitutes a security incident. From the analyst’s standpoint this
property is the most important one in classifying alerts. In the remainder of the thesis we will
consider actionable alerts equivalent to true positives and non-actionable alerts equivalent to
false positives.

Therefore a binary classification is useful and can frequently be applied in classifying
alerts. Having said this, multi-class classification can be used if a predefined set of classes is
given. We will discuss the topic of multi-class classification further in Section 5.4.1.

1.4 Thesis Statement and Contributions

This dissertation describes the work done to validate the following three-part thesis statement.

Thesis Statement

(1) Using machine learning, it is possible to train classifiers of IDS alerts in the form
of human-readable classification rules by observing the human analyst.

(2) Abstaining classifiers can significantly reduce the number of misclassified alerts with
acceptable abstention rate and are useful in intrusion detection.

(3) Combining supervised and unsupervised learning in a two-stage alert-processing sys-
tem forms a robust framework for alert processing.

The main ideas underlying this dissertation have been published in several articles [Pie04,
PT05, Pie05, PV05], [Pie07]∗ and [Pie06]†. The novel contributions can be summarized as
follows:

• We develop ALAC, a technique for adaptive learning of classification rules based on the
intrusion detection analyst’s feedback, which operates in two modes: a recommender
mode and an agent mode. We analyze the requirements of such a system with regards
to the input data and the machine-learning techniques.

We discuss the problems of IDS evaluation and select two real-world and one synthetic
dataset we use throughout this dissertation. In experiments with these datasets, we
analyze the impact of background knowledge on the accuracy of alert classification and
perform a general system evaluation, based on which we conclude that ALAC can be
applied in real-world intrusion-detection systems.

• We analyze the concept of abstaining classifiers, i.e., classifiers that can say “I don’t
know” and compare them against normal binary classifiers in a cost-sensitive classifica-
tion setup. We introduce three models under which abstaining binary classifiers can be
evaluated: Cost-Based Model, Bounded-Abstention Model and Bounded-Improvement
Model, and develop algorithms for constructing cost-optimal abstaining classifiers us-
ing ROC analysis. We also show how our methods can be applied to other graphical
representations, such as precision-recall curves and DET curves.

∗To appear.
†Accepted with minor revisions. To appear.

10 CHAPTER 1. INTRODUCTION

Finally, we perform an extensive evaluation of abstaining classifiers in these models on
multiple benchmark datasets.

• We develop ALAC+, an alert-classification system using abstaining classifiers in the
above models. Using a real-world and a synthetic dataset, we show that abstaining
classifiers are particularly advantageous for alert classification.

• We propose and evaluate a semi-automated and automated framework for unsuper-
vised learning and alert clustering based on CLARAty [Jul03b] on multiple real-world
datasets. We propose novel alert cluster evaluation methods based on clustering preci-
sion and recall charts.

• We propose a two-stage alert-classification system, combining the unsupervised and
supervised frameworks for robust handling of highly skewed datasets.

1.5 Overview

The thesis is organized as follows:

Chapter 2 provides a brief introduction to the domains of intrusion detection and machine
learning this dissertation builds upon. As this dissertation is targeted at both the
security and the machine learning communities, this chapter summarizes the required
background information for non-experts.

In the intrusion-detection part we give an overview of basic security concepts, the basic
architecture of IDSs and their principles of operation based on two examples: Snort,
an open source network-based IDS and CSSE our specialized host-based IDS. In the
machine learning part, we summarize basic machine-learning techniques, with the main
focus on predictive techniques, their evaluation and ROC analysis.

Chapter 3 reviews the state-of-the-art intrusion-detection alert-management approaches,
including alert classification and alert correlation. We also explore similarities to other,
related domains, which gives inspiration for our work. This chapter provides the moti-
vation and justification for this dissertation.

Chapter 4 discusses the three different types of datasets used in the thesis and analyzes
their properties and difficulties. This shows how alert classification differs from other
machine-learning problems and justifies our approach.

Chapter 5 presents and evaluated ALAC, an Adaptive Learning for Alert Classification sys-
tem, its two modes of operation and the analysis of suitable machine-learning techniques.
We also analyze the classification done by the human analysts and discuss multiclass
vs. binary classification.

Chapter 6 can be viewed both as an independent contribution to machine learning and also
as a part of the alert-classification system. It uses a systematic approach to construct
an abstaining binary classifier that minimizes the misclassification cost in a linear cost
model. We present three different application-dependent evaluation models and show
algorithms for building abstaining classifiers in each of these models.

1.5. OVERVIEW 11

Chapter 7 presents and evaluates ALAC+, an alert-classification system using abstaining
classifiers. We show how the use of abstaining classifiers introduced in the preceding
chapter improves alert classification.

Chapter 8 presents how the alert-classification system can be extended by using unsuper-
vised learning (CLARAty). This extension is mostly motivated by real-world data, for
which it is extremely important to reduce the redundancy of the data. We show how to
integrate the unsupervised-learning framework into ALAC and how to configure it for
alert classification. Finally we evaluate the system on a variety of datasets, including
14 million real alerts.

Chapter 9 presents the conclusions, summarizes the thesis contributions, and discusses fu-
ture work.

The thesis can be read sequentially, however, its organization is not strictly linear as shown
in Figure 1.3.

Ch. 1
Introduction

Ch. 3
State of the Art

Ch. 4
Data Sets

Ch. 5
ALAC

Ch. 8
CLARAty

Ch. 6
Abstaining

Ch. 9
Conclusions

Ch. 2
ID, ML

Appendix A
Correlation

Appendix B
Abstaining

Appendix C
CLARAty

Ch. 7
ALAC+

Figure 1.3: Thesis outline.

Readers interested in abstaining classifiers can proceed directly to Chapter 6, which is
self-contained, and then continue to Chapter 7, the evaluation of abstaining classifiers with
ALAC. We call this an “abstaining-classifiers track.”

Similarly, readers interested in the evaluation results of CLARAty on real-world datasets
and the new evaluation methods, can continue to read Chapter 4 and then jump directly to
Chapter 8. We call this a “CLARAty track.”

12 CHAPTER 1. INTRODUCTION

Chapter 2

Intrusion Detection and
Machine-Learning Background

This dissertation builds upon machine-learning techniques and applies them to the security
domain of intrusion detection. Hence, its targeted audience includes both the security com-
munity, for which the dissertation shows a practical solution to a real problem, as well as the
machine-learning community, for which the dissertation presents an interesting application
domain and reformulates the classification problem using abstaining classifiers.

In this chapter we introduce the basic concepts and definitions in both intrusion detection
and machine learning. We provide a concise description of the domains upon which this
dissertation builds. Readers familiar with intrusion detection or machine learning can skip
the corresponding sections.

2.1 Intrusion Detection

In this section we will introduce the basic notions in computer security, define intrusion
detection and describe the theory and practice of operation of intrusion detection systems
used.

Computer security has always played an important role in electronic computing; however
the explosive increase in the number of networked machines and the use of the Internet in
the nineties combined with the growth of the number of unauthorized activities and increase
in attacker’s sophistication have made it one of the most important problems of computing.

In short, computer security deals with the protection of data and the computing resources
and is commonly associated with the following three properties (commonly referred to as
C.I.A. triad) [Com91]:

Confidentiality: prevention of any intentional or unintentional unauthorized disclosure of
data. For example, an intruder learning about the customer credit card database or
getting access to the proprietary source code is considered a breach of confidentiality.
Note that typically such a breach is irreversible and cannot be confined easily.

The term confidentiality can also be understood in a broader context in which it also
pertains to the non-delivery of services to unauthorized users, even though this would
not compromise confidentiality in itself.

13

14 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

Integrity: prevention of intentional or unintentional unauthorized modification of data.
For example, an intruder defacing the company’s web server or modifying the bank’s
database content for personal gain is an attack against data integrity. Note that typi-
cally integrity can be restored, e.g., from other sources such as backup copies, although
this process may be costly, time-consuming and not always complete.

Availability: prevention of the unauthorized withholding of computing resources. Examples
of availability include the denial-of-service (DoS) attack, in which the attacker blocks the
computing resources so that authorized users cannot use them, or physical equipment
theft.

Based on this definition of the C.I.A triad, we can define intrusion as follows:

Working definition 1 (Intrusion [HLMS90]) Intrusion is any set of actions that attempt
to compromise the confidentiality, integrity or availability of a computer resource.

Note that this definition does not distinguish whether the action is intentional or unin-
tentional and whether it is successful or not. This is different from the definition by Axels-
son [Axe05], which requires that the intrusion be malicious.

Typically, the requirements for confidentiality, integrity and availability are not absolute,
but are defined by a security policy. The security policy states which information is confiden-
tial, who is authorized to modify given information and what kind of use of computer systems
is acceptable. Therefore we can reformulate the initial definition of intrusion as follow:

Working definition 2 (Intrusion) Intrusion is a violation of a security policy.

2.1.1 Intrusion Detection Systems

As stated by Mukherjee at al. [MHL94], the conventional approach to secure a computer or
network is to build a “protective shield” around it. To this end, modern computer systems
implement identification (identifying who a given user is), authentication (verifying whether
the user is the one he or she claims to be) and authorization (verifying whether the user has
sufficient access rights to perform a given operation). Similarly, there has been a number of
both theoretical and practical approaches to building more secure systems, such as mandatory
access control and compartmentalized security systems.

However, these approaches have the following problems:

• There is a tradeoff between security and usability: it is not possible to build a completely
secure and still usable system.

• Current systems are built in an “open” mode, which is regarded to be useful for pro-
moting user productivity.

• “Secure” systems are still vulnerable to attacks exploiting internal programming errors,
such as buffer overflows, input-validation errors or race conditions.

• Even the most secure systems can still be vulnerable to insider attacks, i.e., authorized
users misusing their privileges intentionally (e.g., for personal gain or some kind of
revenge) or unintentionally (e.g., though social engineering).

2.1. INTRUSION DETECTION 15

As a result, an alternative approach, called intrusion detection, has been proposed [Den87].
The idea is to retrofit existing systems with security by detecting attacks, preferably in real
time, and alerting a system security officer (SSO) or a security analyst.

Using either definition of an intrusion, we define an Intrusion Detection System (IDS) in
the following way:

Working definition 3 (Intrusion Detection System [Axe05]) An automated system de-
tecting and alarming of any situation where an intrusion has taken or is about to take place.

SSO/ID Analyst
Monitored
System

Audit
 collection

Audit
 storage

Processing
Component

Alert

Active/Processing
Data

Reference
Data

Configuration
Data

Automated
Response

Automated Response

Manual Response

Figure 2.1: The general architecture of an IDS (based on [Axe05]).

The general architecture of an IDS is shown in Figure 2.1. The IDS observes the behavior
of the system monitored and collects the audit information, which can subsequently be stored
prior to processing. The processing component uses reference and configuration data (e.g.,
information about prior intrusions or the baseline of normal behavior for anomaly-based
IDSs), processes the audit information and generates alerts. While doing this, the processing
component may temporarily store data needed for further processing (e.g., context, session
information). Finally, the output in the form of alerts is processed by either a human analyst,
who can initiate a response to an intrusion, or an automated response system.

The latter approach is particularly appealing as only a fully automated response can
prevent attacks in real time; however, it is potentially dangerous if implemented incorrectly.
In fact, some automated intrusion response systems have been known to cause serious damage,
including preventing legitimate users from using the systems or even being misused by an
intruder to trick the system to perform a denial-of-service attack against itself. Therefore
automated response systems have to be used with extreme caution.

In the next two sections we will discuss two main components of IDSs: the audit collection
and the processing component.

Audit Sources

The type of the audit sources distinguishes the two main groups of IDS: host-based IDSs and
network-based IDSs.

16 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

Host-based IDSs (also referred to as HIDSs) use the audit information generated by the
host as the source of data. The IDS itself can either use standard auditing tools (e.g.,
BSM [Sun95]), or specially instrumented operating systems (e.g., [Zam01]) or application
platforms (e.g., [PV05]). The key advantage of these systems is that they may have access
to all context information needed to determine whether an intrusion has taken place, which
in turn makes them more accurate. On the other hand, host-based IDSs are tailored to the
system they are protecting, which makes them more difficult to deploy and configure. Also
the fact that some HIDSs are running on the system being protected may make the IDSs
vulnerable to tampering by the intruder.

Network-based IDSs (also referred to as NIDSs) monitor network communications between
networked machines, reconstruct the traffic from raw network packets and analyze them for
signs of intrusions. Network-based IDSs are typically easier to deploy and manage (need only
one sensor per network segment), although they have a more limited view of the situation
and thus are also more prone to false positives. As shown by Ptacek and Newsham [PN98]
if a NIDS has no additional information about the protected host, the malicious attacker
can easily avoid detection by taking advantage of different handling by overlapping IP/TCP
fragments by IDS and a target host. On more practical grounds, with faster networks, often
working in switched environments or using end-to-end encryption, the efficacy of NIDSs have
diminished.

Originally IDSs were implemented as host-based systems as they were a more natural
choice for larger multi-user systems used then. With the evolution of computing towards
networked workstations, the focus gradually shifted towards network-based IDSs. They were
also considered easier to build and deploy in a networked environment. This gave rise to
a number of both research and commercial IDSs currently in use. However, currently, due
to the deployment of high speed switched networks and the use of end-to-end encryption,
host-based IDSs seem to be regaining significance. In addition to a number of specialized
host-based IDSs, there has been also a number of systems using a hybrid approach, therefore
obtaining even better coverage.

Processing Component

Detecting attacks requires the use of a model of operation or, in other words, what the IDS
should look for. The following two models are currently in use: anomaly-based model and
misuse-based model.

The Anomaly-based model is based on the premises that the behavior of the intruder
is noticeably different from those of legitimate users. Anomaly-based IDSs establish a so-
called normal model, against which the new activities are compared. Activities which are
significantly different from this normal behavior are considered suspicious and reported. The
advantage of this approach is that it can detect new types of intrusions, even the ones that
have not been seen before. The disadvantage is that in many cases there is no single “normal
profile” and anomaly-based systems tend to produce many false positives.

The Misuse-based model aims at detecting known intrusion patterns and activities. Such
patterns are typically encoded into so-called signatures. Clearly, the disadvantage of such a
system is that it detects only already known types of attacks it has a signature for. It is
therefore natural to ask what is the point of detecting known attacks rather than protecting
the system against them in the first place. The answer to these questions is the following:

2.1. INTRUSION DETECTION 17

window of vulnerability: Some systems are patched with a certain delay (i.e., when the
software vendor releases a proper patch) and some cannot be patched at all. IDSs detect
attacks during this window of vulnerability [LWS02].

detecting failed attacks: Even if the system is not vulnerable to an attack, information
that someone tried to exploit a certain vulnerability is important in itself and often
constitutes a policy violation.

policy violations: Misuse-based IDSs are an excellent tool for detecting policy violations
(e.g., scans, peer-to-peer usage, running certain services), which are not vulnerabilities
and hence cannot be “patched”.

additional layer of protection: IDSs provide an additional layer of protection through
redundancy (signatures independent from patching the original software) and diversity.
Many incidents happen not because there was no patch available, but because somebody
forgot to apply it to all the machines.

generalized and intent-guessing signatures: Misuse-based systems also employ gener-
alized signatures, detecting also unknown variants of known attacks. Similarly intent-
guessing signatures aim at detecting certain types of suspicious behavior, typically as-
sociated with malicious actions. While both are also a source of false positives, they
also increase the usability of a misuse-based IDS.

This shows why misuse-based systems are useful in protecting against attacks, policy
violations and attack attempts.

Currently most of the IDSs deployed are misuse-based IDSs with a mixture of misuse
signatures, generalized and intent-guessing signatures and also signatures detecting policy
violations. This high number of signatures allows the users to customize the IDS depending
on their needs and the particular environment. Anomaly-based IDSs are more frequently
used by the research community, due to their higher false-positive rates and the difficulty
characterizing the “normal behavior” in real environments.

2.1.2 Two examples of IDSs

In this section we will present two IDSs: Snort, one of the most popular open-source NIDSs,
frequently used by both researchers and practitioners, and CSSE, a specialized HIDS defend-
ing against injection attacks in applications.

While the main focus of this dissertation is the reduction of false positives of NIDS using
machine-learning techniques, we developed CSSE [PV05] as a proof-of-concept new-generation
host-based IDS with extremely low false-positive rates. While CSSE is not the main result
of this thesis it is related to it in to ways: First, by providing an example of a HIDS, the
reader gets a better understanding of the domain of intrusion detection. Second, and more
importantly, it shows how by addressing the root cause of an attack, it is possible to develop
an IDS with extremely low false-positive rates. We believe that this represents a trend in
intrusion detection to build specialized but highly accurate sensors.

Snort—an open-source IDS

Snort [Roe05] is a network-based IDS, using raw network packets received through a pcap
interface [JLM03] as its audit source. As with other NIDSs, when used in a switched envi-

18 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

ronment, it needs to be connected to the mirrored port.
The principle of operation of Snort is very simple: it applies an ordered list of rules (called

signature) to each packet it receives. The first rule that fires generates an alert. Signatures
in Snort are a conjunction of conditions pertaining to fields in IP/TCP/UDP packets as well
as the packet payload. For payload matching predicates Snort provides a set of functions
yielding a powerful expression language, offering regular expressions and stateful analysis
(i.e., predicates can refer to previously received and analyzed packets).

However, if Snort was implemented this way it would only be able to reliably detect at-
tacks at the lowest, network layer (IP protocol), whereas most of the current attacks happen
at higher layers: transport (TCP/UDP) or application layers (e.g., HTTP, RPC). To address
this, Snort uses so-called preprocessors which perform stream reassembly and normalization
of higher-level protocols. The result of this preprocessing is assembled into a special virtual
packet to which the list of signatures is applied. Although conceptually simple, the real com-
plexity of such processing should not be underestimated. To illustrate this with an example:
detection of an attack targetting a web server, requires the preprocessors to perform the
following operations:

1. IP-level traffic normalization and defragmentation.

2. TCP state machine emulation and stream reassembly, including retransmissions, han-
dling of overlapping fragments, etc.

3. HTTP-level normalization, defragmentation and unicode decoding.

Clearly not all of the alerts can be generated statelessly by applying a list of rules to a
packet. Those situations, in which it is necessary to keep some state are also handled by
specialized plugins (e.g., portscan detection, arp-spoof detection).

Input: a real-time sequence of packets
Result: a sequence of alerts
parse the configuration files and rulesets1

while (P=receivePacket()) != NULL do2

for R ∈ getPreProcessorList() do3

/* may create a virtual packet */
(P,A) ← applyPreprocessor(R,P);4

if A != NULL then5

/* report alerts generated by preprocessors */
reportAlert(A);6

end7

end8

for S ∈ getOrderedSignatureList() do9

if (A=signatureMatch(S,P)) != NULL then10

reportAlert(A);11

/* report only the first match */
break;12

end13

end14

end15

Algorithm 1: Simplified Snort detection algorithm.

2.1. INTRUSION DETECTION 19

To illustrate this, we show two representative signatures (selected from more than 4000
signatures currently available in Snort). The first signature is a typical misuse signature,
detecting an exploitation attempt in the AWStats tool:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-CGI awstats.pl configdir command execution attempt";
flow:to_server,established; uricontent:"/awstats.pl?"; nocase;
uricontent:"configdir="; nocase;
pcre:"/awstats.pl?[^\r\n]*configdir=\x7C/Ui";
reference:bugtraq,12298; reference:cve,2005-0116; reference:nessus,16189;
classtype:attempted-user; sid:3813; rev:2;)

Interpreting the signature, it is applied to TCP traffic originating from the external network
and sent to HTTP servers running on typical web server ports (all these are configuration
variables). The signature is applied to the flow sent to the server and containing the string
/awstats.pl? and configdir=. The actual signature is a regular expression containing the
first string, not followed by new line characters and followed by the second ending with a pipe
“|” (hex code 7c). It is actually this very last character that exploits the vulnerability, allow-
ing for arbitrary command execution (e.g., /awstats.pl?configdir=|/bin/ls|), however
the entire signature is important to put this dangerous pipe character into a proper context.
The signature refers to a vulnerability known as #12298 in the Bugtraq [Sec04] database,
CVE-2005-0116 in the CVE [MIT04] dictionary, and with a corresponding Nessus [Der03] de-
tection plugin #16189. Note that Snort cannot determine at this stage whether the attack has
succeeded or even if the user uses awstats at all! For example, if Snort’s website was protected
by Snort itself, any user accessing a URL http://www.snort.org/awstats?configdir=|/bin/ls|
would trigger an alert.

Whether this is desirable is another question: On one hand, the administrator of the
website may be interested in finding out whether somebody is trying to find a hole in it. On
the other hand, most of Internet facing websites receive several such requests every day.

Another signature is of a different sort: it does not detect an exploitation of a known
vulnerability, but rather detects activities that are probably suspicious. It is therefore called
an intent-guessing signature:

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 1433
(msg:"MS-SQL sp_adduser - database user creation"; flow:to_server,established;
content:"s|00|p|00|_|00|a|00|d|00|d|00|u|00|s|00|e|00|r|00|"; nocase;
classtype:attempted-user; sid:685; rev:5;)

The rule fires if an external machine attempts to execute a stored procedure sp_adduser in
an MSSQL database server, which creates a database user. While there is nothing wrong
with calling this stored procedure in itself, it has been observed that many attacks launched
against SQL servers (either directly or through SQL injections) use these stored procedures
to circumvent database security mechanisms. However, such intent guessing signatures are
prone to false positives: every time an authorized database administrator uses this procedure,
it will trigger a Snort alert.

CSSE—a specialized HIDS

In recent years we have seen a steady increase in the importance of application-level security
vulnerabilities, i.e., vulnerabilities affecting applications rather than the operating system or

20 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

middleware of computer systems. Among application-level vulnerabilities, the class of input
validation vulnerabilities is the most prominent one [NIS04] and deserves particular attention.
However, other than specific exploits (like in the example of Snort signatures above) attacks
exploiting these vulnerabilities are typically difficult to detect by network-based IDSs.

Input validation vulnerabilities (e.g., buffer overflow, integer overflow, injection vulnerabil-
ities) are flaws resulting from implicit assumptions made by the application developer about
the application input. More specifically, injection vulnerabilities, addressed by our HIDS,
exist when the assumptions concerning the presence of syntactic content in the application
input can be invalidated using maliciously crafted input to effect a change of application
behavior in a way that is beneficial to the attacker.

In injection attacks the attacker provides maliciously crafted input carrying syntactic
content that changes the semantics of an expression in the application. The results are
application-dependent, but typically lead to information leakage, privilege escalation or exe-
cution of arbitrary commands.

Context-Sensitive String Evaluation [PV05] (CSSE) is a host-based intrusion detection and
prevention system, for injection attacks. It uses an instrumented execution environment (such
as PHP or Java Virtual Machine) and therefore has access to all necessary context required
to detect and, more importantly, prevent injection attacks. The prevention is possible thanks
to extremely low false-positive rates.

Addressing the Root Cause Analyzing injection vulnerabilities, we see that a common
property is the use of textual representations of output expressions constructed from user-
provided input. Textual representations are representations in a human-readable text form.
Output expressions are expressions that are handled by an external component (e.g., database
server, shell interpreter).

User input is typically used in the data parts of output expressions, as opposed to
developer-provided constants, which are also used in the control parts. Therefore, user input
should not carry syntactic content. In an injection attack, specially crafted user input influ-
ences the syntax, resulting in a change of the semantics of the output expression. We will
refer to this process as mixing of control and data channels.

Injection vulnerabilities are not caused by the use of the textual representation itself,
but by the way the representation is constructed. Typically user-originated variables are
serialized into a textual representation using string operations (string concatenation or string
interpolation, as in our example). This process is intuitively appealing, but ultimately ad
hoc: variables lose their type information and their serialization is done irrespectively of the
output expression. This enables the mixing of data and control channels in the application,
leading to injection vulnerabilities.

We thus consider the ad-hoc serialization of user input for creating the textual represen-
tation of output expressions as the root cause of injection attacks. Ad-hoc serialization of
user input (or variables in general) can lead to undesired mixing of channels, but has also
some desirable properties. The most important one is that it is intuitively appealing and,
consequently, more easily written and understood by the application developers. Second, for
many types of expressions (e.g., XPath, shell command) ad-hoc serialization of user input
using string operations is the only way of creating the textual representation.

Considering this, a defense against injection attacks should enable the application devel-
oper to use the textual representation in a safe manner.

2.1. INTRUSION DETECTION 21

CSSE Operation CSSE addresses the root cause of injection vulnerabilities by enforcing
strict channel separation, while still allowing the convenient use of ad-hoc serialization for
creating output expressions. A CSSE-enabled platform ensures that these expressions are
resistant to injection attacks by automatically applying the appropriate checks on the user-
provided parts of the expressions. CSSE achieves this by instrumenting the platform so that
it is able to: (i) distinguish between the user- and developer-provided parts of the output
expressions, and (ii) determine the appropriate checks to be performed on the user-provided
parts.

The first condition is achieved through a tracking system that adds metadata to all string
fragments in an application in order to keep track of the fragments’ origin. The underly-
ing assumption is that string fragments originating from the developer are trusted, while
those originating from user-provided input are not and therefore cannot carry syntactic con-
tent. The assignment of the metadata is performed without interaction of the application
developer or modification of the application source code. Instead, it is achieved through the
instrumentation of the input vectors (e.g., network, file) of the CSSE-enabled platform. CSSE
further instruments the string operations to preserve and update the metadata assigned to
their operands. As a result, the metadata allows us to distinguish between the developer-
provided (trusted) and user-provided (untrusted) parts of the output expressions at any stage
in their creation. Figure 2.2 illustrates the dataflow of the vulnerable application executed in
a CSSE-enabled platform.

The second condition is achieved by deferring the necessary checks to a very late stage,
namely to the moment when the application calls the API function to pass the output ex-
pression on to the handling component (output vector). CSSE intercepts all API calls related
to output vectors, and derives the type of output vector (e.g., MySQL, shell) from the ac-
tual function called (e.g., mysql_query(), exec()). This allows CSSE to apply the checks
appropriate for this particular output vector.

At this point, CSSE knows the complete context. The first part of the context is provided
by the metadata, which describes the fragments of the output expression that require checking.
The second part of the context is provided by examining the intercepted call to the API
function, which determines which checks will be executed. CSSE then uses this context
information to check the unsafe fragments for syntactic content. Depending on the mode
CSSE is used in, it can raise an alert (intrusion detection), prevent the execution of the
dangerous content or escape it (both intrusion detection and prevention).

Implementation and Discussion Currently CSSE is available as a research-prototype
IDS for the PHP platform [PHP04a]. We have evaluated the prototype with an old known
to be vulnerable version of phpBB [php04b], a popular web application with known security
vulnerabilities and verified that it detected and prevented all known SQL-injection attacks.
Because CSSE was designed without knowledge of these specific attacks, we expect that
with a complete implementation it would have a similarly good performance also with other
applications.

Moreover CSSE incurs a reasonable runtime and memory overhead. In our experiments we
observed that the run-time overhead rarely exceeded 10%, whereas the memory consumption
increased by less than 2%. This shows that CSSE is a good IDS for detecting injection attacks.

22 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

Textual RepresentationsTextual Representations

ConstantsConstants

Inputs

Execute:
shell, XSLT,...

Query:
SQL, XPath,...

Locate:
URL, path,...

Render:
HTML, SVG,...

Outputs

Textual Representations

Stored Input:
DB, XML, CSV,...

Direct Input:
arguments, env.,...

Network Input:
GET, POST, cookie

Constants

Metadata

Metadata
Metadata

Store:
DB, XML,...

$email="alice@host",

$pincode="1234 or 1=1";

SELECT * FROM users WHERE email=’’

AND pincode=

/usr/bin/mail

/usr/bin/mail alice@host

SELECT * FROM users WHERE email=’alice@host’

AND pincode=1234 or 1=1

Metadata

Context-Sensitive
String Evaluation

Metadata-Preserving
String Operations

Metadata
Assignment

Figure 2.2: Using CSSE to preserve the metadata of string representations and to allow late
string evaluation. Shaded areas represent string fragments originating from the user.

2.1.3 Conclusions

In this section we gave a short introduction to computer security in general and intrusion
detection in particular. We introduced the notions of intrusions and intrusion detection
systems, showed the general IDS architecture and their classification.

We also presented two IDS examples in more detail: Snort, an open-source network-based
IDS, used in this dissertation, and CSSE, a highly specialized and robust host-based IDS
detecting injection attacks. CSSE is not directly used in this thesis but gives an example
of a specialized IDS with extremely low false-positive rates and shows the trends in the IDS
evolution.

2.2 Machine Learning

Machine Learning (ML) is concerned with building systems that automatically improve their
performance with experience. Classification, studied in this thesis is one of the standard tasks
in machine learning.

2.2.1 Classification

A classifier is a function that assigns a class label from a finite set of labels to an instance.
For example, given information about a news article, the classifier might specify the topic it
deals with; given an image, a classifier might decide which letter of an alphabet it depicts.
Classifiers can be constructed automatically or built by human experts. Depending on their
structure, classifiers built automatically can be interpretable by humans (e.g., classification
rules, decision trees) or not (e.g., support vector machines, neural networks). The latter
are often referred to as black-box classifiers. In this thesis we focus on the first type, i.e.,
automatically constructed interpretable classifiers.

One way to build classifiers automatically is to use supervised machine-learning techniques,
which are typically applied in two stages: learning stage and testing stage. In the learning
stage, the classifier is given a set of instances together with correct class labels, which allows it

2.2. MACHINE LEARNING 23

to modify its internal structure. In the testing stage, the classifier is presented with unlabeled,
previously unseen instances, for which it predicts class labels. The testing phase allows the
user to evaluate the performance of a classifier.

Many classification tasks are binary, in which the classifier assigns one of two possible
classes. In most of these cases the classifier tests an instance with respect to a particular
property (e.g., an object is a plane; an e-mail is a legitimate email or not; a security event
is an intrusion). Without loss of generality, we will denote the labels assigned by a binary
classifier as positive, “+” (assigned when the property at question exists) and as negative,
“−” (assigned otherwise). Binary classification might seem a bit restrictive, but it is very
well understood and has some properties that make it particularly appealing.

More formally, we define terms classifier, binary classifier, ranker and a calibrated binary
classifier used in the remainder of the thesis.

Definition 4 (Classifier) A classifier C as a function C(i) : I 7→ C, where I is an instance
space and C = {C1, C2, . . . , Cn} is a class space.

Definition 5 (Binary classifier) A binary classifier Cb is a classifier mapping an instance
space I to a binary class space: Cb(i) : I 7→ {“+”, “−”}.

Definition 6 (Ranker) A Ranker (a scoring classifiers) is an extension of a binary classifier
that assigns scores to instances R : I 7→ R. The value of the score denotes the likelihood that
the instance is “+” and can be used to sort instances from the most likely to the least likely
positive (ranking). The scores do not necessarily have to be calibrated probabilities.

A rankerR can be converted to a binary classifier Cτ as follows: ∀i : Cτ (i) = “+” ⇐⇒ R(i) >
τ . Variable τ in Cτ denotes the parameter (in this case the threshold) used to construct the
classifier.

Definition 7 (Calibrated binary classifier) A calibrated binary classifier is a classifier
that outputs probabilities that an instance belongs to the positive class p(+ | i).

Calibrated classifiers have the advantage that the optimal decision point using the maxi-
mum a posteriori rule, however, learning such classifiers is not trivial [CG04, ZE01].

Learning Methods Machine-learning techniques are techniques that learn with experience.
This very broad and vague definition aims at covering most of the tasks machine learning
solves. More precisely, as shown by Mitchel [Mit97], there are three important aspects of the
training experience that greatly influence the choice of the learning method.

First, the question whether learner receives a direct or indirect feedback regarding the
choices made. For example, a system classifying alerts into true and false positives may be
told exactly what the correct classification is. Conversely, a checkers playing program, may
only be given a set of move sequences and the results of the games played, which is a more
difficult learning task. Second, the question is to what degree the learner control the sequence
of training examples it is given. Third, the question is how well the distribution of training
examples represents the distribution of examples the system is measured against.

This dissertation deals with learning systems that receive direct feedback to the choices
made. In such a setup, central to the learning process is the notion of labeled instances, that
is pairs (i, ci), where i ∈ I is an instance and ci ∈ C is a corresponding class label. Depending

24 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

on the availability of labeled instances we distinguish four main types of learning: supervised
learning, semi-supervised learning, active learning and unsupervised learning.

In a typical, supervised learning, a machine-learning method L uses a set of example-class
label pairs to construct a classifier: L : {(ij , Cij)} 7→ C. Such a classifier C is subsequently
used for classifying new instances. This type of learning is the most commonly used and will
be further explored in this section.

In a semi-supervised learning, a machine-learning method L uses two sets for learning: a
labeled set, a set of example-class label pairs and an unlabeled set: L : ({(ij , Cij)}, {ik}) 7→ C.
Ideally, the performance of such a classifier is better than a corresponding classifier built using
only labeled instances and obviously worse than the one built using all instances, assuming
that their class labels are known.

In active learning [LC94], a machine learning method L is given a set of unlabeled instances
I and an oracle O . The oracle O tells the correct class label given an instance i. The goal is
to label a complete set of instances {i} with the smallest number of questions to the oracle O.
Typically such a setup is used when labeling of instances is expensive (e.g., involves human
decision). In general the learning process proceeds as follows: Given an initial classifier Ci
the learner L selects some unlabeled instances for which the classification is less confident.
These instances are subsequently presented to the oracle O to be labeled and added to the
labeled set. The labeled set is subsequently used to iteratively build an improved classifier
Ci+1. The process is repeated until the classification performance is satisfactory or the number
of queries to the oracle has been exhausted. Finally the remaining unlabeled instances are
classified using a classifier Cn.

Finally, in unsupervised learning a machine learning method uses only an unlabeled set
(or sequence) of instances I with the goal to detect interesting patterns in the data. Examples
of unsupervised learning include clustering, association rule mining, outlier detection or time
series learning.

This dissertation deals with a spectrum of machine-learning techniques: adaptive alert
classification (Chapter 5) is a supervised learning although it bears certain resemblance with
active learning. Abstaining classifiers introduced in Chapter 6 introduce the abstention, which
is implicitly used as a part of active learning. In fact, abstaining classifiers can be used to
construct active learning techniques. Finally, Chapter 8 leverages unsupervised learning to
build better alert classifiers.

Common Assumptions Typically machine learning methods make the following two as-
sumptions, which simplify machine-learning techniques, but makes it also more difficult to
apply in many real-world applications:

attribute-value (propositional) representation: typically instances are represented as
tuples over the n-dimensional attribute space dom(A1)× . . .×dom(An), where dom(Ai)
is the domain of attribute Ai. Commonly supported attributes are categorical attributes
(discrete and unordered, e.g., company names: “IBM”, “Microsoft”, “Dell”), numerical
attributes (e.g., counters, size attributes), free-text attributes (arbitrary and unforesee-
able text values). Additional extensions allow to handle set-valued attributes [Coh96]
or bags of words (frequently used in text classification).

This representation is powerful although insufficient for some purposes (e.g., represent-
ing the structure of molecules, linked web-pages). Such applications can be handled

2.2. MACHINE LEARNING 25

either by feature construction (supported by the domain knowledge, in which non-
propositional instances are augmented with a fixed number of features) or moving to
more expressive representations (e.g., Prolog predicates, multi-relational representation)
and learning systems (e.g., inductive logic programming [LD94], link mining [Get03]).

For example, in inductive logic programming, given background knowledge B and a
set of examples E the goal is to find the simplest and consistent hypothesis H that
B ∧ H |= E . As both the background knowledge and the hypothesis use expressive
first-order framework, it is much more expressive than attribute-value representations
used by conventional machine-learning techniques. On the other hand, more expressive
representations lead to a much larger hypothesis search space and learning times.

independent and identically distributed (i.i.d.): for statistical inference it is typically
assumed that instances are independent of each other and identically distributed. This
means that each instance i ∈ I is drawn according to some unknown, but fixed, proba-
bility distribution and the class labels given for each instance are an unknown but fixed
function of instance attributes.

This simplifies the underlying mathematics of many statistical methods, however is
unrealistic in many practical applications. The possible approaches of overcoming this
assumption is to use the background knowledge to encode temporal dependencies or
use approaches like sequence mining (e.g., frequent episodes [MT96]) handling non-
identically distributed instances explicitly.

2.2.2 Basic Techniques

In this section we will present representative examples of machine-learning techniques used
for classification. We will come back to and further expand the discussion of interesting
techniques in Chapter 5 in which we look at techniques suitable for our classification problem.
The section has the goal to give the reader an overview on the techniques most commonly
used.

Predictive Rules Predictive rules are patterns of the form IF <conjunction of conditions>
THEN <conclusion>. The individual conditions in the conjunction are tests concerning the
values of individual attributes. For predictive rules, the conclusion gives a prediction for the
value of the target class (variable).

Predictive rules can be ordered or unordered. Unordered rules are considered indepen-
dently and several of them may apply to a new instance that we need to classify. A conflict
resolution mechanism is needed if two rules that recommend different classes apply to the
same example. Such a resolution is typically based on rule’s coverage or precision. Ordered
rules form a so-called decision list. Rules in that list are considered from top to bottom of
the list. The first rule that applies to a given example is used to predict its class value. There
is typically a default rule whose prediction is taken if no other rule applies.

(physician-fee-freeze = y) and (synfuels-corporation-cutback = n) =>
Class=republican (138.0/3.0)

(physician-fee-freeze = y) and (export-administration-act-south-africa = y) =>
Class=republican (19.0/3.0)

(physician-fee-freeze = y) and (adoption-of-the-budget-resolution = n) =>

26 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

physician-fee-freeze?

democrat (253.41/3.75)
synfuels-corp-cutback?

republican (145.71/4.0)
mx-missile?

democrat (6.03/1.03)

Yes

NoYes

Yes

No

No

...

Figure 2.3: A sample decision tree.

Class=republican (16.0/4.0)
=> Class=democrat (262.0/5.0)

Rule learners are programs for learning predictive rules. One of the first and best known
algorithms is CN2 [CN89]. The algorithm performs a covering approach over the examples.
It repeatedly finds the best rule according to some criterion (e.g., Laplace, m-estimate or
weighted relative accuracy). The best rule covers some of the positive classification examples
and none of the negative examples. The rule is then added to the hypothesis and examples
covered by it are removed from set. The process finishes when there are no more examples to
cover. The procedure finding the best rule uses beam search and a heuristic algorithm.

More complex approaches, like RIPPER [Coh95] (further discussed in Section 5.4) apply
pruning while building the rule set to prevent overfitting and achieve good generalization
capabilities.

Decision Trees Decision tree learning is one of the most widely used and practical methods
for inductive inference for learning discrete valued target functions [Mit97]. Decision tree
learning is robust to noisy data and is capable of learning disjunctive expressions. Learned
trees can be represented as sets of human readable if-then rules.

Decision trees (an example shown in Fig. 2.3) classify instances by sorting them down
from the root to some leaf node, which provides classification of an instance. Each node
in the tree tests some attribute of the instance and each branch descending from the node
specifies all the possible values of this attribute. Leafs contain the class value of the function
the decision tree is approximating. In other words, a decision tree represents disjunctions of
conjunctions of constraints on attribute values of instances, where each path from root to leaf
corresponds to one value of the attribute sets.

There are several decision tree learning algorithms, among the most popular are ID3 and
C4.5 [Qui86, Qui93]. These algorithms employ top-down greedy search through the space
of possible decision trees evaluating how well attributes classify examples. The quantitative
measure of attribute classification properties is often information gain. The inductive bias of
decision tree learning is that shorter trees are preferred over longer trees and attributes that
give high information gain are placed close to the root.

Decision trees can be easily converted to prediction rules, by rewriting the tree into a
disjunctive set of rules, however such rules are known to be less comprehensible than the ones
learned by the rule learners. Similarly, whereas simple trees are easily interpretable, larger
trees are not. Therefore decision rules are preferred to trees when the interpretability of a
classifier is required.

2.2. MACHINE LEARNING 27

Bayesian Networks Bayesian networks are forms of specific graphical models, in the form
of a directed acyclic graph. The vertices in the graph represent variables, while edges in
the graph represent dependencies between variables. The variables can represent observed
measurements, latent variables hypothesis or parameters. Bayesian networks represent joint
probability distributions for all the nodes, assuming that the probabilities of each node are
dependent only on their parents Pr(X | parents(X)). The problem of learning of the structure
of Bayesian networks is NP complete, but many algorithms exist (e.g., [HGC95]).

A special case of Bayesian networks is a Naive Bayes classifier, which uses strong inde-
pendence assumptions about variables, which often have no bearing in reality. In spite of
this, Naive Bayes classifiers have been shown to perform surprisingly well in many domains
in which the assumptions are clearly violated (a theoretical justification for this can be found
in [DP97]). Hence it is typically used as a baseline classifier to compare against more complex
methods.

Support Vector Machines Support Vector Machines (SVMs) [Vap95] use a so-called
“kernel-trick” to apply linear classification methods to non-linear classification problems.
SVMs try to separate two classes of data points in a multi-dimensional space using a maximum-
margin hyperplane, i.e., a hyperplane that has a maximum distance to the closest data point
from both classes.

The problem of learning SVMs is theoretically well-founded and well understood. They
are particularly useful for application domains with a high number of dimensions, such as text
classification, image recognition, bioinformatics or medical applications. The disadvantage of
these methods is that the models are not understandable by humans.

Artificial Neural Networks Artificial Neural Networks (or Neural Networks for short)
have been originally inspired by the examination of the central nervous system and neurons,
which constitute its information processing element. A neural network is constructed as a
group of interconnected artificial neurons (non-linear processing elements). In a supervised
learning setting, the goal is to minimize the average error between the network’s output and
the target value.

Neural networks provide a general, practical method for learning real-valued, discrete-
valued and vector-valued functions from examples. Neural networks can be applied to the
same classes of problems as decision tree learning and have been shown to achieve comparable
accuracy.

The main disadvantages of artificial neural networks is that their structure has to be
suitable for the given application (e.g., it is difficult to design a neural network where number
and type of inputs are unknown) and requires significant experience to train correctly. Also,
neural networks exhibit long learning times and their structure is not interpretable by humans.

Instance-Based Learning Contrary to the previous methods, instance-based learning
(IBL) [AKA91] does not generate the general description of the target function when training
examples are provided, but simply stores the training examples. Conversely, IBL generates a
number of local approximations, but only when it needs to classify a particular instance. Ex-
amples of instance-based learning include k-Nearest Neighbor algorithm and its derivatives:
distance-weighted k-NN, locally weighted regression. In all these cases instances are repre-
sented as points on a n-dimensional Euclidean space and the target function is evaluated as a

28 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

Table 2.1: The confusion and cost matrices for binary classification. The columns (C) repre-
sent classes assigned by the classifier; the rows (A) represent actual classes.

HH
HHA

C + −
+ TP FN P
− FP TN N

(a) Confusion matrix C

HHHHA
C + −

+ 0 c12

− c21 0

(b) Cost matrix Co

combination of selected (or all) data points. For more complex (symbolic) instance represen-
tations, case-based reasoning (CBR) techniques are used. CBR tries to solve a query based
on the retrieval and combination of similar cases, however, the process of combining those
instances can be very different and rely on knowledge-based reasoning rather than statistical
methods, like in k-NN.

The main advantage of this approach is that it is fully incremental and can learn even very
complex target functions. The disadvantage is that instance-based learning does not generate
human-interpretable global representations of a target function, which makes it more difficult
to validate the correctness of the prediction. Moreover, although the ‘learning’ is fast, the
classification is not, and depends on the number of instances stored.

2.2.3 Evaluating Classifiers

The performance of a classifier using k class labels is described by means of a k×k dimensional
matrix C, known as the confusion matrix . Rows in C represent the actual class labels and
columns represent the class labels assigned by the classifier. Element Ci,j represents the
number of instances of class i classified as class j by the system. For a binary classifier Cb,
the elements of the matrix are called true positives (TP), false negatives (FN), false positives
(FP) and true negatives (TN) as shown in Table 2.2a. The sum of TP and FN is equal to
the number of positive instances (P). Similarly, the number of negative instances (N) equals
FP + TN .

Many real-world classification problems are asymmetric, which means that some misclassi-
fications are more “costly” that the other ones. This can be modeled in a cost-sensitive setup
by introducing a so called cost matrix Co with identical meaning of rows and columns as the
confusion matrix. The value of Coi,j represents the cost of assigning class j to an instance
belonging to class i. Most often the cost of correct classification is zero, i.e., Coi,i = 0. In
such cases, for binary classifications (Table 2.2b), there are only two values in the matrix: c21

(cost of misclassifying a false alert as a real one) and c12 (cost of misclassifying a true alert
as a false one). In fact, such a cost matrix has only one degree of freedom, the ratio between
these two values, called cost ratio (CR). As for intrusion detection, the value of CR is smaller
than one, it is more intuitive to use its inverse, the inverse cost ratio (ICR) defined as:

CR =
c21

c12
ICR =

c12

c21
. (2.1)

Classifiers in a cost-sensitive setup can be characterized by the cost rc, a cost-weighted
sum of misclassifications divided by the number of classified instances:

rc =

∑k
i=1

∑k
j=1 (Ci,j · Coi,j)∑k

i=1

∑k
j=1 Ci,j

, (2.2)

2.2. MACHINE LEARNING 29

which in the binary case simplifies to:

rc =
FN · c12 + FP · c21

TP + FN + FP + TN
=

FN · c12 + FP · c21

N + P
. (2.3)

In this cost-sensitive setup, the optimal classifier (selected from a certain set of classifiers,
e.g., a set of binary classifiers Cτ derived from a single ranker R) is the one that minimizes
the misclassification cost rc. Note that our optimal classifier has to be selected from a pool
of classifiers, otherwise a truly optimal classifier is the one that does not make any misclassi-
fications, i.e., with rc = 0. If none of the classifiers are perfect, the selection of the optimal
classifier C depends on both the confusion and the cost matrices.

In machine learning the performance of a classifier is typically evaluated on a test set,
which is independent of the training set. In cases where a learning method produces a set
of classifiers out of which we want to select the optimal one, typically three independent
sets are used: a training set, for building a classifier; a testing set, for selecting the optimal
model; and a validation set, for the evaluation of the classifier. Because the testing set and
the validation set are independent of each other and the validation set has not been used in
setting the parameters of the classifier, it can be used for an unbiased estimation of classifier’s
performance.

2.2.4 ROC Analysis

ROC (Receiver Operating Characteristic) analysis offers a flexible and robust framework for
evaluating classifier performance with varying class distributions or misclassification costs [Faw03].
The most typical applications of ROC analysis include: model selection (i.e., choosing the
optimal classifier or the optimal operation point of a classifier, given misclassification costs
and class distribution) and model evaluation (e.g., calculating area under ROC curves).

In this dissertation we use ROC analysis in two ways: First, in Chapters 5, 7 and 8 we use
it to estimate classifiers’ performance and compare them. Second, in Chapter 6 we extend
ROC analysis and develop a method for selecting abstaining classifiers based on ROC curves.

A ROC plane (fp× tp) has axes ranging from 0 to 1 and labeled false-positive rate (fp =
FP/(FP + TN) = FP/N) and true-positive rate (tp = TP/(TP + FN) = TP/P), as shown
in Figure 2.4. Evaluating a binary classifier Cτ on a dataset produces exactly one point
(fpτ , tpτ) on the ROC plane. Many classifiers (e.g., Bayesian classifiers) or methods for
building classifiers have parameters τ that can be varied to produce different points on the
ROC plane. In particular, a single ranker can be used to generate a set of points on the
ROC plane efficiently [Faw03]. Very briefly, the method sorts instances according to assigned
scores (O(n log n)) and, exploring the monotonicity of threshold classifications, generates the
curve in a single scan (O(n)) by iterating over all thresholds, counting positive and negative
instances and updating true- and false-positive rates accordingly.

Given a set of points on a ROC plane, the ROC Convex Hull (ROCCH) method [PF98]
constructs a piecewise-linear convex down curve (called ROCCH) fROC : fp 7→ tp, having
the following properties: (i) fROC(0) = 0, (ii) fROC(1) = 1, and (iii) the slope of fROC is
monotonically nonincreasing. The ROCCH method works by selecting a subset of points
on the ROC plane using one of the convex hull generation algorithms (e.g., Graham Scan,
Andrew’s Monotone Chain algorithm).

30 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample ROC and ROCCH

fp

tp
ROC
ROCCH
Optimal Classifier

Figure 2.4: Examples of ROC and ROCCH curves and the cost-optimal classifier.

We denote the slope of a point on the ROCCH as f ′ROC
∗.

To find the classifier that minimizes the misclassification cost rc, we rewrite Equation (2.3)
as a function of one variable, FP

rc =
FP · c21 + FN · c12

N + P
=

FP · c21 + P
(
1− fROC

(
FP
N

))
c12

N + P
, (2.4)

calculate the first derivative d rc/d FP and set it equal to 0. This yields a known equation of
iso-performance lines

f ′ROC(fp∗) = CR
N

P
, (2.5)

which shows the optimal slope of the curve given a certain cost ratio (CR), N negative, and
P positive instances. Similarly to Provost and Fawcett [PF98], we assume that for any real
m > 0 there exists at least one point (fp∗, tp∗) on the ROCCH having f ′ROC(fp∗) = m.

Note that the solution of this equation can be used to find a classifier that minimizes the
misclassification cost for the instances used to create the ROCCH. We call such a classifier
ROC-optimal . However, it may not be optimal for unseen instances. Nevertheless, if the
testing instances used to build the ROCCH and the other instances are representative, such
a ROC-optimal classifier will also perform well on other testing sets.

When the exact misclassification costs and class distributions are not known, the area un-
der curve (AUC) is typically used to measure the performance and compare classifiers [HM82,
Bra87]. AUC is the area under the ROC curve calculated using a trapezoid rule (linear ap-
proximation between consecutive points)

AUC =
1
2

n∑
i=1

(tpi−1 + tpi)(fpi − fpi−1) . (2.6)

The value of AUC ranges from 0 to 1, with a perfect classifier achieving AUC = 1 and
a random classifier achieving AUC = 0.5†. AUC is equivalent to Mann-Whitney-Wilcoxon

∗We assume that the slope at vertices of a convex hull takes all values between the slopes of adjacent line
segments.

†However, as noticed by Flach [Fla04] not all classifiers with AUC = 0.5 are random.

2.2. MACHINE LEARNING 31

rank test and can be interpreted as the probability that a randomly chosen positive is ranked
before a randomly chosen negative.

While ROC analysis and ROC curves are by far the most commonly used graphical repre-
sentation of classifier performance, there are also alternative representations: precision-recall
curves, DET-curves and cost curves. In Sections 6.7.1–6.7.3 we will discuss the advantages
and disadvantages of those alternative representations and how they are related to ROC
curves.

2.2.5 Unsupervised Techniques

Machine-learning techniques presented in the previous sections focused on classification, i.e.,
a technique focusing on predicting the value of one target variable based on known values
of other variables. However in data mining, i.e., nontrivial extraction of implicit, previously
unknown, and potentially useful information from data [FPSM92], also unsupervised machine-
learning techniques are used. As we will show in Chapter 8, unsupervised learning algorithms
are also useful in the management of intrusion detection alerts. Hence, we will discuss three
such techniques: association and episode rules, and clustering.

Association and Episode Rules Association rules [AIS93, AMS+96] capture implications
between attribute values. More formally, an association rule is an implication X ⇒ Y [s, c],
where X and Y are predicates on a single tuple (data record). Confidence c of such a rule
is the conditional probability with which all the predicates Y in the database are satisfied,
given that predicates X are satisfied by a tuple. The support s is a fraction of all tuples that
satisfy the rule. To illustrate this with an example, assuming that personal preferences are
represented as a single tuple, an example of an association rule may be

(academic education) and (male) => (interested in golf) [0.02, 0.6]

which is interpreted as follows: The probability that a male higher education is interested in
golf is 0.6. Moreover, in our dataset there is 2% individuals fulfilling both these criteria.

Episode rules [MT96, MTV97] capture relationships between successive tuples. More
formally, a serial (parallel) episode α is a collection (multi-set) of tuple predicates. Given a
tuple sequence S an episode α occurs in a time interval [ts, te] if it contains a distinct tuple
that holds for each predicate from α. For serial episodes to occur, tuples must additionally
match the predicate order. The interval [ts, te] is the minimal occurrence of α if there is
no proper sub-interval that would also be an occurrence from α. The episode rule is an
expression β[w1]⇒ α[w2][s, c], where β is a sub-episode of α and the two episodes are either
serial or parallel episodes. The interpretation of the rule is that if the sub-episode β has a
minimal occurrence in [ts, te] ≤ w1 then the episode α occurs at the interval [ts, t′e] ≤ w2.
The confidence c is the conditional probability that α occurs given β occurs under the time
constraints specified by the rule. The frequency is the number of times the rule holds in
the database [Kle99]. To illustrate this with an example, a rule discovered in a customer-
relationship database may say

(buy server) and (bootup problem reported) [2 days]
=> (server warranty return) [5 days] [0.01, 0.9]

which is interpreted as follows: If a customer bought a server and reported bootup problem
within 2 days, the server would be returned to the store within 5 days with the probability
0.9. Moreover, the frequency of such an episode is 1%.

32 CHAPTER 2. INTRUSION DETECTION AND MACHINE-LEARNING . . .

Episode rule mining has been applied to intrusion detection alerts and telecommunication
logs. We will discuss these applications in more detail in Section 3.6.

Clustering The goal of clustering [JD88] is to group tuples into clusters, so that the tuples
within the clusters are similar whereas the tuples of different clusters are dissimilar. Clearly
the notion of similarity is central in this definition. However, while similarity in Euclidean
spaces is relatively easy to define, clustering of variables with many categorical variables is
less obvious. Clustering has been shown to work well on intrusion detection alerts [Jul03b]
and will be further discussed in Section 3.8 and Chapter 8.

2.3 Summary

In this chapter we gave a brief introduction to intrusion detection, discussing the basic con-
cepts and principles of operation of two IDSs: Snort, an open source network-based IDS and
CSSE, a novel host-based IDS, and machine learning, introducing basic classification tech-
niques, their evaluation, ROC analysis and some related data-mining techniques. We will
build upon these concepts in the subsequent chapters.

Chapter 3

State of the Art

To the best of our knowledge, machine learning has not previously been used to incremen-
tally build alert classifiers that take background knowledge into account. However, some of
the concepts we apply in this dissertation have already been successfully used in intrusion
detection and related domains. We therefore present them in this chapter.

3.1 Multiple Facets of Related Work

In the first chapter, we presented and categorized the evolution of techniques aiming at
reducing the number of false positives into four levels, with our system addressing the problem
at the highest, fourth level. While doing this our system integrates three key elements: (i)
machine learning, (ii) real-time user feedback, and (iii) alert postprocessing.

Frequent Episodes

Alert Correlation

CLARAty

Machine Learning

Real-Time User Feedback

Alert Postprocessing

Level 1Level 4 Level 3 Level 2
Building IDSs using ML

Spam Filters

Interface Agents

Reducing False Positives in Intrusion Detecion

ALAC

Figure 3.1: Multiple facets of related work.

In this chapter we will show how similar solutions have been used in all these areas as
shown in Figure 3.1. The interpretation of the figure as follows: The systems using super-
vised machine-learning techniques typically use labeled instances coming from the operator
(intersection at the fourth level). However, only a subset of those applications acknowledge
that the data is acquired incrementally and take advantage of this fact in the learning or the
evaluation process. Alert processing approaches, with a few exceptions, address the prob-
lem of false positives at the third level. Those systems include alert-correlation systems and
data-mining techniques: frequent episodes, association rules and cluster analysis.

33

34 CHAPTER 3. STATE OF THE ART

3.2 Building IDSs Using Machine Learning

In intrusion detection, machine learning has so far been primarily used to build systems that
classify network connections (e.g., 1999 KDD CUP [HB99]) or system call sequences (e.g.,
[MM02]) into one of several predefined classes.

This task proved to be very difficult because it aimed at building IDSs only from training
examples. Lee [Lee99] developed a methodology to construct additional features using data
mining. He also showed the importance of domain-specific knowledge in constructing such
IDSs. The key differences with our work is that we employ the real-time use of analyst feed-
back and that we classify alerts generated by IDSs, whereas other researchers used machine
learning to build a new IDS.

Fan [Fan01] performed a comprehensive study of cost-sensitive learning using classifier
ensembles with RIPPER, therefore his work is particularly relevant to ours. The work differs
from ours in design goals: we developed a system to assist human users to classify alerts
generated by an IDS, whereas Fan built an IDS using machine-learning techniques. We also
used a simplified cost model, in order to reduce the number of variable parameters in the
system. Finally, the type of learning methods used is also different: ensemble-based learning
methods vs. a single classifier in our case.

Lee and Stolfo [LS98] and Hemler et al. [HWHM02] applied RIPPER [Coh95] on system
calls to generate small and concise set of rules to classify intrusions for host based IDS.

Similarly, numerous classifiers have been trained and tested on 1999 KDD Cup Dataset [HB99].
The dataset was prepared by Lee [Lee99] and contains a number of network connections have
to be classified into one of five categories: normal, DOS (denial of service), R2L (unau-
thorized access from a remote machine), U2R (unauthorized access to local superuser) and
probing. Note that the records are presented in an attribute-value format, with a number
of “high-level” features suggested by domain knowledge and generated by an network-based
IDS, without which the classification could not have been successful.

Maloof and Michalski [MM95] investigate incremental learning algorithms and their ap-
plication to intrusion detection. They underline the significance the symbolic representation
language and human understandability of background knowledge and learned concepts and
criticize a neural network approach. Human understandability is important because should
the system act in a way that is harmful to humans, then the concepts responsible for this
behavior can be inspected and modified.

Another example of the application of symbolic learning to intrusion detection is learning
user signatures [KCM03].

3.3 Spam Filtering

The idea of using machine-learning techniques to learn a classifier from a human operator is
clearly related to spam filtering.

The amount of spam (a.k.a. unsolicited bulk email), has greatly increased over the last
10 years, crossing the boundary of 50% and, as of today, constitutes about 65% of all sent
email [spa06b]. This means that a random email message is almost twice more likely to be
spam than normal mail. In spite of being easily recognizable by humans, the sheer quantity of
spam causes significant costs to businesses and individuals, measured in terms of distraction,
annoyance, wasted time and increased load on the infrastructure. Consequently, automated

3.4. INTERFACE AGENTS 35

spam-filtering tools are playing an important role in the fight against spam.
The first generation of spam-filtering tools (e.g., early versions of SpamAssassin [spa06a])

used a number of hand-crafted rules, certain keywords or other manually constructed features
discriminating between spam and non-spam messages. However, as spammers were typically
the first ones to “test” anti-spam solutions and modify their spamming techniques to avoid
filtering, such solutions typically did not stay effective for very long.

This gave rise to the second generation of anti-spam filters, which use machine-learning
techniques, to discriminate between spam and nonspam messages. In particular Bayesian net-
works and support vector machines have been successfully used for spam classification [SDHH98,
DWV99, Gra02].

Extremely high accuracies of those techniques enabled the wide-spread used and accep-
tance of supervised spam filters with Bayesian networks, either trained personally by the users
(e.g., Mozilla Thunderbird JunkMail Controls [Moz06]), or with boosted learning with other
classifiers (e.g., hand-crafted rules, IP-blacklists, mailsinks).

Email classification shares many similarities with our alert-processing system. First, both
use binary supervised classification, to classify instances into two groups and, second, both
interact with users and use real-time feedback to improve classification. Finally, in both cases
the classification is a cost-sensitive issue: typically users prefer false positives (spam messages
misclassified as non-spam), than the other way round, especially, if automated actions are
implemented (e.g., automatically discarding spam messages).

On the other hand, there is a number of differences between email and alert classification:
Spam filtering is essentially text classification (supported by hand-crafted features), while
alerts typically consist only of a small number of categorical attributes. Second, in email
classification messages are independent and identically distributed (whitelisting and similar
techniques are used when the classification depends on previously received messages). Finally
in the case of alert classification, we would like to see human-readable rules, which can be
interpreted by the analyst, whereas for spam, black-box classifiers are typically acceptable.

3.4 Interface Agents

The concept of learning from an operator has been successfully applied in interface agents, that
is agents that learn from the user behavior. The example of such agents is email classification
into arbitrarily user-defined classes in Magi [PEG97] using two classifiers: rule induction CN2
and nearest neighbor k-NN.

The issues of monitoring and assisting the operator have been investigated in network
management and telecommunication networks. Esfandiari et al. [EDQ96] and Nock and
Quinqueton [NE98] describe chronicle recognition system learning actions from an operator.

3.5 Alert Correlation

Alert correlation (see Appendix A.1 for the clarification of terminologies) tries to solve a
different, though related goal of alert processing, namely reconstructing attacks and incidents
from alerts.

Alert correlation is related to the classification discussed in this dissertation in two ways:
First, in most cases, an alert-classification system can be chained with alert correlation and
classify incidents instead of raw alerts. This way the system benefits from alerts correlation

36 CHAPTER 3. STATE OF THE ART

systems. Second, alert classification can benefit from many ideas in alert correlation, namely
properties and heuristics used. Hence, we will examine the work done in this area in greater
detail

In this section we provide a summary and our classification of existing alert correlation
systems. We discuss those systems in more detail in Appendix A.

Incident Reconstruction. Following Howards’s classification [HL98], by an attack we
understand a series of steps taken by an attacker to achieve an unauthorized result. Ideally,
there should be one-to-one mapping between alerts reported by an IDS and attacks. However,
some attacks can trigger many alerts. For example, a single attack PORTSCAN can trigger
many IDS alerts, for each host/port scanned. Another example of redundant alerts is in the
environment with many IDSs, with some attacks being reported by more than one. Alerts
that can be aggregated will be called redundant.

Attacks most often occur in distinctive groups, which are called incidents (a.k.a. multi-
staged attacks). There is a combination of certain factors, some of which we may not know
about, which make that several attacks belong to the same incident. Attacks might be
launched by one or many attackers related in some way. Attackers might be using similar or
completely different tools, pursuing to achieve certain objectives. Attacks can be launched
from a single or multiple locations. Finally, attacks might be happening simultaneously
or at different times. To summarize, we define incident as a group of attacks that can
be distinguished from other attacks because of the distinctiveness of the attackers, attacks,
objectives, sites and timing.

In the general case, it is not possible to reconstruct incidents from alerts. To illustrate
this problem, consider a set of alerts that were triggered by various source hosts. Knowing
this, with no additional background knowledge, it is not possible to decide with certainty if
these attacks constitute a single coordinated attack, or independent attacks that happen to
be interleaved. In case of a single coordinated attack, alerts would have to be grouped into a
single incident. By contrast, in the case of multiple interleaved attacks, the alert would have
to be partitioned into multiple incidents, namely one incident per attack.

The task of grouping alerts constituting a single attack and replacing them with a single
meta-alert will be called aggregation and the task of grouping alerts into incidents will be
called correlation.

Aggregation and correlation are difficult tasks, but can be done correctly in some cases.
We should have in mind that the goal of these tasks is to help the human operators as much
as possible, but not to replace them. Analyzing partly reconstructed incidents is much easier
than browsing an unordered list of IDS alerts, even if some grouping is done incorrectly.

Incident reconstruction and discarding false positives are closely related issues and incident
reconstruction can be used to classify alerts. It has been shown [NCR02b, GHH+01] that most
of alerts triggered by real attacks can be correlated. Conversely, false positives have different
characteristics and correlation algorithms consider them unrelated events. Therefore, filtering
out non-correlated alerts significantly reduces a false-positive rate.

Correlation algorithms can be grouped into categories presented in the sections below.

Exact Feature Similarity. The simplest form of incident recognition is based on exact
similarities between alert features. This approach is intuitive, simple to implement and proved
to be effective in the real environment. As proposed by Debar and Wespi [DW01, IBM02] (see

3.5. ALERT CORRELATION 37

Appendix A.2.1 for details), given three alert attributes (namely attack class, source address
and destination address) we can group alerts into scenarios depending on number of matching
attributes from the most general (only one attribute matches) to the most specific (all three
attributes match). Each of these scenarios has a practical meaning.

This approach can be successfully used in alert pre-processing, although this technique
can be limited in correlating more complex attacks (e.g., an attacker compromising the host
and launching another attack from there). Another problem is that this technique relies on
some numerical parameters and the authors provide little guidance as how to set it.

Another problem is that it would be easy for an intruder to generate a high number of
IDS alerts which will not be grouped by this technique. This could make it extremely difficult
for the operator to determine which alerts are fake and which constitute the real attack. This
type of attack is called “denial of service against the operator” and is also inherent to other
correlation techniques.

Therefore, this technique has been more recently used as only one step in multi-step
alert correlation systems. Valeur et al. [VVCK04] (see Appendix A.2.9 for more details)
use exact feature similarity in two out of ten steps in their alert correlation system: thread
reconstruction and focus reconstruction.

Approximate Feature Similarity. There have been several heuristic approaches intro-
ducing alert similarity function i.e., the function representing confidence/probability that two
alerts belong to the same group.

The work by Valdes and Skinner [VS01] (see Appendix A.2.2 for details) presents heuristic
approach for alert correlation. Dain and Cunningham [DC01] (see Appendix A.2.3) show how
parameters can be learned from manually classified scenarios from DEF CON 2000 CTF data.
A similar approach, however with different similarity measures, data mining and statistic
methods was presented Wang et al. [WL01] (Appendix A.2.6).

Approximate feature similarity techniques, although intuitively appealing and easy to
implement, have little theoretical explanation and are ultimately ad hoc. To illustrate this,
following the reasoning of Dain and Cunningham, it is difficult to find the justification for
using weighted sum to calculate the overall similarity given similarities between attributes
(e.g., Valdes and Skinner use their product instead). Similarly, the choice of sigmoid function
for time proximity and the linear function to represent IP addresses similarity is not explained.

Since the heuristic approach is constructed by experts and based on their knowledge,
trying to capture some dependencies observed in the real data, its importance cannot be
underestimated. The problems, however, are that it is difficult to prove correctness of the
similarity functions used. With a variety of traffic, some systems may perform significantly
better or worse depending on the particular environment.

There is a lack of formal methods allowing to tune parameters in heuristic algorithms
or to prove their usefulness. It is difficult to compare existing algorithms, since no repre-
sentative training and test data exist (if representative data are at all possible as argued by
McHugh [McH00]).

Semi-formal Attack Graphs. Semi-formal attacks graphs use domain knowledge such as
prerequisites and consequences of intrusions, as well as user defined scenarios (e.g., “recon-
breakin-escalate” or “island-hopping”) to detect correlation between alerts, even if it is not
possible to formalize/capture all prerequisites/consequences relations. To illustrate this with

38 CHAPTER 3. STATE OF THE ART

an example, the prerequisite of an DoS attack is having a root access on a machine and
the consequence of a buffer-overflow attack is privilege escalation leading to root access on a
machine, thus two alerts representing a buffer-overflow and DoS attacks are related. Therefore
such two alerts can be represented as two nodes connected with an edge.

The work by Cuppens et al. [Cup01, CM02, CAMB02] (see Appendix A.2.6) implements
this concept using Prolog predicates, while Ning et al. [NCR02b, NCR02a, NRC01, NC02]
(see Appendix A.2.4) consider correlation graphs implemented in a relational database.

More recently, Qin and Lee [QL04] (see Appendix A.2.8 for more details) use a simple
Bayesian network with a set of predicates based on the domain knowledge at its input to
calculate the probability that two (hyper-)alerts should be correlated. The authors also use
an adaptive method for updating conditional probability tables based on the performance of
the model.

Both of these approaches help to substantially reduce false positives and discover incidents.
One of the main problems is that they require the definitions of prerequisites and consequences
for each alert, which in the general case is difficult to achieve.

Formal Attack Graphs Formal attack graphs take the prerequisite/consequence approach
to model the networking environment, computer systems, the software they run and their
vulnerabilities. An example of such model is an M2D2 model [MMDD02] (see Appendix A.2.7
for more details).

An attack graph is a succinct representation of all paths through a system that end in
a state where an intruder has successfully achieved his goal. Using formal model checking
and attack-graph analysis allow us to evaluate the vulnerability of a network of hosts and
find the global vulnerabilities and can serve as a basis for detection, defense and forensic
analysis [RA00].

Attack graphs can enhance both heuristic and probabilistic correlation approaches [JSW02,
SHJ+02]. Given the graph describing all likely attacks and IDSs, we can match individual
alerts to attack edges in the graph. Being able to match successive alerts to individual paths
in the attack graph significantly increases the likelihood that the network is under attack.
Hence, it is possible to predict the attacker’s goals, aggregate alarms and reduce the false
alarm rates.

Formal techniques have a great potential, but at the current stage of research can serve
as a proof-of-concept rather than a working implementation. It can be expected that with
more formal definitions of vulnerabilities and security properties, formal analysis techniques
will gain more significance.

3.6 Frequent Episodes & Association Rules

Recall in Section 2.2.5 we introduced association rules and frequent episodes. Both these tech-
niques were used with a great success on alarms in telecommunication networks in a system
called TASA [HKM+96, KMT99, Kle99]. The system have been actively used by telecom-
munication operators and have been found useful in the following three areas: (i) finding
long-term rather frequently occurring dependencies, (ii) creating an overview of a short-term
alert sequences and (iii) evaluating the alert database consistency and correctness [KMT99].

Considering the similarities between the domains of telecommunication networks and com-
puter security, it is natural to ask how association rules and frequent episodes perform on

3.7. SENSOR PROFILING 39

IDS alert logs.
As reported by Julisch [Jul03b] mining IDS alert logs for episodes and episode rules yielded

a number of interesting patterns, including episodes characteristic of certain attack tools, IDS
properties (certain alerts always entail another ones) as well as legitimate system operations.
However, this only accounted for less than 5% of all alerts. The remaining episodes and episode
rules were irrelevant and redundant patterns, otherwise difficult to interpret. Consequently,
Julisch concluded that episode rule mining was not suitable for mining IDS alert logs.

3.7 Sensor Profiling

Manganaris et al. [MCZH00] create an anomaly-based sensor processing alerts generated by
commercial IDS sensors. The system partitions alerts into alert bursts and mines the bursts
for frequent itemsets and association rules. Subsequently, the set of discovered association
rules is used without any inspection or modification as the reference for the normal alarm
behavior. In this anomaly-based approach, deviations from this model are reported to the
analyst.

The fact that only anomalous bursts are reported and that the association rules are
not inspected (in fact it is not feasible with thousands of association rules mined), incurs a
potentially high risk of true alarms being discarded if they “creep” into the reference model
and prevent future detection of attacks. The alternative approach of using attack-free alarm
logs to learn association rules was reported to be equally difficult to implement [Jul03b].

3.8 CLARAty—Data Mining and Root Cause Analysis

Julisch [Jul03b, Jul03a] applied data-mining techniques to discover root causes in alert logs,
which in turn can be either eliminated (by modifying the environment) or used to create alert
filters to prevent similar alerts from occurring in the future.

IDS Alarm Alarm Log

Alarm Group

Alarm Pattern

1 N
triggers

N M
stored in

N

M

is union of

N

M

modeled by

Root cause
1 1

manifests

N

1

has

Interpretation
(manual)

CLARAty
(automated)

Computer World

Model World

Figure 3.2: Entity-relationship diagram of concepts used by CLARAty [Jul03b].

Underlying this method is the concept that for every observed alert there is a root cause,
which is the reason for its generation. More specifically, as shown in Figure 3.2, IDS triggers

40 CHAPTER 3. STATE OF THE ART

a number or alarms, stored in alarm log. Data-mining techniques discover alarm groups,
modeled by alarm patterns. Those alarm patterns and alarm groups can be used to reconstruct
the original root causes with little manual intervention.

The hypothesis, verified by [Jul03b], which makes this approach interesting is (i) that
large groups of alerts have a common root cause, (ii) that few of these root causes account for
a large volume of alerts, and (iii) that these root causes are relatively persistent over time.
This means that discovering and removing a few most prominent root causes can safely and
significantly reduce the number of alerts the analyst has to handle.

To verify this hypothesis, Julisch developed a clustering algorithm called CLARAty (CLus-
tering Alerts for Root cause Analysis), based on a modified attribute-oriented induction
(AOI) [HCC92, HCC93] algorithm, to make it more suitable for alert processing and ap-
plied it to a selection of alerts collected in the MSSP environment. He then showed that by
interpreting those clusters and judiciously converting them to alert filters, one can remove up
to 70% of future alerts.

This approach is orthogonal to human-assisted alert classification proposed in this thesis,
as cluster analysis can be done independently of human-assisted alerts classification, however,
it is natural to ask if combining these two approaches works well in practice. To answer this
question in the third part of the thesis, we propose a two-stage alert-classification system with
automated cluster processing and validate this system in practice.

3.9 Summary

In this chapter we categorized existing efforts aiming at reducing false positives in intrusion
detection on the following four levels: improving IDSs themselves, leveraging the environment,
alerts postprocessing and analyst’s involvement. While, with a few exceptions, most of the
existing work has focused on the first three levels, our approach focuses on the fourth level.

Our system, combining the use of machine learning, real-time user feedback and alert post-
processing is similar to techniques from related domains, like developing IDSs using machine-
learning techniques, building spam filters or developing interface agents. We investigated
these techniques and analyzed differences and similarities to our approach.

Finally, we discussed other alert postprocessing approaches in more detail, which can, in
many cases, be used together with our system in a multi-stage alert-classification system. The
effects of integration with one of them, namely the data mining algorithm called CLARAty,
will be further investigated in Chapter 8.

Chapter 4

Datasets Used

In this chapter we discuss the datasets which can be used in the evaluation of our system
and their characteristics. This will give the reader a better understanding of the datasets
available and the ones we chose for the evaluation of our system. Since the evaluation is a
central problem in this thesis, the characteristics motivates our work and gives more insight
to the design of our system.

4.1 Datasets Available

The lack of publicly available and representative datasets hinders intrusion-detection research
and makes the comparison of different intrusion detection systems and algorithms difficult.
Whereas it is easy to generate a large set of intrusion detection alerts (e.g., by running an
IDS in a private or Internet-exposed network), such an approach poses two major problems:
First, such datasets are unlabeled (i.e., it is not clear which attacks are false positives and
which are true positives), and their labeling poses a major challenge. Unless done by multiple
independent analysts, such labeling can be questioned and subject to discussion. The second
problem is of a different nature. In most cases the data gathered in by intrusion detection
systems is of a confidential nature. The data inherently contains information about network
topology, hosts and other confidential information (e.g., the content of e-mails, visited websites
or even passwords transmitted in clear text). Hence, access to this data is strictly limited
and cannot be shared with others.

Simulated Datasets There has been an attempt to provide a publicly available dataset
(DARPA 1998 [LFG+00] and DARPA 1999 [LHF+00, MIT99]) generated in a simulated
environment, however many flaws have been identified both in the simulation as well as the
evaluation procedures [McH00, McH01, MC03]. These datasets are, nonetheless, the only
publicly available datasets and are useful in evaluating IDSs. In fact there has been a number
of publications both in intrusion detection as well as in the machine learning communities
using these datasets (e.g., [NCR02b, Lee99, FLSM00]).

Honeypot Datasets Another common approach is to use data collected by so-called hon-
eypots [Bel92], systems deploying fake [Pro04, RZD05] (or real) network services with the
purpose of being attacked. Any access to these services is being monitored and subsequently

41

42 CHAPTER 4. DATASETS USED

collected data can be used for data mining and manual or automated forensic analysis, in or-
der to understand new intrusion patterns and techniques. The data is by definition abnormal
and indicative of intrusions or intrusion attempts as normal systems have no legitimate rea-
sons to contact honeypots. Hence, the data typically does not contain sensitive information
and can be easily shared (e.g., Leurré.com Project [PDP05]). However, due to its nature,
the honeypot data is more useful for detecting automated attacks such as worms or malware-
infected machines, rather than human attackers [LLO+03, RZD05]. Moreover, as all the data
is by definition suspicious, there is little point in building an alert classifier to classify it into
true and false positives.

“Attack-only” Datasets DEFCON 9 CTF [Dar01] is another dataset commonly used
in intrusion detection evaluation. DEFCON is an annual underground hacking conference,
which includes a hacking contest Capture The Flag (CTF). All traffic generated during the
competition is recorded and made available. The dataset can be used for testing intrusion
detection systems, although its small number of IP addresses, an unusually high concentration
of intrusions and hence a lack of background traffic makes it not really suitable for the
evaluation of IDS alert classification.

The Treasure Hunt dataset [Vig03] is a dataset collected during a Cyber Treasure Hunt
competition organized as a part of a graduate class at some university. Similarly to the DEF-
CON 9 CTF this dataset exhibits an unusually high concentrations of intrusions, which makes
it more suitable for IDS stress-testing and alert correlation, rather than alert classification.

Real Datasets Finally, another source of data are alerts from real IDSs deployed in cor-
porate environments. As IDSs are only useful when the alerts they produce are reviewed
regularly and IDSs are commonly deployed, we can assume that most IDS alerts are in fact
reviewed. During the review the analyst tries to understand the root cause of an alert, deter-
mines if it is benign or malicious and if there is any action that needs to be taken. Depending
on the environment, the review can be more or less formal: In some cases every alert gets
assigned a label determining its root cause; in others only the successful attacks are inves-
tigated, making this an implicit classification. Obviously, the first scenario is much more
useful for us, because there is a variety of root causes and their distribution is more balanced.
In the second scenario, successful attacks are typically very rare events, making supervised
classification difficult.

The advantage of using real datasets is that these are real environments the system can
be used in, hence the problem whether the background traffic is representative of the “real”
background traffic does not exist. On the other hand, the real data has the problem that
the alert classification is subjective and sometimes incomplete or incorrect. To illustrate this
with an example, assume that the analyst had investigated an intrusion I, which triggered
three alerts A1 and, at some time later, A1′ and A2. If the analyst had missed an initial
alert A1 and only marked A1′ and A2 as intrusive, we would get the following training
examples {(A1, FALSE), (A1′, TRUE), (A2, TRUE)}. If the alerts A1 and A1′ were similar,
the analyst would not have made a big mistake in his classification, as it does not change the
classification of the intrusion. On the other hand this makes it much more difficult to learn
how to classify these intrusions correctly. Similarly, the human analysts can make other types
of mistakes: miss an intrusion or erroneously classify benign activities as intrusive. This,
given the fact that intrusions are a rare phenomenon in general, makes the classification of
alerts an extremely difficult task.

4.2. DATASETS USED & ALERT LABELING 43

To summarize, none of the discussed datasets is ideal and each has some advantages and
disadvantages. As our goal is alert classification of IDS alerts we are focusing on datasets
with the most realistic attack data and background traffic, thus yielding a similar mix of
true and false positives as can be seen in real environments. To make our results the most
representative, we will evaluate the system on multiple datasets, which are discussed in the
following section.

4.2 Datasets Used & Alert Labeling

In our previous work [Pie04], we used two independent datasets: DARPA1999 Data Sets and
Data Set B, a proprietary dataset collected in a mid-sized corporate network over the period
of 1 month. For both of these datasets we ran Snort [Roe05], an open-source signature-based
intrusion detection system. The resulting alerts have been labeled using attack truth tables
and manually by the author, for DARPA 1999 Data Set and Data Set B, respectively.

The statistics for these datasets are shown in Table 4.1.

Table 4.1: Statistics generated by the Snort sensor with DARPA 1999 Data Set and Data Set
B.

DARPA 1999 Data Set B
Duration of experiment: 5 weeks 1 month

Number of IDS alerts: 59812 47099
False alerts: 48103 33220
True alerts: 11709 13383

Unidentified: — 496

4.2.1 Alert Representation

Alerts {A1, . . . , An} generated by different IDSs and stored in an alert log L, may have differ-
ent forms, however, they can be easily represented as tuples of n attributes (T1, T2, . . . , Tn).
Alert attributes Ti capture intrinsic properties of alerts, such as the address of an attacker,
the type of an alert and the timestamp. In the case of network-based IDSs used in this
dissertation, the common attributes include:

timestamp is in general a numerical attribute, commonly represented as a number of sec-
onds since the “Unix epoch” (Jan 1, 1970). Note that this representation captures the
continuous aspect of time, however disregards its periodic nature (e.g., hours, minutes,
days of week, days of month, months).

protocol is a categorical attribute determining the protocol e.g., TCP, UDP, ICMP.

source address is a categorical attribute describing the attacker, i.e., the computer system
that triggered an alert. The source address is typically a 32-bit IP address, however
in case of commonly used protocols like TCP and UDP, the source address is a pair
(ip, sport), where ip is a 32-bit IP address and sport is a 16-bit source port. In such
cases, the address is typically represented as two distinct attributes. Note that even if
IP addresses are often represented as numerical attributes they are in fact categorical

44 CHAPTER 4. DATASETS USED

(e.g., comparison like ip < 12345678 does not make sense). However, IP addresses
and networks are hierarchical (e.g., 192.168.0.1 and 192.168.0.10 are covered by
192.168.0.0/24, which is covered by 192.168.0.0/16).

destination address is a categorical attribute describing the victim, i.e., the computer sys-
tem under attack. Similarly, to the source address, in case of protocols like TCP or
UDP, the address also contains a 16-bit port however, unlike the source ports, which
are typically random, the destination port determines the service of the computer (e.g.,
22 is a SSH port, 80 is an HTTP port).

signature is a categorical attribute determining the type of an attack detected by an IDS,
e.g., IIS exploit, PORTSCAN. Typically signatures can be further grouped into groups
of similar types of attacks (e.g., scanning, webserver exploits, policy violation).

payload is a free text attribute allowing the analyst to further determine the nature of the
problem, by inspecting the fragment of actual traffic, which triggered an alert.

From the above attributes, we selected the following attributes for our representation:
source and destination IP addresses, signature type and three additional attributes determin-
ing the type of a scanning alert (one categorical attribute SCAN, NOSCAN and two attributes
determining the number of hosts and port scanned). We did not use directly the time at-
tribute and the payload as they cannot be directly represented in our learning framework.
Similarly, we did not use the protocol attribute and the ports, as they are either a direct
(or almost direct) function of the signature (e.g., protocol and the destination port) or not
relevant (e.g., source port). In addition to this basic alert representation we used additional
background knowledge discussed in Section 5.2.

4.2.2 DARPA 1999 Data Set

In spite of its weaknesses we decided to use the DARPA 1999 Data Set as to the best of
our knowledge it is the only publicly available “reference” dataset, which can be used be
independent researchers to reproduce our results.

The DARPA 1999 Data Set is a synthetic dataset collected from a simulated medium-sized
computer network in a fictitious military base. The network was connected to the outside
world by a router. The router was set to open policy, i.e., not blocking any connections. The
simulation was run for five weeks which yielded three weeks of training data and two weeks of
testing data. Attack truth tables describing the attacks that took place exist for both periods.
DARPA 1999 data consists of: two sets of network traffic (files with tcpdump [JLM03] data)
both inside and outside the router for network-based IDSs; and BSM [Sun95] and NT audit
data, and daily directory listings for host-based IDSs.

For our purposes we need classified IDS alerts, not only raw data. For this we used Snort,
to detect attacks and generate alerts. We ran Snort in batch mode using traffic collected from
outside the router for both training and testing periods. Note that Snort missed some of the
attacks in this dataset. We purposely used the basic out-of-the box configuration and rule
set to demonstrate the performance of our system in reducing the amount of false positives
and therefore reducing time-consuming IDS tuning. Some of them could only be detected
using a host-based IDS, whereas for others Snort simply did not have the right signature. It
is important to note that our goal was not to evaluate the detection rate of Snort on this
data, but to validate our system in a realistic environment.

4.2. DATASETS USED & ALERT LABELING 45

The DARPA 1999 Data Set has many well-known weaknesses (e.g., [MC03, McH00, SS04])
and we want to make surethat using it we get representative results for how ALAC performs
in real-world environments. Therefore we tried to analyze how the weaknesses identified
by McHugh [McH00], namely the generation of attack and background traffic, the amount
of training and test data for anomaly-based systems (also investigated by Sabhnani and
Serpen [SS04]), attack taxonomy and the use of ROC analysis can affect ALAC.

With respect to the training and test data for the original system, we did not use the orig-
inal training-testing data split and combined both datasets for the evaluation of incremental
system. In our incremental setup, we start with a small training set, evaluate the system
on new alerts and subsequently add them to the training set for incremental classification.
With respect to the attack taxonomy, we are not using the scoring used in the original eval-
uation, criticized by McHugh. Finally, we use ROC analysis correctly. Therefore these issues
identified by McHugh do not apply to our evaluation.

The problem of the simulation artifacts is more thoroughly analyzed by Mahoney and
Chan [MC03] thus we use their work to understand how these artifacts can affect ALAC.
These artifacts manifest themselves in various fields, such as the TCP and IP headers and
higher protocol data. Snort, as a signature based system, does not take advantage of these
artifacts and ALAC sees only a small subset of them, namely the source IP address. We
verified that the rules learned by ALAC seldom contain a source IP address and therefore the
system does not take advantage of simulation artifacts present in source IP addresses. On
the other hand, we cannot easily estimate how these regularities affect aggregates used in the
background knowledge. This is still an open issue.

Nonetheless, due to its public availability and prior work using it, DARPA1999 Data Set
is valuable for evaluation of our research prototype.

Alert Labeling Our system assumes that alerts are labeled by the analyst. Recall that,
in a first step we generated alerts using Snort running in batch mode and writing alerts into
a relational database. In the second step we used automatic labeling of IDS alerts using the
provided attack truth tables.

For labeling, we used an automatic approach, which can be easily reproduced by re-
searchers in other environments, even with different IDS sensors. We consider all alerts meet-
ing the following criteria related to an attack: (i) matching source IP address, (ii) matching
destination IP address and (iii) alert time stamp in the time window in which the attack has
occurred. We masked all remaining alerts as false alerts. While manually reviewing the alerts
we found that, in many cases, the classification is ambiguous (e.g., a benign PING alert can
be as well classified as malicious if it is sent to the host being attacked). This may introduce
an error in class labels. We will further discuss this issue in Section 8.4.7.

Note that different attacks triggered a different number of alerts (e.g., wide network scans
triggered thousands of alerts). For the evaluation of our system we discarded the information
regarding which alerts belong to which attack and labeled all these alerts as true alerts.

4.2.3 Data Set B

Owing to the problems with the DARPA 1999 Data Set we decided to use another independent
dataset to validate our system. Data Set B is a real-world dataset collected over the period
of one month in a medium-sized corporate network. The network connects to the Internet
through firewalls and to the rest of the corporate intranet and does not contain any externally

46 CHAPTER 4. DATASETS USED

accessible machines. Owing to privacy issues this dataset cannot be shared with third parties.
We do not claim that it is representative for all real-world datasets, but it is an example of a
real dataset on which our system could be used.

Similarly to the previous dataset, we used the same configuration of Snort and run the
sensor observing information exchanged between the Internet and the intranet.

Alert Labeling As opposed to the first dataset we did not have information concerning
attacks. The alerts have been classified based on the author’s expertise in intrusion detection
into groups indicating possible type and cause of the alert. There was also a certain number
of alerts that could not be classified into true or false positives. Similarly to the first dataset
we used only binary classification to evaluate the system, and labeled the unidentified alerts
as true positives.

Note that this dataset was collected in a well-maintained and well-protected network with
no direct Internet access. We observed a low number of attacks in this network, but many
alerts were generated. We observed that large groups of alerts can be explained by events
such as a single worm infection and unauthorized network scans. The problem of removing
such redundancy can be solved by so-called alert correlation systems [Cup01, DW01, VS01],
where a group of alerts can be replaced by a meta-alert representative of the alerts in the
group, prior to classification.

Another issue is that the classification of alerts was done by only one analyst and there-
fore may contain errors. This raises the question of how such classification errors affect the
performance of our system. To address this issue, one can ask multiple analysts to classify the
dataset independently. Then the results can be compared using interrater reliability analysis.

4.2.4 MSSP Datasets

Considering the problems wit the datasets above we decided to use another data source,
alerts collected in a SOC (Security Operations Center) run by IBM Global Services Managed
Security Services team, further referred to as a Managed Security Service Provider (MSSP).
Unlike the previous datasets, these are alerts generated by commercial IDSs and reviewed by
real security analysts as part of their job duties.

For our experiments we used a period of six consecutive months (2H 2005) for a selection
of 20 undisclosed customers of the MSSP. In many cases a single customer has more than one
IDS, including both network-based (NIDS) and host-based (HIDS) sensors. As the scope of
our analysis are NIDSs we used only those sensors for the analysis. The sensors here were a
mix of two different commercial products (not an open-source Snort sensor with the previous
two datasets). To avoid unintentional commercial implications we will leave the name of these
products undisclosed.

During our experiment we performed an automated correlation of all alerts with the alerts
flagged as security incidents by the security analysts at the MSSP. Incidents are disjunctive
and each of them contains at least one alert (in fact many incidents several hundred alerts).
We do not know if the classification we received in the database is final—the incidents were
likely to be investigated by additional analysts and also consulted with the customer and
their classification could have changed.

For our purposes we used only information whether an alert belongs to an incident and
marked all remaining alerts as false positives. Note that this approach may underestimate the
number of all true positives if not all alerts constituting an incident were classified as such.

4.2. DATASETS USED & ALERT LABELING 47

As in the previous example, the fact that the incident took place is by far more important
for the analyst than enumerating all alerts it triggered. Knowing that the incident has taken
place, the customer examines the systems affected and performs forensic investigation, not
focuses on individual IDS alerts.

The statistics for these datasets are shown in Table 4.2, where undisclosed customers are
identified by a numeric identifier.

Table 4.2: Statistics generated for 20 companies from MSSP database. Customer are identified
by means of a unique identifier.

Customer Days Total
Alerts

Total
Positives

(%) Total
Incidents

3288 178.0 107081 4060 3.79 10
3359 90.0 74884 400 0.53 12
3362 179.0 1261026 499 0.04 21
3363 179.0 1812067 2089 0.12 28
3380 178.0 392563 416 0.11 7
3408 178.0 55781 535 0.96 2
3426 179.0 805435 199 0.02 9
3473 178.0 466285 107 0.02 29
3482 144.0 102255 994 0.97 47
3488 179.0 2415761 247 0.01 34
3491 178.0 99079 1012 1.02 8
3520 178.0 118434 1330 1.12 6
3532 178.0 78324 804 1.03 5
3565 178.0 134933 1515 1.12 30
3569 179.0 890919 14247 1.60 22
3590 178.0 573442 405 0.07 4
3626 178.0 115400 440 0.38 6
3647 180.0 1341856 6159 0.46 16
3669 179.0 971635 738 0.08 7
4043 180.0 2036648 5249 0.26 18

We notice that there are on average 3896 alerts per customer per day, out of which only
12 are true positives (0.31%). In addition, alerts are not uniformly distributed and occur in
groups called incidents. There are on average 0.096 incidents per company per day or, in
other words, an incident takes place every 10 days for every company. This shows that we are
working with an extremely skewed dataset, which requires special care to handle properly.

Why are These Datasets Different Looking at the statistics for all our datasets we notice
that they have quite different characteristics. In contrast to the MSSP datasets, DARPA 1999
and Data Set B have on average 1472 alerts per company per day, out of which as much as 359
are true positives (24%). We think that the differences among the datasets can be attributed
to the following factors:

Different Classification Method: In the classification of Data Set B we assumed that
any event, which cannot be easily explained (or is otherwise suspicious) was classified
as true positive. Conversely, the MSSP Datasets contain events which were classified

48 CHAPTER 4. DATASETS USED

by analysts as intrusions or even only successful intrusions. This explains the lower
incident rate.

Fewer Incidents: The DARPA dataset assumed an unrealistically high incident frequency.
In the normal, well protected environment incidents are very rare events. Similarly, even
the systems facing the Internet are typically protected with a firewall, which prevents
most attack attempts.

Table 4.3: Comparison of properties of three datasets used in this dissertation.
Dataset Public IDS #Alerts Classification Comments

DARPA
1999 Data

Set

yes Snort ∼ 60k automatic,
attack truth

tables

+ reproducible by other re-
searchers
+ objective classification
− many flaws have been identi-
fied, simulation artifacts

Data Set
B

no Snort ∼ 50k manual,
author

+ real environment
− classification bias

MSSP
Datasets

no two types of
commercial

IDSs

∼ 14M automatic,
security
analysts

+ real environment, real ana-
lysts
− extremely skewed class distri-
bution
− incomplete classification, due
to the way the data was origi-
nally used

The summary of the characteristics used in this dissertation is showed in Table 4.3. In
spite of these differences, all these datasets represent a possible sample of IDS alerts, the
alert-classification system proposed in this dissertation can face in real environments. We
will base the design system on these observations and try to make it robust and perform well
even in such varied environments.

4.3 Summary

In this chapter we discussed the problem of datasets for evaluation intrusion detection systems
and alert-classification systems. We analyzed the possible data sources we could use, discussed
their properties, advantages and disadvantages. We selected the following three datasets: (i)
DARPA 1999 Data Set, a simulated dataset with alerts generated using Snort; (ii) Data
Set B, a proprietary dataset with alerts generated by Snort, classified by the author; (iii)
MSSP datasets, a set of proprietary datasets with alerts generated by commercial IDSs and
intrusions analyzed by professional security analysts.

Chapter 5

Adaptive Alert Classification

In this chapter we investigate the task of alert classification performed by intrusion detection
analysts and present a novel concept of building an adaptive alert classifier using machine-
learning techniques. We then analyze the requirements of such a system, select a suitable
machine-learning technique and validate the system on one synthetic and one real dataset.

5.1 ALAC—Adaptive Learner for Alert Classification

This chapter is organized as follows: Starting from the problem specification we introduce
ALAC, our alert-classification system and its two modes: the agent mode and the recom-
mender mode. We will then discuss important aspects of the system: the representation
of background knowledge (Section 5.2), suitable machine-learning techniques (Sections 5.3
and 5.4). Subsequently, we will evaluate ALAC in Section 5.5.

Recall in Section 1.1.3 we introduced the problem specification and the utility function U
defining the value of the classification system for the analyst O. We also showed how different
definitions of the utility function U determine the systems are developing. In this chapter we
focus on the first two components of the utility function U , namely misclassified alerts and
analyst’s workload, not allowing for abstentions. Assuming that the system classifies all alerts
and passes them to the analyst, we identified two main types of assistance, namely a recom-
mender mode and an agent mode, depending on whether the system allows for autonomous
alert processing of alerts. We will discuss these modes in the following sections.

We present ALAC, an Adaptive Learner for Alert Classification, whose architecture is
depicted in Figure 5.1. The system uses an alert classifier to assign class labels to alerts and
passes them to the analyst. Subsequently, the analyst investigates the labels and corrects
them if necessary.

Currently we use a simple human-computer interaction model, in which the analyst se-
quentially classifies alerts into true and false positives, which are converted to training exam-
ples, however, more sophisticated interaction techniques are also possible. For example, the
analyst can see alerts out of order (e.g., grouped by IP addresses, signatures or their classifi-
cation), and upon changing the classification given by the system, the system can update the
classifier and relabel all visible alerts affected.

More formally, there is a human intrusion detection analyst O reviewing a sequence of
intrusion detection alerts (A1, A2, . . . , Ai, . . .) in the alert log L. The review is done by
assigning one of the predefined set of classes {C1, C2, . . . , Cn} (which can be in particular

49

50 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

two classes: true positives and and false positives {“+”, “−”}) to each alert. The review is
typically done sequentially and in real-time, which means that alert Ai+1 is reviewed only
after alerts (A1, . . . , Ai) have been reviewed and, at this time, alerts (Ai+2, . . .) are not known.
The goal in defined as:

Given – A sequence of alerts: (A1, A2, . . . , Ai, . . .) in the alert log L,
– a set of classes C = {C1, C2, . . . , Cn},
– an intrusion detection analyst O sequentially and in real-time assigning classes
to alerts,
– a utility function U minimizing the misclassification cost,

Find A classifier classifying alerts, maximizing the utility function U .

In addition to training examples, we use background knowledge to learn improved clas-
sification rules. These rules are then used by ALAC to classify alerts. Thanks to using
interpretable classifiers, the analyst can inspect the rules to make sure they are correct.

The architecture presented above describes the operation of the system in the recommender
mode. The second mode, the agent mode, introduces autonomous processing to reduce the
analyst’s workload.

Alert
Classifier

Machine
Learning

Alerts Classified
 Alerts

Feedback

Update Rules

ID Analyst

Model Update

IDS

Hosts/Network

Training
Examples

Rules
Params

Background
Knowledge

(a) Recommender mode

Alert
Classifier

Alerts Feedback

ID Analyst
IDS

Agent
Confident?

Process

Yes

No

Hosts/Network

...

(b) Agent mode

Figure 5.1: Architecture of ALAC in agent and recommender modes.

5.1.1 Recommender Mode

In recommender mode (Figure 5.1a), ALAC classifies alerts and passes all of them to the con-
sole to be verified by the analyst. In other words, the system assists the analyst suggesting the
correct classification. The advantage for the analyst is that each alert is already preclassified
and that the analyst only has to verify its correctness. Hence, the analyst can prioritize his
or her work, e.g., by dealing with alerts classified as true positives first or sorting the alerts

5.1. ALAC—ADAPTIVE LEARNER FOR ALERT CLASSIFICATION 51

by classification confidence. It is important to emphasize that in the end, the analyst will
review all classifications made by the system.

This is a conventional incremental learning setup. Algorithm 2 shows the operation of
ALAC in the recommender mode. The function goodClassificationPerformance() estimated
the performance of the classifier on a confusion matrix using a weighted accuracy (WA) with
a threshold WAth.

Input: a sequence of alerts (A1, A2, . . . , An)
Result: a sequence of classified alerts ((A1, CA1), (An, CAn

), . . . , (An, CAn
))

initialize;1

/* alerts used for the initial training */
x← x0;2

while x < n do3

Si ← subsequence(A1, . . . , Ax);4

Ci ← learnUpdateClassifier(Ci−1, Si);5

while goodClassificationPerformance(WAth) do6

Cx ← classify(Ci, Ax);7

CAx
← askAnalystVerifyClassification(Ax, Cx);8

updateClassificationPerformance(Cx, CAx
);9

x← x + 1;10

end11

i← i + 1;12

end13

Algorithm 2: ALAC algorithm—recommender mode.

5.1.2 Agent Mode

In the agent mode, the high level goal uses a modified utility function U , so that it also
limits analyst’s workload and therefore a system that autonomously processes some alerts is
preferred over the one that does not. More formally, similarly to the previous case we specify
the goal as:

Given – A sequence of alerts: (A1, A2, . . . , Ai, . . .) in the alert log L,
– a set of classes C = {C1, C2, . . . , Cn},
– an intrusion detection analyst O sequentially and in real-time assigning classes
to alerts,
– a utility function U minimizing the misclassification cost and analyst’s workload
(allowing for autonomous alert processing).

Find A classifier classifying alerts, maximizing the utility function U

In agent mode (Figure 5.1b), ALAC autonomously processes some of the alerts based
on criteria defined by the analyst (i.e., classification assigned by ALAC and classification
confidence). By processing alerts we mean that ALAC executes user-defined actions associated
with the class labels and classification confidence values. For example, attacks classified
as false positives can be automatically removed, thus reducing the analyst’s workload. In
contrast, alerts classified as true positives and successful attacks can initiate an automated
response, such as reconfiguring a router or firewall. It is important to emphasize that such

52 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

actions should be executed only for alerts classified with high confidence, whereas the other
alerts should still be reviewed by the analyst.

Note that autonomous alert processing may change the behavior of the system and neg-
atively impact its classification accuracy. To illustrate this with an example, suppose the
system classifies alerts into true and false positives and it is configured to autonomously
discard the latter if the classification confidence is higher than a given threshold value. Sup-
pose the system learned a good classifier and classifies alerts with high confidence. In this
case, if the system starts classifying all alerts as false positives then these alerts would be
autonomously discarded and would never be seen by the analyst. These alerts would not
become training examples and would never be used to improve the classifier.

Another problem is that alerts classified and processed autonomously cannot be added
to the list of training examples as the analyst has not reviewed them. If alerts of a certain
class are processed autonomously more frequently than alerts belonging to other classes (as
in the above example), as a consequence we change the class distribution in the training
examples. This has important implications as machine-learning techniques are sensitive to
class distribution in training examples. In the optimal case, the distribution of classes in
training and testing examples should be identical.

To alleviate these problems, we use a technique called random sampling. In this technique
we randomly select a fraction s of alerts which would normally be processed autonomously
and instead forward them to the analyst. This ensures the stability of the system. The value
of s is a tradeoff between how many alerts will be processed autonomously and how much
risk of misclassification is acceptable.

The exact operation of ALAC in the agent mode is shown in Algorithm 3.

Input: a sequence of alerts (A1, A2, . . . , An)
Result: a sequence of classified alerts ((A1, CA1), (An, CAn), . . . , (An, CAn))
initialize;1

/* alerts used for the initial training */
x← x0;2

while x ≤ n do3

Si ← subsequence(A1, . . . , Ax);4

Ci ← learnUpdateClassifier(Ci−1, Si);5

while goodClassificationPerformance(WAth) do6

Cx ← classify(Ci, Ax);7

if (¬confident(Cx, cth)) ∨ (Cx == TRUE ALERT) ∨ (randomSample(s)) then8

CAx
← askAnalystVerifyClassification(Ax, Cx);9

end10

else11

/* e.g., discarding of false positives */
automaticProcessing() ;12

CAx
← ∅;13

end14

updateClassificationPerformance(Cx, CAx
);15

x← x + 1;16

end17

i← i + 1;18

end19

Algorithm 3: ALAC algorithm—agent mode.

5.2. BACKGROUND KNOWLEDGE 53

5.2 Background Knowledge

Recall that we use machine-learning techniques to build the classifier. In machine learn-
ing, if the learner has no prior knowledge about the learning problem, it learns exclusively
from examples. However, difficult learning problems typically require a substantial body of
prior knowledge [LD94], which makes it possible to express the learned concept in a more
natural and concise manner. In the field of machine learning such knowledge is referred to
as background knowledge, whereas in the field of intrusion detection it is quite often called
context information (e.g., [SP03]). Background knowledge is very important in intrusion
detection [MMDD02] and includes:

Network Topology. Network topology contains information about the structure of the net-
work, assigned IP addresses, etc. It can be used to better understand the function and
role of computers in the network. Possible classifications can be based on the location
in the network (e.g., Internet, DMZ, Intranet, Subnet1, Subnet2, Subnet3) or the
function of the computer (e.g., HTTPServer, FTPServer, DNSServer, Workstation). In
the context of machine learning, the network topology can be used to learn rules that
make use of generalized concepts.

Alert Semantics and Installed Software. By alert semantics we mean how an alert is
interpreted by the analyst. For example, the analyst knows what type of intrusion
the alert refers to (e.g., scan, local attack, remote attack) and the type of system
affected (e.g., Linux 2.4.20, Internet Explorer 6.0). Such information can be obtained
from proprietary vulnerability databases or public sources such as Bugtraq [Sec04] or
ICAT [NIS04].

Typically the alert semantics is correlated with the operating system (or the device type,
e.g., Cisco PIX) or the software installed to determine whether the system is vulnerable
to the reported attack [LWS02] (cf. Level 2 in Section 1.1.1). The result of this process
can be used as additional background knowledge to classify alerts.

Note that the information about the installed software and alert semantics can be used
even if alert correlation (cf. Level 2 in Section 1.1.1) is not performed, as it allows us to
learn rules that make use of generalized concepts such as OS Linux, OS Windows, etc.

Alert Context. Alert context, i.e., other alerts related to a given one, is for some alerts
(e.g., portscans, password guessing, repetitive exploits attempts) crucial to their classi-
fication. In intrusion detection various definitions of alert context are used. Typically,
the alert context includes all similar alerts, however the exact definition of similarity
varies greatly [DC01, Cup01, VS01].

From the machine-learning perspective, the first two types of background knowledge i.e.,
network topology and alert semantics, pertain to individual alerts and can be easily propo-
sitionalized [LD94] to create additional features describing it. We will call this first type of
background knowledge environmental.

To illustrate this with an example, assuming that we have the following predicates alert,
describing the alert, topology encoding information about the network topology, software
describing the software installed on machines and attack describing the attacks:

topology(’10.0.0.1’,’DMZ’), ...
software(’10.0.0.2’,’IIS’), software(’10.0.0.2,’Linux2.6.10’), ...

54 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

attack(’ApacheExploit’,’Apache2.1’,’remote2user’), ...
vulnerable(X,A) :- alarm(X,...,A), software(X,S), attack(A,S).

an alert alert(’10.0.0.1’,’123.45.67.85’,...,’ApacheExploit’); can be proposition-
alized into a single tuple:

alert(’10.0.0.1’,’DMZ’,’123.45.67.85’,’Internet’,...,
’ApacheExploit’,’remote2user’,’not_vulnerable’...)

In contrast, the alert context is much more difficult to represent as it pertains to link
information expressed in links between alerts. This type of link mining [Get03] is known
as collective classification. We distinguish between two types of this link-based background
knowledge, a non-recursive and a recursive link-based background knowledge (Figure 5.2).

?Environment Environment?
?Environment

-
+

-

(a) Environmental BK (b) Link-based BK (c) Link-based Recursive BK

Figure 5.2: Three types of background knowledge for classifying IDS alerts.

In the non-recursive link-based background knowledge the mere existence of the linked
alert (and its attributes) affects its classification. In the recursive background knowledge in
addition to the existence of linked alerts, their assigned classes affect the classification. To
illustrate this with an example, a non-recursive link-based rule may read: “IF a current alert
is of type X AND there was previously an alert of type Y AND they were both targeted at
the same source and destination IP addresses THEN the current alert is a true positive“. In
contrast, a recursive link-based rule may read: “IF a current alert originates from S to D
AND there was previously an alert A originating from S to D AND A was classified as a true
positive THEN the current alert is a true positive”.

In the classification of streamed IDS alerts, link-based recursive background knowledge
has important implications as to how the system can be used. To illustrate this with an
example, suppose a system learned a rule, which bases the classification of the existence of
linked alerts classified as positives (like in the example above). In this case, such a rule
can achieve high accuracy, however if the first alert is misclassified (false negative), all those
“chained” alerts would also be missed. Moreover, such a system would only work, if the alerts
are classified strictly sequentially, which means that the analyst can see a predicted label for
the ith alert only after classifying all preceding i − 1 alerts. In contrast, the non-recursive
link-based background knowledge does not impose such limitations.

It should be made clear, that unlike in the classification of, e.g., web pages with linking
information or scientific papers with citations, links between IDS alerts are not explicit.
Typically, the links in intrusion detection are determined by means of necessarily ad-hoc
heuristics (cf. Section 3.5), taking one or more of the following four attributes: source and
destination IP addresses, alert type and time. For example with the following three attributes:
source and destination IP addresses and alert type, one obtains seven types of links, linking
alerts for which up to three of these attributes are equal. These links have an intuitive

5.3. CHOOSING MACHINE-LEARNING TECHNIQUES 55

interpretation from a domain perspective, e.g., with equal source and destination IP addresses
one obtains a group of alerts linking different attacks launched against from the same source
at a single destination. Such a representation yields an extremely dense graph, even if due to
practical reasons, these links are calculated only for alerts in a close time proximity.

5.3 Choosing Machine-Learning Techniques

Until now we have been focusing on the general system architecture and issues specific to
intrusion detection. In this section we focus on the machine-learning component in our
system. Based on the discussion in Section 1.2 and the proposed system architecture, we
can formulate the following requirements for the machine-learning technique:

1. Learn from training examples (alert classification given by the analyst).

2. Build an interpretable classifier, so its correctness and behavior can be verified by the
human analyst.

3. Be able to incorporate the background knowledge required.

4. Be efficient enough to perform real-time learning.

5. Be able to assess the confidence of classifications. Confidence is a numerical value
attached to the classification, representing how likely it is to be correct.

6. Support cost-sensitive classification and skewed class distributions.

7. Learn incrementally.

5.3.1 Learning an Interpretable Classifier from Examples.

The first requirement yields supervised machine-learning techniques. These are techniques
that can learn from training examples. The requirement for an understandable classifier
further limits the range of techniques to symbolic learning techniques, which are techniques
that present the learned concept in a human readable form (e.g., predictive rules, decision
trees, Prolog clauses) [MM02].

We considered the requirement for symbolic representation a fundamental one, and there-
fore did not even consider any non-symbolic learning methods, like Support Vector Machines
(SVMs) [Vap95], Bayesian Networks (BNs) [Pea88] Artificial Neural Networks (ANNs) or
Instance-Based Learning (IBL) [AKA91].

However, those non-symbolic representations have two advantages over symbolic learners:
First, they are either inherently incremental (e.g., IBL) or can easily be converted in an
incremental one (e.g., BN, IBL). Second, these learning methods can also be used to rank
instances not only classify them (scoring classifiers). Therefore, an interesting area of future
work would be to use those techniques instead, applying further techniques we developed in
Chapters 6 and 7 and compare them against our system.

56 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

5.3.2 Background Knowledge and Efficiency.

The ability to incorporate background knowledge differentiates two big groups of symbolic
learners: inductive logic programming and symbolic attribute-value learners. In general, in-
ductive logic programming provides the framework for the use of the background knowledge,
represented in the form of logic predicates and first-order rules, whereas attribute-value learn-
ers exclusively learn from training examples. Moreover, training examples for attribute-value
learners are limited to a fixed number of attributes.

Inductive Logic Programming (ILP) is a research area at the intersection of machine learn-
ing and logic programming. The goal of learning in ILP can be defined as follows [LD94]:
given a set of training examples E and background knowledge B, find a hypothesis H ex-
pressed in some concept description language L such that H is complete and consistent with
respect to the background knowledge B and examples E.

The examples of ILP systems include FOIL [QCJ93], Aleph [Mug95], LINUS [LD94],
ICL [vL02] and TILDE [Blo98]. Rules derived from ILP are human readable and capture
general dependencies in the data, expressing it using background knowledge. Since rules have
human readable form, they can be verified by the analyst and only meaningful rules can be
included in the classification. More recently, there have been systems combining ILP with
probabilistic frameworks (e.g., [DK03]). One particular example is nFOIL [LKD05] combining
naive Bayes with FOIL. For learning, nFOIL uses a covering approach (similar to FOIL), in
which features are learned one after another and combined with naive Bayes. However, the
search heuristic is based on class conditional likelihood.

The ILP framework can easily handle the background knowledge introduced in Section 5.2,
including the alert context as well as arbitrary Prolog clauses. However, one of the main
concerns regarding ILP is the size of the hypothesis search space. Since the search space is
significantly bigger than in propositional rule learners, the size of problems that can be solved
by ILP is accordingly smaller.

On the other hand, attribute-value learners can use a limited form of background knowl-
edge using so-called feature construction (also known as propositionalization [LD94]) by creat-
ing additional attributes based on values of existing attributes or existing background knowl-
edge. Using propositionalization, the background knowledge can be expressed in the form
of functions of attribute values or relations among attribute values. When learning, these
functions and descriptions yield new attributes which are considered in the learning process.
If the background knowledge is represented in the form of functions, the value of new at-
tributes is computed as a function of existing attributes. In the relational representation of
background knowledge, values of new attributes are true or false depending on whether
attributes of an example satisfy or do not satisfy the relation. Subsequently, tuples with an
extended attribute set are used for learning.

Given that most background knowledge for intrusion detection can be converted to addi-
tional features using feature construction, and considering the run-time requirements, sym-
bolic attribute-value learners seem to be a good choice for alert classification.

5.3.3 Confidence of Classification.

Symbolic attribute-value learners are decision tree learners (e.g., C4.5 [Qui93]) and rule learn-
ers (e.g., AQ [Mic69], C4.5rules [Qui93], RIPPER [Coh95]). Both of these techniques can
estimate the confidence of a classification based on its performance on training set. How-

5.4. APPLYING RIPPER TO ALAC 57

ever, it has been shown that rules are much more comprehensible to humans than decision
trees [Mit97, Qui93]. Hence, rule learners are particularly advantageous in our context.

Table 5.1: Comparison of properties of different machine learning algorithms
with respect to ALAC requirements.

1.
T

ra
in

in
g

E
xa

m
pl

es

2.
In

te
rp

re
ta

bl
e

3.
B

ac
kg

ro
un

d
kn

ow
le

dg
e

4.
E

ffi
ci

en
t

5.
C

on
fid

en
ce

6.
C

os
t-

se
ns

it
iv

e
/

Sk
ew

ed
cl

as
s

di
st

ri
bu

ti
on

s

7.
L

ea
rn

in
cr

em
en

ta
lly

Non-symbolic
SVM yes no yesa yes yes yesf some
Bayesian Networks yes partiallyb yesa no yes yesf yes
IBL yes noh yesa yesc yes yesf yes
ANN yes no yesa no yes yesf yes

Symbolic
ILP yes yes yes no nod yesf no
Decision Trees yes nog yesa yes yes yesf somee

Rule learners yes yes yesa yes yes yesf some
a Background knowledge can be propositionalized. b Large automatically learned Bayesian Net-
works are not interpretable. c Classification time in IBL depends on the number of instances.
d Probabilistic extensions (e.g., nFOIL output probabilities). e Some algorithms are incremen-
tal (e.g., ID5). f Most algorithms either support asymmetric misclassification cost or general
methods (e.g., Weighting, MetaCost can be used). g Large decision trees are not interpretable.
h With instance-based learning the interpretation can be based on similar items.

We analyzed the characteristics of available rule learners, shown in Table 5.1, as well as
published results from applications in intrusion detection and related domains. We have not
found a good and publicly available rule learner that fulfills all our requirements, in particular
cost-sensitivity and incremental learning.

5.4 Applying RIPPER to ALAC

Amongthe techniques that best fulfill the remaining requirements, we chose RIPPER [Coh95]—
a fast and effective rule learner. It has been successfully used in intrusion detection (e.g., on
system call sequences and network connection data [Lee99, LFM+02, FLSM00]) as well as
related domains and it has proved to produce concise and intuitive rules. As reported by
Lee [Lee99], RIPPER rules have two very desirable conditions for intrusion detection: a
good generalization accuracy and concise conditions. Another advantage of RIPPER is its
effectiveness with noisy datasets.

58 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

RIPPER has been well documented in the literature, however, for the sake of a better
understanding of the system we will briefly explain how RIPPER works. As shown in Algo-
rithm 4, RIPPER learns a sequence RS of rules Ri in the form:

if (condition1 and condition2 and ... conditionN) then class.
A single condition is in the form Ai = v (in the case of categorical attributes) or Ai ≥ θ,
Ai ≤ θ (in the case of numerical attributes). The rule evaluates to true if and only if all its
conditions hold, in which case, the prediction is made and no further rules are evaluated.

In a multi-class setting, RIPPER sorts the classes C1, C2, · · · , Cn in increasing frequency
and induces the rules sequentially from the least prevalent class (SC1) to the second to last
most prevalent class (SCn−1). The most prevalent class SCn is called a default class, for
which no rules are induced. Hence, in the binary case, RIPPER induces rules only for the
minority class.

The process of inducing rules for a single class proceeds in two stages: the building stage
(lines 4–4) and the optimization stage (lines 4–4). In the building stage, RIPPER builds the
rules in the following two steps: growing and pruning. In the growing step, rules are greedily
“grown” by adding conditions that maximize the information gain [QCJ93]. In the pruning
step, rules are pruned using a criterion, which is equivalent to precision. The goal of pruning
is to improve both the generalization and the simplicity of the rule. In in the optimization
stage, building and pruning is executed on both an initial rule and an empty rule set, with
the evaluation done on the entire ruleset. Finally, the best variant of the two is selected for
the final ruleset.

Unfortunately, the standard RIPPER algorithm is not cost-sensitive and does not support
incremental learning. We used the following methods to circumvent these limitations.

5.4.1 Cost-Sensitive and Binary vs. Multi-Class Classification

Cost-Sensitive Modeling. In a cost-insensitive world, both types of misclassifications
(false negatives and false positives) carry equal weights and hence the performance of a clas-
sifier can be evaluated by means of accuracy. However, in the real-world the costs of misclas-
sifications are most often not equal, e.g., missing an intrusion is intuitively more expensive
than investigating one false positive. This, together with the fact that cost-sensitive problems
are typically skewed, increases an importance of cost-sensitive modeling.

In general, cost-sensitive modeling is a difficult issue [LFM+02] as there can be many costs
that need to be taken into account. For example, Fan [Fan01] defines two types of costs in the
domain of intrusion detection: the damage cost DCost, which characterizes the maximum
amount of damage inflicted by an attack and a response cost RCost, which is the cost to take
action when a potential intrusion is detected. In this case, false negatives would incur the
DCost for the given attack, false positives and true positives would incur DCost for the given
attack and the wrongly identified attacks would incur both the response cost for the action
taken and the damage cost of the missed attack. Moreover, the damage and the response
costs are typically not constant and depend on both the attack class and in some cases, the
particular instance of an attack (e.g., the damage incurred as a result of an attack against an
important server is typically much higher than for the same attacks against a workstation,
which can simply be switched off). In addition, Fan showed that certain features used for
testing have different costs than others, e.g., analyzing a flag TCP header is much “cheaper” in
terms of resources than calculating statistics over an entire TCP flow. The approach proposed
by Fan allows to take this fact into account in building ensemble-based learning systems.

5.4. APPLYING RIPPER TO ALAC 59

Input: A set of labeled instances (alerts) {(Ii, CIi
)}

Result: A sequence of rules RS = (R1, R2, . . . , Rn) defining a classifier C
/* sort classes by instance counts */
(SC1, SC2, . . . , SCm) = sort({(Ii, CIi)});1

RS ← ∅;2

/* induce rules for all classes, starting from least prevalent */
foreach SC ∈ (SC1, SC2, . . . , SCm−1) do3

/* induce ruleset for class SC */
/* one-vs-all classification */
(positiveExamples, negativeExamples)← labelOneVsAll(SC, {(Ii, CIi)});4

/* split examples for training and pruning */
split(positiveExamples, negativeExamples) into (growPositiveExamples,5

growNegativeExamples) and (prunePositiveExamples, pruneNegativeExamples);
/* building stage - growAndPrune */
while (growPositiveExamples) and (errorRate < 50%) and (MDLCondition) do6

Ri ← ∅;7

/* grow phase on growXXXExamples */
while Ri not perfect do8

/* use information gain as metric */
greedily add antecedents Nj (in the form Aj = v) using information gain:9

Ri ← Ri ∪Nj ;
end10

/* prune phase on pruneXXXExamples */
/* use (P −N)/(P + N) as metric */
R′

i ← pruneRule(Ri);11

if (errorRate < 50%) and (MDLCondition) then12

RS ← RS ∪R′
i;13

remove examples covered by rule Ri from growPositiveExamples;14

end15

end16

/* optimization stage */
foreach Ri ∈ RS do17

/* pruning metric is (TP + TN)/(P + N) */
R′

i ← growAndPrune(Ri, (R1, . . . , Ri−1, Ri, Ri+1 . . . , Rn));18

R′′
i ← growAndPrune(∅, (R1, . . . , Ri−1, Ri+1 . . . , Rn));19

/* choose a better rule in terms of DL */
RS ← (R1, . . . , Ri−1, chooseBetter(R′

i, R
′′
i), Ri+1 . . . , Rn);20

end21

/* add uncovered residuals */
while positiveExamples do22

RS ← RS ∪ growAndPrune(∅, ∅);23

end24

end25

addDefaultRule(SCm);26

Algorithm 4: RIPPER Algorithm [Coh95].

However, while this approach is correct in the formal sense, it has two main problems.
First, Fan used boosting methods, in which misclassified instances are “penalized” according
to the misclassifications the weak learner made. While taking both RCost and DCost into
account can be easily achieved in this iterative learning method, as a side effect it produces

60 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

a number of weak classifiers, which make their rules less interpretable. For example with
200 boosting rounds, each of them building a classifier producing 50 rules, there would be
10000 rules that would need to be investigated. In contrast, our approach focuses on a single
classifier. Second, the multi-cost sensitive approach introduces a high number of parameters
that wold need to be investigated.

Multi-Class vs. Binary Classification. Recall Section 1.3, in which we investigated the
job of an intrusion detection analyst and possible classifications of intrusions. Here, we argue
that our setup, in which the human analyst analyzes alerts generated by an IDS, can be
without loss of functionality considered a binary classification problem.

First, if multiple classes are used, they are not very systematic and, in most cases, describe
a nature of a problem, which either is uniquely determined by the type of IDS alerts at
question (e.g., an PORTSCAN alert if it is a true positive is a “scanning incident”), or cannot
be determined with certainty (e.g., the distinction between “policy violation”, “unauthorized
access attempt” or “suspicious activity” is not always clear). This means that in many cases,
such a classifier, knowing that an alert is a true positive, can be built as a second-stage
classifier, or should not be built at all. Second, the costs of misclassifying a certain type
of an intrusion as another one are extremely hard to determine (e.g., “What is a cost of
misclassifying a scanning incident as a policy violation?”).

However, the actual cost of misclassifying different types of alerts as non-attacks is not
identical. To illustrate this with an example, missing a scanning incident is much less costly
than missing a single stealthy attack that installs a root-kit on a machine. However, the
problem is that those “cheap” attacks are fairly easy to identify and moreover, they constitute
a large numbers of alerts. Conversely stealthy attacks are much more difficult to detect (that
is why they are called “stealthy”).

This problem of redundancy in the data stream can be solved in two ways: First, alert
correlation systems (cf. Level 3 in Section 1.1.1) aim at reducing the redundancy in the alert
stream and the number of alerts passed to the analyst. Second, we propose to assign a
weight to alerts normalizing them so that the costs of missing different attacks would be
identical. This weight should be a function of an alert type (e.g., a PORTSCAN alert could
have a weight 1 and IIS exploit could have a weight 10), so that with n categories of
alerts, only n parameters would have to be estimated. In our evaluation, as we wanted to
evaluate minimizing the number of parameters that need to be set, we decided not to take
this approach and assumed that the cost of missing all attacks is identical.

Cost-sensitive RIPPER. As the base version of RIPPER is cost-insensitive, we had to
adapt it to support misclassification costs. Among the various methods of making a clas-
sification technique cost-sensitive, we focused on those that are not specific to a particular
machine-learning technique: Weighting [Tin98] and MetaCost [Dom99]. By changing costs
appropriately, these methods can also be used to address the problem of skewed class dis-
tributions. These methods produce comparable results, although this can be data depen-
dent [Dom99, MH02]. Experiments not documented here showed that in our context Weight-
ing gives better run-time performance, most likely because of the learning of multiple models
by MetaCost. Therefore we chose Weighting for our system.

Weighting resamples the training set so that a standard cost-insensitive learning algorithm
builds a classifier that optimizes the misclassification cost. The input parameter for Weighting
is a cost matrix, which defines the costs of misclassifications for individual class pairs.

5.5. ALAC EVALUATION 61

5.4.2 Batch-Incremental Learning.

Our is an incremental learning task which is best solved with an incremental learning tech-
nique, but can also be solved with a batch learner [GC00]. As we did not have a working
implementation of a purely incremental rule learner (e.g., AQ11 [Mic69], AQ11-PM [MM02])
we decided to use a “batch-incremental” approach.

In this approach we add subsequent training examples to the training set and build the
classifier using the entire training set as new examples become available. It would not be
feasible to rebuild the classifier after each new training example, therefore we handle training
examples in batches. The size of such batches can be either constant or dependent on the
current performance of the classifier. In our case we focused on the second approach. We
evaluate the current classification accuracy and, if it drops below a user-defined threshold,
we rebuild the classifier using the entire training set. Note that the weighted accuracy is
more suitable than the accuracy measure for cost-sensitive learning. Hence, the parameter
controlling “batch-incremental” learning is called the threshold weighted accuracy.

The disadvantage of this technique is that the size of the training set grows infinitely during
a system’s lifetime. This was not a problem in our experiments, as the number of alerts was
small. In real environments the number of training examples should thus be limited to a
certain time window (or a window of a fixed size). As an alternative, a technique called
partial memory [MM02] can be used to reduce the number of training examples.

To summarize, we have not found a publicly available machine-learning technique that
addresses all our requirements, in particular cost-sensitivity and incremental learning. Con-
sidering the remaining requirements the most suitable techniques are rule learners. Based on
desirable properties and successful applications in similar domains, we decided to use RIP-
PER as our rule-learner. To circumvent its limitations with regard to our requirements, we
used a technique called Weighting to implement cost-sensitivity and adjust for skewed class
distribution. We also implemented incremental learning as a “batch-incremental”, approach,
whose batch size dependent on the current classification accuracy.

5.5 ALAC Evaluation

In this section we evaluate ALAC, our adaptive alert-classification system presented in Chap-
ter 5. Recall that ALAC can operate in two modes: (i) the recommender mode, in which
alerts are classified and forwarded to the analyst and (ii) the agent mode, which in addition
to the classification allows for a fraction of alerts to be processed automatically (e.g., false
positives can be discarded) without analyst’s intervention. In this section we will verify the
operation of ALAC in both these modes. In particular, we would like to test the following
two hypotheses:

Hypothesis 5.5.1 The proposed background knowledge improves the accuracy of alert clas-
sification.

Hypothesis 5.5.2 ALAC has acceptable false-positive and false-negative rates in both rec-
ommender and agent modes and is useful for intrusion detection.

62 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

For the evaluation, the following remark is in place: While evaluating the performance of
any binary classifier (or alert-classification system in particular), we characterize its perfor-
mance by its confusion matrix and the terms: true positives, false positives, false negatives
and true negatives. This causes conflict with terms false positives, true positives commonly
used in the domain of intrusion detection and referring to the classification of alerts. In fact,
an IDS is a special type of a binary classifier and these names are justified.

To avoid confusion, in the remainder of this dissertation we use terms false negatives,
true positives and false positives only in the context of the evaluation of alert-classification
systems. From now on we will refer to the original classification of alerts as true alerts and
false alerts.

5.5.1 Evaluation Methodology

The evaluation of supervised components of our system is performed in a streamline fashion
classifying alerts sequentially as they would be seen by the human analyst. We purposely
did not use standard machine learning evaluation techniques using stratified cross-validation,
because the streamline method better reflects the way the system would be used in practice.

Note also that cross-validation hinges on the i.i.d. assumption in the data and we know
that alerts are not independent and identically distributed. In fact, the system leverages the
dependency between alerts by its incremental nature: Misclassified alerts are used to learn
an improved alert classifier and classify future similar alerts correctly.

In the evaluation we use ROC analysis to determine the influence of background knowledge
and set system parameters. Subsequently, we evaluate false-negative (fn) and false-positive
(fp) rates. We also plot evaluation charts showing how these rates vary during system’s
runtime (as a function of classified alerts) and evaluate the overall cumulative numbers.

5.5.2 Background Knowledge

We decided to focus on the first two types of background knowledge presented in Section 5.1,
namely network topology and alert context. Owing to a lack of required information concern-
ing installed software, we decided not to implement matching alert semantics with installed
software and vulnerability scanning. This would also be a repetition of the experiments by
Lippmann et al. [LWS02].

As discussed in Section 5.2, we used an attribute-value representation of alarms with
the background knowledge represented as additional attributes. Specifically, the background
knowledge resulted in 25 attributes, which are calculated as follows:

Environmental Background Knowledge yielded two attributes for both source and des-
tination IP addresses:

• Classification of IP addresses resulted in an additional attribute for both source and
destination IP classifying machines according to their known subnets (e.g., Internet,
intranet, DMZ (demilitarized zone, a zone between intranet and the Internet, in
which servers are typically located)).

• Classification of hosts resulted in additional attributes indicating the operating
system and the host type for known IP addresses.

5.5. ALAC EVALUATION 63

Non-recursive Aggregates resulted in additional attributes with the number of alerts in
the following categories (we calculated these aggregates for alerts in time windows of 1
minute, 5 minutes and 30 minutes preceding a given alert):

• alerts with the same source IP address,
• alerts with the same destination IP address,
• alerts with the same source or destination IP address,
• alerts with the same signature.

Recursive Aggregates resulted in additional attributes with the number of past alerts
classified (predicted classification) as intrusions and the number of alerts from a given
IP address classified as intrusions (calculated for alerts in time windows of 1 minute, 5
minutes and 30 minutes).

This choice of background knowledge, which was motivated by heuristics used in alert
correlation systems, is necessarily a bit ad hoc and reflects the author’s expertise in classifying
IDS attacks. As this background knowledge is not especially tailored to training data, it is
natural to ask how useful it is for alert classification. We discuss the answer to this question
in the following sections.

5.5.3 Results Obtained with DARPA 1999 Data Set

Our experiments were conducted in two stages. In the first stage we evaluated the performance
of the classifier and the influence of adding background knowledge to alerts on the accuracy
of classification. The results presented here allowed us to set some parameters in ALAC. In
the second stage we evaluated the performance of ALAC in recommender and agent mode.

Background Knowledge and Setting ALAC Parameters. First we describe the results
of experiments conducted to evaluate background knowledge and to set ALAC parameters.
Note that in the experiments we used only the machine learning component of ALAC, namely
a RIPPER module, to build classifiers for a stratified 10% sample of the entire dataset.
Hereafter we refer to these results as batch classification. Recall that the system is evaluated
in a “steamline mode” and this is just an estimate allowing us to tune its parameters.

Since the behavior of classifiers depends on the assigned costs, we used ROC (Receiver
Operating Characteristic) analysis [PF01] to evaluate the performance of our classifier for
different misclassification costs. Figure 5.3a shows the performance of the classifier using
data with different amounts of background knowledge. Each curve was plotted by varying
the cost ratio for the classifier. Each point in the curve represents results obtained from
10-fold cross validation for a given misclassification cost and type of background knowledge.

As we expected, the classifier with no background knowledge (circle series) performs worse
than the classifier with simple classifications of IP addresses and operating systems running
on the machines (triangle series) in terms of false positives. Using the background knowledge
consisting of the classifications above and aggregates introduced in Section 5.5.2 significantly
reduces the false-positive rate and increases the true-positive rate (plus series). Full back-
ground knowledge (including recursive background knowledge) performs much better to the
reduced one (cross vs. plus series). These observations were also confirmed by additional
experiments comparing the results of ALAC with different background knowledge. Hence, in
our experiments with ALAC we decided to use full background knowledge.

64 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

0.00 0.05 0.10 0.15 0.20

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

ROC curves for different BK − DARPA

fp

tp

2

3

8
22

24

2

3

8

21
26.5

42

1

4

8

12

39
53.554.06

0.25

0.5

1
1

2

8

32
48 64 9680 128

No BK
Classif., OS
Non−recursive
Recursive

(a) DARPA1999 Data Set

0.00 0.05 0.10 0.15 0.20

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

ROC curves for different BK − Data Set B

fp

tp

0.12
0.5

2

4 8 16
32 54.9

1
1

2.5

4 8
55.44

0.25

1

2.5

6

16 32 45 48

0.25

0.5
1

2

16
32 64

No BK
Classif., OS
Non−recursive
Recursive

(b) Data Set B

Figure 5.3: ROC curves for the base classifier used with different types of background knowl-
edge. The fragments represent areas of practical interest (low false-positive rates and high
true-positive rates)

ROC curves show the performance of the system under different misclassification costs,
but they do not show how the curve was built. Recall from Section 5.4.1 that we use weighting
with a weight w to make RIPPER cost sensitive and varied this parameter to obtain a multiple
points on the curve. Subsequently, we used this curve to select good parameters of our model.

ALAC is controlled by a number of parameters, which we had to set in order to evaluate
its performance. To evaluate the performance of ALAC as an incremental classifier we first
selected the parameters of its base classifier.

The performance of the base classifier at various costs and class distributions is depicted
by the ROC curve. Using this curve is possible to select an optimal classifier for a certain
misclassification cost and class distribution (cf. Section 2.2.4). As these values are not defined
for our task, we could not select an optimal classifier using the above method. Therefore we
arbitrarily selected a base classifier that gives a good tradeoff between false positives and false
negatives, for w = 50, which means that positive examples have a weight 50 times bigger than
negative instances.

The second parameter is the threshold weighted accuracy (WA) for rebuilding the classi-
fier. The value of threshold weighted accuracy should be chosen carefully as it represents a
tradeoff between classification accuracy and how frequently the machine learning algorithm
is run. We chose the value equal to the accuracy of a classifier in batch mode. Experiments
not documented here showed that using higher values increases the learning frequency with
no significant improvement in classification accuracy.

We assumed that in real-life scenarios the system would work with an initial model and
only use new training examples to modify its model. To simulate this we used 30% of input
data to build the initial classifier and the remaining 70% to further train and evaluate the
system.

5.5. ALAC EVALUATION 65

ALAC in Recommender Mode. In recommender mode the analyst reviews each alert
and corrects ALAC misclassifications. We plotted the number of misclassifications: false-
positive rate (Figure 5.4a) and false-negative rate (Figure 5.4b) as a function of processed
alerts. Note that we cropped high error rates at the beginning of the run. These are transient
effects and we are interested in the asymptotic values.

The resulting overall false-negative rate (fn = 0.024) is much higher than the false-negative
rate for the batch classification on the entire dataset (fn = 0.0076) as shown in Figure 5.3a.
At the same time, the overall false-positive rate (fp = 0.025) is less than half of the false-
positive rate for batch classification (fp = 0.06). These differences are expected due to
different learning and evaluation methods used, i.e., batch incremental learning vs. 10-fold
cross-validation. Note that both ALAC and a batch classifier have a very good classification
accuracy and yield comparable results in terms of accuracy.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 20000 30000 40000 50000 60000

F
al

se
 N

eg
at

iv
e

ra
te

 (
fn

)

Alerts Processed by System

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 20000 30000 40000 50000 60000

F
al

se
 P

os
iti

ve
 r

at
e

(f
p)

Alerts Processed by the System

Agent - sampling 0.1
Agent - sampling 0.25
Agent - sampling 0.5

Recommender
Batch Classification

Figure 5.4: False negatives and false positives for ALAC in agent and recommender modes
(DARPA1999 dataset, w = 50).

ALAC in Agent Mode. In agent mode ALAC processes alerts autonomously based on
criteria defined by the analyst, described in Section 5.1. We configured the system to forward
to the analyst all alerts classified as true alerts and those false alerts that were classified with
low confidence (confidence < cth). The system discarded all other alerts, i.e., false alerts
classified with high confidence, except for a fraction s of randomly chosen alerts, which were
also forwarded to the analyst.

Similarly to the recommender mode, we calculated the number of misclassifications made
by the system. We experimented with different values of cth and sampling rates s. We then
chose cth = 90% and three sampling rates s: 0.1, 0.25 and 0.5. Our experiments show that the
sampling rates below 0.1 make the agent misclassify too many alerts and significantly changes
the class distribution in the training examples. On the other hand, with sampling rates much
higher than 0.5, the system works similarly to recommender mode and is less useful for the
analyst.

Notice that there are two types of false negatives in agent mode — the ones corrected by
the analyst and the ones the analyst is not aware of because the alerts have been discarded. We
plotted the second type of misclassification as mirrored series with no markers in Figure 5.4a.
Intuitively with lower sampling rates, the agent will have fewer false negatives of the first

66 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

type, in fact missing more alerts. As expected the total number of false negatives is lower
with higher sampling rates.

We were surprised to observe that the recommender and the agent have similar false-
positive rates (fp = 0.025 for both cases) and similar false-negative rates, even with low
sampling rates (fn = 0.026 for s = 0.25 vs. fn = 0.025). This seemingly counterintuitive result
can be explained if we note that automatic processing of alerts classified as false positives
effectively changes the class distribution in training examples in favor of true alerts. As a
result the agent performs comparably to the recommender.

 0

 0.25

 0.5

 0.75

 1

 20000 30000 40000 50000 60000

D
is

ca
rd

ed
 F

al
se

 P
os

iti
ve

 r
at

e

Alerts Processed by the System

Agent - sampling 0.1
Agent - sampling 0.25
Agent - sampling 0.5

(a) DARPA1999 Data Set, w = 50

 0

 0.25

 0.5

 0.75

 10000 20000 30000 40000 50000

D
is

ca
rd

ed
 F

al
se

 P
os

iti
ve

 r
at

e

Alerts Processed by the System

Agent - sampling 0.1
Agent - sampling 0.25
Agent - sampling 0.5

(b) Data set B, w = 50

Figure 5.5: Number of alerts processed autonomously by ALAC in agent mode.

As shown in Figure 5.5a, with the sampling rate of 0.25, more than 60% of false alerts
were processed and discarded by ALAC. At the same time the number of unnoticed false
negatives is half the number of mistakes for recommender mode. Our experiments show that
the system is useful for intrusion detection analysts as it significantly reduces the number of
false positives, without making too many mistakes.

5.5.4 Results Obtained with Data Set B

We used the second dataset as an independent validation of the system. To avoid “fitting the
model to the data” we used the same set of parameters as for the first dataset. However, a
ROC curve in Figure 5.3b shows that the classifier achieves much higher true-positive rate
and much lower false-negative rate than for the first dataset, which means that Data Set B
is easier to classify. The likely explanation of this fact is that Data Set B contains fewer
intrusions and more redundancy than the first data set. Moreover, we observed that the
actual performance of the system was much better than compared with the result obtained
with batch classification on a 10% stratified sample. Hence we built another ROC curve on
the entire dataset for comparison as batch classification.

Background Knowledge and Setting ALAC Parameters. Results with ROC analysis
(Figure 5.3b) show that the classifier correctly classifies most of the examples, and adding
background knowledge has little effect on classification. To have the same conditions as
with the first dataset, we nonetheless decided to use the full background knowledge. We

5.5. ALAC EVALUATION 67

also noticed that w = 50 is not the optimal value for this dataset as it results in a high
false-positive rate (fn = 0.002, fp = 0.05).

We observed that ALAC, when run with 30% of the alerts as an initial classifier, classified
the remaining alerts with very few learning runs. Therefore, to demonstrate its incremental
learning capabilities, we decided to lower the initial amount of training data from 30% to 5%
of all the alerts.

ALAC in Recommender Mode. Figure 5.6 shows that in recommender mode the system
has a much lower overall false-negative rate (fn = 0.0045) and a higher overall false-positive
rate (fp = 0.10) than for DARPA 1999 Data Set, which is comparable to the results of
the classification in batch mode. We also observed that the learning only took place for
approximately the first 30% of the entire dataset and the classifier classified the remaining
alerts with no additional learning. This phenomena can also be explained by the fact that
Data Set B contains more regularities and the classifier is easier to build.

This is different in the case of the DARPA1999 dataset, where the classifier was frequently
rebuilt in the last 30% of the data. For DARPA1999 Data Set the behavior of ALAC is
explained by the fact that most of the intrusions actually took place in the last two weeks of
the experiment.

ALAC in Agent Mode. In agent mode we obtained results similar to those in recom-
mender mode, with a great number of alerts being processed autonomously by the system
(fn = 0.0065, fp = 0.13). As shown in Figure 5.5b, with the sampling rate of 0.25, more
than 38% of all false positives were processed by the agent. At the same time the actual
number of unnoticed false negatives is one third smaller than the number of false negatives in
recommender mode. This confirms the usefulness of the system tested with an independent
dataset.

Similarly to observation in Section 5.5.3 with lower sampling rates, the agent will have
seemingly fewer false negatives, in fact missing more alerts. As expected the total number of
false negatives is lower with higher sampling rates. This effect is not as clearly visible as with
DARPA1999 Data Set.

 0

 0.005

 0.01

 0.015

 0.02

 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
al

se
 N

eg
at

iv
e

ra
te

 (
fn

)

Alerts Processed by System

Agent - sampling 0.1
Agent - sampling 0.25
Agent - sampling 0.5

Recommender
Batch Learning

 0

 0.05

 0.1

 0.15

 0.2

 10000 20000 30000 40000 50000

F
al

se
 P

os
iti

ve
 r

at
e

(F
P

)

Alerts Processed by the System

Agent - sampling 0.1
Agent - sampling 0.25
Agent - sampling 0.5

Recommender
Batch Classification

Figure 5.6: False negatives and false positives for ALAC in agent and recommender modes
(Data Set B, w = 50).

68 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

5.5.5 Understanding the Rules

One requirement of our system was that the rules can be reviewed by the analyst so that their
correctness can be verified. The rules built by RIPPER are generally human interpretable
and thus can be reviewed by the analyst. Here is a representative example of two rules used
by ALAC:

(cnt_intr_w1 <= 0) and (cnt_sign_w3 >= 1) and (cnt_sign_w1 >= 1)
and (cnt_dstIP_w1 >= 1) => class=FALSE

(cnt_srcIP_w3 <= 6) and (cnt_int_w2 <= 0) and (cnt_ip_w2 >= 2)
and (sign = ICMP PING NMAP) => class=FALSE

The first rule reads as follows: If a number of alerts classified as intrusions in the last
minute (window w1) equals zero and there have been other alerts triggered by a given signature
and targeted at the same IP address as the current alert, then the alert should be classified as
false positive. The second rule says that, if the number of NMAP PING alerts originating from
the same IP address is less than six in the last 30 minutes (window w3), there have been no
intrusions in the last 5 minutes (window w2) and there has been at least 1 alert with identical
source or destination IP address, then the current alert is false positive.

These rules are intuitively appealing: If there have been similar alerts recently and they
were all false alerts, then the current alert is also a false alert. The second rule says that if
the number of NMAP PING alerts is small and there has not been any intrusions recently, then
the alert is a false alert.

RIPPER+ and RIPPER− Recall from Section 5.4 that RIPPER in the unordered rule-
set mode induces rules only for the least prevalent class, which depending on the costs of
misclassifying instances can be either a positive class or negative class. However, this induc-
ing of the class has important implications how interpretable the rules are and also on the
misclassification costs.

To analyze this effect on the classification accuracy we performed experiments in which we
control the class, for which RIPPER induces rules: RIPPER+ is an algorithm, which induces
rules describing true alerts and RIPPER− induces rules describing false alerts. The results
are shown in Figure 5.7

Note that for the curves for lower misclassification costs, RIPPER+ performs better
and for higher ones, RIPPER− performs better. These results are intuitive, as learning an
“anomaly model” (RIPPER−) gives a better performance when false negatives are mode ex-
pensive. However, we noticed that rules generated by RIPPER− tend to be overly general and
difficult to interpret (e.g., (col2 = ip_inside) and (col3 = other) => class=FALSE), say-
ing that any alert generated by an internal machine with the operating system classified as
other is a false positive).

We discovered that generating statistics showing the distribution of values of remaining
attributes (in particular source and destination IP addresses and the signature type) can
greatly improve the comprehensibility of the rules, in particular subsequent rules, induced
after many alerts have been removed. Hence, a suggestion for the future work is to generate
sets describing the values of these three attributes and add them to rules (RIPPER cannot
learn such rules as it does not support set-valued attributes). This would make those rules

5.5. ALAC EVALUATION 69

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Learning for different classes − DARPA

fp

tp

4

611

33
3460.22

78.48

0.12

0.25

0.5

1

4
8
42.550

56
304.08

541.94467.92603.65

2

3

8
22

24

70

113.97

0.25

0.5

1
1

2

8

32
48649680128

288480 617.4 1159.22

Learning ’+’, No BK
Learning ’+’, Recursive BK
Learning ’−’, No BK
Learning ’−’, Recursive BK

(a) DARPA1999 Data Set

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Learning for different classes − Data Set B

fp

tp

0.12

0.5

1
1

438.09 74.44
72

0.12

1

4

40
128

280.5 292 1184.621409.98

0.12
0.5

2

4816
3254.9

704598490.75

0.25

0.5
1

2

16
32 64 177 545.75

Learning ’+’, No BK
Learning ’+’, Recursive BK
Learning ’−’, No BK
Learning ’−’, Recursive BK

(b) Data Set B

Figure 5.7: ROC performance for algorithms inducing rules for different classes: “+” and
“−”.

more specific and also decrease the chances for alerts to be removed. Another possible mod-
ification increasing the comprehensibility of RIPPER rules is to bias its search heuristics so
that it is more likely to select one (or more) of these key attributes in the rule being built.

5.5.6 Conclusions

In our evaluation of ALAC carried on two datasets, DARPA 1999 Data Set and the Data Set
B we validated the hypothesis we stated at the beginning of the section.

We showed that background knowledge is useful for alert classification. The results were
particularly clear for the DARPA 1999 data set. For the real-world dataset, adding back-
ground knowledge had little impact on the classification accuracy. The second set was much
easier to classify, even with no background knowledge. Hence, we did not expect improve-
ment from background knowledge in this case. This confirms the first hypothesis stated in
the beginning of the evaluation section.

We also showed that the system is useful in recommender mode, where it adaptively learns
the classification from the analyst. For both datasets we obtained false-negative and false-
positive rates comparable to batch classification. Note that in recommender mode all system
misclassifications would have been corrected by the analyst.

In addition, we found that our system is useful in agent mode, where some alerts are
autonomously processed (e.g., false positives classified with high confidence are discarded).
More importantly, for both datasets the false-negative rate of our system is comparable to
that in the recommender mode. With synthetic data the system reduced the number of false
positives by 60% with a false-negative rate below 0.026 (half of these alerts would have been
shown to the analyst) and a false-positive rate 0.025. Experiments with real data, run with
the same settings show that the number of false positives has been reduced by 38% with

70 CHAPTER 5. ADAPTIVE ALERT CLASSIFICATION

a false-negative rate 0.006 (half of these alerts would have been shown to the analyst) and
a false-positive rate 0.13. Although these figures depend on the input data and the chosen
classifier, they nicely show the expected performance estimates for our application. This
confirms the second hypothesis we were validating in this section, showing that ALAC in
both modes is useful in intrusion detection.

The system has a few numeric parameters that influence its performance and should be
adjusted depending on the input data including the weighting parameter w choosing the point
of operation on the ROC curve and the confidence threshold cth which determines whether
an alert is processed autonomously or not. ALAC+ using abstaining classifiers which we will
introduce in Chapter 7 addresses these two concerns and tries to optimize the misclassification
cost of the system.

5.6 Summary

In this chapter, we presented a novel concept of building an adaptive alert classifier based on
an intrusion detection analyst’s feedback using machine-learning techniques. We discussed
the issues of human feedback and background knowledge, and reviewed machine-learning
techniques suitable for alert classification. We selected the most suitable technique for our
purposes.

In the evaluation section we used ROC analysis to show that background knowledge
improves the alert classification and used it to set parameters of our system. We also validated
the system in both agent and recommender modes on one synthetic and one real dataset and
showed that the system has acceptable error rates. Moreover, in agent mode the system
automatically processed up to 60% of false positives, reducing the analyst workload by this
factor. This shows the potential of the system and makes it attractive for this application
domain.

Chapter 6

Abstaining Classifiers using ROC
Analysis

In this chapter we introduce abstaining classifiers and their three evaluation models, cost-
based, bounded-abstention and bounded-improvement models and evaluate them on a variety
of datasets. While this can be viewed as an independent contribution to machine learning, in
the subsequent chapters, we show that the above methods are particularly advantageous for
IDS alert classification.

6.1 Introduction

In recent years, there has been much work on ROC analysis [Faw03, FW05, PF98]. An
advantage of ROC analysis in machine learning is that it offers a flexible and robust frame-
work for evaluating classifier performance with varying class distributions or misclassification
costs [Faw03].

Abstaining classifiers are classifiers that can refrain from classification in certain cases
and are analogous to a human expert, who in certain cases can say “I don’t know”. In many
domains (e.g., medical diagnosis) such experts are preferred to those who always make a
decision and sometimes make mistakes.

Machine learning has frequently used abstaining classifiers directly [Cho70, FHO04, PMAS94,
Tor00] and also as parts of other techniques [FFHO04, GL00, LC94]. Similarly to the human
expert analogy, the motivation is that when such a classifier makes a decision it will perform
better than a normal classifier. However, as these classifiers are not directly comparable, the
comparison is often limited to coverage–accuracy graphs [FHO04, PMAS94].

In this chapter, we apply ROC analysis to build an abstaining classifier that minimizes
the misclassification cost. Our method is based solely on ROC curves and is independent
of the classifiers used. In particular we do not require that the underlying classifier gives
calibrated probabilities, which is not always easy [CG04, ZE01]. We look at a particular type
of abstaining binary classifiers, i.e., metaclassifiers constructed from two classifiers described
by a single ROC curve, and show how to select such abstaining classifiers optimally. In our
previous work [Pie05], we proposed and evaluated three different optimization criteria that
are commonly encountered in practical applications. Whereas selecting an optimal classifier
in the first model, namely the cost-based model, was based only on the slope of a ROC curve
(as in the case of a single optimal classifier), we showed that such a simple algorithm not

71

72 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

possible in the remaining two models. In this work, we present our previous results and
further investigate the two models, for which we develop an efficient algorithm to select the
optimal classifier.

The contribution of the chapter is twofold: We define an abstaining binary classifier built
as a metaclassifier and propose three models of practical relevance: the cost-based model (an
extension of [Tor00]), the bounded-abstention model, and the bounded-improvement model.
These models define the optimization criteria and allow us to compare binary and abstaining
classifiers. Second, we propose efficient algorithms to practically build an optimal abstaining
classifier in each of these models using ROC analysis, and evaluate our method on a variety
of UCI KDD datasets.

The chapter is organized as follows: Section 6.2 gives background and introduces the
notation used in this chapter. In Section 6.3 we introduce the concept of ROC-optimal
abstaining classifiers in three models. Section 6.4 discusses the first model, the cost-based
model, and Section 6.5 proposes algorithms for efficient construction of abstaining classifiers
in the other two models: bounded-abstention and bounded-improvement models. Section 6.6
discusses the evaluation methodology and presents the experimental results. In Section 6.7 we
discuss alternative representation to ROC curves and how they can be used with our method.
Section 6.8 presents related work. Finally, Section 6.9 contains the conclusions and future
work.

6.2 Background

Recall in Section 2.2.3 we introduced a binary classifier C, a ranker R, a confusion matrix C
describing its performance (cf. Table 2.2a) and a cost matrix Co (cf. Table 2.2b), in a linear
cost model, in which false positives are CR times more expensive than false negatives. Finally,
we also defined a misclassification cost rc calculated per classified example, determining the
average cost incurred while classifying an instance.

In Section 2.2.4 we introduced ROC analysis, including ROC curves, ROCCH (ROC Con-
vex Hull) curves and (2.5), the known equation of iso-performance lines. In the remainder of
this chapter we will build upon these concepts to introduce cost-optimal abstaining classifiers.

6.3 ROC-Optimal Abstaining Classifier

Abstaining binary classifiers A (or abstaining classifiers for short) are classifiers that in cer-
tain situations abstain from classification. We denote this as assigning a third class “?”.
Such nonclassified instances can be classified using another (possibly more reliable, but more
expensive) classifier (e.g., a multi-stage classification system [Sen05]) or a human domain
expert.

Our method builds an ROC-optimal abstaining classifier as a metaclassifier using a ROC
curve and the binary classifiers used to construct it. A ROC-optimal classifier is defined as
described in Section 2.2.4. The method constructs an abstaining metaclassifier Aα,β using
two binary classifiers Cα and Cβ as follows:

Aα,β(x) =


+ if Cα(x) = “+” ∧ Cβ(x) = “+”
? if Cα(x) = “−” ∧ Cβ(x) = “+”
− if Cβ(x) = “−” ∧ Cα(x) = “−”

. (6.1)

6.3. ROC-OPTIMAL ABSTAINING CLASSIFIER 73

Each classifier has a corresponding confusion matrix, (TPα, FNα, FPα, TNα) and (TPβ , FNβ, FPβ , TNβ),
which will be used in the next sections. Classifiers Cα and Cβ belong to a family of classifiers
Cτ , described by a single ROC curve with FPα ≤ FPβ (as shown in Figure 6.1).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Abstaining classifier Aαβ

fp

tp

fpα fpβ

ROC
ROCCH
Cα
Cβ

Figure 6.1: Abstaining classifier Aα,β constructed using two classifiers Cα and Cβ .

Our method is independent of the machine-learning technique used. However, we require
that for any two points (fpα, tpα), (fpβ, tpβ) on the ROC curve, with fpα ≤ fpβ , corresponding
to Cα and Cβ, the following conditions hold:

∀i : (Cα(i) = “+” =⇒ Cβ(i) = “+”) ∧
(Cβ(i) = “−” =⇒ Cα(i) = “−”) .

(6.2)

Conditions (6.2) (we will hereafter refer to them as the watermark condition) are the ones
used in [FW05]. These are met in particular if the ROC curve and Cα and Cβ are built from a
single ranker R (e.g., a Bayesian classifier) with two threshold values α and β (α ≥ β). The
advantage is that for such a classifier, a simple and efficient algorithm exists for constructing
a ROC curve [Faw03]. For arbitrary classifiers (e.g., rule learners), (6.2) is generally violated.
However, we observed that the fraction of instances with Cα(i) = “+”∧Cβ(i) = “−” typically
is small. As this is an interesting class of applications, we plan to elaborate on it as a future
work item.

Given a particular cost matrix and class distribution N/P , the optimal binary classifier can
easily be chosen as one that minimizes the misclassification cost (2.3). However, no such notion
exists for abstaining classifiers, as the tradeoff between nonclassified instances and the cost is
undefined. Therefore, we proposed and investigated [Pie05] three different criteria and models
of optimization E : the cost-based, the bounded-abstention and the bounded-improvement
model, which we discuss in the following sections. Models E determine how nonclassified
instances are accounted in the misclassification cost and other boundary conditions. We
formulate our goals as:

74 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

Table 6.1: Cost matrix Co for an abstaining classifier. Columns and rows are the same as in
Table 2.1. The third column denotes the abstention class.

HHHHA
C

+ − ?

+ 0 c12 c13
− c21 0 c23

Given – A ROC curve generated using classifiers Cτ , such that the watermark condi-
tion (6.2) holds.
– A Cost matrix Co.
– Evaluation model E .

Find A classifier Aα,β such that Aα,β is optimal in model E .

Cost-Based Model In the first evaluation model ECB, a so-called cost-based model, we
use an extended 2×3 cost matrix with the third column representing the cost associated with
abstaining from classifying an instance. This cost may or may not be dependent on the true
class of the instance.

Bounded Models To address the shortcomings of the cost-based model and allow for
situations in which the extended cost matrix is not available, we propose two models EBA and
EBI that use a standard 2×2 cost matrix and calculate the misclassification cost per instance
actually classified. The motivation is to calculate the cost only for instances the classifier
attempts to classify.

In such a setup, a classifier randomly abstaining from classification would have the same
misclassification cost as a normal classifier. Conversely, classifiers abstaining from classifying
only for difficult instances may have a significantly lower misclassification cost.

However, such system is underspecified as we do not know how to trade the misclassifica-
tion cost for the number of nonclassified instances. To address this, we propose two bounded
evaluation models having boundary conditions:

Bounded-abstention model EBA, where the system abstains for not more than a fraction
kmax of instances and has the lowest misclassification cost,

Bounded-improvement model EBI , where the system has a misclassification cost not
higher than rcmax and abstains for the lowest number of instances.

6.4 Cost-Based Model

In this model, we compare the misclassification cost, rcCB , incurred by a binary and an
abstaining classifier. We use an extended 2×3 cost matrix, with the third column representing
the cost associated with classifying an instance as “?”. Note that this cost can be different for
instances belonging to different classes, which extends the cost matrix introduced in [Tor00].

Given – ROC curve generated using classifiers such that the watermark condition (6.2)
holds
– 2× 3 cost matrix Co

Find Classifier Aα,β such that it minimizes misclassification cost rcCB

6.4. COST-BASED MODEL 75

Having defined the cost matrix, we use a similar approach as in Section 2.2.4 for finding
the optimal classifier. Note that the classifications made by Cα and Cβ are not independent.
Equation (6.2) implies that false positives for Cα imply false positives for Cβ . Similarly,
false negatives for Cβ imply false negatives for Cα, and we can thus formulate (6.3). The
misclassification cost rcCB is defined using a 2 × 3 cost matrix similar to (2.3), with the
denominator equal to the total number of instances.

rcCB · (N + P) = (FPβ − FPα) c23︸ ︷︷ ︸
Cα, Cβ disagree, –

+ (FNα − FNβ) c13︸ ︷︷ ︸
Cα, Cβ disagree, +

+ FPα · c21︸ ︷︷ ︸
FP for both

+ FNβ · c12︸ ︷︷ ︸
FN for both

= (FNα · c13 + FPα · (c21 − c23) + FNβ · (c12 − c13) + FPβ · c23)

= P

(
1− fROC

(
FPα

N

))
c13 + FPα (c21 − c23)

+ P

(
1− fROC

(
FPβ

N

))
(c12 − c13) + FPβ · c23

(6.3)

We rewrite (6.3) as a function of only two variables FPα and FPβ, so that to find the local
minimum we calculate partial derivatives for these variables

∂rcCB

∂FPα
· (N + P) = −P

N
f ′ROC

(
FPα

N

)
c13 + c21 − c23

∂rcCB

∂FPβ
· (N + P) = −P

N
f ′ROC

(
FPβ

N

)
(c12 − c13) + c23 ,

(6.4)

set the derivatives to zero and making sure that the function has a local extremum. After
replacing FPα and FPβ with the corresponding rates fpα and fpβ , we obtain the final result:

f ′ROC(fp∗β) =
c23

c12 − c13

N

P

f ′ROC(fp∗α) =
c21 − c23

c13

N

P
,

(6.5)

which, similarly to (2.5), allows us to find fp∗α and fp∗β , and the corresponding classifiers Cα
and Cβ.

This derivation is valid only for metaclassifiers (6.1) with (6.2), which implies fp∗α ≤ fp∗β
and fROC(fp∗α) ≤ fROC(fp∗β). As an ROCCH is increasing and convex, its first derivative is
nonnegative and nonincreasing, and we obtain f ′ROC(fp∗α) ≥ f ′ROC(fp∗β) ≥ 0. Using the 2× 3
cost matrix these conditions can be rewritten as:

(c21 ≥ c23) ∧ (c12 > c13) ∧ (c21c12 ≥ c21c13 + c23c12) . (6.6)

If condition (6.6) is not met, our derivation is not valid; however, the solution is trivial in
this case.

Theorem 8 If (6.6) is not met, the classifier minimizing the misclassification cost is a trivial
binary classifier, namely, a single classifier described by (2.5).

Proof Calculating (6.4) we obtain that if the rightmost part of (6.6) does not hold, ∂rcCB/∂fpα

is negative for all values f ′ROC(fp∗α) ≤ f ′ROC(fp∗) = c21/c12 ·N/P and, similarly, ∂rcCB/∂fpβ

76 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

is positive for all values f ′ROC(fp∗β) ≥ f ′ROC(fp∗) = c21/c12 · N/P . This, together with the
basic assumption fpα ≤ fpβ and the properties of the ROCCH, implies that fp∗α = fp∗β , which
means that the optimal abstaining classifier is binary classifier. Such a classifier is the binary
classifier described by (2.5). ut

Equation (6.6) allows us to determine whether for a given 2 × 3 cost matrix Co a trivial
abstaining classifier minimizing rcCB exists, but gives little guidance to setting parameters in
this matrix. For this we consider two interesting cases: (i) a symmetric case c13 = c23 and
(ii) a proportional case c23/c13 = c21/c12.

The first case has some misclassification cost CR with identical costs of classifying instances
as “?”. This case typically occurs when, for example, the cost incurred by the human expert
to investigate such instances is irrespective of their true class. In this case, (6.6) simplifies to
the harmonic mean of two misclassification costs: c13 = c23 ≤ c21c12/(c21 + c12). The second
case yields the condition c13 ≤ c12/2 (equivalent to c23 ≤ c21/2). This case occurs if the cost
of classifying an event as the third class is proportional to the misclassification cost. These
simplified equations allow a meaningful adjustment of parameters c13 and c23 for abstaining
classifiers.

To summarize, the ROC-optimal abstaining classifier in a cost-based model can be found
using (6.5) if (6.6) (or the special cases discussed below) holds on a given cost matrix. In
the opposite case, our derivation is not valid; however the ROC-optimal classifier is a trivial
binary classifier (Cα = Cβ).

6.5 Bounded Models

In the simulations using a cost-based model, we noticed that the cost matrix and in particular
cost values c13, c23 have a large impact on the number of instances classified as“?”. Therefore
we think that, while the cost-based model can be used in domains where the 2×3 cost matrix
is explicitly given, it may be difficult to apply in other domains where parameters c13, c23

would have to be estimated. Therefore, in the bounded models, we use a standard 2× 2 cost
matrix and calculate the misclassification cost only per instances classified.

Using a standard cost equation (2.3), with the denominator TP + FP + FN + TN =
(1− k)(N + P), where k is the fraction of nonclassified instances, we obtain the following set
of equations:

rcB =
1

(1− k)(N + P)
(FPα · c21 + FNβ · c12)

k =
1

N + P
((FPβ − FPα) + (FNα − FNβ)) ,

(6.7)

determining the relationship between the fraction of classified instances k and the misclassi-
fication cost rcB as a function of classifiers Cα and Cβ. Similarly to the cost-based, model we
can rewrite these equations as functions of fpα and fpβ:

rcB =
1

(1− k)(N + P)
(Nfpα · c21 + P (1− fROC(fpβ)) · c12)

k =
1

N + P
(N (fpβ − fpα) + P (fROC (fpβ)− fROC (fpα))) .

(6.8)

6.5. BOUNDED MODELS 77

By putting boundary constraints on k and rcB and trying to optimize the other variable,
rcB and k respectively, we create two interesting evaluation models we discuss in the following
sections.

6.5.1 Bounded-Abstention Model

By limiting k to some threshold value kmax (k ≤ kmax), we obtain a model the bounded-
abstention model, in which the classifier can abstain for at most a fraction k of instances. In
this case the optimization criteria is that the classifier should have the lowest misclassification
cost rcB (hereafter referred to as rcBA).

This has multiple real-life applications, e.g., in situations where nonclassified instances
will be handled by a classifier with limited processing speed (e.g., a human expert). In such
cases, assuming a constant flow of instances with speed c and a constant manual processing
speed m, m < c, we obtain kmax = m/c.

Given – ROC curve generated using classifiers such that (6.2) holds
– 2× 2 cost matrix Co
– Fraction k

Find Classifier Aα,β such that the classifier abstains for not more than a fraction of k
instances and has the lowest cost rcBA.

Unfortunately, unlike the cost-based model, the set of equations (6.8) for a bounded-
abstention model does not have an algebraic solution in the general case, and in [Pie05] we
used general numerical optimization methods to solve it. Here we present an algorithm finding
the solution that is extremely efficient for piecewise-linear ROCCH curves.

To find the solution for the bounded improvement model, we will use the constrained
optimization method for the function of two variables. We will proceed in the following three
steps: First, we will present the algorithm for a smooth convex down ROC curve having a
derivative in [0, 1] and assuming that exactly a fraction kmax of instances remains unclassified.
Second, we will show under which conditions the optimal classifier can abstain for less than a
fraction kmax of instances. Finally, we will extend the method to the piecewise linear ROCCH
curves.

Optimal Classifier for a Smooth Convex Down Curve

Our minimization task can be defined as follows: Find the minimum of rcBA(fpα, fpβ), subject
to condition k∗(fpα, fpβ) = k(fpα, fpβ)− kmax = 0.

For this, we will use the Lagrange method, which is a method for constrained optimization
of a differentiable function under equality constrains (see e.g., [Ste92, Wol06] for a more
complete coverage). Very shortly, given differentiable functions F and G the goal is to find
the minimum of F (X) given the constraint G(X) = 0. The method calculates the so-called
Lagrange multipliers λ such that

∇F (X) = λ∇G(X) . (6.9)

By solving (6.9) for X and λ and given the constraint G(X) = 0 we obtain the desired
solution.

78 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

In our case we have functions of two variables (fpα and fpβ) and in this two-dimensional
case (6.9) can has an interpretation that vectors ∇rcBA and ∇k have the same direction. This
is equivalent to ∇rcBA ×∇k = 0 and

∂rcBA

∂fpα

∂k

∂fpβ
− ∂k

∂fpα

∂rcBA

∂fpβ
= 0 . (6.10)

The second condition is that k∗(fpα, fpβ) = k(fpα, fpβ)− kmax = 0.
Calculating the derivatives and marking the denominator D of rcBI as

D = N(fpα − fpβ + 1︸ ︷︷ ︸
≥0

) + P (fROC(fpα)− fROC(fpβ) + 1︸ ︷︷ ︸
≥0

) , (6.11)

we obtain

∂rcBA

∂fpα
=

1
D2

(
c12P

(
Pf ′ROC(fpα) + N

)
(fROC(fpβ)− 1) +

+ c21NP
(
fROC(fpα)− fROC(fpβ) + 1− fpαf ′ROC(fpα)

))
∂rcBA

∂fpβ
=

1
D2

(
c12P

(
−PfROC(fpα)f ′ROC(fpβ) + f ′ROC(fpβ)N(fpα − fpβ + 1)−N

)
+

+ c21N
(
−Pfpαf ′ROC(fpβ)− fpαN

))
∂k

∂fpα
=
−Pf ′ROC(fpα)−N

N + P

∂k

∂fpβ
=

Pf ′ROC(fpβ) + N

N + P
.

(6.12)

Using (6.11) and (6.12), condition (6.10) simplifies to(
f ′ROC(fpα)f ′ROC(fpβ)c12P

2 − f ′ROC(fpβ)NP (c21 − c12)− c21N
2
)

D
= 0 . (6.13)

Based on the properties of the ROC curve, denominator D is always positive (with an
exception for an all-abstaining classifier, fpα = 0 ∧ fpβ = 1, for which rcBA is undefined),
which means that (6.13) is equivalent to

f ′ROC(fpβ)
(

f ′ROC(fpα) +
N

P
(1− c21

c12
)
)

=
(

N

P

)2 c21

c12
. (6.14)

Theorem 9 If f ′′ROC is nonzero, assuming that the optimal classifier in the bounded-abstention
model abstains for exactly a fraction k = kmax of instances, for any given k ∈ [0, 1] there
exists exactly one classifier Aα,β.

Proof In the first step we show that when k = 0, fpα = fpβ = fp, such that f ′ROC(fp) =
N
P

c21
c12

. The equality fpα = fpβ results from the properties of the ROC curve and (6.8).
Condition f ′ROC(fp) = N

P
c21
c12

results from (6.14).
In the second step we show that given an optimal classifier Aα,β abstaining for exactly a

fraction kmax of instances, we can easily generate a optimal classifier A∗α,β abstaining for a
fraction k∗max = kmax + δk (where δk → 0) of instances.

6.5. BOUNDED MODELS 79

Such a classifier has coordinates (fpα + δα, fpβ + δβ), in which the following condition
holds:

δk = ∇k · (δα, δβ) . (6.15)

The derivative of a smooth convex down ROC curve is positive, which means that all
components of ∇k are nonzero.

Using (6.14) for the new point, we obtain the relationship between δα and δβ :(
f ′ROC(fpβ) + f ′′ROC(fpβ)δβ

)
·(

f ′ROC(fpα) + f ′′ROC(fpα)δα +
N

P
(1− c21

c12
)
)

=
(

N

P

)2 c21

c12

(6.16)

and after simplifications we get the following result:

(δα, δβ) ·

(
f ′′ROC(fpα), (f ′′ROC(fpβ)

N
P

c21
c12

(f ′ROC(fpβ))2

)
= 0 . (6.17)

Equations (6.15) and (6.17) show that for nonzero f ′′ROC (i) there exists only one pair of
(δα, δβ) for given δk, (ii) δk ≤ 0⇒ δα ≤ 0 ∧ δβ ≥ 0, and (iii) k → 0⇒ fpα → 0 ∧ fpβ → 1.

This completes the proof. Note that an almost similar inductive proof can be shown for
classifier starting from fp = 0 ∧ fp = 1, with negative increments δk (note that the second
step of the proof did not make any assumptions about the sign on δk). The advantage of such
an approach is that there is no need to compute the value of starting point fpα = fpβ = fp
in this case. However, the derivative of rcBA at fpα = 0∧ fpβ = 1 formally does not exist. ut

This proof generates an optimal classifier path on the surface of rcBA when varying kmax

between 0 and 1, as shown in Figure 6.2a (thick white line). Note that the thin lines show
isolines of constant k (in this case with a constant increment of 0.1). The path can be
constructed either by varying k from 0 to 1 or by varying k from 1 to 0. We will refer to these
construction methods as “top-down” and “bottom-up” respectively.

The above derivation can be used to formulate Algorithm 5 for finding the optimal classifier
in the bounded-abstention model:

Input: ROC curve fROC , fraction kmax

Result: (fpα, fpβ) defining a classifier Aα,β , abstaining for no more than kmax instances and
having the lowest misclassification cost rcBA

fpα = fpβ = fp, such that f ′ROC(fp) = N
P

c21
c12

.;1

while k(fpα, fpβ) < kmax do2

pick a small negative δk → 0 and find δα, δβ such that3

(δα, δβ) ·
(

f ′′ROC(fpα), (f ′′ROC(fpβ)
N
P

c21
c12

(f ′ROC(fpβ))2

)
= 0 and δk = ∇k · (δα, δβ);

fpα ← fpα + δα;4

fpβ ← fpβ + δβ ;5

end6

Algorithm 5: Algorithm for finding the optimal classifier.

80 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

FP(a)

0.0

0.2

0.4

0.6
0.8

1.0

FP(b)

0.0
0.2

0.4

0.6

0.8

1.0

C
ost

0.1

0.2

0.3

0.4

0.5

Optimal classifier path − bounded−abstention

(a) Optimal classifier path for a smooth convex up
curve (Algorithm 5)

FP(a)

0.0

0.2

0.4

0.6
0.8

1.0

FP(b)

0.0
0.2

0.4

0.6

0.8

1.0

C
ost

0.2

0.3

0.4

0.5

Optimal classifier path − bounded−abstention

(b) Optimal classifier path for a piecewise ROCCH
(Algorithm 6)

Figure 6.2: Optimal classifier paths in a bounded-abstention model.

Optimal Classifier Abstaining for fewer than kmax Instances

In this section we will determine when the optimal classifier can abstain for a fraction smaller
than kmax of instances. We will show when such a classifier exists and that when it exists it
has the same misclassification cost as the optimal classifier abstaining for exactly a fraction
kmax of instances.

Recall that the optimal abstaining classifier requires that (6.14) is met. In this section we
will prove the following theorem:

Theorem 10 Given an optimal classifier Aα,β with a cost rcBA abstaining for exactly a
fraction kmax of instances, no optimal classifier A∗α,β abstaining for a fraction k∗max ≤ kmax

of instances and having a misclassification cost lower than rcBA exists.

Proof Given an optimal classifier abstaining for exactly kmax instances, there exists a clas-
sifier abstaining for (k∗max < kmax) and having the same or a lower misclassification cost iff
∂rcBA/∂fpα ≤ 0 or ∂rcBA/∂fpβ ≥ 0. In the remainder we will show when such a classifier
exists.

In the calculations below we will use the following substitutions:

Aα = f ′ROC(fpα);
Bα = fROC(fpα)− fpαf ′ROC(fpα)
Aβ = f ′ROC(fpβ);
Bβ = fROC(fpβ)− fpβf ′ROC(fpβ) .

(6.18)

6.5. BOUNDED MODELS 81

Note that for a nondecreasing and convex down fROC , the following conditions hold:

Aα ≥ Aβ ≥ 0
0 ≤ Bα ≤ Bβ ≤ 1

Aα + Bα ≥ Aβ + Bβ ≥ 1 .

(6.19)

Calculating ∂rcBA/∂fpβ. Calculating ∂rcBA/∂fpβ ≥ 0, assuming that (6.14) holds and
using substitution (6.18), yields the following condition:

∂rcBA

∂fpβ
≥ 0⇔ Bα︸︷︷︸

≤0

Aβc12P
2 + (−Aβ −Bβ + 1)︸ ︷︷ ︸

≤0

c12NP ≥ 0 (6.20)

Equation (6.20) only holds if Bα = 0 and Aβ + Bβ = 1 and in this case ∂rcBA/∂fpα = 0.
From the properties of the ROC curve, this is only possible when fROC contains line segments
(0, 0) − (fpα, fROC(fpα)) and (fpβ, fROC(fpβ)) − (1, 1). In addition, condition (6.14) must
hold.

Calculating ∂rcBA/∂fpα. Calculating ∂rcBA
∂fpα

≤ 0, assuming that (6.14) holds and using
substitution (6.18), produces the following condition:

∂rcBA

∂fpβ
≤ 0⇔ (Aβ + Bβ − 1)(Aαc12P

2 + (c12 − c21)NP) ≤ −Bαc21NP . (6.21)

Dividing both sides by (6.14) we obtain:

Aβ + Bβ − 1
Aβ︸ ︷︷ ︸
≥0

≤ −Bα︸ ︷︷ ︸
≤0

1
NP

. (6.22)

Similarly, this equation has a solution only if Bα = 0 and Aβ + Bβ = 1.
To summarize, we proved that the classifier Aα,β in the bounded-abstention model with

a boundary abstention of kmax will have the lowest cost rcBA when it abstains for exactly a
fraction of kmax instances. Moreover in the special case, when Aα,β is such that fROC contains
the two line segments (0, 0)− (fpα, fROC(fpα)) and (fpβ, fROC(fpβ))− (1, 1), there exists an
optimal classifier A∗α,β having the same misclassification cost and abstaining for fewer than
kmax of instances. Such a classifier will be described by the ends of following line segments:
(0, 0)− (fp∗α, fROC(fp∗α)) and (fp∗β , fROC(fp∗β))− (1, 1). Such cases correspond to a flat area
in Figure 6.2b. ut

The Algorithm for a Convex Hull fROC

Algorithm 5 is does not allow an efficient generation of a solution, as the increments δα, δβ it
uses are infinitely small. Moreover the property of nonzero f ′′ROC , required by Algorithm 5,
does not hold. However, our function fROC is a convex hull, a piecewise linear function, for
which an efficient algorithm for finding the optimal classifier exists.

Assume the function fROC is a piecewise linear convex down curve, constructed from n
line segments S1, S2, · · · , Sn connecting n + 1 points P1, P2, · · · , Pn+1. Each line segment Si

82 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

is described by a line segment tp = Aifp + Bi, where Ai and Bi are the coefficients of a line
connecting points Pi and Pi+1.

In this case, the value of derivatives f ′ROC is equal to Ai for fp ∈]fpPi ; fpPi+1 [and is
undefined for arguments fpPi and fpPi+1 . For our computations we assume that the value of
f ′ROC for every argument fpPi takes all values between [Ai−1; Ai]. Moreover, we also assume
that for fpP1 the derivative takes all values]∞; A1] and for fpPn+1 the derivative takes all
values [0; An].

Note that with a piecewise linear ROCCH, (6.17) cannot be used because the values of
f ′′ROC are either zero or undefined (at the vertices). However, (6.14) still can be used provided
we allow that derivatives at vertices take all values in a range of slope values of adjacent
segments.

Assuming the classifier Aα,β optimal for a fraction kmax is defined by (fpα, fpβ) where
fpα lies on the line segment Si and fpβ lies on the line segment Sj , we construct the optimal
classifier path “bottom-up” (i.e., constructing an optimal classifier A∗α,β for k∗max < kmax)∗.
The coordinates (fp∗α, fp∗β) of the classifier A∗α,β will depend on the value of the following
expression:

X = Aj

(
Ai +

N

P
(1− c21

c12
)
)
−
(

N

P

)2 c21

c12
. (6.23)

When X < 0, the classifier fpα is located at the vertex (so that (6.14) holds) and the
optimal classifier A∗α,β with k∗max < kmax will have fp∗β < fpβ. Similarly, when X > 0, the
classifier fpβ is located at the vertex and the optimal classifier A∗α,β with k∗max < kmax will
have fp∗α > fpα. In both these cases the corresponding points fp∗β and fp∗α can be calculated
from equation

k∗max =
1

N + P
(N (fpβ − fpα) + P (Ajfpβ + Bj −Aifpα −Bi)) , (6.24)

given that the corresponding points fpα and fpβ are fixed.
Finally, when X = 0, the classifier Aα,β is located on line segments Si, Sj outside vertices.

In this case, the optimal classifier is defined ambiguously for a given kmax and these classifiers
can be generated by finding all pairs satisfying (6.24) given the constraints that fpα is within
a line segment Si and fpβ is within a line segment Sj . Specifically, it is also possible to use
either of the classifiers for the two preceding cases (X < 0 or X > 0).

This leads to the efficient Algorithm 6 for finding the optimal classifier. The algorithm
constructs the abstaining classifier “bottom-up” starting from points P1 and Pn. At each step
the algorithm calculates the value of X using (6.23) and depending on its sign, it advances
either i or j as shown in Figure 6.3. If the abstention rate for new points Pi+1, Pj (or Pi, Pj−1

correspondingly) is larger than kmax the solution is calculated by solving a linear equation
k(fpα, fpβ) = kmax with respect to fpα (fpβ) and the algorithm terminates. Otherwise, in
the next iteration the evaluation of X starts from the new point Pi+1, Pj (Pi, Pj−1).

Assuming the ROCCH consists of n line segments, the algorithm terminates in at most n
steps. Therefore its complexity is O(n).

∗If fpα lies on the vertex connecting Si−1 and Si, we assume the value Ai. Similarly, for fpβ lying on the
vertex connecting Sj and Sj+1, we assume the value Aj .

6.5. BOUNDED MODELS 83

Pi

Pj

Pi+1

Case 1

X > 0
Pi

Pj

Pj−1

Case 2

X < 0

Figure 6.3: Finding the optimal classifier in a bounded model: visualization of X.

6.5.2 Bounded-Improvement Model

The second bounded model is when we limit rcB (hereafter referred to rcBI) to a threshold
value rcmax (rcBI ≤ rcmax) and require that the classifier abstain for the smallest number of
instances.

This model has multiple real-life applications, e.g., in the medical domain, where, given
a certain test and its characteristics (ROC curve), the goal is to reduce the misclassification
cost to a user-defined value rcmax and allow only the smallest number of abstentions:

Given – ROC curve generated using classifiers such that (6.2) holds
– 2× 2 cost matrix Co
– Cost rcmax

Find Classifier Aα,β such that the cost of the classifier is no greater than rcmax and the
classifier abstains for the smallest number of instances.

This model is an inverse of the preceding model and can be solved by an algorithm similar
to Algorithm 6. To show the solution for this model we use a similar approach as in the first
model: First we will show the algorithm for a smooth convex down ROC curve having the
derivative in [0, 1] and assuming that the classifier has rcBI equal to rcmax. Second, we will
show under which conditions the optimal classifier can have a misclassification cost smaller
than rcmax. Finally, we will present an efficient algorithm for piecewise linear ROCCH curves.

Optimal Classifier for a Smooth Convex-down Curve

To show the solution for the bounded improvement model, we will use the constrained op-
timization method for the function of two variables. The minimization task can be de-
fined as follows: Find the minimum of k(fpα, fpβ), subject to condition rc∗BI (fpα, fpβ) =
rcBI (fpα, fpβ) − rcmax = 0. Similarly as in Section 6.5.1, we use the Lagrange method and
obtain the same condition (6.14). The second condition is that rcBI (fpα, fpβ) = rcmax.

Theorem 11 If f ′′ROC is nonzero, assuming that the optimal classifier in the bounded-improvement
model has rcBI equal to rcmax, for a given rc ∈ [0, rc∗], where rc∗ is the rc for the optimal
binary classifier, there exists exactly one classifier Aα,β.

84 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

Input: ROCCH curve fROC , defined by (n + 1) points P1, · · ·Pn+1, fraction kmax

Result: (fpα, fpβ) defining a classifier Aα,β , abstaining for no more than kmax instances and
having the lowest misclassification cost rcBA

iα = 1, iβ = n + 1, found← FALSE ;1

while (!found) do2

/* calculate coefficients for line segments Siα
Siβ−1 */

Aiβ−1 ←
Piβ

[tp]−Piβ−1[tp]

Piβ
[fp]−Piβ−1[fp] ;3

Biβ−1 ← Piβ
[tp]−Aiβ−1Piβ

[fp] ;4

Aiα ←
Piα+1[tp]−Piα [tp]
Piα+1[fp]−Piα [fp] ;5

Biα
← Piα

[tp]−Aiα
Piα

[fp] ;6

/* evaluate which point to advance */

X ← Aiβ−1

(
Aiα + N

P (1− c21
c12

)
)
− N

P
c21
c12

;7

if X > 0 then8

/* advance fpα */
if k(Piα+1[fp], Piβ

[fp]) ≥ kmax then9

iα ← iα + 1;10

else11

fpβ ← Piβ
[fp];12

/* solve a linear eq. k(fpα, fpβ) = kmax with respect to fpα */

fpα ← −
kmax(N+P)−P (Biβ−1−Biα)−fpβ(N+PAiβ−1)

N+PAiα
;13

found← TRUE;14

end15

else if X < 0 then16

/* advance fpβ */
if k(Piα [fp], Piβ−1[fp]) ≥ kmax then17

iβ ← iβ − 1;18

else19

fpα ← Piα
[fp];20

/* solve a linear eq. k(fpα, fpβ) = kmax with respect to fpβ */

fpβ ←
kmax(N+P)−P (Biβ−1−Biα)+fpα(N+PAiα)

N+PAiβ−1
;21

found← TRUE;22

end23

else24

/* can move either iα or iβ */
(...);25

end26

end27

Algorithm 6: Algorithm for finding the optimal classifier in a bounded-abstention model for a
piecewise-linear ROCCH curve.

Proof The proof is similar to Theorem 9 with an identical first condition (6.14) and the
second condition δrc = ∇rcBI · (δα, δβ). However, unlike the in the preceding case, ∇rcBI can
be equal 0 (under conditions shown in the proof of Theorem 10). In such a situation, the
misclassification cost rcBI will not change with the change of fpα and fpβ . ut

6.5. BOUNDED MODELS 85

Similarly to the preceding case, the proof generates an optimal classifier path as shown
in Figure 6.4a, where thin isolines show classifiers with identical misclassification cost rcBI

†.
The optimal classifier crosses these isolines at the points of minimal k.

FP(a)

0.0 0.2 0.4 0.6 0.8 1.0

FP
(b)

0.0

0.2

0.4

0.6
0.8

1.0

k

0.0

0.2

0.4

0.6

0.8

Optimal classifier path − bounded−improvement

(a) Optimal classifier path for a piecewise ROCCH
(Algorithm 7)

FP(a)

0.0 0.2 0.4 0.6 0.8 1.0

FP
(b)

0.0

0.2

0.4

0.6
0.8

1.0

k

0.0

0.2

0.4

0.6

0.8

1.0

Optimal classifier path − bounded−improvement

(b) The special case for an abstaining classifier

Figure 6.4: Optimal classifier paths in a bounded-improvement model.

Optimal classifier with rcBI lower than rcmax

As we proved in Theorem 10, if fROC contains the line segments (0, 0)−(fpα, fROC(fpα)) and
(fpβ, fROC(fpβ))− (1, 1) and (6.14) holds, the classifier has the same rcBI for all classifiers in
these line segments.

Moreover, in this case, this rcBI for this line segment is the lowest rcBI an abstaining
classifier can achieve with this ROC curve. Therefore for a higher rcmax the optimal classifier
will have a lower misclassification cost. Such a situation is illustrated in Figure 6.4b.

The Algorithm for a Convex Hull fROC

The algorithm is similar to Algorithm 6, however it uses different conditions in lines 6 and 6,
namely evaluating the misclassification cost given by

rcmax =
1

(1− k)(N + P)
(Nfpα · c21 + P (1− (Ajfpβ + Bj)) · c12) , (6.25)

where k is determined by (6.24). This yields

rcmax =
Nfpα · c21 + P (1− (Ajfpβ + Bj)) · c12

fpα(N + PAi)− fpβ(N + PAj) + P (Bj −Bi) + N + P
. (6.26)

Similarly, lines 6 and 6 solve a linear equation (6.26) with respect to fpα and fpβ. This yields
Algorithm 7.

†Note that rcBI (0, 1) is undefined—the algorithm should use a boundary value

86 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

Input: ROCCH curve fROC , defined by (n + 1) points P1, · · ·Pn+1, fraction rcmax

Result: (fpα, fpβ) defining a classifier Aα,β , having cost not bigger than rcmax instances and
abstaining for the smallest number of instances.

iα = 1, iβ = n + 1, found← FALSE ;1

while (!found) do2

/* calculate coefficients for line segments Siα
Siβ−1 */

Aiβ−1 ←
Piβ

[tp]−Piβ−1[tp]

Piβ
[fp]−Piβ−1[fp] ;3

Biβ−1 ← Piβ
[tp]−Aiβ−1Piβ

[fp] ;4

Aiα ←
Piα+1[tp]−Piα [tp]
Piα+1[fp]−Piα [fp] ;5

Biα
← Piα

[tp]−Aiα
Piα

[fp] ;6

/* evaluate which point to advance */

X ← Aiβ−1

(
Aiα + N

P (1− c21
c12

)
)
− N

P
c21
c12

;7

if X > 0 then8

/* advance fpα */
if rcBI (Piα+1[fp], Piβ

[fp]) ≥ rcmax then9

iα ← iα + 1;10

else11

fpβ ← Piβ
[fp];12

/* solve a linear eq. rcBI (fpα, fpβ) = rcmax with respect to fpα */

fpα ←
P (1−Biβ−1c12)−(N+P (1+Biβ−1−Biα))rcmax−fpβ(−(N+PAiβ−1)rcmax+PAiβ−1c12)

(N+PAiα)rcmax−Nc21
;13

found← TRUE;14

end15

else if X < 0 then16

/* advance fpβ */
if rcBI (Piα

[fp], Piβ−1[fp]) ≥ rcmax then17

iβ ← iβ − 1;18

else19

fpα ← Piα [fp];20

/* solve a linear eq. rcBI (fpα, fpβ) = rcmax with respect to fpβ */

fpβ ←
P (1−Biβ−1c12)−(N+P (1+Biβ−1−Biα))rcmax−fpα((N+PAiα)rcmax−Nc21)

−(N+PAj)rcmax+PAjc12
;21

found← TRUE;22

end23

else24

/* can move either iα or iβ */
(...);25

end26

end27

Algorithm 7: Algorithm for finding the optimal classifier in the bounded-improvement model
for the piecewise-linear ROCCH curve.

6.6 Experiments

To analyze the performance of our method, we tested it on 15 well-known datasets from
the UCI KDD [HB99] database: breast-cancer, breast-w, colic, credit-a, credit-g,
diabetes, heart-statlog, hepatitis, ionosphere, kr-vs-kp, labor, mushroom, sick,
sonar, and vote.

We tested our method in all three models described above. In the ECB model, the input

6.6. EXPERIMENTS 87

data is a 2 × 3 cost matrix in the symmetric case (c13 = c23). In EBA, we use a 2 × 2
cost matrix and kmax (the fraction of instances that the system does not classify). In EBI ,
we could not use a constant value of rcmax for all datasets because different datasets yield
different ROC curves and misclassification costs. Instead we used a fraction cost improvement
f and calculated rcmax as follows: rcmax = (1− fmin) rcbin, where rcbin is the misclassification
cost of the ROC-optimal binary classifier found using (2.5). Hence the input data is also a
2× 2 cost matrix and a fraction fmin.

6.6.1 Constructing an Abstaining Classifier

Recall that the ROC-optimal classifier in the cost-based model is located only on the vertices
of the ROCCH (Section 6.4). In the other two models, the ROC-optimal classifier uses
arbitrary points on the ROCCH, most typically one point is located at the vertex and a the
other one is located on a line segment computed in Algorithms 6 and 7.

Such classifiers, corresponding to points lying on the line segment, can be constructed
using a weighted random selection of votes of classifiers corresponding to two adjacent ver-
tices [Faw03]. However, our prototype uses another method, which was more stable and
produced less variance than the random selection did.

A ROCCH can be considered a function f : τ 7→ (fp, tp), where τ ∈ T is a set of discrete
parameters, varying which, one constructs classifiers Cτ corresponding to different points
on the ROCCH. In our algorithm we compute an inverse function f−1 : (fp, tp) 7→ τ and
interpolate it using splines with a function ˆf−1 defined for a continuous range of values τ .
Given an arbitrary point (fp∗, tp∗) on the curve, we use the function ˆf−1 yielding τ∗ to
construct a classifier Cτ∗

6.6.2 Testing Methodology

The experiment for each dataset was a two-fold cross-validation repeated five times with
different seed values for the pseudo-random generator (we used 5 × 2 cross-validation, as it
has a low-level Type-I error for significance testing [Die98]). We averaged the results for these
runs and calculated 95% confidence intervals, shown as error bars on each plot. In the cross-
validation, we used a training set to build an abstaining classifier, which was subsequently
evaluated on the testing set.

The process of building an abstaining classifier is shown in Figure 6.5. We used another
two-fold cross-validation (n = 2) to construct a ROC curve. The cross-validation was executed
five times (m = 5), and the resulting ROC curves were averaged (threshold averaging [Faw03])
to generate a smooth curve. Although the method is applicable for any machine-learning
algorithm that satisfies the watermark condition (6.2), we used a simple Naive Bayes classifier
as a base classifier, converting it to a ranker by calculating the prediction ratio P (+ | x)/P (− |
x).

Given the ROC curve and the input parameters (cost matrix and a value kmax or fmin),
the program uses the algorithms proposed to find values α and β describing Cα and Cβ and
the ROC-optimal classifier (in each model). These values were used to set the thresholds in
a Naive Bayes classifier built using the entire training set to create Aα,β.

Such an experiment was run for every dataset and every combination of input parameters,
CR and c13 (kmax or fmin), thus producing multiple plots (one for each dataset), multiple series
(one for each cost ratio), and multiple points (one for each value of c13, kmax or fmin).

88 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

n-fold
cross-validation

Testing Set
Classify

(1) 2x3 cost matrix or
(2) 2x2 cost matrix and fraction k

Training Set
Build Classifier

Collect
 Statistics

repeat m-times and average

(for each fold)

Build ROC

Find Thresholds*

Build Classifier

Build Abstaining
Classifier A

Binary Classifier

Thresholds

ROC

training examples

Classifier

* - algorithm described in the disertation

a,b

Figure 6.5: Building an abstaining classifier Aα,β.

We used three values of the cost ratio (CR): 0.5, 1 and 2, and four different values of c13

(first model), kmax: 0.1, 0.2, 0.3 and 0.5 (second model), and fmin: 0.1, 0.2, 0.3 and 0.5 (third
model), yielding 180 experiment runs (15× 3× 4) for each model.

We will briefly justify this choice of parameters. For the first model, we selected values
of c13 that are evenly spaced between 0 and the maximum value for a particular cost ratio
(cf. (6.6)). For the other two models, we believe that, while the results will definitely be
application-dependent, values of kmax (fmin) that are lower than 0.1 bring too small an ad-
vantage to justify abstaining classifiers, whereas values larger than 0.5 may not be practical
for real classification systems. For the CRs we tested the performance of our system for cost
ratios close to 1.

We used Bayesian classifier from the Weka toolkit [WF00] as a machine-learning method
and R [R D04] to perform numerical calculations.

6.6.3 Results—Cost-Based Model

Out of 180 simulations (15 datasets, four values of c13, and three cost values), 152 are signifi-
cantly better (lower rcCB) than the corresponding optimal binary classifier (one-sided paired
t-test with a significance level of 0.95). The optimal binary classifier was the same Bayesian
classifier with a single threshold set using (2.5).

The results for a representative dataset are shown in Figure 6.6, and tabular results for
all datasets for one cost ratio and two sample costs c13 are shown in Table 6.2. The X-axes
correspond to the cost value in a symmetric case c13 = c23 (left and center panel), and the Y-
axes show the relative cost improvement (left panel) and the fraction of nonclassified instances
(center panel). The right panel displays the relationship between the fraction of skipped
instances and the overall cost improvement. Horizontal error bars show 95% confidence
intervals for the fraction of nonclassified instances, only indirectly determined by c13.

We clearly observe that lower misclassification costs c13 = c23 result in a higher number of
instances being classified as “?” and higher relative cost improvement. However for different

6.6. EXPERIMENTS 89

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

ionosphere.arff

cost value c13=c23

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

ionosphere.arff

cost value c13=c23

fr
ac

tio
n

in
st

an
ce

s
sk

ip
pe

d
0.1 0.3 0.5

0.
0

0.
2

0.
4

ionosphere.arff

fraction instances skipped

co
st

 im
pr

ov
em

en
t

Figure 6.6: Cost-based model: Relative cost improvement and fraction of nonclassified in-
stances for a representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

Table 6.2: Fraction of nonclassified instances (k) and relative cost improvement (f) for a
cost-based model (CR = 1, c13 = {0.1, 0.2}).

Dataset c13 = 0.1 c13 = 0.2
k f k f

breast-cancer 0.97± 0.03 0.64 ± 0.01 0.68± 0.05 0.31 ± 0.02
breast-w 0.31± 0.03 0.16 ± 0.05 0.05± 0 0.13 ± 0.05
colic 0.96± 0.03 0.44 ± 0.02 0.27± 0.04 0.15 ± 0.03
credit-a 0.64± 0.01 0.48 ± 0.02 0.33± 0.02 0.22 ± 0.02
credit-g 0.84± 0.02 0.64 ± 0.01 0.59± 0.02 0.38 ± 0.01
diabetes 0.81± 0.01 0.64 ± 0.01 0.67± 0.02 0.35 ± 0.01
heart-statlog 0.76± 0.03 0.46 ± 0.01 0.32± 0.04 0.14 ± 0.04
hepatitis 0.46± 0.06 0.51 ± 0.03 0.29± 0.03 0.29 ± 0.04
ionosphere 0.42± 0.03 0.36 ± 0.04 0.22± 0.02 0.07 ± 0.05
kr-vs-kp 0.62± 0.02 0.46 ± 0.02 0.29± 0.01 0.26 ± 0.01
labor 0.65± 0.07 0.16 ± 0.13 0.36± 0.08 -0.09± 0.17
mushroom 0.23± 0.02 -0.08± 0.06 0.03± 0 0.22 ± 0.01
sick 0.13± 0 0.51 ± 0.03 0.09± 0 0.28 ± 0.05
sonar 0.93± 0.02 0.68 ± 0.02 0.77± 0.04 0.41 ± 0.03
vote 0.34± 0.04 0.55 ± 0.04 0.17± 0.01 0.39 ± 0.05

datasets even small differences in c13 result in large differences of k and f . On the other
hand, for many datasets, we observe an almost linear relationship between the fraction of
nonclassified instances and the relative cost improvement (right panel).

6.6.4 Results—Bounded Models

Bounded-abstention Model

Out of 180 simulations (15 datasets, four values of fractions of nonclassified instances and
three cost values), 179 have a significantly lower rcBA than the corresponding optimal binary
classifier (one-sided paired t-test with a significance level of 0.95). The optimal binary classifier
is a Bayesian classifier with a single threshold.

We also observed that in most cases the resulting classifier classified the desired fraction
of instances as the third class; the mean of the relative difference of k (∆k/k) for all runs is
0.078 (σ = 0.19). This is particularly important as it is only indirectly determined by the
two thresholds the algorithm calculates.

90 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

The results for a representative dataset are shown in Figure 6.7 and tabular results for
all datasets for one cost ratio and two sample kmax are shown in Table 6.3. The X-axes
correspond to the actual fraction of nonclassified instances and the Y-axes show the relative
cost improvement (left panel) and the misclassification cost (right panel). The left panel
shows the relative cost improvement as a function of the fraction of instances handled by
operator k. The right panel shows the same data with the absolute values of rcBA. The
dashed arrows indicate the difference between an optimal binary classifier and an abstaining
one.

In general, the higher the values of k, the higher the cost improvement; for eight datasets,
namely breast-cancer, credit-a, credit-g, diabetes, heart-statlog, ionosphere, kr-vs-kp
and sonar, we can observe an almost linear dependence between these variables. For four
datasets (breast-w, mushroom, sick, vote) even as low an abstention as 0.1 can lead to a
reduction of the misclassification cost by half (and of as much as 70% for two datasets).

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

ionosphere.arff

fraction skipped (k)

re
la

tiv
e

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
04

0.
10

0.
16

ionosphere.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

Figure 6.7: Bounded-abstention model: Relative cost improvement and the absolute cost for
one representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

Bounded-improvement Model

This model is in fact the inverse of the preceding model, and thus we expected very similar
results. The results for a representative dataset are shown in Figure 6.8, and tabular results
for all datasets for one cost ratio and two sample fmin are shown in Table 6.6.4. The X-axes
correspond to the relative cost improvement (left panel) and the misclassification cost (right
panel). The Y-axes show the actual fraction of nonclassified instances. The left panel shows
the fraction of instances handled by the operator as a function of the actual misclassification
cost. It is interesting to compare the actual relative cost improvement f and the assumed
one (0.1, 0.2, 0.3, 0.5), as the former is only indirectly determined through two thresholds
determined by the performance on the training set. The mean of the relative difference of f
(∆f

f) for all runs is 0.31 (σ = 1.18). The positive value of the mean shows that, on average,
the system has a lower misclassification cost than required. Note that this value is higher than
the corresponding difference in the preceding model. We conclude that this model is more
sensitive to parameter changes than the preceding one. The right panel shows the same data

6.6. EXPERIMENTS 91

Table 6.3: Relative cost improvement (f) as a function of a fraction of nonclassified instances
(kmax) for a bounded-abstention model (CR = 1, kmax = {0.1, 0.5}).

Dataset kmax = 0.1 kmax = 0.5
k f k f

breast-cancer 0.1 ± 0.01 0.07± 0.01 0.53± 0.01 0.3 ± 0.07
breast-w 0.12± 0.02 0.58± 0.06 0.53± 0.04 1 ± 0
colic 0.09± 0.01 0.14± 0.02 0.48± 0.01 0.33± 0.03
credit-a 0.1 ± 0 0.17± 0.02 0.5 ± 0.01 0.55± 0.03
credit-g 0.1 ± 0 0.11± 0.01 0.51± 0.01 0.37± 0.07
diabetes 0.11± 0.01 0.11± 0.02 0.51± 0.01 0.41± 0.03
heart-statlog 0.11± 0.01 0.19± 0.03 0.56± 0.02 0.58± 0.09
hepatitis 0.13± 0.01 0.33± 0.04 0.53± 0.03 0.71± 0.07
ionosphere 0.1 ± 0.01 0.26± 0.03 0.5 ± 0.01 0.74± 0.04
kr-vs-kp 0.1 ± 0 0.25± 0.01 0.56± 0.02 0.89± 0.02
labor 0.12± 0.04 0.37± 0.15 0.58± 0.05 0.77± 0.19
mushroom 0.09± 0.02 0.71± 0.01 0.42± 0.02 1 ± 0
sick 0.11± 0 0.7 ± 0.01 0.47± 0 0.85± 0.02
sonar 0.13± 0.01 0.12± 0.03 0.56± 0.02 0.6 ± 0.05
vote 0.1 ± 0.01 0.46± 0.04 0.55± 0.02 0.96± 0.03

with the X-axis giving absolute values of costs. In addition the horizontal arrows (dashed)
indicate the absolute values for the optimal binary classifier and the desired cost at the head
of an arrow.

0.1 0.3 0.5

0.
05

0.
20

0.
35

ionosphere.arff

relative cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.06 0.10 0.14

0.
05

0.
20

0.
35

ionosphere.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

Figure 6.8: Bounded-improvement model: Fraction of nonclassified instances for a represen-
tative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

Similarly, to the preceding model, the four datasets can yield a 50% cost reduction while
abstaining for approximately 10% of the instances. On the other hand, there are datasets
in which even a 10% cost reduction is done at the cost of large abstention windows (e.g.,
67% for breast-cancer). Considering much larger actual relative cost improvements than
the desired one, we conclude that this model is more difficult to tune than the bounded-
improvement model.

92 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

Dataset fmin = 0.1 fmin = 0.5
f k f k

breast-cancer 0.28± 0.25 0.67± 0.15 0.66± 0.24 0.93± 0.05
breast-w 0.15± 0.04 0.03± 0.03 0.48± 0.06 0.11± 0.03
colic 0.09± 0.05 0.12± 0.09 0.43± 0.11 0.86± 0.03
credit-a 0.13± 0.02 0.06± 0.01 0.52± 0.04 0.46± 0.02
credit-g 0.14± 0.05 0.39± 0.12 0.46± 0.09 0.78± 0.08
diabetes 0.09± 0.03 0.39± 0.17 -0.2 ± 0.91 0.89± 0.06
heart-statlog 0.13± 0.04 0.07± 0 0.51± 0.13 0.62± 0.08
hepatitis 0.12± 0.1 0.22± 0.19 0.54± 0.08 0.49± 0.18
ionosphere 0.1 ± 0.03 0.03± 0.01 0.46± 0.06 0.31± 0.02
kr-vs-kp 0.1 ± 0.01 0.05± 0.01 0.5 ± 0.01 0.24± 0.01
labor 0.36± 0.19 0.23± 0.16 0.42± 0.44 0.59± 0.16
mushroom 0.07± 0.01 0 ± 0 0.48± 0.02 0.04± 0.01
sick 0.27± 0.05 0.04± 0.01 0.56± 0.03 0.07± 0
sonar 0.15± 0.06 0.19± 0.01 0.52± 0.13 0.74± 0.05
vote 0.13± 0.04 0.03± 0.01 0.53± 0.02 0.13± 0.02

6.7 Alternative Representations to ROC Curves

Our method for constructing the cost-optimal abstaining classifiers is based on ROC analysis
and requires that the ROC curve of a base classifier is available. However, both machine
learning as well as other domains, have also used alternative representation to ROC curves:
precision-recall curves, DET-curves and cost curves. It is therefore natural to ask how our
method can be applied when those alternative graphical representations are used.

6.7.1 Precision-Recall and ROC Curves

In information retrieval or other applications with extremely skewed class distributions precision-
recall (P-R) curves are a commonly used alternative to ROC curves. Recall r is defined as
the fraction of relevant documents retrieved‡ and precision p is defined as the fraction of
retrieved documents that are in fact relevant. In other words, r = tp = TP/(TP + FN) and
p = TP/(TP + FP). It is therefore natural to ask how ROC and precision-recall curves are
related.

Theorem 12 Under a constant class distribution N/P , a function mapping a ROC curve to
a precision-recall curve is a bijection f : fROC ↔ fPR.

Proof By replacing absolute values in a confusion matrix (FP , TP , FN) to the corresponding
rates (fp, tp, fn) and substituting the values of precision and recall we obtain:

f(fp, tp) =

(
tp

tp + N
P fp

, tp

)
∧ f−1(p, r) =

(
Pr(1− p)

Np
, r

)
(6.27)

Note that the bijective mapping does not hold for points on the ROC space with tp =
0∧fp 6= 0, which all map to (0, 0)P−R. These points are uninteresting as they correspond to a
worse-than-random classifier. Similarly, (0, 0)ROC 7→ (f ′ROC(x)/(f ′ROC(x)+N/P)|x→0, 0)P−R

so the mapping for this point is also not bijective.

‡The original definitions of precision and recall use a notion of relevant documents (positive instances) from
a pool of all documents (both positive and negative instances). Retrieved documents refer to documents the
system thinks are relevant (instances labeled as positive by the classifier).

6.7. ALTERNATIVE REPRESENTATIONS TO ROC CURVES 93

For other points it is trivial to show using (6.27) that f−1(f(fp, tp)) = (fp, tp) for (fp, tp) ∈
]0, 1]×]0, 1] and f(f−1(p, r)) = (p, r) for the domain of P-R curves, which completes the proof.
ut

It is easy to show that the mapping of ROC space into P-R space is not summetric along
the main diagonal in the ROC space, corresponding to the “random” classifier. In fact, the
diagonal is transformed to a vertical line with p = P/(N + P) and all better-than-random
classifiers are transformed to [P/(N + P), 1]× [0, 1] in the P-R space. Conversely, all worse-
than-random classifiers, are transformed to [0, P/(N + P)] × [0, 1], further bounded by the
curve r = N/P ·p/(1−p) and all points lying above this curve are undefined in the P-R space.

Note that as P-R curves are typically used with N � P the P-R and worse-than-random
classifiers are typically not of interest, R-P curves “better utilize” the available space.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC space

fp

tp

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−R space

p

r

Figure 6.9: Conversion between sample ROC and P-R curves (N/P = 5).

There is also a number of interesting observations stemming from Theorem 12:

Observation If classifier Cα dominates over Cβ over the entire ROC space, it also dominates
in the P-R space. As the mapping between ROC and P-R is bijective, it means that the curves
can only cross each in one representation if they cross each other in the other representation.
As dominating classifiers Cα and Cβ cross each other only at (0,0) and (1,1) in the ROC space,
they cannot cross at any other points in the P-R space§. Hence, the classifiers Cα and Cβ will
be also dominating in the P-R space.

Observation A line segment tp = Afp + B in a ROC space corresponds to a segment of a
rational function r = C + D/(p− E), where

C =
BN

AP + N
∧ D =

ABPN

(AP + N)2
∧ E =

AP

AP + N
. (6.28)

§In fact, classifiers Cα and Cβ will have exactly two points of contact iff the tangents of their ROC curves
at 0 are equal, as the transformation ROC↔P-R is not bijective for (0, 0) in the ROC space.

94 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−R space

p

r

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC space

fp
tp

Figure 6.10: Conversion between sample P-R and ROC curves (N/P = 5). The ROCCH has
been transferred back to the P-R curve.

This shows that the transformation of ROCCH into the P-R space consists of rational
function segments.

Observation Convex hull ROCCH, dominating over ROC curve will also dominate in P-R
space¶. However, the convex hull transformed into the P-R space (consisting rational function
segments) is not necessarily convex.

This means that our method based on ROC curves can under constant cost distributions
use P-R curves interchangeably (sample mapping is shown in Figures 6.9 and 6.10). However,
unlike the ROC space, the linear approximation between two points in the DET space does
not represent biased random voting of two classifiers corresponding to the two points (last
observation) and therefore we cannot do such a linear approximation directly in the P-R
space.

6.7.2 DET Curves

DET curves [MDK+97] are another representation of classifiers’ performance commonly used
in domains like speech recognition and also biometrics. DET curves use a simple non-linear
transformation (normal deviate scale transformation) of both variables of the ROC plane.
In fact, the transformation of both fp and fn is orthogonal and quite often DET curves are
labeled in terms of fp and tp. As the transformation used is a bijective function mapping
[0, 1]→]−∞,∞[the mapping between ROC space and DET space is a bijection f : fROC ↔
fDET as shown in (6.29), where Φ is a standard cumulative distribution function and Φ−1 is
a quantile function.

DET curves carry the same information as ROC curves. However, DET curves are superior
for comparing well performing systems (close to (0,1) in the ROC space) as this region is

¶This property has been independently noticed by Davis and Goadrich [DG06]

6.8. RELATED WORK 95

“expanded”‖. Conversely, the typically less-interesting region close to typically uninteresting
(0.5, 0.5) is “compressed” (see the density of iso-cost lines in Figure 6.11). DET curves of
well-performing systems are typically close to linear [MDK+97].

f(fp, tp) =
(
Φ−1(fp), Φ−1(1− tp)

)
∧ f−1(x, y) = (Φ(x), Φ(1− y)) (6.29)

However as the mapping is non-linear, lines in the ROC space are in general not mapped to
lines in the DET space. This means that the convex hull in the ROC space is not necessarily
convex in the DET space.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC space

fp

tp

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

DET space

Φ−1(fp)

Φ
−1

(1
−

tp
)

Figure 6.11: Conversion between sample ROC and DET curves. Grid shows iso-cost lines at
CR = 2 and 0.5.

The isomorphism between ROC and DET means that our method can use DET curves
interchangeably. However, unlike the ROC space, the linear approximation between two
points in the DET space does not represent biased random voting of two corresponding
classifiers and such an approximation cannot be used directly.

6.7.3 Cost Curves

Finally, cost curves [DH00] are another alternative to ROC curves, which allows to express
misclassification cost directly. As shown by Drummond and Holte, there exists a point-line
duality between ROC curves and cost curves, however it is currently not clear, if our method
using ROC curves can be applied if only a cost curve of a classifier is given.

6.8 Related Work

Classifiers with reject rules were first investigated by Chow [Cho70] and further developed
by Tortorella [Tor00] in the area of pattern recognition. The latter uses ROC analysis in a
model corresponding to our cost-based model in a more restrictive setup (c13 = c23). Our

‖In fact, expanded are all regions close to the four corners of ROC space.

96 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

work extends this model further and shows conditions under which a nontrivial abstaining
classifier exists. We also propose two bounded models with other optimization criteria.

Cautious classifiers [FHO04] propose abstaining classifiers with a class bias K and an
abstention window w, which make them similar to our second evaluation model, in which an
abstention window is defined. However, although for w = 0 abstention is zero and the classifier
abstains for almost all instances for w = 1, the relationship between w and the abstention is
neither continuous nor linear [FHO04]. Therefore our model cannot be compared easily with
cautious classifiers. Similarly, cautious classifiers require calibrated probabilities assigned to
instances (otherwise the class bias might be difficult to interpret). In contrast, our model, if
used with a scoring classifier, uses only information about the ordering of instances, not the
absolute values of probabilities. This makes our model more general. On the other hand,
cautious classifiers are more general in the sense that they can be used with a multi-class
classification, whereas our model is based on ROC analysis and is only applicable to two-class
classification problems.

Delegating classifiers [FFHO04] use a cascading model, in which classifiers at every level
classify only a certain percentage of the instances. In this way every classifier, except for the
last one, is a cautious classifier. The authors present their results with an iterative system,
using up to n− 1 cautious classifiers.

Pazzani et al. [PMAS94] showed how different learning algorithms can be modified to in-
crease accuracy at the cost of not classifying some of the instances, thus creating an abstaining
classifier. However, this approach does not select the optimal classifier, is cost-insensitive and
specific to the algorithms used.

Confirmation rule sets [GL00] are another example of classifiers that may abstain from
classification. They use a special set of highly specific classification rules. The results of
the classification (and whether the classifier makes the classification at all) depend on the
number of rules that fired. Similarly to [PMAS94], the authors do not maximize the accuracy.
Moreover, confirmation rule sets are specific to the learning algorithm used.

Active learning [LC94] minimizes the number of labeled instances by iteratively selecting
a few instances to be labeled. This selection process uses an implicit abstaining classifier,
where it selects instances that are lying closest to the decision boundary, however no cost-
based optimization is performed.

6.9 Conclusions and Future Work

In this chapter we proposed a method to build a ROC-optimal abstaining classifier using
ROC analysis. The resulting classifier minimizes the misclassification cost on instances used
to build the ROC curve. Moreover, it has a low misclassification cost on other datasets from
the same population as the one used to build the curve.

We defined the misclassification cost in three models: A cost-based, a bounded-abstention
and a bounded-improvement model, which are relevant for numerous practical applications.
All the models use only the base classifier and a ROC curve and do not require that the
underlying classifier gives calibrated output probabilities, which is not always trivial [CG04,
ZE01].

In the first model, we used a 2 × 3 cost matrix, showed the conditions under which the
abstaining classifier has a nontrivial minimum cost, and presented a simple analytical solution.
In the bounded model, we showed how to build the abstaining classifier assuming that no more

6.9. CONCLUSIONS AND FUTURE WORK 97

than a fraction kmax of instances is classified as the third class. Finally, in the third model, we
showed how to build an abstaining classifier having a misclassification cost that is no greater
than a user-defined value. In the latter two models, we showed an efficient algorithm for
finding the optimal classifier. We presented an implementation and verified our method in all
three models on a variety of UCI datasets.

As future work, it would be interesting to extend the experiments to include other
machine-learning algorithms and also analyze the performance of our method for algorithms
for which (6.2) does not hold. Our preliminary experiments showed that applying our method
in such violating cases still yields good results. This is an interesting class of applications.

Future research area is on how to apply abstaining classifiers efficiently in real-world
applications, also with multi-class classification.

98 CHAPTER 6. ABSTAINING CLASSIFIERS USING ROC ANALYSIS

Chapter 7

ALAC+—An Alert Classifier with
Abstaining Classifiers

In this chapter we introduce ALAC+, a version of our alert-classification system, using ab-
staining classifiers. We investigate its design issues and chose appropriate abstaining classifier
models. Finally, we evaluate ALAC+ on one synthetic and one real dataset in both agent
and recommender modes.

7.1 ALAC Meets with Abstaining Classifiers

Recall that ALAC, the alert-classification system presented in Chapter 5, introduced the
notion of autonomous alert processing and used the classification confidence with a statically
determined threshold to determine if the system classified events “reliably”. In this chapter
we will replace this unreliable confidence assessment with abstaining classifiers.

Starting from our high-level problem specification in Section 1.1.3, here we introduce the
third component to our utility function U , namely the abstentions. This means that we will
evaluate the system in both recommender mode (focusing on the misclassified alerts) and
agent mode (focusing on misclassified alerts and the analyst’s workload) in combination with
abstaining classifiers.

Similarly to the base ALAC, we define our problem as follows: There is a human intrusion
detection analyst O reviewing a sequence of intrusion detection alerts (A1, A2, . . . , Ai, . . .)
in the alert log L. The review is done by assigning one of the predefined set of classes
{C1, C2, . . . , Cn} (which can be in particular two classes: true alerts and and false alerts
{“+”, “−”}) to each alert. The review is typically done sequentially and in real-time, which
means that alert Ai+1 is reviewed only after alerts (A1, . . . , Ai) has been reviewed and, at
this time, alerts (Ai+2, . . .) are not known. The high-level goal is defined as:

Given – A sequence of alerts: (A1, A2, . . . , Ai, . . .) in the alert log L,
– a set of classes C = {C1, C2, . . . , Cn},
– an intrusion detection analyst O sequentially and in real-time assigning classes
to alerts,
– a utility function U minimizing the misclassification cost and allowing for ab-
stentions.

Find A classifier classifying alerts, maximizing the utility function U

99

100 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

Unlike the base ALAC, the system can use abstaining classifiers, that is it does not have
to make predictions for all alerts. Similarly, to Section 5.1, the system can work in both
the agent and the recommender mode. In the agent mode, the utility function also takes
into account the number of instances passed to the analyst, therefore limiting the analyst’s
workload. More formally, the operation of the system in the agent mode is defined as:

Given – A sequence of alerts: (A1, A2, . . . , Ai, . . .) in the alert log L,
– a set of classes C = {C1, C2, . . . , Cn},
– an intrusion detection analyst O sequentially and in real-time assigning classes
to alerts,
– a utility function U minimizing the misclassification cost and analyst’s workload,
allowing for abstentions.

Find A classifier classifying alerts, maximizing the utility function U

More specifically, the idea is to use abstaining classifiers (shown in Figure 7.1) as follows: If
the abstaining classifier does not assign the class the alert is passed to the analyst unclassified.
If the class is assigned, the behavior depends on the mode the system used is used in.

Alert
Classifier

Machine
Learning

Training
Examples

Rules
Params

Alerts Feedback

ID Analyst
IDS

Class assigned?

Process

Yes

No

Hosts/Network

Figure 7.1: Simplified architecture of ALAC with abstaining classifiers.

In the recommender mode, all alerts with assigned class are nonetheless passed to the
analyst, together with predicted labels. The advantage of using abstaining classifiers in this
case it that, at the cost of skipping some alerts, the system has a much lower misclassification
cost. This, with the exception of the incremental and the streaming nature of the system, is
a direct application of abstaining classifiers. Algorithm 8 shows the operation of ALAC+ in
this mode.

In the agent mode, if the class is assigned, the system works similarly to the baseline
ALAC: alerts classified as true alerts are passed to the analyst and alerts classified as false
alerts (except for a fraction s of sampled instances) are discarded. Training instances used
for subsequent training are the alerts that the analyst has reviewed: (i) alerts with no class
assigned, (ii) alerts classified by ALAC as true alerts, and (iii) a sample s of alerts classified
by ALAC as false alerts. Remaining fraction (1− s) alerts classified by ALAC as false alerts
are discarded and hence not used as training instances. Similarly to the original ALAC,
it is also possible that there will be real attacks among these discarded alerts, which the
analyst might not be aware of. In our evaluation we evaluate both types of false negatives.
Algorithm 9 shows the operation of ALAC+ in this mode. In both cases, similarly to the base
ALAC goodClassifierPerformance(WAth) is based on the confusion matrix and calculated as
a weighted accuracy with a threshold WAth.

7.1. ALAC MEETS WITH ABSTAINING CLASSIFIERS 101

Input: a sequence of alerts (A1, A2, . . . , An), ROC curve R, evaluation model E for selecting
the optimal abstaining classifier

Result: a sequence of classified alerts ((A1, CA1), (An, CAn
), . . . , (An, CAn

))
initialize;1

/* alerts used for the initial training */
x← x0;2

while x < n do3

Si ← subsequence(A1, . . . , Ax);4

Ai ← learnUpdateAbstainingClassifier(Ci−1, Si,R, ε);5

while goodClassificationPerformance(WAth) do6

Cx ← classifyAbstaining(Ai, Ax);7

if (Cx == “?”) then8

CAx
← askAnalystClassifyUnknown(Ax);9

end10

else11

CAx ← askAnalystVerifyClassification(Ax, Cx);12

end13

updateAbstainingClassificationPerformance(Cx, CAx
);14

x← x + 1;15

end16

i← i + 1;17

end18

Algorithm 8: ALAC+ algorithm—recommender mode.

7.1.1 The Problem with Rule Learners

In our evaluation of abstaining classifiers (cf. Section 6.6) we assumed that the underlying
classifier Cτ is a scoring classifier, which has the following two implications: (i) the ease of
construction of the ROC curve [Faw03], (ii) we are sure that for two classifiers Cα and Cβ
constructed from a single ranker the watermark condition (6.2) holds. The classifier used in
ALAC is a rule learner, which does not have the above properties.

Addressing the first problem, rule learners are binary classifiers and do not output proba-
bilities, which means that such a classifier produces a single point on the ROC plane. Such a
point can be connected with straight lines to both trivial classifiers (0, 0) and (1, 1), represent-
ing biased random voting of the given classifier and trivial classifiers, classifying instances as
either “+” or “−”, but this does not yield an interesting ROC curve. A better alternative is
to evaluate the performance of individual rules on an additional testing set and assign proba-
bilities to those rules representing their accuracy (possibly with Laplace correction [Ces90]).
This means that in general with n rules we can have up to n distinct points on the ROC
curve.

However, we noticed in our experiments that even this method does not generate “good”
curves and, therefore we resorted to another method. Recall from Section 5.4.1 that we
combined the base cost-insensitive classifier with weighting [Tin98] with a weight w. With a
single weight we obtain a single classifier so by varying weights we obtain different classifiers
biased towards either positive or negative instances.

The weight combines both information about class distribution as well as the misclassifi-
cation cost and makes an implicit assumption about the skew sensitivity of metrices used in
the learning process, e.g., assuming that the base method produces a cost-optimal classifier

102 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

Input: a sequence of alerts (A1, A2, . . . , An), ROC curve R, evaluation model E for selecting
the optimal abstaining classifier

Result: a sequence of classified alerts ((A1, CA1), (An, CAn
), . . . , (An, CAn

))
initialize;1

/* alerts used for the initial training */
x← x0;2

while x < n do3

Si ← subsequence(A1, . . . , Ax);4

Ai ← learnUpdateAbstainingClassifier(Ci−1, Si,R, ε);5

while goodClassificationPerformance(WAth) do6

Cx ← classifyAbstaining(Ai, Ax);7

if (Cx == “?”) then8

CAx
← askAnalystClassifyUnknown(Ax);9

end10

else11

if (Cx == TRUE ALERT) ∨ (randomSample(s)) then12

CAx ← askAnalystVerifyClassification(Ax, Cx);13

end14

else15

/* e.g., discarding of false positives */
automaticProcessing() ;16

CAx ← ∅;17

end18

end19

updateAbstainingClassificationPerformance(Cx, CAx);20

x← x + 1;21

end22

i← i + 1;23

end24

Algorithm 9: ALAC+ algorithm—agent mode.

for a cost ratio CR = 1 by reweighting instances by a factor of 2, we would obtain a cost-
minimizing classifier for CR = 2. However, as shown by Flach [Fla03], different evaluation
metrics used by machine-learning algorithms have different skew sensitivities (e.g., accuracy
is skew sensitive, but precision used by RIPPER for pruning is weakly skew-insensitive) and
the weighting may not produce expected results. On the other hand, regardless of the skew
sensitivity, the optimal classifier for a given class skew and cost distribution can be determined
by means of ROC curves.

Consequently, we devised a simple method for constructing ROC curves and selecting
the cost-optimal classifier for rule learners. We adaptively vary a weight w and rebuild the
classifier with this weight to obtain different points on the ROC plane. For each weight w we
ran cross-validation to obtain a threshold-averaged point (tp, fp). Obviously, with w → 0 we
obtain a classifier classifying all instances as false (corresponding to (0, 0)) and, conversely,
w →∞ yields (1, 1). By varying the weight w in this range we can obtain a complete curve.
We used Algorithm 10 based on a binary search to construct the interesting fragments of the
curve. Subsequently, using the obtained curve we selected the classifier that was optimal in
terms of misclassification costs for a given cost ratio and class distribution.

This however, leads us to the second problem, namely, that as classifiers Cα and Cβ ob-
tained in this way are independent, the watermark condition (6.2) can be violated. Investigat-

7.2. ALAC+ EVALUATION 103

Input: a learning algorithm L with a parameter w producing a classifier Cw. Boundary
weights w0 and w∞, a desired number of points on the ROC curve n.

Result: R a set of n points {((fp, tp), w)} describing the ROC curve
(fp0, tp0)← evaluateClassifier(Cw0);1

(fp∞, tp∞)← evaluateClassifier(Cw∞);2

R← ((fp0, fp0), w0) ∪ ((fp∞, fp∞), w∞);3

while |R| < n do4

Sfp ← sortbyFP(R);5

Stp ← sortbyTP(R);6

/* find two consecutive points in a sorted sequence with the largest
Euclidean distance */

((fpi, fpi), wi), ((fpi+1, fpi+1), wi+1)← findLargestGap(Sfp);7

((fpj , fpj), wj), ((fpj+1, fpj+1), wj+1)← findLargestGap(Stp);8

/* pick a pair with the larger distance */
((fpk, fpk), wk), ((fpk+1, fpk+1), wk+1)← pickLargerGap(i, j);9

/* pick the midpoint */
w ← average(wk, wk+1);10

(fp, tp)← evaluateClassifier(Cw);11

/* add the new point */
R← R ∪ ((fp, tp), w);12

end13

Algorithm 10: Filling the gaps—Building ROC curves for arbitrary classifiers Cw.

ing this issue we found out that, in our case, the number of classifiers for which this condition
is violated is extremely small (less than 1% of the total abstention). We therefore concluded
that those violating cases have little impact on the efficiency of our method and decided that
the classifier should abstain in this case. However, it will be interesting to investigate this
property for classifiers obtained in this way.

7.2 ALAC+ Evaluation

The goal of ALAC+ evaluation is to test the the following hypothesis:

Hypothesis 7.2.1 By combining abstaining classifiers with ALAC, one can significantly re-
duce the number of misclassifications and the overall misclassification cost rc.

If this hypothesis is confirmed this makes abstaining classifiers particularly attractive for
intrusion detection.

7.2.1 Choosing Evaluation Models for ALAC+

Recall from Chapter 6 that we introduced three models for evaluating abstaining classifiers,
namely, the cost-based model, the bounded-abstention model and the bounded-improvement
model. While all of them could be used with ALAC, we decided to focus on the latter two, for
the following two reasons: First, in our problem domain, the exact misclassification costs are
not given and would have to be estimated, including the extended 2 × 3 cost matrix for the
first model. This would make the system difficult to tune and interpret. Second, the latter
two models are more intuitive and more likely to be used in real environments.

104 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

Hence, we will use the bounded-improvement (BI) and the bounded-abstention (BA)
models in the evaluation. In both of these models we use a ROC curve to optimize the mis-
classification cost per actually classified instance, with boundary conditions. In the bounded-
improvement model, the boundary condition is that the classifier should not abstain for a
fraction kmax of instances, and in the bounded-abstention model the classifier should have the
misclassification cost not larger than rcmax (can be also expressed as fmin).

7.2.2 Setting System Parameters

As discussed in Section 5.4.1, the classification of IDS alerts is a cost-sensitive task, where
false negatives are much more expensive than false positives. For such a cost-sensitive setup,
given the cost matrix and the class distribution and additional parameters for the abstaining
classifier evaluation model (kmax for BA and fmin for BI) we can select optimal classifiers.

ROC Analysis and Abstaining Classifiers

In our classification task the cost matrix is not given and can only be estimated. Machine
learning typically uses Area Under Curve (AUC) in such cases, describing classifier’s perfor-
mance under all class distributions and all possible costs. Such an approach may not work
well in this case as we do know that not all costs and class distributions are equally likely. One
possible approach could be to use cost curves [DH00], which allows one to calculate the ex-
pected misclassification cost given a certain cost distribution. We consider this an interesting
alternative to ROC analysis, which can be further investigated.

As a second approach one could use an estimated costs (CR) and obtain mode “tangible”
results expressed in terms of fp, fn and rc (recall notation introduced in Section 2.2.3). In
this evaluation we decided to take this second approach and to use an estimated realistic cost
ratio ICR = 50, where false negatives are 50 times more costly than false positives. Note that
this is different from the approach taken in the previous section with ALAC, where we used
instance weighting with w = 50. In fact, ICR and class distribution N/P are used with ROC
analysis to select an optimal classifier determined by the parameter w (cf. Section 7.1.1).

To be able to compare the misclassification cost of abstaining and binary classifiers we
need additional parameters for our two abstaining models. In the bounded-abstention model
this parameter is kmax, a fraction of instances which are not classified and in the bounded-
improvement model the parameter is fmin a desired fraction cost improvement over the optimal
binary classifier. While the value of these parameters are application and environment depen-
dent we tried to select the values the model can be run with in practice: kmax = 0.1 for the
bounded-abstention model (further referred to as BA 0.1) and for the bounded-improvement
model fmin = 0.5 (further referred to as BI 0.5). The first model, BA 0.1 can be used if the
environment requires that the human analyst can manually classify up to 10% of all alerts. In
the second model, BI 0.5 the system would reduce the misclassification cost by 50%, compared
to the optimal binary classifier.

Given these parameters we used ROCCH [PF98] to find the point on the ROC curve
describing cost optimal binary classifier (wb) and ran Algorithm 6 or Algorithm 7 to find
corresponding abstaining classifier weights (wCα and wCβ

) and to calculate the performance
estimates as shown in Table 7.1.

Note that in the first model, BA 0.1, where the classifier abstains for 10% of all instances,
the overall misclassification cost (per classified instance) decreased by 27% for the first dataset

7.2. ALAC+ EVALUATION 105

Table 7.1: Calculating weights w for the optimal binary classifier and abstaining classifiers in
the bounded abstention and the bounded improvement models.

Dataset Model wb wCα wCβ
rcb rcAα,β

f k

DARPA BA 0.1 72 4.25 76 0.258 0.189 0.268 0.1
Data Set B BA 0.1 16 0.25 173 0.088 0.025 0.712 0.1

DARPA BI 0.5 72 0.625 116 0.258 0.129 0.5 0.337
Data Set B BI 0.5 16 0.25 64 0.088 0.044 0.5 0.067

and as much as 71% for the second dataset, which is a significant improvement. This is
consistent with the second model, where the reduction in the misclassification cost by 50% is
achieved at the cost of abstaining for 33.7% of instances for the first dataset and only 6.7%
for the second dataset. We will revisit these results in Section 7.2.3, where we compare these
estimates with the actual performance of the alert-classification system.

Recall that we chose ICR = 50 to model classifier’s cost-sensitive environment. As this
was only an estimate, it might be interesting to see how classifiers Cα and Cβ are affected by
the choice of this parameter. To answer this question we performed a simulation calculating
optimal abstaining classifiers with different misclassification costs. As shown in Figure 7.2
with increasing misclassification costs the classifier moves towards a point (1, 1) a trivial
binary classifier classifying all instances as true. Conversely, decreasing the misclassification
cost shifts the classifier towards (0, 0). Note that for all three cases we assumed that the class
distribution N/P = 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

DARPA Data Set − Bounded Abstention

fp

tp

Cα

Cβ

N/P = 5 ICR = 1
Cost Binary: 0.048
Cost Tristate: 0.008
Improvement 0.825

Classifier Cα
Classifier Cβ
Optimal Binary classifier

0.0 0.2 0.4 0.6 0.8 1.0

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

DARPA Data Set − Bounded Abstention

fp

tp

Cα

Cβ

N/P = 5 ICR = 50
Cost Binary: 0.258
Cost Tristate: 0.189
Improvement 0.268

Classifier Cα
Classifier Cβ
Optimal Binary classifier

0.0 0.2 0.4 0.6 0.8 1.0

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

DARPA Data Set − Bounded Abstention

fp

tp

Cα
Cβ

N/P = 5 ICR = 200
Cost Binary: 0.608
Cost Tristate: 0.565
Improvement 0.071

Classifier Cα
Classifier Cβ
Optimal Binary classifier

Figure 7.2: Classifiers for three different misclassification costs ICR = 1, ICR = 50 (used in
the remaining experiments) and ICR = 200 (DARPA 1999, BA 0.1).

Background Knowledge

Recall that in Chapter 5 we discussed three types of background knowledge and used ROC
analysis to show that it is advantageous in alert classification. However, the recursive back-
ground knowledge requires special care to be handled properly. In particular, we would
assume that the analyst classifies alerts strictly sequentially, which is not necessarily the case.
In fact, the analyst may work with alert groups and only classify them together. In this case
recursive background knowledge may lead to errors. Furthermore, non-recursive aggregates

106 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

use ad-hoc time intervals and only marginally improve the ROC curves.
Hence, for the evaluation of ALAC+ we decided to use only environmental background

knowledge. Note that this is a more difficult classification task, as the cost-optimal classifier
has much higher false-positive rates than in the evaluation performed in Section 5.5. We
nonetheless show that ALAC+ using abstaining classifier can perform better, even with less
background knowledge.

7.2.3 Cost Results

After setting the classifier parameters including the weights obtained in the previous section,
we ran the alert-classification system ALAC+ sequentially classifying alerts as this is the
environment the system will be used in. In all cases, the initial 30% of alerts was used to
build an initial model. We compared the following configurations:

Recommender (baseline) The original ALAC in the recommender mode, where all alerts
are classified and passed to the analyst. In this mode the system uses a single weight
w as shown in Table 7.1.

Recommender BA 0.1/BI 0.5 ALAC+ in the recommender mode, where the system can
abstain from classification. The nonclassified alerts will be passed to the analyst with
no labels, hence these alerts are not taken into consideration in the confusion matrix.
Note that we are calculating the misclassification cost per actually classified alert. In
this mode the system uses two weights wCα and wCβ

.

Agent (baseline) The original ALAC agent mode, where the system assesses the confidence
of classification based on the rule performance and, if it is above a certain threshold
discards all but a fraction s (set to s = 0.3) of randomly sampled false alerts∗. These
alerts are not passed to the analyst and are not used as training instances, therefore the
system may discard some real alerts. The system uses a single classifier trained with a
weight w.

Agent (naive) ALAC in “naive” agent mode, where the system does not assess the confi-
dence of classification and discards all but some randomly sampled false alerts. This sim-
plified agent is expected to perform worse than ALAC, but it is a baseline for ALAC+,
where the confidence assessment is replaced with an abstaining classifier. This system
is also a boundary case for ALAC+ with Cα = Cβ .

Agent BA 0.1 / BI 0.5 This is the ALAC+ system using abstaining classifiers and auto-
matically discarding some alerts. The system uses two weights wCα and wCβ

as shown
in Table 7.1.

The complete results with 95% confidence intervals for these runs for two datasets are
shown in Table 7.2 (DARPA 1999) and Table 7.3 (Data Set B). For the agent mode we
give two values fn—the number of false negatives the system calculates and FNr—the total
number of real false negatives, including false negatives due to discarded alerts. Note that
uppercase variables FN , FNr, FP denote the absolute values, which better demonstrate the
number of misclassifications made by ALAC+. For the sake of completeness, similarly to the

∗Note that s is not the actual fraction of discarded alerts, but the false-positive sampling rate. The actual
number of discarded alerts depends on the class distribution and also the assigned confidence, cf. Algorithm 3.

7.2. ALAC+ EVALUATION 107

evaluation of the base ALAC, Figures B.7–B.10 show the corresponding rates for a single run
for both models and datasets.

Table 7.2: Misclassifications for ALAC and ALAC+ in the recommender and agent for
DARPA 1999 Data Set.

System FN FNr FP k Discarded rc

Rec.
(baseln.)

326 ± 8 326 ± 8 5268 ±
196

0 ± 0 0 ± 0 0.51 ±
0.01

Rec. BA 0.1 308 ± 6 308 ± 6 1775 ± 5 0.06 ±
0.01

0 ± 0 0.43 ±
0.01

Rec. BI 0.5 275 ± 8 275 ± 8 86 ± 0 0.18 ±
0.01

0 ± 0 0.41 ±
0.01

Agent
(baseln.)

188 ±
17

395 ±
10

4471 ±
288

0.15 ±
0.01

0.36 ±
0.01

0.57 ±
0.02

Agent
(naive)

198 ±
21

573 ±
66

4425 ±
484

0.023 ±
0.013

0.52 ±
0.02

0.78 ±
0.07

Agent BA
0.1

183 ±
12

427 ±
18

1559 ± 17 0.08 ±
0.01

0.49 ±
0.01

0.59 ±
0.02

Agent BI 0.5 153 ± 8 391 ±
14

51 ±
0.4

0.19 ±
0.01

0.46 ±
0.01

0.58 ±
0.02

Table 7.3: Misclassifications for ALAC and ALAC+ in the recommender and agent modes
for Data Set B.

System FN FNr FP k Discarded rc

Rec.
(baseln.)

20 ± 5 20 ± 5 1217 ±
233

0 ± 0 0 ± 0 0.07 ±
0.01

Rec. BA
0.1

4.7 ±
1.0

4.7 ±
1.0

34 ± 0 0.10 ±
0.001

0 ± 0 0.0091 ±
0.0017

Rec. BI
0.5

17.6 ±
1.9

17.6 ±
1.9

34 ± 0 0.03 ±
0.001

0 ± 0 0.029 ±
0.003

Agent
(baseln.)

5.71 ±
2.0

18 ±
2.8

628 ±
20

0.0024 ±
0.0017

0.47 ±
0.007

0.047 ±
0.004

Agent
(naive)

4.57 ±
2.3

18 ±
3.0

925 ±
228

0.0025 ±
0.0013

0.47 ±
0.007

0.054 ±
0.014

Agent BA
0.1

1.85 ±
1.16

7.14 ±
2.47

23.1 ±
4.39

0.126 ±
0.006

0.39 ± 0.0 0.013 ±
0.004

Agent BI
0.5

2.6 ±
1.0

10 ±
3.87

22 ±
1.75

0.05 ±
0.001

0.45 ±
0.001

0.017 ±
0.006

Recommender Mode Looking at the results we clearly see that for both datasets com-
bining the recommender mode with abstaining classifiers reduces both the number of false
positives and the number of false negatives. While this is to be expected (any abstention
reduces the absolute number of classified instances thus also misclassifications) the rates cal-
culated per actually classified instances are also lower.

For example, for the DARPA 1999 Data Set, the recommender mode has a comparable
false-negative rate and significantly lower false-positive rate (lower by 63% for BA 0.1 and by
97% for BI 0.5, where 18% of all alerts are left unclassified). The resulting misclassification

108 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

cost per classified instance was lowered by 15-20%. For Data Set B, we observed a much
better improvement than for the first dataset: with 10% of alerts left unclassified (BA 0.1) we
lowered the false-negative rate by 76% and the false-positive rate by 97%, which resulted in
the overall cost reduction by 87%. For BI 0.5 we achieved 50% cost reduction by abstaining
for as little as 3% of all instances.

Agent Modes In the agent mode there are two types of errors the system makes: the ones
corrected by the analyst and the ones the analyst cannot correct (missed attacks). Obviously
if the system is to be useful in the agent mode, it should minimize the second types of errors.

Our results show that for the DARPA while the agent using abstaining classifiers has
much lower false-positive rates than the “naive” Agent and the baseline Agent, comparable
(or even higher) actual false-negative rates (fnr) cancel the benefits of the system. At the
end the agent using abstaining classifiers has a lower misclassification cost than the “naive”
Agent, but comparable cost to the baseline agent.

For Data Set B, the agent using abstaining classifiers improves over the Agent in terms
of a lower false-negative rate (up to 60%) and a false-positive rate (up to 96%) resulting in
the overall cost reduction by 72% when 12.6% of the instances are left unclassified.

Discrepancy ROC estimates and ALAC performance Trying to explain why ALAC
does not perform as well for the DARPA 1999 Data Set we observed that the expected
misclassification cost obtained for the optimal classifier on the ROC curve are significantly
different (0.258 based on the ROC curve and the actual recommender performance at 0.51).

This discrepancy can be attributed to the violation of i.i.d. assumptions in the IDS alerts.
In fact, IDS alerts are not independent and identically distributed. For example, we used 30%
of alerts as an initial training for the model, which turned out to contain far more false alerts
than the remaining 70%. As a result, the classifier trying to optimize the misclassification
cost for N/P = 5, did not achieve the optimal result for the more balanced distribution and
overly reduced the false-positive rate (which does not contribute as much to the cost as the
false-negative rate). Similarly, in the agent mode discarding of false alerts skews the dataset
towards real attacks. While this is desirable for the real datasets, it should be accounted for
in parameters for the abstaining classifiers.

One possible solution to this problem would be to dynamically build ROC curve describ-
ing classifier’s performance during the classification process and update parameters for the
abstaining classifiers accordingly. While this would increase the run-time and the complexity
of our system, it should yield better results. It is an interesting research area that should be
further investigated.

7.2.4 Conclusions

The experiments performed here confirmed that in the recommender mode ALAC+ signif-
icantly reduces the misclassification cost on both datasets. In the agent mode, ALAC+
performed significantly better in terms of misclassification costs on the second dataset and
comparably on the first dataset. In all cases, the system significantly reduced the overall
number of misclassifications at the price of abstentions. Note that in a cost-sensitive setup,
different types of misclassifications bear different costs, hence, even a significant reduction
of false negatives with comparable false positives result will not be reflected in the lower
misclassification cost.

7.3. SUMMARY 109

On the other hand, significantly reducing the total number of all misclassifications al-
leviates another problem in intrusion detection: As argued by Axelsson [Axe99], precision
(defined as the probability that a positively classified alert is in fact positive) plays an im-
portant role in the efficacy of classification with human analysts: if an alert is classified as
positive by the system but in reality has only a very small chance of being positive, the human
analyst may well learn from such incidents to ignore all positive alerts classified as positive
henceforth. This greatly increases the probability that real attacks will be missed. In all
our experiments ALAC+, while reducing the overall cost-sensitive misclassification cost, also
significantly improves the precision of classification, which makes real alerts less likely to go
unnoticed. This makes it useful for the human analysts.

This confirmed our hypothesis stated in the beginning of the evaluation section that
ALAC+ significantly reduces the number of misclassifications and the overall misclassification
cost, which makes it particularly useful for intrusion detection.

7.3 Summary

In this chapter we presented ALAC+, an alert-processing system using abstaining classifiers
introduced in Chapter 6. We showed how to select the runtime parameters for ALAC+ and
evaluated it on one real and one synthetic dataset showing that, in many cases, ALAC+
significantly reduces the number of misclassifications and the overall misclassification cost.
This makes abstaining classifiers particularly useful for the alert-classification system.

110 CHAPTER 7. ALAC+—AN ALERT CLASSIFIER WITH ABSTAINING . . .

Chapter 8

Combining Unsupervised and
Supervised Learning

In this chapter we look at unsupervised learning and investigate how it can be used to further
facilitate alert management. This chapter builds upon CLARAty, an algorithm developed by
Julisch [Jul03b]. The ideas presented here were also published in [PT05].

8.1 Why Unsupervised Learning Makes Sense

Julisch observed [Jul01, JD02, Jul03a, Jul03b] that by unsupervised clustering one can find
clusters and cluster descriptions that can be interpreted by human analysts to find root
causes responsible for large groups of alerts. He applied the algorithms to a set of unlabeled
alerts collected by a MSSP and showed that by judiciously removing alerts covered by existing
clusters, one can remove up to 70% of future alerts. In this work we take this approach further
and analyze how ALAC, our classification framework, can leverage clustering techniques.

This chapter is organized as follows: In the remainder of this section we analyze two
main goals of clustering of intrusion detection alerts: (i) retrospective log analysis, and (ii)
supporting subsequent classification. We also analyze how clustering can take advantage
of alert labels if they are known. Subsequently, in Section 8.2 we present the algorithm
CLARAty [Jul03b] used for alert classification. Section 8.3 introduces an automated clustering
system, and Section 8.5 introduces a two-stage alert-classification system. Finally, Sections 8.4
and 8.6 present the evaluation of the automated cluster-processing system and the two-stage
classification system, respectively.

8.1.1 Retrospective Alert Analysis

In this setup, historical alerts are mined for patterns indicative of both benign and malicious
activities. By providing concise pattern descriptions covering large groups of alerts, the human
analyst can quickly analyze large groups of alerts. The goal of this analysis is threefold:

Discovering large groups of alerts with benign root causes: Subsequently, their root
causes can be removed or IDS sensors can be tuned.

Discovering large groups of alerts with malicious root causes: Subsequently, the an-
alyst can write signatures identifying previously experienced behavior.

111

112 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Quality Assurance: With the concise “compressed” representation of redundant alerts (cov-
ered by clusters) the analyst can focus on less prevalent alerts representing events that
otherwise may go unnoticed. To illustrate this with an example, if an alert log con-
taining 100000 alerts gets clustered into 20 clusters covering in total 99000 alerts, the
analyst will need to investigate only those 20 clusters and then focus on the remaining
uncovered 1000 alerts. This leads to a significant workload reduction and ensures higher
quality of analysis.

Note that this approach does not take advantage of the fact that it processes historical
alerts, which have already been investigated and of which the incidents have been identified.
In other words, each alert can be augmented with a label, describing the incident it is a
member of (in case of true positives) or another value label (in case of false positives). The
question that arises is how the alert-processing system should take advantage of these labels.
We have investigated the following two possibilities:

labels used in the clustering stage: If alert labels are used by the clustering algorithm,
we can ensure that the alerts with different labels are less likely to be clustered together
than those with identical labels, or even ensure (by setting appropriate weights or mod-
ifying the algorithm) that they will never be clustered together. This will produce purer
clusters (i.e., clusters containing only one type of labels), but can lead to problems if
the initial labeling was incorrect. This way the “quality assurance” goal of unsupervised
learning may not be fulfilled. Alternatively, techniques like the ones used for discovering
predictive clustering rules [ŽDS05] can be used.

labels used only in the post-clustering stage: On the other hand, if the clustering al-
gorithm is not aware of alert labels, it is more likely that, by investigating less pure
clusters, some missclassified alerts can be corrected. However, it is also possible that
clusters are overgeneralized and cover alerts with different root causes. In this case,
those clusters would need to be investigated by the analyst and further split if neces-
sary. This is a simple form of semi-supervised learning.

In either approach, the obtained clusters can be further labeled depending on the labels of
alerts they contain. In particular, we can identify three types of clusters of practical relevance
(Figure 8.1):

False-Alert Clusters (FA-only clusters): These are the clusters containing only alerts
marked as false alerts. These are analogous to clusters with “benign root causes”
above. However, this classification can be inferred automatically and no analyst action
is required.

True-Alert Clusters (TA-only clusters): These are the clusters containing only alerts
marked as true alerts. These clusters contain only events with malicious root causes
and can be used to construct rules identifying past malicious behavior. Similarly to the
previous case this classification can also be inferred automatically.

Mixed Clusters: These are potentially the most interesting clusters supporting quality as-
surance and requiring attention from the analysts. The existence of these clusters can
be either attributed to overgeneralized clusters (containing various root causes) or are
indicative of misclassified alerts. Investigating the latter case ensures that no malicious
activities were missed.

8.1. WHY UNSUPERVISED LEARNING MAKES SENSE 113

Historical
Incident Data

Alert
Clustering

Mixed Clusters

Historical
Alert Data Incident

Correlation

False-Alerts Clusters (FA-only clusters)

True-Alerts Clusters (TA-only clusters)

Figure 8.1: Three main types of clusters: false-alert candidates, true-alert candidates, and
mixed clusters for further analysis.

8.1.2 Subsequent Alert Classification

Julisch showed how clustering can be used to generate human-readable cluster descriptions,
which, after being reviewed, can be used to construct filtering rules, leading to up to 70%
reduction in the number of subsequent alerts. Note that in this setup the clusters are being
judiciously reviewed by the analysts and only the good clusters are used as filtering rules.
This setup does not take advantage of the fact that the alerts are labeled. We will refer to it
as semi automated (Figure 8.2).

The classification is done in the following steps:

1. The clustering algorithm is run on a subset of an alert log L (e.g., alerts collected in
the most recent week), yielding a set of clusters {P1, P2, . . . , Pn}.

2. Clusters {P1, P2, . . . , Pn} are investigated by the analyst O.

3. Reviewed clusters are used for investigating network and configuration problems (ret-
rospective alert analysis).

4. Clusters, for which a root cause can be identified are converted to filters {F1, F2, . . . , Fm},
based on the attributes of alerts they contain.

5. Filters {F1, F2, . . . , Fm} are used to remove future alerts from appearing in the console
(subsequent alert classification).

6. The procedure is repeated after a predefined time has elapsed (e.g., a week) or a sufficient
number of new alerts has been collected in the alert log L.

Alerts

IDS

Environment:
- investigating network and
 configuration problems

Alert
Clustering

Analyst
- Interpretation
- Finding root causes

IDS:
- filtering
 rules

Alert Filter

IDS:
- tuning

Historical
Alert Data

Figure 8.2: Semi-automated cluster processing.

114 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Assuming that the alert labels are given, the above setup can be extended to take advan-
tage of them. Similarly to the previous section, depending whether the alert labels are used
in the clustering stage the system will output more or less “incident-oriented” clusters. As
we want to get an unbiased evaluation of clustering quality, as well as perform the “quality
assurance” function, we decided to use the alert labels only in the post-clustering stage.

In our approach we use the notion of labeled clusters (cf. Figure 8.1), which allows us to
perform automated cluster processing. More specifically, we perform clustering on unlabeled
data as previously and label clusters as a whole based on known attacks. False-alert clusters,
that is clusters containing only alerts marked as false alerts can then be used to create filtering
rules to remove subsequent alerts. Remaining alerts can be subsequently passed to the analyst
to form a two-stage alert-classification system [PT05]. Note that it is possible that some of
the true alerts are removed in the process, as the analyst will not review the clusters.

Alternatively, cluster information can be used to construct additional features, which will
be added to the background knowledge for ALAC. The idea is that the supervised learner
will be able to pick “good” cluster features in learning the classification. In Section 8.3 we
will investigate both of these approaches.

8.2 CLARAty—Algorithm Description

In the clustering stage we use an algorithm called CLARAty [Jul03b], which is based on a
modified attribute-oriented induction (AOI) [HCC92, HCC93] algorithm, to make it more
suitable for alert processing.

Similarly to ALAC, CLARAty represents alerts as tuples of attribute-value pairs. Alerts
can have many different attributes depending on the type of the alert, but in practice, cer-
tain basic attributes are always part of the alert, e.g., a timestamp, source and destination
addresses, and a description or type of the alert.

8.2.1 Generalization Hierarchies

To allow the clustering of alerts in the alert space, a measure of similarity is needed. To
define this measure we use our knowledge of the specific environment and general properties.
This background knowledge is represented through generalization hierarchies of the important
attributes of the alerts.

For example, the network topology of the specific environment can be captured in a hier-
archy of IP address descriptions, which, possibly through multiple levels, generalize a specific
IP address into generalized address labels. In this way, specific IP addresses could be labeled
according to their role (Workstation, Firewall, HTTPServer), then grouped according to
their network location (Intranet, DMZ, Internet, Subnet1) with a final top-level general-
ized address AnyIP (see Figure 8.3). When these classification hierarchies are not known, IP
addresses can also be generalized according to the hierarchies in the addressing structure.
For example, an IP address 195.176.20.45 can be generalized to the corresponding class C
network: 195.176.20.0/24, followed by the class-B generalization 195.176.0.0/16, class-A
generalization 195.0.0.0/8 and finally AnyIP.

Other attributes will have different generalization hierarchies, depending on the type and
our interests. For example, the source and destination ports of port-oriented IP connec-
tions can be generalized into Privileged (0-1023) and NonPrivileged (1024-65535), with
a top-level category of AnyPort. In addition, the well-known destination ports (0-1023) can

8.2. CLARATY—ALGORITHM DESCRIPTION 115

1 ... 1024 1025 ... 65535

NonPrivilegedPrivileged

AnyPort

Mon ... Fri Sat

WeekendWorkday

AnyDayOfWeek

Sun

t1 t2 ...

AnyIP

InternetIntranet DMZ

ip7

ip1 ip2 ip3 ip4 ip5 ip6

...
Firewall HTTPServerWorkstation

Figure 8.3: Sample generalization hierarchies for address, port and time attributes.

comprise a number of hierarchies describing their function, e.g., httpPorts (80, 443, 8080,
9090), mailPorts (25, 110, 143, 993, 995), chatPorts (194, 258, 531, 994). Similarly, the
timestamp attribute could be generalized into Workday and Weekend, or also OfficeHours
and NonOfficeHours.

Generalization hierarchies like these are static, but dynamic hierarchies are also possible,
for example frequently occurring substrings in free-form string attributes (e.g., in context
information), which can be generated and evaluated during the runtime of the data mining.

Generalization hierarchies are used for constructing so-called, generalized alerts. We will
also use the notion of an alert being covered by the the generalized alert.

Definition 13 (Generalized alert) Given a generalization hierarchy G, a generalized alert
a′ is derived from an alert a by replacing at least one of its attributes: T1, . . . , Ti, . . . , Tn with
a value from a corresponding generalization hierarchy Gi.

Definition 14 (Coverage) Given a generalization hierarchy G, a generalized alert A′ covers
an alert A iff the values of all the attributes T1, . . . , Ti, . . . , Tn of A can be generalized to
corresponding attribute values in A′ using Gi.

8.2.2 CLARAty Algorithm

Conceptually, CLARAty algorithm works as follows: Given a large set of alerts L with at-
tributes T1, . . . , Tn, a generalization hierarchy Gi for each attribute of the alerts, and param-
eters kmin, CLARAty produces a sequence of clusters (generalized alerts) {P1, P2, . . . , Pn}.

Given – A set of alerts L with attributes T1, . . . , Tn, . . .),
– Tree-based generalization hierarchies for each attribute Gi,
– Constants kmin, MIN SIZE.

Find A sequence of mutually exclusive clusters (patterns) P1, P2, . . . , Pk, describing the
properties of alerts, which are useful for the analyst O.

The clusters are derived using a sequential covering algorithm and are mutually disjoint
(i.e., one alert can be a member of at most one cluster). However, similarly to evaluating
ordered rule sets (cf. Section 5.4) an alert may be covered by more than one generalized alert
if the generalized alerts are evaluated independently. CLARAty algorithm consists of the
following steps:

116 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Data: Set of alerts L, tree-based generalization hierarchies Gi, kmin, MIN SIZE
Result: A sequence of clusters (generalized alerts) P .
∀A ∈ L : Acount = 1 ;1

min size← kmin ·
∑

A∈L Acount;2

C ← ∅;3

while (min size ≥ MIN SIZE) do4

Heuristically select an attribute Ti to generalize ;5

Generalize Ti (Replace the value of attribute Ti with parent value of corresponding6

generalization hierarchy Gi in all alerts in L) ;
Group identical alerts A, A′: Acount ← Acount + A′

count, remove A′ ;7

if ∃A ∈ L : Acount ≥ min size then8

/* found the cluster */
P ← P ∪ {A};9

/* remove the alerts from L */
L← L\{A};10

Undo generalizations in L (all actions previously taken in lines 8.2.2 and 8.2.2);11

min size← kmin ·
∑

A∈L Acount;12

end13

end14

Algorithm 11: Clustering algorithm CLARAty [Jul03b].

The control parameter kmin determines the minimal size of the first cluster as a frac-
tion of the total alert size and needs to be specified by the user. This parameter must
be chosen carefully: if it is chosen too large, distinct root causes are merged and therefore
the result will be overgeneralized. If it is chosen too small, a single root cause might be
represented by multiple generalized alerts and the algorithm generates more than necessary
clusters and is suboptimal as all those clusters need to be interpreted. The heuristic for
selecting the attribute to be generalized (line 8.2.2 in Algorithm 11) calculates value Fi for
each attribute and selects the one for which the value Fi is minimal. The value Fi is defined
as the maximum of the number of (generalized) alerts with the same values of attribute Ti.
More formally, Fi = maxv∈Dom(Ti)(fi(v)), where Dom(Ti) is the domain of attribute Ti and
fi(v) =

∑
A∈L∧A[Ti]=v Acount.

The algorithm supports weighting implemented as the following heuristic: if all Fi ≥
min size, they are weighted by weights wi, i.e., Fi ← Fi · wi, i = 1, . . . , n. This way the
heuristic is biased towards selecting attributes with small associated weights.

In addition, if the generalization hierarchy is not defined for some attributes, the above
algorithm is run independently for each combination of values of nongeneralized attributes. In
this case, the final clustering result is a set union of results for those individual runs. To limit
the number of clusters the algorithm outputs the user can provide an additional parameter
MAX_CLUSTERS, which defines the maximum number of clusters generated. In this case, the
algorithm needs to store only MAX_CLUSTERS biggest clusters during its execution.

This approach focuses on identifying the root causes for large groups of alerts, which
typically correspond to problems in the computing infrastructure that lead to numerous false
positives (with the potential exception of large-scale automated attacks). It does not look for
small, stealthy attacks in the alert logs, but aims at reducing the noise in the raw alerts to
make it easier to identify real attacks in the subsequent analysis.

8.3. AUTOMATED CLUSTER-PROCESSING SYSTEM 117

8.2.3 Cluster Descriptions and Filtering

Note that in line 8.2.2, CLARAty removes all alerts covered by the cluster from L, which
means that subsequent clusters will not try to cover those removed alerts. However, it might
be the case that the newly devised generalized cluster happens to cover alerts that had already
been covered. This is similar to rule-learning algorithms using a sequential covering approach,
in which once covered training examples are removed from the training set.

Consequently, when the cluster descriptions are converted to filters, a new alert may be
covered by more than one cluster. This raises the question as how we should account for this
multiple memberships, when evaluating alert- and cluster coverage.

With both solutions having advantages and disadvantages, in our evaluation we took the
“fist-match wins” approach, similar to ordered rules-sets in RIPPER, in which we register
only the first cluster match in both filtering and clustering stages. This way each alert belongs
to at most one cluster during the clustering stage and at most one cluster during the filtering
stage.

8.3 Automated Cluster-Processing System

In this section we will discuss an automated cluster-processing system, a system which uses
clusters generated by CLARAty, labels them and applies them to future alerts. As discussed
previously there are two possible modes of “application” of this alert-processing system: (i)
feature-construction mode and (ii) filtering mode.

Feature-Construction Mode (FC) In the first mode, the so-called feature-construction
mode (Figure 8.4), alert cluster membership is evaluated and the matching cluster is subse-
quently used to construct additional features. Those features can be used by the analyst (or
ALAC in a two-stage alert-classification system) to facilitate alert classification. The system
works in the following steps:

1. The clustering algorithm is run on a subset of the alert log L (e.g., alerts collected in
the most recent week), yielding a set of clusters {P1, P2, . . . , Pn}.

2. Alerts in the clusters are matched against a set of incidents {I}, based on which cluster-
specific aggregates and features are calculated.

3. Each new alert Ai received by the system is matched against a set of clusters {P1, P2, . . . , Pn}
and, if it belongs to a cluster Pi, the cluster-specific features are associated with it.

4. The alert Ai with extended features is forwarded to the analyst.

5. Clustering (Step 1) is performed again only after a predefined time has elapsed (e.g., a
week).

We decided to add the following four features:

ClusterID: a unique cluster ID describing the cluster the event falls into, allowing to group
events based on this cluster membership.

IncidCount: number of distinct incidents the cluster covers during clustering stage. Allows
to distinguish incident-free clusters (not any alerts belonging to incidents) and clusters
covering incidents.

118 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Alerts

IDS

Alert
Clustering

Historical
Alert Data

ID Analyst

Environment:
- investigating intrusions

Incident
Correlation

Investigate
TP-only and
mixed clusters

Historical
Incidents Data

Feature
Constructor

Figure 8.4: Automated cluster processing—creating features.

IncidEventCount: number of incident alerts the cluster covers during clustering stage.

EventCount: number of all events the cluster covers in the clustering stage. Allows to
construct rules based on the cluster size.

Note that in this approach the analyst would have to review exactly the same number
of alerts as if CLARAty was not used, however the features increase the certainty that no
attacks were missed. This way the feature-construction mode is similar to the recommender
mode of ALAC. It provides additional information, which allows to prioritize analyst’s work
and supports the classification, but does not lead to workload reduction in terms of alerts
that need to be reviewed.

Filtering Mode (FI) In the second mode, the so-called filtering mode (Figure 8.5), clusters
that are marked as FA-only cluster are automatically removed and subsequently not passed
to the analyst. Assuming that most of the clusters will be marked as FP-only clusters and
using the filtering factor of 70% given by Julisch, we can estimate that more than half of the
alerts can be removed in this way.

The system works in the following steps:

1. The clustering algorithm is run on a subset of the alert log L (e.g., alerts collected in
the most recent week), yielding a set of clusters {P1, P2, . . . , Pn}.

2. Alerts in the clusters are matched against a set of incidents {I}, based on which clusters
are labeled as: FA-only, TA-only and mixed (cf. Section 8.1.1).

3. Each new alert Ai received by the system is matched against a set of clusters {P1, P2, . . . , Pn}
and, if it belongs to a cluster Pi labeled as FA-only, the alert is discarded.

4. Otherwise, the alert Ai is forwarded to the analyst unchanged.

5. Clustering (Step 1) is performed again only after a predefined time has elapsed (e.g., a
week).

Obviously, all the clusters, including TA-only clusters and mixed clusters, can be inde-
pendently used for retrospective alert analysis, so that the analyst can better understand

8.4. CLARATY EVALUATION 119

Alerts

IDS

Alert
Clustering

Alert Filter

Historical
Alert Data

ID Analyst

Environment:
- investigating intrusions

Incident
Correlation

Investigate
TP-only and
mixed clusters

Historical
Incidents Data

Remove
FA-only
clusters

Figure 8.5: Automated cluster processing—filtering.

the characteristics of previously generated alerts and ensure the quality and consistency of
alert labeling. As a safety measure, the analyst should also be able to remove some of the
FA-only clusters from filtering, so that the potentially unsafe clusters will not be used or,
in the extreme case, the analyst would have to approve each cluster that will be used for
filtering. This, however, would turn the automated cluster-processing system into the manual
one, which we want to avoid.

Our hypothesis is that this automated cluster-processing system is safe and does not
discard any security related events. We will verify this hypothesis in Section 8.4, in which we
evaluate this system on simulated DARPA 1999 as well as over 13.8 million real alerts.

8.4 CLARAty Evaluation

In this section we discuss our experiments with alert clustering, which forms the first stage of a
two-stage alert-classification system. These results confirm and extend those of Julisch [Jul03b].
In particular, we validate the concept of an automated cluster-processing system (cf. Sec-
tion 8.3) and present quantitative results on the safety of cluster filtering and root-cause
removal. Experiments in this section are based on three types of datasets: DARPA1999 Data
Set, Data Set B and 20 MSSP datasets. The goal of our experiments is to test the following
hypothesis:

Hypothesis 8.4.1 Unsupervised learning using CLARAty and automated cluster processing
framework safe and robust and can significantly reduce the future alert load.

We will do this in the following four steps:

1. We introduce and evaluate cluster persistency showing that clusters are generally per-
sistent over time.

2. We analyze the relationship between the numbers of clusters and the total coverage in
the filtering stage, giving hints on the stopping criteria of the clustering procedure.

3. We introduce cluster precision and cluster recall and clustering precision and recall
charts, providing a tool for the evaluation of cluster safety and robustness in an auto-
mated cluster-processing system.

120 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

4. Perform a case-based analysis of an automated cluster processing system using the above
tools.

8.4.1 Evaluation Methodology

Julisch proposed the use of clustering to discover the corresponding root causes by human
analysts interpreting the clusters. He also claimed that by judiciously removing those root
causes one can reduce the volume of future alerts by up to 70%.

Our datasets contain only historical alerts, so we could not remove the underlying root
causes to see how this will affect future alerts. Hence, similarly to Julisch, we create filters
corresponding to clusters and apply them retroactively to alerts triggered after the clustering
took place as shown in Figure 8.6.

Alert
Clustering

Incident
Correlation

Filter FA-only clusters

Alert stream divided into fixed intevals (e.g. 1 week)

i i+1... ...

Evaluation

Figure 8.6: The evaluation of alert clustering and filtering.

As clustering produces clusters specific to a particular environment we cluster each of the
datasets (and MSSP customers) separately. For clustering we divided the alert stream into
fixed time intervals of one week. While longer or shorter time intervals could have been used
depending on the environment (Julisch used a time interval of one month), this shorter time
interval allows us to be more responsive to the environment changes but, on the other hand,
makes it more difficult to detect rare patterns occurring over longer periods of time, e.g., on
a weekly basis.

With alerts divided into weekly logs, we performed five clustering runs for DARPA 1999
Data Set and Data Set B and up to 26 runs for each customer from the MSSP dataset, each
of the runs producing up to several hundred clusters.

8.4.2 Setting System Parameters

For clustering, alerts are represented as tuples of seven attributes, namely: timestamp, source
and destination IP addresses, source and destination ports (in case of alerts related to TCP
and UDP protocols), alert signature and the packet payload. For clustering we had to define
the generalization hierarchies used by CLARAty:

Source and destination IP addresses: are generalized into classes of IP addressed (i.e.,
classC, classB and classA) and also into inside, outside and DMZ and then into anyIP.

Source Port: is generalized into privileged and non-privileged, and then into anyPort.

8.4. CLARATY EVALUATION 121

Destination Ports: is generalized into a number of service-oriented ports (e.g., httpPorts,
mailPorts) and then into anyPort.

Signature: is generalized into anySignature.

Remaining non-categorical attributes, i.e., time and the packet payload are not generalized
and only used after the cluster has been generated to describe its properties (e.g., hours and
days of the week in case of the time and the longest-common substring in the case of the
packet payload).

Recall from Section 8.2 that CLARAty uses two additional numerical parameters: kmin

determining the minimum fraction of alerts covered by the first cluster and MAX_CLUSTERS
determining the maximum number of clusters generated during a single run. Based on ex-
periments not documented here we selected kmin = 0.05 and MAX_CLUSTERS = 200. In the
following sections we will investigate how to optimally choose the stopping criteria for the
algorithm.

8.4.3 Cluster Persistency

More formally, for a given customer C (one of 20 MSSP customers, DARPA 1999 Data Set, or
Data Set B) we perform n clustering runs {RC,i}, where i ∈ [1; n]. Each run consists of running
the clustering process for the time period i, yielding kC,i clusters {Pj}, where j ∈ [1; kC,i].
Each cluster Pj covers coveragec(Pj) alerts in the clustering stage (i) and is subsequently used
as a classifier in the subsequent filtering stage (i + 1), covering coveragef (Pj) alerts.

At the first stage, we evaluated the persistency of clusters obtained in all clustering runs.
More formally, for a cluster Pj we define the cluster persistency PPj as

PPj =
coveragef (Pj)
coveragec(Pj)

. (8.1)

Cluster persistency close to 1 describes persistent root causes, while values close to 0 describe
ephemeral clusters, which do not have a high predictive value. Finally, values much different
from 0 and 1 (either between 0 and 1 or higher than one) describe clusters in a changing
environment with varying coverage.

We further define the average cluster persistency PRC,i
for clustering run RC,i as an arith-

metic mean of cluster persistencies for a single clustering run:

PRC,i
=

∑kC,i

j=1
coveragef (Pj)

coveragec(Pj)

kC,i
, (8.2)

and average cluster persistency PC for customer C for all the runs. Note that average cluster
persistency does not take cluster sizes into account and a large number of small but stable
clusters can largely affect PC . Hence we also calculate the overall fraction of alerts covered in
both clustering and filtering stage, as shown in Table 8.1.

We also graphically visualize cluster persistency for DARPA 1999 Data Set and Data
Set B in Figure. 8.7 and Figures C.1 and C.2 for the MSSP datasets. Arrows in the figures
correspond to individual clusters, with the start of an arrow corresponding to the clustering
stage and the end of an arrow corresponding to the filtering stage. Clusters are shown
cumulatively, i.e., the actual cluster size corresponds to the difference between neighboring

122 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Table 8.1: Cluster persistency PC for MSSP customers, DARPA 1999 Data Set and Data Set
B.

Customer PC ± Fraction covered
clustering stageP

j coveragec(Pj)

N+P

Fraction covered
filtering stageP

j coveragef (Pj)

N+P

3288 1.15 ± 0.08 0.82 0.69
3359 1.07 ± 0.05 0.75 0.50
3362 1.14 ± 0.02 0.91 0.65
3363 1.25 ± 0.02 0.93 0.73
3380 1.25 ± 0.07 0.95 0.54
3408 1.05 ± 0.07 0.79 0.62
3426 1.11 ± 0.01 0.93 0.79
3473 1.01 ± 0.01 0.91 0.84
3482 0.99 ± 0.02 0.91 0.86
3488 1.83 ± 0.12 0.97 0.69
3491 1.11 ± 0.07 0.88 0.65
3520 1.05 ± 0.03 0.90 0.80
3532 1.00 ± 0.05 0.84 0.51
3565 1.08 ± 0.02 0.94 0.85
3569 1.64 ± 0.07 0.65 0.24
3590 2.54 ± 0.28 0.95 0.46
3626 0.97 ± 0.04 0.88 0.79
3647 1.06 ± 0.01 0.86 0.73
3669 1.76 ± 0.11 0.77 0.40
4043 3.16 ± 0.31 0.94 0.68

DARPA 1999 1.36 ± 0.08 0.91 0.53
Data Set B 1.28 ± 0.10 0.90 0.41

arrows. The parallel arrows correspond to the clusters with PPj = 1 and clusters with touching
ends correspond to the ephemeral clusters, i.e., clusters describing non-recurring events.

Note that the total number of alerts triggered in consecutive clustering periods can be
different, however, both absolute and relative values, shown in Figure 8.7, are meaningful. On
one hand, absolute values show clusters corresponding to stable root causes, i.e., root causes
that do not change over time, and the resulting cluster covers the same number of alerts in
both stages. On the other hand, the size of other clusters can be proportional to the total
number of alerts triggered.

To illustrate this with an example, analyzing clusters shown in Figures 8.7c and 8.7d
we see the first few clusters for a clustering time period Nov 19–Nov 25 correspond to the
persistent root causes and have a similar representation in the following time period Nov
26–Dec 02. Conversely, in the subsequent time period, in addition to the disappearance of
two big clusters (attributed to a big scanning incident), we observed a large reduction of
traffic, resulting in a proportional reduction of sizes of persistent clusters (parallel arrows in
Figure 8.7d).

On average, we observe that for 20 MSSP datasets, 89.6% of all alerts were covered during
the clustering stage and, if those clusters were used as filters in the subsequent time period,
up to 64.3% of all alerts would be covered. For the other two datasets, we observe a similar
high coverage for the clustering stage and lower coverage for the filtering stage: 53% and
41% for DARPA 1999 Data Set and Data Set B, respectively. Note that these figures were

8.4. CLARATY EVALUATION 123

0
50

00
15

00
0

DARPA1999 Data

date (clustering period 1 week)

#a
le

rt
s

Feb 28 Mar 10 Mar 20 Mar 30

#alerts
#positives
clusters

(a) DARPA 1999—absolute values

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DARPA1999 Data

date (clustering period 1 week)

fr
ac

tio
n

of
 a

le
rt

s
(1

 w
ee

k)

Feb 28 Mar 10 Mar 20 Mar 30

(b) DARPA 1999—relative values

0
50

00
15

00
0

Data Set B

date (clustering period 1 week)

#a
le

rt
s

Nov 14 Nov 19 Nov 24 Nov 29 Dec 04 Dec 09

#alerts
#positives
clusters

(c) Data Set B—absolute values

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data Set B

date (clustering period 1 week)

fr
ac

tio
n

of
 a

le
rt

s
(1

 w
ee

k)

Nov 14 Nov 19 Nov 24 Nov 29 Dec 04 Dec 09

(d) Data Set B—relative values

Figure 8.7: Cluster persistency for DARPA 1999 Data Set and Data Set B—relative and
absolute values. Arrows show cumulative cluster coverage in the clustering (begin of an
arrow) and the filtering (end of an arrow) stages for individual clustering runs.

obtained assuming that all clusters will be used in the subsequent alert filtering.

8.4.4 Number of Clusters and Total Coverage

In the previous section we assumed that all the clusters will be reviewed and used in the
subsequent filtering. However, as the clustering algorithm outputs clusters with decreasing
sizes, it is natural to ask if it makes sense to limit the output to only a certain number of
clusters. In particular, we would like to answer the following questions:

• How much does the relationship clustering coverage vs filtering coverage depend on the
dataset used and whether it changes over time?

• Can the cluster coverage in the filtering stage be predicted based on the number of
clusters covered?

• Can the cluster coverage in the filtering stage be predicted based on the coverage in the
clustering stage?

To answer these questions we plotted the fraction of alerts covered in the filtering stage
as a function of both the number of clusters learned and the coverage at the clustering stage
shown in Figures 8.8, C.3 and C.4. In the figures the orange curves correspond to individual

124 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

clustering runs and the thick black curve shows the average. A thin black vertical line marks
the smallest argument for which the value of the target function reaches 95% of the maximum
value.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Filtering vs #clusters (DARPA1999 Data)

#clusters

to
ta

l f
ra

ct
io

n
fil

te
re

d

(a) DARPA 1999—fraction filtered vs #clus-
ters

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Filtering vs Clustering (DARPA1999 Data)

fraction clustered

fr
ac

tio
n

fil
te

re
d

(b) DARPA 1999—fraction filtered vs frac-
tion clustered

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Filtering vs #clusters (Data Set B)

#clusters

to
ta

l f
ra

ct
io

n
fil

te
re

d

(c) Data Set B—fraction filtered vs #clusters

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Filtering vs Clustering (Data Set B)

fraction clustered

fr
ac

tio
n

fil
te

re
d

(d) Data Set B—fraction filtered vs fraction
clustered

Figure 8.8: Estimating the fraction of alerts clustered and the fraction of alerts filtered as a
function of the number of clusters learned. Curves correspond to individual clustering runs.
Verticals line show the smallest argument for which the target function reaches 95% of its
maximum value.

Interpreting Figures 8.8a, 8.8c and C.3 we see that, although the number of clusters
highly depends on the dataset (ranging from 8 to the maximum of 200 clusters), the results
are generally similar for consecutive clustering runs for a single dataset (however, there are a
few large ephemeral clusters, which are an exception). This means that, once the relationship
between clusters and the filtering coverage has been determined for the individual dataset, one
can predict how many clusters need to be generated to achieve the desired filtering coverage.
This answers our questions stated in the beginning of this section.

Interpreting Figures 8.8b, 8.8d and C.4 we discover a very good linear relationship (y =
0.74(±0.07)x, R2 ≥ 0.95) between the average fraction of alerts covered in the clustering and
the filtering stage. This means that, e.g., to achieve the filtering coverage of 60% one should
stop the clustering after covering 81% of all alerts.

8.4. CLARATY EVALUATION 125

8.4.5 Automated Cluster Processing

So far we have looked at a quantitative relationship between the number of alerts covered by
clusters in the clustering and the filtering stage, which was generated without taking alert
labels into account. In this section we will evaluate the automated cluster-processing system
introduced in Section 8.3.

More specifically, we use alert labels to label clusters into the following three categories: (i)
FA-only clusters (clusters containing only alerts labeled as false alerts), (ii) TA-only clusters
(clusters containing alerts only labeled as true alerts), (iii) Mixed clusters (clusters containing
both types of alerts).

Assuming that the first group of clusters accurately identifies benign root causes, we use
only these clusters to create filters in the subsequent filtering stage. Clusters labeled as
“mixed” will need to be investigated by analysts and either further split into a number of
homogeneous clusters (containing only one type of alerts) or some alerts will be relabeled
(in case they were classified incorrectly). Finally, clusters containing only true alerts can be
used to write signatures identifying particular types of attack tools or writing concise alert
correlation rules. Note that this filtering scheme is conservative, as in reality some of the
mixed clusters would be further split and also classified as FA-only clusters. Similarly, some
of TA-only clusters may be reclassified as FA-only clusters.

For our evaluation (cf. Figure 8.6) we have the classification of all the alerts, including
the future alerts, so we can evaluate how well the automated cluster-processing system would
perform in practice. Figures 8.9, C.5 and C.6 show the performance of the system for all
clustering runs for all datasets. The dark blue line shows the total number of alerts covered
in the clustering stage, and the dotted light blue line shows only those covered alerts that
are FA-only clusters. Those false alert clusters (from the preceding clustering run) converted
to filters would filter the number of alerts shown by the thick green line. This may result
in some true alerts being removed (orange dash-dotted line) out of all the true alerts in the
given time period (dotted red line). Note that due to a small number of real incidents, we
calculated the fraction of filtered true alerts as the fraction of all true alerts (not all alerts,
like the remaining series).

We can clearly see that using FA-only clusters as filters only slightly reduced the filtering
coverage (overall 64.3% down to 62.7%), which is expected. However, what is far more
interesting is whether this automated filtering is safe, i.e., does not remove any true alerts.
The quantitative answer to this question is shown in Figure 8.10, where we can see that for
the DARPA 1999 Data Set, the system, reducing the number of alerts by more than a half,
managed to filter a small number (about 1%) of true alerts. For Data Set B, the system
yielded a slightly smaller alerts reduction, but did not remove any true alerts.

These results are strongly encouraging, as the reduction of the alerts volume by 50% is
achieved at the cost of zero, or very few misclassifications. However, MSSP datasets (Fig-
ure 8.10d) show that in reality many more true alerts can be filtered out. For example, using
this system for the customer 3473 would lead to almost all true alerts being removed! Simi-
larly, another five customers, namely 3482, 3520, 3565, 3569 and 3669 would miss significantly
more than 1% of all their true alerts, which is clearly unacceptable.

In the next section we will look at clustering precision and recall in more detail and will
investigate why, in some cases, clustering can lead to the removal of true alerts.

126 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

0
50

00
15

00
0

Filtering using Clustering (DARPA 1999 Data)

date (clustering period 1 week)

#a
le

rt
s

Feb 28 Mar 10 Mar 20 Mar 30

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

(a) DARPA 1999—absolute values

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Filtering using Clustering (DARPA 1999 Data))

date (clustering period 1 week)

fr
ac

tio
n

1/
(N

+
P

)

Feb 28 Mar 10 Mar 20 Mar 30

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

(b) DARPA 1999—relative values

0
50

00
15

00
0

Filtering using Clustering (Data Set B)

date (clustering period 1 week)

#a
le

rt
s

Nov 14 Nov 19 Nov 24 Nov 29 Dec 04 Dec 09

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

(c) Data Set B—absolute values

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Filtering using Clustering (Data Set B))

date (clustering period 1 week)

fr
ac

tio
n

1/
(N

+
P

)

Nov 14 Nov 19 Nov 24 Nov 29 Dec 04 Dec 09

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

(d) Data Set B—relative values

Figure 8.9: Clusters as filters for DARPA 1999 Data Set and Data Set B—relative and absolute
values. Missed positives in Figures 8.9b and 8.9d are calculated relative to the number of
true alerts (P).

8.4.6 Cluster Precision and Recall

Similarly to information retrieval, we define clustering precision (CP) as the fraction of alerts
covered by clusters and clustering recall (CR) as the fraction of true alerts covered by clusters∗.

CP =
|false alerts covered by clusters|
|alerts covered by clusters|

(8.3)

CR =
|true alerts covered by clusters|

|true alerts|
(8.4)

Table 8.2 shows the clustering precision for clusters obtained in the clustering stage for
all datasets. In addition to the number of clusters we also show the total fraction of alerts
covered by those clusters. For example, DARPA 1999 Data Set generated 893 clusters for the
entire experiment, 735 of which (covering 66% of clustered alerts) were FA-only clusters, 38
(covering 16% of alerts) were TA-only clusters and the remaining 120 clusters (covering 17%
of clustered alerts) were mixed clusters. This means that only 735 clusters would be used for
the filtering stage.

∗This working definition is not entirely correct as the precision pertains to false alerts and recall pertains
to true alerts. We nonetheless consider it intuitive and use it qualitatively in this section.

8.4. CLARATY EVALUATION 127

DARPA 1999 Data Set B

Remaining
Filtered
Filtered positives

Total Alert Reduction

Company (Data Set)

#a
le

rt
s

0

5000

10000

15000

20000

25000

30000

(a) Total alert reduction (DARPA 1999 and
Data Set B)—absolute values

DARPA 1999 Data Set B

Remaining/(N+P)
Filtered positives/P

Total Alert Reduction

Company (Data Set)

fr
ac

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

(b) Total alert reduction (DARPA1999 and
Data Set B)—relative values

32
88

33
59

33
62

33
63

33
80

34
08

34
26

34
73

34
82

34
88

34
91

35
20

35
32

35
65

35
69

35
90

36
26

36
47

36
69

40
43

Filtered positives
Filtered
Remaining

Total Alert Reduction

Company (Data Set)

#a
le

rt
s

0
50

00
00

15
00

00
0

(c) Total alert reduction for MSSP datasets—
absolute values

32
88

33
59

33
62

33
63

33
80

34
08

34
26

34
73

34
82

34
88

34
91

35
20

35
32

35
65

35
69

35
90

36
26

36
47

36
69

40
43

Remaining/(N+P)
Filtered positives/P

Total Alert Reduction

Company (Data Set)

fr
ac

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Total alert reduction for MSSP
datasets—relative values

Figure 8.10: Total alert reduction for clusters as filters for all datasets—relative and absolute
values.

We observe that for DARPA 1999 Data Set and Data Set B, FA-only clusters account for
a much smaller, compared to MSSP datasets, fraction of clusters (and alerts). The reason for
this is that the former datasets contain much higher percentage of intrusions then the latter
dataset.

Similarly, Table 8.3 shows clustering precision applied in the filtering stage, in which we
used clusters generated in the clustering stage and applied them to alerts for the subsequent
time interval. Similarly to the previous stage, we classified the clusters into the three groups
depending on the classification of alerts they contain. Note that in this process we used all the
clusters, not only FA-only clusters, which would be used by the automated cluster-processing
system. Moreover, we did not include clusters that has not covered any alerts in the filtering
stage, hence the cumulative number of clusters in a row is smaller than in Table 8.2.

We clearly see that, while FA-only clusters cover approximately the same fraction of alerts,
both TA-only clusters and mixed clusters cover substantially less alerts than in the clustering
stage. This is intuitive as benign root causes, responsible for FA-only clusters, are generally
more persistent than those responsible for true alerts.

The two additional columns in Table 8.3 show the number of clusters and alerts that would
be incorrectly removed in the filtering stage. Continuing with the example with DARPA 1999
Data Set, 735 FA-only clusters would be applied in the filtering stage, resulting in the removal
of 115 true alerts. Those 115 are contained in 30 clusters, which means that those 30 clusters

128 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Table 8.2: Clustering precision for the clustering stage—the cumulative number of clusters
containing only false alerts, only true alerts and mixed clusters. Right columns show the
distribution of the alerts among the three cluster types.

Company #FA-only
clusters

Fraction
alerts

#TA-only
clusters

Fraction
alerts

#Mixed
clusters

Fraction
alerts

3288 724 0.96 5 0.00 94 0.04
3359 1016 0.97 4 0.00 22 0.03
3362 5182 1.00 0 0.00 70 0.00
3363 5161 1.00 10 0.00 61 0.00
3380 1632 0.91 0 0.00 30 0.09
3408 781 0.96 1 0.00 36 0.04
3426 5056 1.00 3 0.00 10 0.00
3473 4398 1.00 0 0.00 83 0.00
3482 1239 0.94 0 0.00 488 0.06
3488 5020 1.00 0 0.00 18 0.00
3491 1121 0.99 0 0.00 27 0.01
3520 906 0.99 9 0.01 6 0.00
3532 889 0.86 0 0.00 175 0.14
3565 1185 0.88 0 0.00 277 0.12
3569 4372 0.88 1 0.00 523 0.11
3590 2658 0.97 0 0.00 82 0.03
3626 387 1.00 13 0.00 30 0.00
3647 5137 0.99 14 0.00 111 0.01
3669 5135 0.99 2 0.00 127 0.01
4043 4299 0.85 0 0.00 391 0.15

DARPA 1999 735 0.66 38 0.16 120 0.17
Data Set B 363 0.69 20 0.11 7 0.20

from the clustering stage were either too general (covering alerts with different root causes)
or incorrectly classified.

Recall, that MSSP datasets and DARPA 1999 Data Sets not only contain information
about the classification of alerts, but also contain information about incidents they are mem-
bers of. In the case of MSSP dataset, these are incidents grouped by security analysts and,
in the case of DARPA 1999 Data Set, the incidents are individual attacks launched in the
simulated environment.

Table 8.4 shows the clustering recall, describing the fraction of incidents covered by clus-
ters. We look at the following three parameters: (i) average fraction of an incident covered
by clusters, (ii) total fraction of all incidents covered, and (iii) the average number of clusters
covering an incident, in both clustering and filtering stage. The interpretation of the pa-
rameters is the following: The average incident coverage shows whether and how completely
incidents are covered by clusters. Ideally, we want this value to be either close to 0 or close to
1. In the first case, the incidents are not covered at all (supporting the hypothesis that only
false alerts are clustered). In the second case, the incident is covered completely (allowing for
the derivation of rules for true alerts). Finally, the average number of clusters per incident
(in the last column) shows how specific the clusters are. This value should be close to 1 as
this is the case, in which clusters accurately model the intrusions.

Based on the clustering recall for both clustering and the filtering stages shown in Ta-
ble 8.4, we make the following observations:

8.4. CLARATY EVALUATION 129

Table 8.3: Clustering precision for the filtering stage. Columns are identical to those in
Table 8.2. Two additional columns show the number of clusters containing false negatives
(erroneously removed alerts relating to incidents) and the absolute number of false negatives.

Company #FA-
only

clusters

Frac-
tion

alerts

#TA-
only

clusters

Frac-
tion

alerts

Mixed
clus-
ters

Frac-
tion

alerts

Missed
(FN)

clusters

Missed
(FN)
events

3288 401 0.96 0 0.00 37 0.04 0 0
3359 409 1.00 0 0.00 0 0.00 0 0
3362 2816 1.00 1 0.00 0 0.00 1 1
3363 3335 1.00 0 0.00 8 0.00 4 9
3380 783 1.00 0 0.00 0 0.00 0 0
3408 496 1.00 0 0.00 0 0.00 0 0
3426 3190 1.00 0 0.00 0 0.00 0 0
3473 3075 1.00 0 0.00 83 0.00 4 105
3482 1004 0.92 0 0.00 447 0.08 28 469
3488 2771 1.00 0 0.00 6 0.00 3 4
3491 672 1.00 2 0.00 6 0.00 0 0
3520 640 0.99 3 0.01 4 0.00 2 317
3532 448 0.97 0 0.00 22 0.03 0 0
3565 995 0.86 0 0.00 277 0.14 12 371
3569 2499 0.87 1 0.00 99 0.13 24 1279
3590 1865 1.00 0 0.00 0 0.00 0 0
3626 285 1.00 0 0.00 22 0.00 1 2
3647 3729 0.99 0 0.00 26 0.01 2 10
3669 3760 0.99 0 0.00 42 0.01 21 123
4043 2464 1.00 0 0.00 38 0.00 7 54

DARPA 1999 470 0.84 2 0.00 78 0.16 30 115
Data Set B 102 0.98 11 0.02 0 0.00 0 0

• Most of the incident events are covered in the clustering stage. The average incident
coverage is lower than the fraction of incidents covered as small incidents tend not to
be covered.

• Very few incidents are covered in the filtering stage, with an exception of customers
3473, 3482 and 3565, for which most of the incidents were covered. Note that these are
those customers for which most of the true alerts would be filtered out. This suggests
that they are covered by big overgeneralized clusters.

• The average number of clusters covering an incident is very high for some companies
(e.g., 20.20 for customer 3552, 14.00 for customer 3590), suggesting that the incidents
are not modeled accurately by clusters.

8.4.7 Clustering Precision and Recall Charts

Having analyzed clustering precision and recall, we conclude that cumulative information
is sometimes insufficient to describe clustering characteristics. Moreover, we would like to
investigate individual clusters that lead to the misclassifications of true alerts, to investigate
what kind of alerts would have been missed and why. To this end we plotted clustering

130 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Table 8.4: Clustering recall—clustering and filtering stage.
Customer Average

incident
coverage
(cluster-

ing)

Fraction of
all incident

events
covered

(clustering)

Average
incident
coverage
(filter-
ing)

Fraction of
all incident

events
covered

(filtering)

Average
#clusters

covering an
incident

(clustering)

Average
#clusters

covering an
incident

(filtering)
3288 0.56 0.50 0.18 0.36 6.80 2.50
3359 0.21 0.28 0.00 0.00 1.25 0.00
3362 0.53 0.63 0.00 0.00 2.48 0.05
3363 0.12 0.49 0.00 0.00 1.50 0.14
3380 0.29 0.71 0.00 0.00 2.29 0.00
3408 0.35 0.57 0.00 0.00 9.50 0.00
3426 0.12 0.34 0.00 0.00 0.89 0.00
3473 0.93 0.98 0.93 0.98 2.72 2.72
3482 0.91 0.93 0.85 0.92 9.45 8.74
3488 0.06 0.30 0.00 0.02 0.26 0.09
3491 0.58 0.75 0.12 0.07 2.00 0.63
3520 0.68 0.80 0.56 0.66 2.00 0.83
3532 0.73 0.87 0.13 0.06 20.20 2.40
3565 0.96 0.95 0.96 0.95 8.80 8.80
3569 0.48 0.60 0.18 0.11 12.41 2.36
3590 0.75 0.99 0.00 0.00 14.00 0.00
3626 0.28 0.73 0.10 0.16 4.67 1.83
3647 0.45 0.70 0.10 0.15 5.19 1.06
3669 0.64 0.73 0.27 0.17 9.43 3.00
4043 0.95 0.98 0.30 0.04 12.33 1.33

DARPA 1999 0.30 0.92 0.13 0.01 0.77 0.35
Data Set B 0.60 0.93 0.11 0.03 5.20 2.20

precision and recall charts shown in Figures 8.11 (DARPA 1999 Data Set) and C.7–C.10
(MSSP datasets).

Clustering precision charts are stacked bar charts, with X-axes labeled as clusters and
Y-axes labeled as the number of alerts. Bars at each cluster contain incidents (colored bars,
each color represents a different incident) or non-incidents (white bars). Note that because
most of the clusters contain only false alerts, both in the clustering and the filtering stage, we
omitted them in the charts. This means that clusters plotted in the precision charts are only
those clusters that contain at least one alert classified as true alert, at either the clustering
or the filtering stage.

Similarly, clustering recall charts are stacked bar chars with X-axes labeled as incidents
and Y-labels labeled as the number of alerts. Bars at each clusters contain clusters (marked
with colored bars, each color represents a different cluster) that a given part of incident is
covered with. The non-covered part of each incident is marked with white bars.

Clustering precision and recall charts provide valuable means for rapid alert analysis.
For example, analyzing Figure 8.11a we immediately see that the majority of clusters are
pure, i.e., contain exclusively alerts marked as incidents or non-incidents. Analyzing three of
those non-pure clusters, namely clusters 72194 (cf. Figure 8.12), 72195, 72242, we discovered
that the alerts that were not classified as intrusions belong in fact to a part of long-lasting
portsweep attacks (training set attacks #8 and #25). This way, by analyzing clustering
precision charts, we managed to detect and correct some misclassified alerts.

8.4. CLARATY EVALUATION 131

72076
72084
72088
72128
72193
72194
72195
72200
72203
72206
72242
72243
72244
72245
72246
72247
72248
72249
72250
72251
72252
72275
72288
72289
72290
72311
72312
72351
72352
72397
72424
72448
72457
72468
72472
72494
72517
72518
72519
72520
72521
72522
72523
72524
72525
72526
72534
72552
72553
72554
72576
72577
72578
72585
72590
72592
72594
72595
72599
72601
72602
72604
72605
72607
72608
72610
72630
72634
72648
72650
72651
72652
72654
72661
72674
72677
72683
72684
72685
72686
72687
72688
72689
72690
72691
72692
72699
72700
72701
72702
72703
72704
72716
72720
72721
72722
72723
72724
72725
72730
72792
72800
72802
72803
72805
72812
72815
72835
72836
72837
72857
72858
72859
72864
72865
72869
72870
72876
72880
728810 20

01
1

20
01

3
20

01
8

20
02

0
20

02
4

20
02

7
20

03
5

20
04

0
20

04
6

20
05

2
20

10
2

20
10

8
20

11
5

20
13

2
20

13
4

20
13

9
20

14
3

20
14

6
20

14
9

20
15

1
20

15
5

20
15

6
20

16
6

20
17

6
20

17
8

20
18

4
20

18
5

20
18

7
20

19
0

20
19

6
20

19
7

20
20

4
20

21
3

20
21

9
20

23
4

20
23

6
20

23
9

20
24

4
20

24
8

20
24

9
20

25
0

20
25

1
20

25
7

20
26

0
20

26
9

20
27

3
20

27
5

20
27

8

C
lu

st
er

in
g

 P
re

ci
si

o
n

 C
L

U
S

T
E

R
IN

G
 S

T
A

G
E

 (
D

A
R

P
A

 1
99

9
D

at
a)

C
lu

st
er

s

#alerts

1e−011e+001e+011e+021e+03

(a) Precision—clustering stage

72076
72084
72088
72128
72200
72203
72275
72351
72352
72397
72424
72448
72457
72468
72472
72494
72517
72518
72519
72520
72521
72522
72523
72524
72525
72526
72534
72552
72576
72585
72590
72592
72594
72595
72599
72602
72604
72605
72607
72630
72634
72648
72661
72683
72684
72685
72686
72687
72688
72689
72691
72692
72792
72800
72802
72803
72805
72812
72815
72835
72836
72837
728760 20

01
1

20
02

4
20

04
0

20
10

2
20

11
5

20
13

2
20

13
4

20
13

9
20

14
9

20
15

1
20

15
5

20
16

6
20

17
8

20
18

4
20

19
0

20
20

4
20

21
9

20
23

1
20

23
4

20
24

8
20

25
1

20
27

8
20

28
0

20
28

2

C
lu

st
er

in
g

 P
re

ci
si

o
n

 F
IL

T
E

R
IN

G
 S

T
A

G
E

 (
D

A
R

P
A

 1
99

9
D

at
a)

C
lu

st
er

s

#alerts

0.10.51.05.010.050.0100.0500.0

(b) Precision—filtering stage

20011
20012
20013
20015
20018
20020
20024
20027
20030
20034
20035
20036
20039
20040
20041
20042
20045
20046
20047
20052
20053
20100
20101
20102
20105
20106
20108
20109
20110
20111
20112
20114
20115
20129
20130
20131
20132
20134
20135
20136
20139
20140
20141
20143
20146
20148
20149
20150
20151
20153
20154
20155
20156
20157
20159
20166
20167
20168
20169
20170
20171
20173
20174
20176
20178
20180
20182
20183
20184
20185
20187
20188
20190
20194
20195
20196
20197
20199
20200
20201
20202
20204
20205
20207
20208
20209
20210
20212
20213
20214
20215
20216
20217
20218
20219
20221
20225
20227
20229
20231
20232
20233
20234
20235
20236
20238
20239
20241
20244
20247
20248
20249
20250
20251
20253
20254
20256
20257
20258
20259
20260
20262
20264
20265
20266
20269
20270
20271
20273
20275
20278
20279
20280
20282
20283
20285
20290
20291
20293
20297
202990 72

19
3

72
19

4
72

19
5

72
20

0
72

20
3

72
20

6
72

24
2

72
24

3
72

24
4

72
24

5
72

24
6

72
24

7
72

24
8

72
24

9
72

25
0

72
25

1
72

25
2

72
27

5
72

28
8

72
28

9
72

29
0

72
31

1
72

31
2

72
52

0
72

52
5

72
53

4
72

55
2

72
55

3
72

55
4

72
57

6
72

57
7

72
57

8
72

58
5

72
59

5
72

60
1

72
60

2
72

60
5

72
60

8
72

61
0

72
63

4
72

65
0

72
65

1
72

65
2

72
65

4
72

67
4

72
67

7
72

68
3

72
68

4

C
lu

st
er

in
g

 R
ec

al
l C

L
U

S
T

E
R

IN
G

 S
T

A
G

E
 (

D
A

R
P

A
 1

99
9

D
at

a)

In
ci

de
nt

s

#alerts

1e−011e+001e+011e+021e+03

(c) Recall—clustering stage

20011
20012
20013
20015
20018
20020
20024
20027
20030
20034
20035
20036
20039
20040
20041
20042
20045
20046
20047
20052
20053
20100
20101
20102
20105
20106
20108
20109
20110
20111
20112
20114
20115
20129
20130
20131
20132
20134
20135
20136
20139
20140
20141
20143
20146
20148
20149
20150
20151
20153
20154
20155
20156
20157
20159
20166
20167
20168
20169
20170
20171
20173
20174
20176
20178
20180
20182
20183
20184
20185
20187
20188
20190
20194
20195
20196
20197
20199
20200
20201
20202
20204
20205
20207
20208
20209
20210
20212
20213
20214
20215
20216
20217
20218
20219
20221
20225
20227
20229
20231
20232
20233
20234
20235
20236
20238
20239
20241
20244
20247
20248
20249
20250
20251
20253
20254
20256
20257
20258
20259
20260
20262
20264
20265
20266
20269
20270
20271
20273
20275
20278
20279
20280
20282
20283
20285
20290
20291
20293
20297
202990 72

07
6

72
08

4
72

08
8

72
12

8
72

35
1

72
35

2
72

39
7

72
42

4
72

44
8

72
45

7
72

46
8

72
47

2
72

49
4

72
51

7
72

51
8

72
51

9
72

52
0

72
52

1
72

52
2

72
52

3
72

52
4

72
52

5
72

52
6

72
59

0
72

59
2

72
59

4
72

59
9

72
60

4
72

60
7

72
63

0
72

64
8

72
66

1

C
lu

st
er

in
g

 R
ec

al
l F

IL
T

E
R

IN
G

 S
T

A
G

E
 (

D
A

R
P

A
 1

99
9

D
at

a)

In
ci

de
nt

s

#alerts

1e−011e+001e+011e+021e+03

(d) Recall—filtering stage

Figure 8.11: Clustering and filtering precision and recall for DARPA 1999 Data Set. Data
shown cumulatively for all clustering runs, with FA-clusters suppressed.

132 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Cluster of size 1000:
timeDate == hour: [15 - 16]; days of the week: THU; days of the month: [11 - 11];

srcIP == 207.103.80.104 :: <1,1,1,1,1> 207.103.80.104[100.00%]
srcWhere == ip_other :: <1,1,1,1,1> ip_other[100.00%]
srcPort == 0 :: <1,1,1,1,1> 0[100.00%]
dstIP == 172.16.114.50 :: <1,1,1,1,1> 172.16.114.50[100.00%]
dstWhere == ip_inside :: <1,1,1,1,1> ip_inside[100.00%]
dstPort == 0 :: <1,1,1,1,1> 0[100.00%], HGen: 0
signature == ICMP PING (Undefined Code!)
context == any

Figure 8.12: Cluster 72194, describing a part of a portsweep attack.

On the other hand, looking at clustering recall charts, we can see how accurately incidents
are modeled by clusters. For example DARPA attack #8, corresponding to incident 20018 in
Figure 8.11c, shows that this single incident was covered by a number of clusters, including
clusters 72194 and 72242 analyzed previously. On the other hand, most of the other incidents
are covered by a single cluster, or not covered at all.

We can also compare precision and recall charts for clustering and filtering stages. Recall
that charts for the filtering stage (Figures 8.11d and C.10) show that most incidents are
not covered by clusters, which is to be expected as incidents are rare and are unlikely to be
covered by clusters from the preceding week. However, we notice, that there is a number of
clusters that also cover a fraction of incidents. This is confirmed by the clustering precision
chart (Figure 8.11b), which shows that there were clusters with sizes of several hundred alerts
which also included some alerts belonging to incidents. This led to 30 clusters, containing
115 true alerts (cf. Table 8.3), being erroneously removed by the cluster-processing system.

Investigating Missed Alerts for DARPA 1999 Data Set

Investigating these 115 alerts that would be mistakenly removed (together with 30 clusters
they are members of) by the cluster-processing system we discover that those alerts belong to
the following 24 incidents: training attacks #1, #14, #30, test attacks #2, #15, #32, #34,
#39, #49, #55, #55, #66, #78, #84, #90, #104, #119, #131, #134, #148, #151, #178,
#180, #182.

We further discover that in 18 of those incidents, the system not only captured all intru-
sions, but identified alerts incorrectly classified as malicious! In fact, 13 of those incidents,
namely test attack #2, #15, #32, #34, #39, #51, #55, #84, #90, #104, #148, #151, #151,
are incidents that can only be detected by a host-based IDS, not Snort, and the remaining five
incidents, namely test attack #119, #131, #134, #180, #182, were not detected by Snort,
because it did not have signatures for these attacks.

In all these cases, alerts incorrectly classified as true alerts were a part of background noise
that happened to occur when the attacks took place and were therefore classified as belonging
to an incident by our incident correlation tool. In reality, if the attacks were detected, those
alerts would be also investigated by the security analyst to confirm their benign nature and
this classification would not be considered incorrect. However, we know that in our case the
attacks were not detected and those misclassified alerts are completely unrelated.

This leaves us with the remaining six incidents, namely training attack #1, #14, #30

8.4. CLARATY EVALUATION 133

and test attack #49, #66, #77, for which the system actually removed true alerts. All
those incidents are scanning incidents (ipsweep and NTinfoscan) and the missed alerts are
scanning alerts, which tend to have unusually high false-positive rates. In addition, analyzing
the clustering recall chart for the filtering stage (Figure 8.11d) we see that none of the six
incidents were covered entirely by the removed clusters, which means that those incidents
would be nonetheless detected. In practice, intrusion detection is a multi-stage process (also
known as multi-stage classification [Sen05]), in which after an incident has been detected, all
incidents it comprises are found using link-mining (analyzing related alerts). This means that
even if those alerts were removed, the incidents they belong to would not have been missed,
and they are likely to be rediscovered in the forensic stage.

Investigating Missed Alerts for MSSP Datasets

In the previous section we showed that true alerts removed by the automated alert clustering
system from DARPA 1999 Data Set were, in fact, either false alerts that had been incorrectly
classified as true alerts or, in the case of scanning alerts, they were only a part of a scanning
incident that was extremely similar to the background traffic. In this section we will take a
look at 12 MSSP customers (cf. Table 8.3) for which true alerts were removed, to support
these findings and show the robustness of the automatic cluster-processing system.

For each customer, our investigation follows the following procedure:

1. List clusters that were incorrectly removed, together with incidents they cover.

2. For each incident: List all alerts constituting the incident, conclude if the incident would
have been missed.

3. For each cluster: List events covered in the clustering and the filtering stage, analyze
why the cluster was classified as a FA-only cluster in the clustering stage.

Customer 3362 Missed cluster contains a Windows LSASS RPC Overflow alerts, which
constitutes a part of Malware Infection Incident. As only a part of this incident is being
removed, the whole incident would not have been missed.

We further investigate that the cluster was not included as a part of a Malware Infection
Incident in the preceding week (clustering stage), although the incident itself was detected
by security analysts. By retroactive cluster analysis, an appropriate rule can be written so
that similar incidents are automatically detected and none of the events comprising it are
missed.

Customer 3363 Similarly to the previous case, we discover similar clusters with nine
Windows LSASS RPC Overflow alerts, constituting a Malware Infection Incident, which
should have been detected in the preceding week. The incident would not be missed as only
part of is was removed.

Similarly to the previous case, by retroactive cluster analysis, an appropriate rule can be
written so that similar malware infections are automatically detected.

Customer 3473 Clusters that were filtered out constitute two types of alerts: HSRP Default
Password, SQL SSRP StackBo classified by the analysts as Suspected False Positive and
Other. We cannot determine with certainty what the actual root cause was, but the clusters

134 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

covered alerts similar to those that were not given any classification in the preceding week.
Therefore we consider the alert a false alert and assume that no true alerts were missed.

Customer 3482 For this customer, 28 clusters were removed, all of which contain alerts
with only one signature SQL_SSRP_StackBo. These clusters were classified as a number of
incidents: Other, Suspicious Activity, Incoming Call, Endpoint Troubleshooting and
Dos Denial of Service, however, only in addition with some other alerts.

Similarly, to the previous case we cannot determine the root cause of the SQL_SSRP_StackBo,
however it is likely to be a background noise, not constituting any security threats. For ex-
ample, the clusters that were filtered out covered approximately 6000 alerts in the clustering
stage and were triggered by the same signature. None of these alerts was classified as a true
alert.

Customer 3488 Removed clusters constitute a single incident comprising of four types
of alerts: Windows Registry Access, Windows RPC Race Condition Exploitation and
Miscellaneous and TCP SYN Port Sweep most likely indicating a worm infection. However,
in the preceding week, there have been more than 100 alerts with a very similar characteris-
tics, however, we have no record of identified incidents during that time period. If our incident
data is complete, retroactive alert analysis suggests that this could be a missed incident.

Customer 3520 and 3569 Removed clusters contain alerts classified as Approved Vulnerability
Scan. In the preceding week, there have been identical events that did not receive any clas-
sification in the system. For consistency, both events should be either marked or not marked
at all.

Customer 3565 Removed clusters contain alerts classified as Suspected False Positive,
however similar events in the preceding week did not receive any classification.

For consistency, both events should be either marked as incidents or not marked at all.

Customer 3626 The cluster removes some of the events classified as Recon - General
Vulnerability Scan. In the preceding week there has been a number of unsuccessful worm
infection attempts, bearing similar characteristics, with no classification. In this case a sin-
gle cluster covered events related to two different root causes: unsuccessful worm infection
attempts on the external server and a vulnerability scan, also from an external address. As
only a part of the incident was removed, the incident would not have been missed.

Customer 3647 We found out the cluster contained alerts with an intent guessing IDS
signature IDS Evasive Double Encoding, which seems to be also triggering on a misconfigured
web server. In the filtering stage, the system removed events triggered by the same signature
constituting an approved vulnerability scan.

Customer 3669 Removed clusters constitute three different groups of incidents: (i) sus-
pected false positives, (ii) approved vulnerability scans and (iii) Denial of Service attack
(DoS). The approved vulnerability scan would be removed, as similar scans in the preceding
week did not receive any classification. In the case of the Denial of Service attack, there have

8.4. CLARATY EVALUATION 135

been similar activities in the preceding week that did not receive any classification and can
be a missed incident.

Customer 4043 Removed clusters cover a number of alerts classified as Malware Infection,
which after being removed makes the entire incident likely to be missed. However, it turns
out that there were similar alerts in the preceding clustering period, namely Windows LSASS
RPC Overflow, Windows RPC DCOM Overflow and Windows_SMB_RPC_NoOp_Sled alerts, with
no classification, which suggest that there was a similar infection that has not been identi-
fied. However, closer investigation reveals that the previous malware infections were in fact
identified, although not all relevant alerts were included in those incidents. By retroactive
cluster analysis, an appropriate rule can be written so that similar incidents are automatically
detected and none of the events comprising it are missed.

To summarize, our retroactive analysis revealed that, in two cases, namely for customers
3363 and 3488, there has likely been a worm/malware infection that was missed in the week
preceding the filtering stage, thus leading to the subsequent removal of similar alerts. In
another two cases, namely for customers 3362 and 4043, the incidents were detected on
time, although they did not include all events comprising them, thus this would result in the
subsequent removal of similar alerts in the filtering stage by CLARAty.

Another five cases of “missed” true alerts are incidents, such as approved vulnerability
scans and suspected false positives that are not real security incidents. The events would be
filtered out as there have been similar events in the preceding clustering period that did not
receive any classification.

Finally, there are the last two cases, namely for customers 3626 and 3647, for which
background traffic contained alerts similar to malicious activities. In the first case, a number
of worm infection attempts, removed one event constituting an approved vulnerability scan
and, in the second case, a misconfigured web server triggered an alert similar to vulnerability
scanning.

8.4.8 Conclusions

In this section we applied CLARAty, a clustering algorithm developed by Julisch [Jul03b] to
our evaluation datasets, DARPA 1999 Data Set, Data Set B and MSSP datasets, confirming
that on average up to 63% of future alerts can be covered by clusters, hence allowing for a
similar reduction in the number of future alerts.

We showed that the cluster filtering coverage (coveragef (Pj)) can be very well predicted
based on the cluster clustering coverage (coveragec(Pj)), providing easy guidance on how
to set the stopping criteria for the algorithm. We also introduced an automated cluster-
processing system that allows the safe removal benign clusters, without the need for analyzing
them manually. We defined clustering precision and recall, analyzed them quantitatively, and
showed how clustering precision and recall charts can be used for fast cluster analysis.

Our initial results showed that (cf. Figures 8.10b, 8.10d and Table 8.3) unacceptably high
rates of true alerts could be missed, undermining the usability of the automated cluster-
processing system. We investigated the cases of those missed alerts and found out that they
were due to, either false alerts being incorrectly classified as true alerts, or incidents missed
in the preceding time interval. Should those events be classified correctly, the automated
cluster-processing system would not remove any true alerts.

136 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

This means that the system not only captured all true alerts but also allowed us to detect
inconsistencies in alert labeling and, in four cases, detected incidents that were previously
missed.

We also showed how analyzing clustering precision and recall charts can be used to retroac-
tively analyze clusters and past alerts, thus helping to assess the quality of human classification
and make sure that no incidents were previously missed.

We would like to emphasize that the results here were obtained on a variety of datasets,
including simulated datasets, as well as over 13.8 million real alerts analyzed by real security
analysts. This shows the safety and robustness of the system and confirms its usefulness in
real environments, which confirms our hypothesis stated in the beginning of the evaluation
section.

8.5 Combining Clustering with ALAC in a Two-Stage Alert-
Classification System

As proposed in [PT05], CLARAty can be cascaded with ALAC to form a two-stage alert-
classification system. Essentially, the two-stage alert-classification system is a cascade of an
automated cluster-processing system (Figures 8.4 and 8.5) combined with ALAC (or ALAC+).

From the problem specification such a two-stage system performs the same function as
the one-stage system, and addresses the same problem definition with the utility function U
(cf. Sections 1.2, 5.1 and 7.1), i.e., minimizing misclassification cost and analyst’s workload
possibly allowing for abstentions.

The system can work both in the feature-construction mode, in which clusters provided by
CLARAty are used as additional features for ALAC learning, as well as in the filtering mode,
in which some false positives will be removed prior to being classified by ALAC. This second
mode of operation is particularly interesting, as CLARAty can effectively remove those false
positives that are “easy” to classify, thus allowing ALAC to focus on the remaining ones and
also reducing the “workload component” of the utility function U . In addition, the removal
of false positives in the first stage effectively changes the class distribution in favor of true
alerts, which is desirable for the machine-learning techniques used in ALAC.

We will evaluate the performance of this system in both modes in the following section.

8.6 CLARAty and ALAC Evaluation

Having shown that if alert labels are correct, our automatic cluster-processing system using
CLARAty is an efficient method of removing on average 63% of false positives, we would like
to evaluate a two-stage alert-classification system using CLARAty and ALAC and test the
following hypothesis:

Hypothesis 8.6.1 A two-stage alert classification framework with CLARAty and ALAC im-
proves the performance of ALAC in terms of the number of misclassifications and the analyst’s
workload, making it useful for intrusion detection.

Recall that the two-stage alert-classification system, in which CLARAty is used at the
first stage together with automated cluster labeling and ALAC is used in the second stage,
has two modes depending on how the information obtained from CLARAty is used in the

8.6. CLARATY AND ALAC EVALUATION 137

subsequent stage. In the first mode, namely the feature-construction mode (hereafter called
2FC) clusters are used to construct four additional features characterizing properties of the
cluster the given alert belongs to. In the second mode, namely the filtering mode (hereafter
called 2FI) alerts belonging to clusters marked as false alerts are removed.

8.6.1 ROC analysis

Similarly to the evaluation of ALAC we performed an ROC analysis on a 10% stratified
sample of alerts to understand the performance of a system under different cost ratios and
class distributions, shown in Figure 8.13.

0.0 0.1 0.2 0.3 0.4

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Two−Staged System − DARPA

fp

tp

1

4

8

12

39
53.554.06

80.12
128

2

4

8

16

84
127.5

1

3

4.5

7

18

54.34

1

3

4.5

7

18

54.34

81

Original
Feature construction (2FC)
Filtering (2FI)
Filtering (2FI) (rescaled)

(a) DARPA1999 Data Set

0.0 0.1 0.2 0.3 0.4

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Two−Staged System − Data Set B

fp

tp

0.25

1

2.5

6

163245 48 112.39

0.25

1
1

2

4.25
4.69

7

11
19.1134.8854.49 132.45 512

0.5

1

2.75

4.25
6

12

24

0.5

1

2.75

4.25
6

12

24 25.4 61.7269.62

Original
Feature construction (2FC)
Filtering (2FI)
Filtering (2FI) (rescaled)

(b) Data Set B

Figure 8.13: ROC curves for two types of two-stage alert-classification systems: 2FC and 2FI,
for DARPA 1999 Data Set and Data Set B.

We observe that for both datasets, the feature-construction mode performs marginally
better than the standard classifier and that the filtering mode performs comparably to the
original system for the DARPA 1999 Data Set and worse for Data Set B. In all the cases
the differences become smaller with higher cost ratios (i.e., for classifiers with higher both
true-positive rates and false-positive rates).

Note, however, that a special care needs to be taken comparing false-positive rates of
systems in the 2FI mode and the remaining two modes as the number of negative examples
is typically much smaller in the former. To illustrate this with an example, a classifier with
a false-positive rate fp = 0.3 in the 2FC mode would make exactly the same number of
misclassifications as a classifier with a false-positive rate fp = 0.81 in the 2FI mode, assuming
that 63% of false positives are removed in the first stage. To illustrate this, we rescaled the
original 2FI-series calculating the rates at relative to the number of instances classified at the
first stage. Here we obtain that the classifier performs much better for DARPA 1999 Data
set and marginally worse for Data Set B.

Similarly, to the previous two systems, obtained ROC curves can be used to select optimal

138 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

parameters, including the cost ratio for ALAC in the recommender and agent modes. For the
remaining experiments we assumed ICR = 50 and selected identical parameters w for ALAC
in the agent and recommender mode as for the evaluation of ALAC+: w = 76 for DARPA
1999 Data Set and w = 16 for Data Set B (cf. Table 7.1).

8.6.2 DARPA 1999 Data Set

Figure 8.14 shows the performance in terms of false-negative and false-positive rates of the
two-stage system in agent and recommender modes.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10000 20000 30000 40000 50000 60000

F
al

se
 N

eg
at

iv
e

ra
te

 (
fn

)

Alerts Processed by System

Recommender
Recommender (2FC)
Recommender (2FI)

Agent
Agent (2FC)
Agent (2FI)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10000 20000 30000 40000 50000 60000

F
al

se
 P

os
iti

ve
 r

at
e

(f
p)

Alerts Processed by System

Figure 8.14: Two-stage alert-classification system: False negatives and false positives for
ALAC and two-stage ALAC (2FC, 2FI) in agent and recommender modes (DARPA1999
Data Set, ICR =50).

In the recommender mode, the system using the feature-construction mode has a much
higher false-positive rate and smaller false-negative rate than the baseline system. In the
filtering mode, the system has a comparable false-positive rate to the baseline system and
significantly lower false-negative rate (fn = 0.008 vs. fp = 0.034). However, in the filtering
mode, the system had removed 53% of all alerts in the filtering stage (cf. Figure 8.10b),
therefore the absolute number of all false positives is only marginally higher than for the
baseline system.

Similar findings can be observed for the agent mode, in which the system exhibits a much
lower false-negative rate (fn = 0.0045 vs. fn = 0.02 for the baseline). The reason for this is
that while filtering alerts we managed to remove a number of false alerts mistakenly classified
as true alerts. Hence, the system could perform much better in terms of false negatives
compared to the baseline system.

An interesting conclusion can be drawn observing the fraction of discarded alerts in the
agent mode, shown in Figure 8.15a). After filtering the “easy” alerts in the first stage, the
agent processes automatically less alerts, thus the rate of discarded false positives is lower.
On the other hand, in the feature construction mode, the system has more features to classify
alerts reliably and thus can discard more alerts compared to the baseline.

8.6. CLARATY AND ALAC EVALUATION 139

 0

 0.25

 0.5

 0.75

 0 10000 20000 30000 40000 50000 60000

D
is

ca
rd

ed
 F

al
se

 P
os

iti
ve

 r
at

e

Alerts Processed by the System

Agent
Agent (2FC)
Agent (2FI)

(a) DARPA1999 Data Set, ICR =50

 0

 0.25

 0.5

 0.75

 1

 0 10000 20000 30000 40000 50000

D
is

ca
rd

ed
 F

al
se

 P
os

iti
ve

 r
at

e

Alerts Processed by the System

Agent
Agent (2FC)
Agent (2FI)

(b) Data Set B, ICR =50

Figure 8.15: Two-stage alert-classification system: Number of alerts processed autonomously
by ALAC and two-stage ALAC (2FC, 2FI) in agent mode.

8.6.3 Data Set B

For the second dataset, we observe similar results as for the DARPA 1999 Data Set, although
due to much smaller absolute values of false-negatives and false-positives rates and their higher
variance, the comparison of the absolute values has to be done carefully.

The feature-construction mode performs comparably to the baseline in terms of both
false-positive and false-negative rates. Similarly, the filtering mode performs worse in terms of
false-positive and comparably in term of false-negative rates to the baseline system. However,
taking intro account that in 41% of all alerts have been discarded, the actual number of false
positives is comparable. We also observe that the system in the filtering mode processes
automatically less alerts (Figure 8.15b) as alerts “easy” to classify have already been discarded
in the first stage.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 10000 20000 30000 40000 50000

F
al

se
 N

eg
at

iv
e

ra
te

 (
fn

)

Alerts Processed by System

Recommender
Recommender (2FC)
Recommender (2FI)

Agent
Agent (2FC)
Agent (2FI)

 0

 0.05

 0.1

 0.15

 0.2

 0 10000 20000 30000 40000 50000

F
al

se
 P

os
iti

ve
 r

at
e

(f
p)

Alerts Processed by System

Figure 8.16: Two-stage alert-classification system: False negatives and false positives for
ALAC and two-stage ALAC (2FC, 2FI) in agent and recommender modes (Data Set B, ICR
=50).

140 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Based on the evaluation of the two-stage alert-classification system on two different datasets
in the previous section we can conclude that the system works well in the filtering mode, low-
ering the number of misclassifications (both false negatives and false positives). In addition,
we have shown that CLARAty and the analysis of clusters generated in the first stage can
significantly reduce the numbers of alerts to be processed and, if performed systematically,
reveal inconsistencies in alert labeling.

8.6.4 MSSP Datasets

As the last part of our evaluation we decided to apply two-stage ALAC to MSSP datasets.
Recall that those datasets have two properties that make supervised learning difficult: (i) the
dataset is highly skewed dataset and contains very few incidents, (ii) there are inconsistencies
in the labeling. The first property was investigated in Chapter 4 and the second one was
investigated while evaluating the CLARAty performance in Section 8.4.

Note that while the rarity of intrusions is intrinsic to computer security, labeling incon-
sistencies result from the way the incidents data was originally used. For example, after
detecting that a particular machine is infected with a worm, the analyst would identify this
as an incident and report it to the customer. However, subsequent alerts originating from this
machine may be neither tagged as security incidents nor added to the original incidents. Con-
sequently, semantically identical alerts receive contradicting labels, and thus make it difficult
to learn an accurate classifier.

Having said this, we decided to evaluate a representative sample of MSSP alerts. We have
selected a subset of MSSP customers and evaluated the system for the time period of one
month. We performed the evaluation of a two-stage system in the filtering mode, in which
false positive clusters labeled by CLARAty are removed prior to the classification stage. Note
that this effectively changes the distribution of instances in favor of true alerts and thus makes
it more similar to the datasets used previously. The statistics for those datasets before and
after the first stage are shown in Table 8.5

Table 8.5: Statistics for a subset of 10 MSSP customers for a period of one month used in a
two-stage ALAC experiment.

Customer #Alerts #Alerts (after CLARAty) #Positives
3288 11586 8674 3293
3359 22954 15203 400
3362 115788 66120 498
3363 133624 61607 2080
3408 7694 5016 535
3426 93517 18677 187
3491 23176 6483 946
3520 15783 3935 825
3532 27230 16854 758
3647 142295 54117 5807

Prior to evaluating ALAC, similarly to the previous section, we performed ROC analysis
on a stratified samples of those datasets to find optimal parameters for ALAC and also to
allow us to find parameters for abstaining classifiers. We obtained the following ROC curves
shown in Figure 8.17.

Investigating the reasons why the classifier would perform poorly in those three cases,

8.6. CLARATY AND ALAC EVALUATION 141

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curves for sample MSSD customers

fp

tp

0.12

0.250.31

0.380.41
0.44
0.53

0.75

1.19
1.25

1.351.471.48
1.62

1.66
1.912

49.4 185.93

0.06

0.5
1

2

4

16
2632

645644 20483786.5 21760

0.51

4

8

16
32

12810244096 599479

0

0.03

0.06

0.12

0.25
0.518

52112352904 98560

0.03

0.51

2.25
4 8 324 695.5515

0.12

0.5

1

8

80 5220.7716384 131072

0.01

0.25
0.060.03

0.75

24.5 206.38 704 1222

0.75

1.12
1.25

1.75

2.88

3.5
5.7516 480.25

0.51
2
4

8

8.88

11

21.25
24.5

905.41875.51765.885121058.231111.39 4916

0.02
0.06

0.75
1

1.524
77.5 51210241184.741632.7464 19301

Company 3288
Company 3359
Company 3362
Company 3363
Company 3408
Company 3426
Company 3491
Company 3520
Company 3532
Company 3647

Figure 8.17: ROC curve for sample MSSP datasets.

namely for companies 3288, 3520 and 3532, we decided to estimate the fraction of inconsis-
tently labeled alerts for those companies. In order to do so, we grouped alerts by the three key
attributes: source and destination IP addresses and the signature and calculated the number
of alerts marked as incidents or non-incidents in each of those groups.

Note that this is only an approximation, as alerts in the same group may receive different
classification, depending on other alerts they co-occur with, or depending on the values of the
remaining attributes, including the payload.

For companies with few inconsistencies, we would expect those groups to be polarized,
either the events in each of those groups would be classified entirely as incidents or non-
incidents. Conversely, for companies with inconsistencies, there would be a large number of
groups with both values high. We will call these groups conflicting. We further calculated
the total number of alerts in those conflicting groups and scaled them according to the total
number of positive and negative events for this customer. We obtained a distinct group of
customers for which the values of those inconsistently labeled groups were high: 3288, 3520,
3408, 3532, which are the four companies with the worst ROC performance. For the remaining
companies the fraction of conflicting groups is smaller by at least one order of magnitude. To
illustrate this with an example, for customer 3288 conflicting groups would cover 55% of false
alerts and 99% of true alerts. In contrast, conflicting groups for customer 3363 cover 0.09%
of false alerts and 8% of true alerts. This confirmed our hypothesis that alerts are labeled
inconsistently and showed that the approximation used was good.

In our experiments we evaluated ALAC in recommender mode and ALAC+ in the BA0.1
model, in which the classifier abstains for up to 10% of all instances. The results are shown
in Table 8.6.

We can see that although in most of the cases (except for the customer 3362) abstaining
classifiers reduced the misclassification cost per classified example, for three customers with
high inconsistency rates, namely, 3288, 3520 and 3532 the system has a very high false-positive
rate in both cases. Another three customers, namely 3408, 3426 and 3647 also have very high

142 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Table 8.6: Two-stage classification system (2FI) with MSSP datasets. The last column shows
improvement ALAC+ (BI0.1) over ALAC with ICR = 50.

Customer Recommender ALAC Recommender ALAC+ (BA0.1) Imp.
FN (fn) FP (fp) FN (fn) FP (fp) k

3288 36 (0.01) 3653 (0.68) 32 (0.01) 3229 (0.65) 0.06 0.04
3359 131 (0.32) 707 (0.04) 76 (0.30) 263 (0.02) 0.36 0.11
3362 192 (0.38) 1353 (0.02) 184 (0.57) 158 (0.005) 0.04 -0.97
3663 149 (0.07) 2940 (0.04) 69 (0.03) 120 (0.002) 0.12 0.60
3408 22 (0.04) 1194 (0.26) 13 (0.02) 863 (0.26) 0.25 0.13
3426 1 (0.005) 16547 (0.89) 16 (0.10) 164 (0.018) 0.51 0.88
3491 25 (0.026) 872 (0.15) 27 (0.03) 341 (0.07) 0.09 0.12
3520 116 (0.14) 1405 (0.45) 0 (0) 1162 (0.47) 0.21 0.79
3532 3 (0.004) 12518 (0.77) 3 (0.004) 8112 (0.69) 0.26 0.12
3647 218 (0.04) 14678 (0.30) 198 (0.05) 3024 (0.08) 0.25 0.31

false-positive rates, which were effectively reduced by ALAC+. However, the discrepancies
between estimated performance based on ROC curves and the actual performance suggest
that the parameters were not chosen optimally and the dynamic ROC building suggested in
Section 7.2.3 should be used.

8.6.5 Conclusions

In Section 8.6 we evaluated the two-stage alert-classification system with CLARAty and
ALAC. We evaluated two modes of the system: the feature-construction mode (2FC), in which
alerts receive additional features constructed based on the clustering stage and the filtering
mode (2FI), in which clusters marked as FA-only clusters are removed prior to clustering.

The feature-construction mode has the advantage that there is no risk of alerts being
erroneously removed by the system, although the analyst has to review the same number of
alerts as previously. Having evaluated the system of two datasets, we showed that in both
cases feature construction only marginally improves the classifier’s performance. This was
the observation based on both ROC analysis as well as simulations with the real system.

Conversely, in the filtering mode, the analyst has only to review alerts that were not
removed by the first stage of the system, which on average can lead to up to three times
reduction in the alert load. However, this reduction is achieved at the cost that some true
alerts are being removed. We have previously analyzed this threat and experimentally showed
that such a system is generally safe and robust, however, such a system has a positive-feedback
loop: once an attack has been missed, there is an increased chance that similar attacks are
missed in the future.

As the first stage of the system removes alerts that are generally “easy” to classify, the
resulting system has generally higher false positives rates and comparable or lower false-
negative rates than the original system. The explanation for this is that the first stage
removes only false positives and effectively changes the class distribution in favor of true
positives. However, in our experiments, the number of false positives is comparable to the
original system. This, together with the fact that on average the analyst would have to process
only one third of the original alerts, makes it useful for intrusion detection and confirms the
hypothesis stated at the beginning of this section.

Finally, we applied our system for the selection of MSSP datasets, and found out that

8.7. SUMMARY 143

there are serious inconsistencies in alert labeling making supervised learning difficult. We
nonetheless evaluated the system in the recommender mode and with abstaining classifiers
(BA0.1) and obtained satisfactory results. However, discrepancies in the performance between
the actual performance and ROC estimates suggest that the dynamic ROC building should be
used. Note also that in the recommender mode used, all errors would be ultimately corrected
by the human analyst.

8.7 Summary

In this chapter we discussed how unsupervised learning can be used with supervised learning in
order to improve alert classification. We presented CLARAty, a clustering algorithm proposed
by Julisch [Jul03b] to discover patterns in the alert stream. We discussed how CLARAty
can be used in the retrospective analysis mode, in which labeled clusters are used to analyze
historic alerts and the filtering mode, in which labeled clusters are used to facilitate subsequent
classification.

Assuming the setting in which alerts are reviewed by the analyst and thus the labels are
given, we proposed an automated cluster-processing system with CLARAty and a two-stage
alert-classification system with CLARAty and ALAC. We evaluated both systems on a variety
of datasets and showed that the automated cluster-processing system is safe and robust and
removes 63% alerts on average. In experiments with a two-stage classification system, we
obtained lower false-negative rates and comparable false-positive rates to the original system
with the analyst’s workload reduced by 63% on average (due to the the first stage). This
confirmed that the two-stage alert-classification system is useful for intrusion detection.

144 CHAPTER 8. COMBINING UNSUPERVISED AND SUPERVISED LEARNING

Chapter 9

Summary, Conclusions and Future
Work

9.1 Summary

Throughout their history, IDSs have been designed with different algorithms and detection
techniques. With the technology becoming mature enough for wide-scale deployment, it has
become clear that a high number of false positives, i.e., alerts not related to security problems,
is a critical factor determining the cost-effectiveness and usability of IDSs.

In the effort to reduce the number of false positives, practitioners and researchers have
been focusing on the following three levels with their broadening scope: (i) improving IDSs
themselves, (ii) leveraging the environment, and (iii) alert postprocessing.

At the first level, better sensors were built, improving the detection capabilities of IDSs,
lowering their false-positive rates or both. On the one hand, we observe a trend to build
general sensors, with the aim of detecting the largest variety of attacks and incidents, but at
the cost of some false positives. On the other hand, there is a number of highly specialized
sensors aiming at detecting only particular types of attacks (e.g., [SGVS99, RZD05, VMV05])
with extremely low false-positive rates, thus allowing to fulfill the long-standing dream of
intrusion detection—automated response to incidents. However, such specialized sensors offer
only limited protection and have to be augmented with other sensors. At the second level,
sensors were augmented with environment information such as vulnerability scans or OS
detection (e.g., [SP01, LWS02, VMV05]), enabling a decrease of false-negative rates thanks
to additional context information available to the IDSs. Finally, at the third level, namely
alert postprocessing, alerts generated by IDS sensors are used as input for processing tools
that try to improve their quality. For example, filters created using data mining can be used
to remove frequently reoccurring false positives [Jul03b]. Alert correlation [CAMB02, DW01,
VS01, VVCK04]) also uses the alert-postprocessing approach, although in a broader scope,
with the aim of reconstructing high-level incidents from low-level alerts as well as, indirectly,
reducing the number of false positives. Clearly, alert-postprocessing tools can reduce the
number of false positives, but cannot detect attacks that have been missed by the underlying
IDS sensor.

The approaches discussed above focus on the environment the IDSs work in; however, with
a few notable exceptions (e.g., [Fan01, VS00]), they did not take advantage of the way IDSs
are deployed and used in practice. In fact, in real environments most of the data collected by

145

146 CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE WORK

IDSs are timely analyzed by the security analyst, who analyzes alerts and takes appropriate
actions. The observation that in most cases the analyst analyzes alerts in real time and thus
provides an implicit (or in some environments explicit) classification of alerts and also that at
a given time t the analyst has analyzed all previously received alerts, forms a new paradigm
for the classification of intrusion detection alerts using supervised learning. This paradigm
operates at the highest, the fourth level of processing IDS alerts by involving the human
operator.

In this dissertation we presented a comprehensive approach to alert classification at this
fourth level of our classification, and confirmed the hypotheses stated in Chapter 1.

Thesis Statement

(1) Using machine learning, it is possible to train classifiers of IDS alerts in the form
of human-readable classification rules by observing the human analyst.

(2) Abstaining classifiers can significantly reduce the number of misclassified alerts with
acceptable abstention rate and are useful in intrusion detection.

(3) Combining supervised and unsupervised learning in a two-stage alert-processing sys-
tem forms a robust framework for alert processing.

(1) ALAC: In this dissertation we have presented a novel concept of building an adap-
tive alert classifier based on an intrusion-detection analyst’s feedback using machine-learning
techniques. We discussed the issues of human feedback and background knowledge, and re-
viewed machine-learning techniques suitable for alert classification. We proposed two modes
of operation of the system, namely, the agent mode and the recommender mode, in which the
system can process some of the alerts autonomously.

To demonstrate the feasibility of this architecture, we presented a prototype implemen-
tation and evaluated its performance on synthetic as well as real intrusion data, this way
showing that the first part of the thesis statement is true. We have shown that such learning
is not only possible, but even yields low false-positive and false-negative rates. For example,
for the DARPA Data Set, the system applied on alerts yielded low false-positive and false-
negative rates (fp = 0.025, fn = 0.038). Similarly for another dataset, the system yielded an
even lower false-negative rate (fn = 0.003), and higher, but still acceptable, false-positive rate
(fp = 0.12). Although these figures are data dependent they show the expected performance
of the system in our application.

(2) Abstaining Classifiers: Stemming from the observation that the analyst and ALAC
form in fact a multi-stage alert-classification system, we started investigating abstaining clas-
sifiers, i.e., classifiers that can abstain from classification in some cases. While abstaining
classifiers and normal classifiers cannot be compared directly (as the trade-off between non-
classified instances and the misclassification cost is not defined), we introduced three different
evaluation models for a particular type of abstaining classifiers, namely, the cost-based model,
the bounded-abstention model and the bounded-improvement model. Given the cost ratio,
the class distribution, the ROC curve and the boundary conditions, we showed how to select
the classifier optimally in each of these models.

These methods can be applied to arbitrary machine-learning techniques, but we showed
that by applying them to ALAC one can significantly reduce the misclassification cost, as

9.2. CONCLUSIONS 147

well as the overall number of misclassifications. We applied the two most suitable models,
namely the bounded-abstention and the bounded-improvement model, to both the DARPA
1999 Data Set and Data Set B, and found that the abstaining classifier significantly lowered
the false-positive and false-negative rates and thus the resulting misclassification cost even
with low abstention rates. For example, for Data Set B, assuming that 10% of alerts are left
unclassified, we lowered the false-negative rate by 76% and the false-positive rate by 97% thus
reducing the overall misclassification cost by 87%, with a realistic cost ratio. Moreover, in all
evaluation runs, we observed that the system with an abstaining classifier had a significantly
lower false-positive rate, resulting in a lower number of all misclassifications.

The second fact is extremely important for the efficacy of classification involving human
analysts: As argued by Axelsson [Axe99], if an alert is classified as positive by the system but
in reality has only a very small chance of being positive, the human analyst may well learn
from such incidents to ignore all alerts classified as positive henceforth. This greatly increases
the probability that real attacks will be missed. Abstaining classifiers, by introducing an
abstention class, ensure that the classifier has a high true-positive rate, without generating
an excessive number of false positives. This makes such a system useful for the human analysts
and confirms the second part of the thesis statement.

(3) Two-stage Alert-Classification System: Based on the work by Julisch [Jul03b] on
clustering alerts to discover root causes, we proposed a two-stage alert-classification system,
in which the alert-clustering system CLARAty is combined with ALAC to further improve
classification. We investigated how unsupervised learning can take advantage of existing
alert labels in order to form a robust alert-classification system. We further proposed and
evaluated an automated cluster-processing system that labels clusters created by CLARAty
and removes those containing only false positives.

We systematically showed how labeled clusters can be used in retrospective cluster analysis
and introduced clustering-precision and clustering-recall charts, which are useful in assessing
the quality of clusters, the quality of human classification, or both. Assuming that clusters are
not reviewed, we showed that an automated cluster-processing system can automatically and
safely reduce the number of alerts to be processed by 63% on average. This, combined with
ALAC as an alert-classification system, yields an alert-classification system that has a lower
false-negative rate, however, at the cost of higher false-positive rate. The last finding can be
explained by the fact that alerts removed in the first stage are “easy” to classify and hence
they would be also correctly classified by ALAC itself. Note, however, that the two-stage
alert-classification system lowers the number of alerts to be processed by 63% on average,
meaning that the analyst, assuming the same workload, can spend almost three times as
much time on every alert compared with the baseline system. In addition the derived and
labeled clusters can support retroactive alert analysis, providing a robust alert-processing
framework. This result supports the third part of our three-part thesis statement.

9.2 Conclusions

Having evaluated the approach on a variety of datasets we showed that supervised alert
classification can help the analyst classify the alerts and that by applying abstaining classifiers
the overall misclassification cost in general, and the number of misclassified alerts in particular,
can be significantly reduced. We also showed that a two-stage alert-classification system works

148 CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE WORK

and that the combination of CLARAty and ALAC forms a robust alert-processing framework.
We discussed the evaluation problem in intrusion detection, in particular the lack of rep-

resentative and universally reproducible datasets. We based our evaluation on one synthetic
(DARPA 1999), one real (Data Set B) dataset and, partly, additional real datasets from a
Managed Security Services Provider (MSSP). The latter datasets come from a real environ-
ment and have two features that make alert-classification systems such as ALAC difficult to
apply: (i) rarity of intrusions and (ii) labeling inconsistencies.

Whereas the rarity of intrusions is intrinsic to computer security, labeling inconsistencies
result from the way the incidents data was originally used, in which the analysts focus on
detecting incidents, not on accurately classifying all alerts. Consequently, identical alerts
receive contradicting labels, and thus make it difficult to learn an accurate classifier. Moreover,
if the classifier correctly recognizes worm infections, those mislabeled alerts will be counted as
false positives. If an alert-classification system such as ALAC is to be used in practice, analysts
should understand how the system works and make an effort to label alerts consistently. To
facilitate this the console should be modified to support efficient alert labeling and allow
analysts to easily add alerts to already existing incidents.

We should be aware that there is some risk involved in using alert-classification systems.
If the system has a good accuracy, the analyst may learn that the system is always right
and not review any alerts classified as false alerts. This may result in new attacks being
missed. Conversely, if the system has a high false-positive rate, the analyst may learn to
ignore any alerts reported by the system or simply stop using it. In any case, the issue of
human-computer interaction will need to be further investigated.

Clearly, the alert-classification system is more likely to miss new things than intrusions
that have been seen before. Although it is also more likely that new types of intrusions
are missed by the human analyst alone, this effect can be amplified if an alert-classification
system is used. Similarly, an alert-classification system is much better in classifying auto-
mated attacks than attacks that are launched by skilled hackers. Those attacks are also more
likely to be missed by an underlying IDS, although the attacker may try to trick the system
into classifying real attacks as false alerts. This shows the danger associated with the use
of alert-classification systems such as ALAC, which can be minimized by using the system
in the recommender mode only and setting misclassification costs and abstention windows
appropriately.

Thus there has always been a trade-off between true positives and false positives. First,
IDSs themselves detect only some intrusions. Clearly, investigating every single network
packet would achieve a higher true-positive rate, but obviously would not be feasible. Second,
having human analysts analyze n alerts during a shift is a trade-off. If the analyst were
investigating only n/2 alerts, or have every alert double-checked by another analyst, this
would likely increase the detection rate, but at the cost of additional resources. Finally, using
an alert-classification system is also a trade-off. While we have shown that most of the alerts
can be classified correctly, thus significantly reducing the analyst’s workload, there are some
that would inevitably be missed. It is important to be aware of these trade-offs and choose
the solution that is optimal. To this end, we proposed a cost-sensitive setup, two modes of
operation of the alert-classification systems and, finally the use of abstaining classifiers.

For the past 15 years, IDSs have been known to trigger many false positives and currently
there is still no silver-bullet solution to this problem. The problem does and will continue to
exist, but automatic alert-classification systems, such as the one proposed in this dissertation,
are a step towards solving it.

9.3. FUTURE WORK 149

9.3 Future Work

The work presented in this dissertation has explored the basic concepts of adaptive alert
classification by showing its feasibility. It also showed areas for interesting future research.

With the assumption that an alert-classification system can only be used by the analyst if
its logic can be interpreted (and corrected if necessary), we focused on rule-learning algorithms
(cf. Section 5.3). While this is a laudable goal, machine learning has been recently focusing
on learning techniques such as SVMs, Bayesian networks or instance-based learning, which
are not interpretable. However, these techniques have other desirable properties such as
supporting incremental learning or generating ranks (or even calibrated probabilities) instead
of classification. In particular, supporting incremental learning and efficiently generating ROC
curves would increase the efficiency of the algorithms and would allow dynamic optimization
of thresholds, including the dynamic recomputation of abstaining classifiers as the learning
process progresses (cf. Section 7.2.3).

In the domain of intrusion detection, alerts are not independent of each other and identi-
cally distributed, which violates the assumption the basic machine-learning algorithms used.
In the current approach we tried to capture this relationship using propositionalized back-
ground knowledge; however, a more systematic approach to this problem would be to use link
mining [Get03].

In our evaluation we assumed a simple binary model in which alerts were classified into
true and false positives. While this is a reasonable assumption (after all the most important
information is whether an alert is related to a security problem or not), the classification
system would be much more useful if it could identify the type of threat or what type of
false alert an event is. Extending alert classification into multi-class classification has serious
implications in both practical and theoretical aspects of the system. On the practical side,
with n-class cost-sensitive classification, up to n(n − 1) cost parameters would have to be
estimated. Second, the human analysts would need to precisely define a set of allowable
classes and how to classify them. However, our analysis of real event data shows that even
with binary classification the labeling is often inconsistent. On the theoretical side, our model
for abstaining classifiers is based on ROC analysis and, as multi-class ROC extensions are
limited, it is inherently limited to two classes. However, extending abstaining classifiers into
multiple classes would be a useful and interesting project.

Abstaining classifiers are intuitive and based on ROC analysis, commonly used in ma-
chine learning. Their main advantage is that they output a classifier that minimizes the
misclassification cost and do not make assumptions that the underlying classifier outputs ex-
act probabilities. However, there are classifiers that output accurate probability estimates,
and others can be calibrated to do so (e.g., [ZE01, CG04]). In this case, the optimal ab-
staining classifier could be chosen using the Bayesian decision theorem in all three models we
proposed. The comparison of the original abstaining classifiers and the Bayesian abstaining
classifiers and also cautious classifiers [FHO04] is an interesting future work item. In this
case, abstaining classifiers could easily be extended to multi-class classification.

In our system, while combining supervised and unsupervised learning, the clustering al-
gorithm does not use alert labels, so that we can correct some misclassified labels. In reality,
however, the results could be better if the clustering algorithm used the labels to induce clus-
ters. Future work could modify the clustering algorithm to make it more similar to predictive
clustering rules (e.g., [ŽDS05]) in order to leverage alert labels.

In Section 1.1.2 we showed that alert classification can be used with other methods that

150 CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE WORK

reduce false positives in intrusion detection, such as leveraging the environment and other
alert-postprocessing methods. Applying our methods, including an automated-cluster pro-
cessing with CLARAty and ALAC with abstaining classifiers, to a multi-stage alert-correlation
system (e.g., [VVCK04]) would yield an even more comprehensive alert-processing system.

Finally, in our prototype we assumed a simple user interaction, in which alerts are classified
as true or false positives. Looking at the MSSP data, we observed that in reality some events
are assigned into incidents, and the remaining incidents are left unassigned. While incidents
can easily be converted to binary labels, the fundamental problem is that the analysts are
encouraged to detect and report incidents but not to accurately label all alerts those incidents
may be comprised of. This causes discrepancies in alert labels and makes the learning problem
extremely difficult.

The current system uses RIPPER, a noise-tolerant algorithm, but the extent to which the
system tolerates labeling errors is currently unknown. This could be evaluated by introducing
artificial errors into the dataset and evaluating the results.

Future human-computer interaction research and usability studies could investigate the
way supervised alert-classification systems could be integrated with the console, making the
interaction as easy as possible and, at the same time, to achieve the most accurate alert
labeling.

Looking at the evolution of intrusion detection systems we observed a trend from host-
based to the network-based systems, which we dealt with in this dissertation, followed by the
recession of the latter in favor of host-based and hybrid systems. This was caused by the
problems with network-based IDSs in faster, switched network environments and the use of
complex application-level protocols using end-to-end encryption. Another reason is that the
majority of attacks nowadays occurs at the application level, and they are best detected by
the host-based IDSs. We expect this trend to continue and see the need for researchers to
develop new and improve current host-based IDSs (e.g., CSSE, our host-based IDS is a step
in this direction).

On the other hand, network-based IDSs are indispensable in detecting certain policy
violations and low-level attacks. Here the research challenges are to improve current IDSs
at all four levels (cf. Section 1.1.2), in particular focusing on reducing the number of false
positives and producing high-level semantic alerts.

We think that machine-learning and data-mining techniques for assisting alert classifica-
tion and finding patterns in the alert logs will gain more significance. Systems such as ALAC,
proposed in this dissertation, can significantly reduce the human analyst’s workload and
therefore can be very useful. The areas needing research include both the machine-learning
side and the human-computer interaction side.

Intrusion detection systems have come a long way in the past 15 years, and so have the
intruders. With most of the information in the modern world being processed by the systems
in some way connected to computer networks, the research into intrusion detection and the
application of machine learning plays an important role in the security of current and future
electronic computing.

This dissertation has explored the feasibility of using supervised learning in the classifica-
tion of intrusion-detection alerts, and opens multiple possibilities for future exploration and
research, which may lead to the design and the development of more efficient, reliable and
effective alert-management systems.

Appendix A

Alert Correlation

A.1 Correlation Terminology

The definition of intrusion introduced in Section 1.1 given by Heady [HLMS90] is widely
accepted in the scientific community. Correlation in intrusion detection, however, has no
consistent definition and has been used differently by researchers and IDS vendors.

Before we try to define correlation, let’s look at the dictionary [Pea00] definition shown
below.

cor · re · la · tion
1. A causal, complementary, parallel, or reciprocal relationship, especially

a structural, functional, or qualitative correspondence between two comparable
entities: a correlation between drug abuse and crime.

2. Statistics. The simultaneous change in value of two numerically valued
random variables: the positive correlation between cigarette smoking and the
incidence of lung cancer; the negative correlation between age and normal vision.

3. An act of correlating or the condition of being correlated.

Statistical correlation as shown in definition (2) is not appropriate for intrusion detection,
since the researchers do not model alert streams by means of random variables. Much closer
is the definition (1), which is talking about causal relationship between comparable entities,
however, this definition is not very precise.

Intuitively, we may say that correlation in intrusion detection concerns finding relation-
ships between alerts generated by a single (or multiple) data sources and coupling this infor-
mation with additional knowledge. The goal of correlation would be to present the informa-
tion generated by IDS in a meaningful way, i.e., a way which can be easily understood and
processed by a human analyst and helping him discover attacks and incidents.

Recall in Section 3.5 we defined terms: attack, incident, aggregation and correlation. To
avoid confusion we will show how other researchers used (or defined) these terms:

Cuppens et al. (cf. Appendix A.2.5) use a definition of correlation similar to ours. They
differentiate two types of correlation as described below:

• Explicit correlation, where it is possible to express some connection between known
events. This form of knowledge has to be manually entered into the system.

151

152 APPENDIX A. ALERT CORRELATION

• Implicit correlation is used when data analysis brings out some mappings and
relations between events. Implicit correlation can be based on learning techniques
and statistics.

Dain and Cunningham (cf. Appendix A.2.3) describe their work as fusing rather than cor-
relating. The fusion process is defined as joining alerts from multiple intrusion detection
systems into scenarios, revealing attacker activities.

Debar and Wespi (cf. Appendix A.2.1) propose an architecture with so-called aggregation
and correlation components, however their definition of these terms is quite different
from ours. In their understanding, correlation uses explicit correlation rules, manually
programmed or derived automatically from configuration parameters. There can be two
types of correlation relationships between events:

duplicates alerts considered to be related to the same event according to manually
programmed criteria,

consequences sets of alerts appearing in a given order within a given time interval.

Aggregation, following correlation, is the process of grouping events together according
to certain criteria to compute aggregated severity level. The goal of aggregation is to
discover high-level incidents.

Morin et al. (cf. Appendix A.2.7) propose a formal data model for alert correlation, but only
implicitly define what correlation is. The M2D2 model uses definitions of aggregation
and correlation similar to the work by Cuppens et al.

Ning et al. (cf. Appendix A.2.4) define correlation in a broader sense, which covers both
our definitions of aggregation and correlation. One of the reasons for that is that there
is no separate aggregation process in their work.

Qin and Lee (cf. Appendix A.2.8) use the term alert correlation similarly to our defini-
tion, i.e., reconstructing incidents from alerts. Other terms used include alert fusion—
combining multiple alerts from different IDSs into a single hyper alert, and alert clus-
tering—the process of combining hyper alerts based on the equality of attributes (in
this particular case, the equality of all alert attributes except for the time).

Valdes and Skinner (cf. Appendix A.2.2) define correlation in a broader sense, similarly
to Ning et al. Correlation is further defined at three stages:

event aggregation aggregates a large number of low level events (e.g., TCP connec-
tions, audit records).

sensor coupling correlation utility comprehends data from different sensors, to achieve
better sensitivity and false alarm suppression. Sensors can also communicate with
each other.

meta alert fusion this allows for reconstructing scenarios of an entire attack.

Further work by Porras et al. [PFV02] extends the definition of correlation to cover
a broader definition of alert stream contributors including context information (e.g.,
network topology, operating system, running services, vulnerability scans) and security
goals.

A.2. ALERT CORRELATION SYSTEMS 153

Valeur et al. (cf. Appendix A.2.9) in their 10-step alert correlation system, use different
terminology for each of the steps performing alert aggregation and correlation. Similarly
to Qin and Lee, alert fusion refers to combining alerts from different sources into a single
meta-alert.

Subsequent correlation steps, namely: thread reconstruction, session reconstruction, fo-
cus reconstruction and multi-step correlation perform subsequent grouping of meta-
alerts into higher level meta-alerts using predefined heuristics (or given attacks in the
last step).

Finally, alert verification refers to correlating alerts with vulnerability information and
impact analysis refers to correlating incidents with the information about the criticality
of targets they affect.

A.2 Alert Correlation Systems

In this section we will discuss existing alert correlation systems, previously discussed in Sec-
tion 3.5.

A.2.1 Tivoli Aggregation and Correlation Component

Debar and Wespi [DW01] describe an algorithm and an architecture of an Aggregation and
Correlation (AC) Component. The goal of the algorithm is to form groups of alerts by
creating a small number of relationships. The authors define two kinds of relationship: a
correlation relationship and an aggregation relationship (using a different terminology than
ours in Appendix A.1).

The AC algorithm consists of three sequential steps: In the first step, alerts are verified
(that they do not contain invalid information e.g., invalid timestamps) and unified (e.g.,
different representations of hostnames and IP addresses or port numbers and services).

The second step deals with alerts that are logically linked with each other. It uses system
expert system rules to group duplicates (i.e., semantically equivalent alerts) and consequences
(alerts appearing in a given order). In both cases the alerts can originate from the same or
different IDSs. Note that there is a need to manually specify rules describing these grouping.
This step can also be used to detect IDS failure if it is known how two IDSs respond to the
same attack. If we receive an alert sequence that is different from what we expect, we can
assume that the IDS probably has been broken. In some situations however, this approach
may not be reliable, as IDS’s behavior may differ with attack variations or may change as
IDSs’ signatures are being updated.

Finally, the third step groups alarms in three so called aggregation axes, according to the
match of the following attributes: source IP, destination IP address and alert type. Given
these attributes we can identify seven scenarios from the most specific with an exact match of
all attributes to the most general (only one attribute matches). For example, the combination
{SrcIP —AlertType} will group alerts triggered by one attacker launching the same attack
against different hosts in the network.

Each new alert is simultaneously added to all these seven groups, each of which has a
separate sliding time window in which the alerts are counted. An alarm is raised if and
only if an alert count exceeds a user-defined threshold value. In reality, sliding time windows

154 APPENDIX A. ALERT CORRELATION

are being approximated by means of a weighted sum scheme, which decreases the use of
resources. For each new alert, a new count value is calculated according to the following
formula countnew = 1 + countold ∗ 2τ∗(told−tnew), where tnew, told are the timestamps of the
new and the last alerts. The parameter τ , also referred to as half-life, is a user-defined fading
factor.

The authors also introduce an idea of triggers that can modify the severity of alert groups
depending on certain criteria. The triggers can be of two types: situation reevaluation trig-
gers, based on properties of a single group and multi-situation assessment triggers, based on
properties of multiple groups, in which one correlation scenario influences an another one.

A.2.2 Probabilistic Alert Correlation

The Probabilistic Alert Correlation (PAC) system [VS01] represents alert groups by means of
so called meta-alerts, supporting set-valued attributes. All attributes of a meta-alert repre-
senting a group of alerts are a union of appropriate attributes. Clearly, the mapping of alarm
groups to meta alarms is not injective.

The system maintains continuously updated groups of meta-alerts. For each new alert, the
PAC compares the alert to all existing meta-alerts and calculates similarities between them.
The new alert is merged with the most similar meta-alert if the similarity value exceeds a
user-defined minimum similarity threshold. Otherwise, the alarm forms a new meta-alert.

The similarity is calculated as a weighted sum of similarities between attributes, if each of
these similarities exceeds a user defined minimum similarity. To give a more precise definition,
let’s assume an alert has attributes T1, . . . , Tn, while t1, . . . , tn are minimum similarity thresh-
olds and w1, . . . , wn are weights (a.k.a. expectation of similarities). Finally, attribute-wise
similarity functions sim1(·, ·), . . . , simn(·, ·) return a value between 0 (complete dissimilarity)
and 1 (perfect match). The similarity between meta-alert M and new alert X is defined as
follows:

sim(M,X) =

{
0 if ∃(i) : si(M [Ti], X[Ti]) ≤ tiPn

i=1 wi·si(M [Ti],X[Ti])Pn
i=1 wi

otherwise.
(A.1)

The authors provide little guidance how to create parameters ti and wi. These parameters
are also situation specific, e.g., the expectation of similarity of source IP addresses should be
close to 0 for attacks for which address spoofing is likely, and much higher for other attacks.

The PAC uses intuitively appealing but completely ad hoc similarity functions simi(·, ·).
For example, for alert classes it is defined as a matrix with values of 1 along the diagonal and
off-diagonal values expressing heuristic similarities between corresponding alert types. For
set-valued attributes, the similarity expresses a fraction of overlap between these sets. For IP
addresses it groups addresses coming from the same subnet, and for time value attributes it
has been defined as a step function that drops from 1 to 0.5 after one hour.

Since meta-alerts themselves are a valid input for PAC, the system can be cascaded, by
running it recursively on its own output. Specifically, the authors use the same system to
correlate individual alarms into threads, threads into security incidents and security incidents
into correlated attack reports. Note that at each level, the system uses different parameter
values and the authors provide very little guidance on how to set them.

A.2. ALERT CORRELATION SYSTEMS 155

A.2.3 Alert-Stream Fusion

Similarly to the PAC, the Alert-Stream Fusion (ASF) [DC01] maintains a continuously up-
dated list of alert groups called scenarios. For each new alert and each existing scenario, the
system calculates the probability that the alert belongs to this scenario. The alert is added to
the scenario which produces the highest probability score, if it exceeds a user-defined thresh-
old. If all the scores are below the threshold, the alert forms a new scenario. The assignment
of an alert to the scenario is final and irreversible. However, unlikely the PAC, in which the
similarity is calculated based on set-valued attributes, in the ASF the probability score is a
function of a new alert and only the last alert in the existing scenario. The other alerts are
not considered.

Dain and Cunningham use predictive data-mining techniques and heuristics to learn from
labeled training data and evaluate their results. The training data is obtained by manually
correlating historical alarms from “attack traffic” (namely DEFCON CTF data) and assigning
them into scenarios. Subsequently, the original ASF system is simulated and based on the
prior scenario assignment, training examples are generated. Each training example is a tuple
training(A,X, class) where A is the last alert from each scenario currently in the memory,
X is an alert being added, and class is a class label which can be merge or ¬merge. Note
that if there are n scenarios in the memory, adding a new alert will generate n − 1 negative
(class = ¬merge) and 1 positive (class = merge) training example if alert joins scenario, or
n negative training examples if the alert forms a new scenario.

The authors use several data-mining techniques in the system. In the first technique,
namely a multi-layer perceptron and radial-based functions, training examples are used to
adjust numerical coefficients to minimize the sum of squared errors. The second technique
was a decision tree, which was learned using a CART algorithm. At the verification stage, the
authors compared confusion matrices for each of these three algorithms and a naive algorithm
joining alerts from the having the same source IP address. Out of these four, the algorithm
with decision trees proved to be the best.

To summarize, in their paper the authors show a methodology how to learn correlation
algorithms using labeled data. One can imagine that the similar approach could be used also
for the PAC and other heuristics based on numerical parameters. The problem however is
that labeling alerts and grouping them into scenarios is very labor intensive and unlikely to
be done in real environments.

A.2.4 Hyper-alert Correlation

The Hyper-alert Correlation (HAC) method [NRC01, NC02] correlates alerts using prereq-
uisites and consequences of intrusions. It is based on the observation that most intrusions
consist of many stages, with the early stages preparing for the later ones. For example, with
a Distributed Denial of Service Attack (DDoS), the attacker has to install DDoS daemons on
vulnerable hosts before launching an attack. In other words, attacker has to reach certain
state before he can launch given attack, and this state is typically reached by launching some
other attacks.

Intuitively, a prerequisite of an intrusion is a necessary condition for the intrusion to be
successful, while a consequence of an intrusion is the outcome of an intrusion if it is successful.
Note that in most cases one cannot say if an attack reported by an IDS was successful or
not, therefore the consequence denotes a possible consequence rather than the actual one.

156 APPENDIX A. ALERT CORRELATION

Nevertheless, possible consequences can be used to correlate attacks.
Assuming that for each alert reported by an IDS we have a set of prerequisites and

consequences, we can correlate alerts preparing for each other, i.e., alerts whose consequences
contribute to prerequisites of the next one. The HAC constructs a correlation graph (V,E), in
which each vertex vi ∈ V is an alert generated by an IDS and each directed edge (vi, vj) ∈ E
means that an attack vi prepares for the attack vj .

To give a more precise definition, let’s define a hyper-alert type T as a triple
(fact , prerequisite, consequence), in which fact is a set of attribute names, each with an as-
sociated domain of values, prerequisite is a logical formula whose free variables are all in
fact , and consequences are a set of logical formulas, such that all free variables are in fact .
Given a hyper-alert type T, a hyper-alert instance of type T is a set of tuples on fact as-
sociated with time interval [beginT ime, endT ime] with no free variables in prerequisite and
consequence. A hyper alert implies that prerequisite must evaluate to true and consequence
might evaluate to true for each tuple. A hyper alert h1 prepares for a hyper alert h2 if
∃(p ∈ prerequisite(h2) ∧ C ⊂ consequence(h1)) : C implies p ∧ ∀(c ∈ C) : c.endT ime <
p.beginT ime.

The goal of correlation is to help the operator analyze and understand alerts. The authors
suggest that the operator interacts with the correlation graph generated by the algorithm.
Considering the complexity and size of the graph, the HAC introduces three techniques,
namely: adjustable graph reduction, focused analysis and graph decomposition to make the
analyzed graph smaller and more comprehensible. The HAC method has been tested on
the DARPA 2000 and DEFCON 8 CTF datasets, showing that HAC graphs are a good
approximation of real attack strategies. It has been shown that discarding isolated (i.e., non-
correlated) alerts significantly reduces the number of false positives with little degradation on
the number of attacks detected.

The HAC method is intuitively appealing and captures significant relations between alerts.
However it requires that prerequisites and consequences are associated with each alert gener-
ated by IDS. Since this information is not provided by IDSs vendors and often signatures are
not sufficiently documented, such labeling might be a very difficult task.

A.2.5 Cooperative Intrusion Detection Framework

The Cooperative Intrusion Detection (CID) framework [Cup01, CM02, CAMB02] integrates
heterogeneous IDSs to generate more global and synthetic alerts. The CID framework cas-
cades five processing steps through which each alert is pipelined in a strict order:

alert base management This steps unifies incoming alerts and stores them in a relational
database. Note that the system assumes that all IDSs generate alerts compliant with
the Intrusion Detection Message Exchange Format (IDMEF). IDMEF alerts are subse-
quently converted into a set of tuples and written to the database.

alert clustering Alerts are clustered into groups, which represent the same attack. The
grouping is done using expert rules, which indicate which alerts should be considered
similar. CID defines predicates and rules to define similarities at different levels: alert,
entity, instance and attributes, although the authors provide little guidance on how to
achieve this.

alert merging Similarly to the PAC (Section A.2.2) and the ASF (Section A.2.3), alert
groups are incrementally constructed as alerts arrive. Each group has a so-called global

A.2. ALERT CORRELATION SYSTEMS 157

alert, which contains combined information from all alerts in the group. Global alerts
are generated similarly to PAC with set-valued attributes. A new alert is compared
to all global alerts in the system and added to similar groups. Note that unlike, the
previously discussed approaches, an alert can be simultaneously added to more than one
group. Subsequently, global alerts are being updated and if they prove to be similar,
the groups can be merged. To ensure that clusters contain only alerts triggered by the
same attack, there is some time period after which clusters are considered to be stable
and cannot be further enlarged.

alert correlation An intruder, in order to achieve her malicious objectives, needs to per-
form several attacks. Correlation groups individual attacks and forms candidate plans
which are passed to the intent recognition module. CID uses explicit and semi-explicit
correlation, which will be described below.

intent recognition This module has not yet been described/developed. It should extrapo-
late candidate plans to anticipate intruder intentions. The result of the function can be
used by the operator to launch appropriate counter measures.

The CID system can use both explicit and semi-explicit correlation. The explicit corre-
lation requires that users specify, in which circumstances the two attacks are related (e.g.,
attacks A and B are related if a target node of A is equal to a target node of an attack B).
Specifying such correlation rules manually is a complex process and it is not obvious which
attacks should be correlated and what conditions for correlation are.

The solution to this problem is a semi-explicit correlation, using attack specification in
LAMBDA language [CO00], which defines attacks, with their preconditions and postcondi-
tions (a.k.a. consequences).

The correlation model is similar to HAC (see Section A.2.4). Attacks A and B are related
if the postconditions of A contribute to preconditions of B. CID introduces two types of
correlation: direct correlation, in which any subsets of pre- and post-conditions are unifiable
through Prolog most general unifier and indirect correlation, in which pre- and postconditions
are unifiable through an ontological rule. Ontological rules are user defined rules providing
correlation between predicates. For example, an ontological rule may specify that if there
is a NetBios port open on the host it is likely to be a machine running Windows. Another
technique used is abductive correlation, which makes the CID system work properly even if
some actions are not observed. In this case, system generates “virtual alerts” which allow to
correlate scenarios.

Semi-explicit correlation can be applied in real-time, however, for performance sake, sys-
tem generates explicit correlation rules off-line from the attack descriptions. The output of
the CID system, similarly to the HAC, are correlation graphs. The authors plan to develop
an intention recognition module, which will subsequently process such graphs and recognize
attacker intentions.

A.2.6 Correlated Hacking Behavior

Correlated Hacking Behavior (CHB) Analysis [WL01] employs architecture with bidirectional
communication between IDSs and centralized correlator, so that the results of correlation can
be sent back to IDSs to improve their detection rate and accuracy. The architecture supports

158 APPENDIX A. ALERT CORRELATION

many different correlators, specifying only output interfaces. IDSs send information using
IDMEF and receive data in a publish-subscribe model as a set of attribute-value pairs.

The CHB system uses seven heuristic algorithms, each of which generates numerical values
[0, 1] representing ultimately ad-hoc “hacking behavior”. The system uses different correlation
methods, namely: linear combination, 1-Rule and Bagging Method, Native Bayer, to obtain
classifier discriminating between true and false positives.

The authors train and verify the model on DARPA 1999 data. The system proves to
suppress some false positives with little detection-rate degradation. Out of tested correlation
methods, 1-Rule and Bagging methods with weighted votes proved to be the best (false
positives reduced from 46.2% to 14.3%). One should note, however, that the size of training
and test data are definitely too small to generate meaningful results (e.g., the test set contained
only 13 alerts).

A.2.7 M2D2 Formal Data Model

The M2D2 model for IDS alert correlation [MMDD02] provides concepts and relations relevant
to the security of an information system. It integrates four main types of information: infor-
mation system characteristics, vulnerabilities, security tools and events which are described
below:

information system characteristics contains information about the topology of the sys-
tem in the form of a hypergraph. It also maps hostnames to IP addresses and service
names to their numerical values.

The M2D2 model also contains information about products, i.e., logical entities executed
on the host. Product is characterized by the following attributes: vendor, name of the
product, product version and type of the product in some product classification.

Products running on the host are called a configuration, which is formally defined as a
subset of products.

vulnerabilities are defined as latent errors present on a host, a flaw or weakness in a system
design, implementation or management that could be exploited to violate the system se-
curity policy. It might be possible that vulnerabilities do not affect a single product, but
a particular configuration of products (e.g., Apache webserver running on WindowsNT
computer). In M2D2 a vulnerability affects the configuration, which means that a host
is vulnerable if its configuration is a subset of a vulnerable configuration. Vulnerabilities
have access requirements (e.g., physical access to target, user account, network access)
and consequences (e.g., DoS, information disclosure, code execution, privilege gain).
Such a vulnerability set is automatically built from the ICAT vulnerability database
and uses CVE/CAN notations.

security tools comprise both IDSs and vulnerability scanners. The first group detects vul-
nerabilities being exploited, the latter when they are latent. M2D2 can model both
host-/network-based as well as signature-/anomaly-based IDSs.

The model specifies the range of monitored hosts as well as operational visibility i.e.,
list of alerts a security tool can raise. These alerts are mapped to vulnerabilities if such
mapping is possible.

A.2. ALERT CORRELATION SYSTEMS 159

events are reports about the existence or ongoing exploitation attempt of a vulnerability,
generated by security tools. Events can be of two types: alerts, reported by IDSs, and
scans reported by vulnerability scanners. The model divides events into subclasses e.g.,
IP event, TCP events, UDP events, log events, and can be further extended if necessary.

The M2D2 model can be used to facilitate event aggregation and correlation. For example,
based on attack and host definitions one can say whether an event reported by an IDS indicates
an attack which can be successful or get a list of hosts vulnerable to a particular attack. M2D2
can also be used to aggregate similar alerts and correlate attacks based on prerequisites of
intrusions.

The main contribution of M2D2 is the formal representation of security information to
make security event correlation easier and more reliable. In spite of being formal, the model
tries to reuse and unify existing concepts and components.

A.2.8 Statistical Correlation Models

Qin and Lee [QL03, QL04] present an alert correlation system combining a Bayesian correla-
tion system (naive Bayes) with a statistical correlation system using Granger Causality Test
(GCT) [Gra69], a time series-based causal analysis algorithm. Based on the results of this
analysis the GCT module constructs a correlation graph. The system aims at discovering new
attack relationships as long as alerts of attacks have a statistical relationship. In contrast,
as the structure of the network is predetermined, the Bayes-based correlation module can
discover alerts that have direct “causal” relationships according to domain knowledge. The
Bayesian network used is necessarily simplistic and uses unrealistic independence assump-
tions, however it is the only alert-correlation system to date that uses a real probabilistic
approach.

The authors evaluate the system based on two artificial datasets. While the methods
can be used for discovering new relationships in alerts it is currently not clear how well they
perform on real datasets. The authors also report high false-causality rate, which suggests
that the system can only be used by very specialized domain experts after manual tuning.

A.2.9 Comprehensive IDS Alert Correlation

More recently, Valeur et al. [VVCK04] propose and evaluate a 10-step Comprehensive IDS
Alert-Correlation (CIAC) system. The system processes alerts from multiple intrusion detec-
tion systems in the following way:

Step 1 and 2: Normalization & Preprocessing. In this step alerts from multiple sources
are converted to a common IDMEF [CD03] format and normalized so that alerts from
different IDSs are compatible.

Step 3: Alert Fusion. In the fusion step, alerts triggered by different IDSs are combined
into a single meta-alert. The fusion is done based on the equality of attributes and
timestamp proximity.

Step 4: Alert Verification In this step, the system verifies if the target is vulnerable to
the attack reported by running a corresponding Nessus [Der03] script.

160 APPENDIX A. ALERT CORRELATION

Step 5: Thread Reconstruction. Performs a heuristic grouping of alerts with equal source
and destination IP addresses in a heuristically chosen time window. This activity groups
alerts triggered by a single attacker against a single target into meta-alerts.

Step 6: Session Reconstruction. In this step, alerts from host and network-based IDSs
are combined into a single meta-alert.

Step 7: Focus Recognition. Similarly to Step 5, it performs a heuristic grouping of meta-
alerts with equal source IP addresses or destination IP addresses. This aggregates alerts
triggered by a single attacker attacking many hosts, or many attackers attacking a single
victim.

Step 8: Multi-Step Correlation. In this step high-level scenarios are discovered, e.g.,
“recon-breakin-escalate” and “island-hopping”. Those scenarios express a domain knowl-
edge in intrusion detection and have to be predefined beforehand.

Step 9 and 10: Impact Analysis & Prioritization. In these steps the correlator dis-
covers the impact a given alert has on the infrastructure, including dependencies and
assigns corresponding priorities.

The authors evaluate CIAC on five artificial and two realistic datasets and show that the
system reduces the number of alerts by up to 99.6%. The architecture of the system is based
on previously published ideas, however, it is the only system combining all of these ideas in
such a coherent manner.

Unfortunately, the system requires significant infrastructure and integration work, which
should not be underestimated. Currently, existing infrastructures do not provide such a good
level of integration, e.g., in many cases even a simple correlation of alerts with vulnerabilities
is not performed. Finally, the system has been tested with datasets, which have no or very
few false positives. Hence, its performance in real environments is not known. Nevertheless,
the paper presents one of the most comprehensive and realistic evaluations of alert correlation
systems to date.

In our classification, a system like CIAC spans over levels 2 and 3 in our classification and
can be cascaded with ALAC, a level-4 system.

Appendix B

Abstaining Classifier Evaluation
Results

Figures B.1 and B.2 show the misclassification cost improvements for all datasets and illus-
trate the experiments described in Section 6.6.3. Similarly, Figures B.3 and B.4 show the
misclassification cost improvements for all datasets and illustrate the experiments described
in Section 6.6.4. Finally, Figures B.5 and B.6 are the results of the experiments described in
Section 6.6.4.

Figures B.7, B.8, B.9 and B.10 illustrate false-positive rates, false-negative rates, abstention
window and the fraction of discarded alerts for experiments with ALAC+ using abstaining
classifiers performed in Section 7.2.

161

162 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

breast−cancer.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

breast−w.arff

cost value c13=c23
co

st
−

im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

colic.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

credit−a.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

credit−g.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

diabetes.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

heart−statlog.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

hepatitis.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

ionosphere.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

kr−vs−kp.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

labor.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

mushroom.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

sick.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

sonar.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

0.
7

vote.arff

cost value c13=c23

co
st

−
im

pr
ov

em
en

t

Figure B.1: Cost-Based Model: Experimental results with abstaining classifiers—relative cost
improvement.

163

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

breast−cancer.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

breast−w.arff

cost value c13=c23
fr

ac
tio

n
sk

ip
pe

d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

colic.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

credit−a.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

credit−g.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

diabetes.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

0.
7

heart−statlog.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

hepatitis.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

ionosphere.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

kr−vs−kp.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

labor.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

mushroom.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

sick.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

sonar.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

0.1 0.2 0.3 0.4 0.5

0.
05

0.
15

0.
25

0.
35

vote.arff

cost value c13=c23

fr
ac

tio
n

sk
ip

pe
d

Figure B.2: Cost-based model: Experimental results with abstaining classifiers—fraction of
skipped instances.

164 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

breast−cancer.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
5

0.
7

0.
9

breast−w.arff

fraction skipped (k)
co

st
 im

pr
ov

em
en

t

0.1 0.2 0.3 0.4 0.5

0.
10

0.
20

0.
30

0.
40

colic.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

credit−a.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

credit−g.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

diabetes.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

heart−statlog.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

hepatitis.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

ionosphere.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5 0.6

0.
3

0.
5

0.
7

0.
9

kr−vs−kp.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
4

0.
8

labor.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4

0.
6

0.
7

0.
8

0.
9

1.
0

mushroom.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4

0.
75

0.
80

0.
85

0.
90

sick.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

sonar.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

0.1 0.2 0.3 0.4 0.5

0.
4

0.
6

0.
8

1.
0

vote.arff

fraction skipped (k)

co
st

 im
pr

ov
em

en
t

Figure B.3: Bounded model: Experimental results with abstaining classifiers—relative cost
improvement.

165

0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

breast−cancer.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

breast−w.arff

fraction skipped (k)
m

is
cl

as
si

fic
at

io
n

co
st

 (
rc

)

0.1 0.2 0.3 0.4 0.5

0.
10

0.
20

0.
30

colic.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
10

0.
20

0.
30

credit−a.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

0.
6

credit−g.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

diabetes.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
10

0.
20

0.
30

heart−statlog.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
15

0.
25

hepatitis.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
04

0.
08

0.
12

0.
16

ionosphere.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
15

kr−vs−kp.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

labor.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4

0.
00

0
0.

01
0

0.
02

0
0.

03
0

mushroom.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4

0.
00

0.
04

0.
08

0.
12

sick.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

sonar.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

vote.arff

fraction skipped (k)

m
is

cl
as

si
fic

at
io

n
co

st
 (

rc
)

Figure B.4: Bounded model: Experimental results with abstaining classifiers—absolute cost
values.

166 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

breast−cancer.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

breast−w.arff

cost improvement (f)
fr

ac
tio

n
sk

ip
pe

d
(k

)

0.15 0.25 0.35

0.
2

0.
4

0.
6

0.
8

colic.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

credit−a.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

credit−g.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

0.
7

diabetes.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.3 0.4 0.5

0.
1

0.
3

0.
5

heart−statlog.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

hepatitis.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5

0.
05

0.
15

0.
25

0.
35

ionosphere.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5

0.
05

0.
15

0.
25

kr−vs−kp.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.4 0.6 0.8

0.
1

0.
3

0.
5

0.
7

labor.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5

0.
01

0.
03

mushroom.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.0 0.2 0.4 0.6

0.
05

0.
15

sick.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

sonar.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.3 0.4 0.5 0.6

0.
02

0.
06

0.
10

0.
14

vote.arff

cost improvement (f)

fr
ac

tio
n

sk
ip

pe
d

(k
)

Figure B.5: Expected improvement model: Experimental results with abstaining classifiers—
desired relative cost improvement vs. fraction of nonclassified instances.

167

0.1 0.2 0.3 0.4 0.5

0.
3

0.
5

0.
7

0.
9

breast−cancer.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.025 0.035 0.045

0.
02

0.
06

0.
10

breast−w.arff

misclassification cost (rc)
fr

ac
tio

n
sk

ip
pe

d
(k

)

0.10 0.15 0.20 0.25 0.30

0.
2

0.
4

0.
6

0.
8

colic.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.10 0.15 0.20 0.25 0.30

0.
1

0.
3

0.
5

credit−a.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

credit−g.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

diabetes.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.10 0.15 0.20 0.25 0.30

0.
1

0.
3

0.
5

heart−statlog.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.10 0.15 0.20 0.25

0.
1

0.
3

0.
5

0.
7

hepatitis.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.06 0.08 0.10 0.12 0.14

0.
05

0.
15

0.
25

0.
35

ionosphere.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.10 0.15 0.20

0.
05

0.
15

0.
25

kr−vs−kp.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
3

0.
5

labor.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.015 0.020 0.025 0.030

0.
00

5
0.

02
0

0.
03

5

mushroom.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.02 0.04 0.06 0.08 0.10 0.12

0.
04

0.
08

0.
12

sick.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

sonar.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

0.04 0.08 0.12 0.16

0.
04

0.
08

0.
12

vote.arff

misclassification cost (rc)

fr
ac

tio
n

sk
ip

pe
d

(k
)

Figure B.6: Expected improvement model: Experimental results with abstaining classifiers—
desired absolute cost improvement vs. fraction of nonclassified instances.

168 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

False Negative Rate (fn)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

False Positive Rate (fp)

A
le

rt
s

P
ro

ce
ss

ed

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

Fraction Discarded Alerts

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

Fraction Abstention (k)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

Figure B.7: ALAC+, DARPA 1999 Data Set, BA0.1: False-positive rates, false-negative rates,
the abstention window and the fraction of discarded alerts in both agent and recommender
modes.

169

 0

 0
.0

02

 0
.0

04

 0
.0

06

 0
.0

08

 0
.0

1

 0
.0

12

 0
.0

14

 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

False Negative Rate (fn)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

 0

 0
.0

02

 0
.0

04

 0
.0

06

 0
.0

08

 0
.0

1 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

False Positive Rate (fp)

A
le

rt
s

P
ro

ce
ss

ed

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

Fraction Discarded Alerts

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

Fraction Abstention (k)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
A

0.
1)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

A
0.

1)

Figure B.8: ALAC+, Data Set B, BA0.1: False-positive rates, false-negative rates, the ab-
stention window and the fraction of discarded alerts in both agent and recommender modes.

170 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

False Negative Rate (fn)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

False Positive Rate (fp)

A
le

rt
s

P
ro

ce
ss

ed

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

Fraction Discarded Alerts

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 5
00

00
 5

50
00

 6
00

00

Fraction Abstention (k)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

Figure B.9: ALAC+, DARPA 1999 Data Set, BI0.5: False-positive rates, false-negative rates,
the abstention window and the fraction of discarded alerts in both agent and recommender
modes.

171

 0

 0
.0

02

 0
.0

04

 0
.0

06

 0
.0

08

 0
.0

1

 0
.0

12

 0
.0

14

 0
.0

16

 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

False Negative Rate (fn)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

 0

 0
.0

02

 0
.0

04

 0
.0

06

 0
.0

08

 0
.0

1 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

False Positive Rate (fp)

A
le

rt
s

P
ro

ce
ss

ed

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

Fraction Discarded Alerts

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9 1
50

00
 2

00
00

 2
50

00
 3

00
00

 3
50

00
 4

00
00

 4
50

00

Fraction Abstention (k)

A
le

rt
s

P
ro

ce
ss

ed

R
ec

om
m

en
de

r
R

ec
om

m
en

de
r

(B
I0

.5
)

A
ge

nt
 0

.3
A

ge
nt

 0
.3

 (
B

I0
.5

)

Figure B.10: ALAC+, Data Set B, BI0.5: False-positive rates, false-negative rates, the ab-
stention window and the fraction of discarded alerts in both agent and recommender modes.

172 APPENDIX B. ABSTAINING CLASSIFIER EVALUATION RESULTS

Appendix C

Clustering MSSP Datasets Results

In this chapter we present detailed results obtained with 20 MSSP datasets. The figures
included here are discussed in and referenced from Chapter 8.

173

174 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

3288

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
40

00
60

00
80

00

3359

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun

#alerts
#positives
clusters

0
20

00
0

60
00

0
10

00
00

3362

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
0

10
00

00
15

00
00

20
00

00

3363

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
0

40
00

0
60

00
0

80
00

0

3380

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
40

00
60

00
80

00
12

00
0

3408

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
0

40
00

0
60

00
0

80
00

0

3426

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
10

00
0

15
00

0
20

00
0

3473

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
40

00
60

00

3482

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug

#alerts
#positives
clusters

0e
+

00
2e

+
05

4e
+

05
6e

+
05

3488

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
10

00
0

15
00

0

3491

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
40

00
60

00
80

00
10

00
0

3520

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
60

00
10

00
0

14
00

0

3532

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
40

00
60

00
80

00

3565

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
0

10
00

00
20

00
00

3569

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
0

10
00

00
15

00
00

20
00

00

3590

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
20

00
60

00
10

00
0

3626

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
0

10
00

00
15

00
00

3647

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0
50

00
0

15
00

00
25

00
00

3669

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

4043

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

#alerts
#positives
clusters

Figure C.1: Cluster persistency for 20 MSSP customers—absolute values. X and Y axes
labels are the same as in Figs. 8.7a and 8.7c.

175

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3288

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3359

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3362

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3363

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3380

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3408

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3426

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3473

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3482

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3488

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3491

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3520

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3532

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3565

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3569

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3590

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3626

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3647

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3669

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4043

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

Figure C.2: Cluster persistency for 20 MSSP customers—relative values. X and Y axes labels
are the same as in Figs. 8.7b and 8.7d.

176 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3288

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3359

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3362

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3363

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3380

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3408

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3426

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3473

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3482

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3488

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3491

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3520

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3532

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3565

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3569

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3590

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3626

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3647

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3669

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4043

Figure C.3: Estimating the fraction of instances clustered as a function of the number of clus-
ters learned for 20 MSSP customers. X and Y axes labels are the same as in Figs. 8.8a and 8.8c.

177

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

3288

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

3359

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

3362

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3363

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3380

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3408

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3426

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

3473

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

3482

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3488

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3491

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3520

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3532

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3565

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3569

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3590

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3626

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

3647

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

3669

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4043

Figure C.4: Estimating the fraction of instances clustered as a function of the fraction
of instances filtered for 20 MSSP customers. X and Y axes labels are the same as in
Figs. 8.8b and 8.8d.

178 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

3288

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
40

00
60

00
80

00

3359

r$
al

l_
al

Apr May Jun

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
0

60
00

0
10

00
00

3362

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
0

10
00

00
15

00
00

20
00

00

3363

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
0

40
00

0
60

00
0

80
00

0

3380

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
40

00
60

00
80

00
12

00
0

3408

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
0

40
00

0
60

00
0

80
00

0

3426

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
10

00
0

15
00

0
20

00
0

3473

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
40

00
60

00

3482

r$
al

l_
al

Apr May Jun Jul Aug

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0e
+

00
2e

+
05

4e
+

05
6e

+
05

3488

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
10

00
0

15
00

0

3491

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
40

00
60

00
80

00
10

00
0

3520

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
60

00
10

00
0

14
00

0

3532

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
40

00
60

00
80

00

3565

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
0

10
00

00
20

00
00

3569

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
0

10
00

00
15

00
00

20
00

00

3590

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
20

00
60

00
10

00
0

3626

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
0

10
00

00
15

00
00

3647

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0
50

00
0

15
00

00
25

00
00

3669

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

4043

r$
al

l_
al

Apr May Jun Jul Aug Sep

#alerts
#covered (clustering)
#covered (FP clusters)
#filtered
#positives
#positives missed

Figure C.5: Cluster filtering for 20 MSSP customers—absolute values. X and Y axes labels
are the same as in Figs. 8.9a and 8.9c.

179

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3288

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3359

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3362

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3363

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3380

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3408

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3426

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3473

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3482

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3488

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3491

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3520

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3532

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3565

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3569

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3590

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3626

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3647

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3669

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4043

re
p(

N
A

, l
en

gt
h(

r$
cl

us
te

r_
fr

om
))

Apr May Jun Jul Aug Sep

covered (clustering)
covered (FP clusters)
filtered
positives
missed (FN/P)

Figure C.6: Cluster filtering for 20 MSSP customers—relative values. X and Y axes labels
are the same as in Figs. 8.9b and 8.9d.

180 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

1 2 3 4 5 6 7 8 9 10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 59 60 61 62 63 64 80 81 82 83 84 87 88

0
10387
11019
11057
11058
11506
11516
11598
11635
11645

3288

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

94
05

94
63

94
64

94
65

95
02

95
03

95
16

95
19

95
20

95
23

95
25

95
27

95
28

95
30

95
32

0
10498
10509
10614
10985
11075

3359

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

10
39

0

10
39

1

10
39

2

10
39

3

10
39

4

10
39

5

10
39

6

10
39

7

10
39

8

10
58

8

10
58

9

10
59

2

10
59

5

10
59

7

10
59

9

10
60

0

10
60

2

10
72

6

10
73

5

0
9884
10000
10006
10009
10017
10138
10181
10189
10863
10899
10972
11005

3362

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

15
69

7
15

70
6

15
70

8
15

70
9

15
82

6
15

83
0

15
83

1
15

83
2

15
83

3
15

83
4

15
83

6
15

83
7

15
83

8
15

83
9

15
84

2
15

84
3

15
84

4
15

84
5

15
84

6
15

84
7

15
84

8
15

84
9

15
85

0
15

85
1

15
85

5
15

85
6

15
85

8
15

85
9

15
86

0
15

86
2

15
86

3
15

86
4

15
86

5
16

11
2

16
11

3
16

11
4

16
11

5
16

11
6

16
11

7
16

11
8

16
11

9
16

12
0

16
12

1

0
10842
10890
11011
11233

3363

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

21
20

8

21
20

9

21
21

0

21
21

1

21
21

2

21
21

3

21
21

4

21
21

5

21
23

4

21
23

5

21
23

7

21
23

8

21
24

5

21
25

4

0
11550
11601

3380

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

22
80

9

22
81

0

22
81

1

22
81

2

22
81

3

22
81

4

22
81

5

22
81

6

22
81

7

22
81

8

22
81

9

22
82

0

22
82

1

22
82

2

22
82

3

22
82

4

22
82

5

22
82

6

22
84

7

0
11431

3408

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

23
75

5

23
75

6

23
75

7

23
75

8

23
75

9

23
76

1

23
94

5

24
05

6

0
10025
11495

3426

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

28
81

1

28
98

0

31
02

8

31
03

5

31
15

5

31
18

2

31
19

8

31
31

4

0
521
536
545
550
561
568
575
580
592
601
606
613
621
626
636
643
650
660
761
772
775
782
791
796
972
979
10889

3473

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

33
15

8
33

64
5

33
65

1
33

65
7

33
65

9
33

66
2

33
66

4
33

67
8

33
71

4
33

71
9

33
72

0
33

72
1

33
72

3
33

72
6

33
72

7
33

73
1

33
73

5
33

74
0

33
74

3
33

74
8

33
78

3
33

78
4

33
78

7
33

78
8

33
78

9
33

80
6

33
81

2
33

83
7

33
83

8
33

83
9

33
84

2
33

85
3

33
85

8
33

86
1

33
87

6
33

90
0

33
90

1
33

90
2

33
90

3
33

90
4

33
90

5
33

90
6

33
90

7
33

90
8

33
90

9
33

91
0

33
91

1
33

91
3

33
91

5
33

91
6

33
91

7
33

93
2

33
95

6
33

95
7

33
95

8
33

95
9

33
96

0
33

96
1

33
96

2
33

96
4

33
96

5
33

96
6

33
96

7
33

96
8

33
96

9
33

97
6

33
97

7
33

98
3

33
98

5
33

99
2

34
27

1
34

32
7

0
322
323
342
381
385
398
417
460
462
474
476
509
514
518
529
530
540
542
554
558
565
572
577
589
596
608
617

3482

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

50
0.

0

34
35

1

34
35

3

37
00

4

37
07

3

37
08

3

37
22

3

37
23

9

37
24

0

37
24

3

37
24

4

37
26

1

37
27

8

0
429
10113

3488

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

39
39

7

39
39

8

39
39

9

39
40

3

39
40

5

39
46

1

39
46

2

39
49

1

39
49

2

39
49

3

39
49

9

0
9901
10078
10740
11623
11644

3491

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

40
49

0

40
49

1

40
49

2

40
49

7

40
49

8

40
54

9

40
55

0

40
55

1

40
55

4

40
55

5

40
55

6

40
58

7

40
58

9

41
39

9

0
9881
10314
10506
10947
11131

3520

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

41
46

8
41

46
9

41
47

0
41

47
1

41
47

2
41

47
7

41
47

8
41

47
9

41
48

0
41

48
1

41
48

2
41

48
3

41
48

4
41

48
5

41
48

6
41

48
7

41
48

8
41

48
9

41
49

0
41

49
1

41
49

2
41

49
3

41
49

5
41

49
6

41
49

8
41

49
9

41
50

0
41

50
1

41
50

2
41

50
3

41
50

4
41

50
5

41
50

7
41

50
8

41
51

0
41

51
1

41
51

2
41

51
5

41
51

6
41

51
7

41
51

8
41

51
9

41
52

0
41

52
1

41
52

2
41

52
4

41
52

5
41

52
7

41
52

8
41

52
9

41
53

0
41

53
1

41
53

2
41

53
3

41
53

4
41

53
6

41
53

7
41

53
8

41
53

9
41

54
0

41
54

1
41

54
3

41
54

4
41

54
5

41
54

6
41

54
7

41
55

1
41

55
2

41
55

4
41

55
6

41
55

7
41

55
9

41
62

8
41

62
9

0
9954
10887
10994
11000

3532

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

42
41

5
42

46
5

43
02

0
43

06
7

43
06

8
43

06
9

43
07

1
43

07
3

43
07

4
43

07
6

43
07

8
43

07
9

43
10

2
43

10
4

43
10

5
43

10
6

43
10

7
43

10
9

43
11

0
43

11
2

43
12

3
43

12
4

43
14

4
43

31
8

43
35

3

0
382
511
520
535
544
549
560
567
574
579
591
600
605
612
625
635
642
649
659
760
771
774
781
790
795
971
977

3565

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

43
59

1
43

63
0

43
63

7
43

64
1

43
64

2
43

67
2

43
70

5
43

74
6

43
76

7
43

76
8

43
77

5
43

77
6

43
77

8
43

77
9

43
78

1
43

78
3

43
78

4
43

78
5

43
78

6
43

79
1

43
79

2
43

79
3

43
79

4
43

79
5

43
79

6
43

79
8

43
79

9
43

80
0

43
80

1
43

80
2

43
80

3
43

80
4

43
80

5
43

80
6

43
80

8
43

80
9

43
81

0
43

81
1

43
81

2
43

81
3

43
81

4
43

82
0

43
82

1
43

82
2

43
82

3
43

82
4

43
82

5
43

82
9

43
83

0
43

83
1

43
83

2
43

83
3

43
83

4
43

83
7

43
83

8
43

83
9

43
84

0
43

84
1

43
84

3
43

84
8

43
84

9
43

85
0

43
85

1
43

85
2

43
85

4
43

85
8

43
85

9
43

86
0

43
86

1
43

86
2

43
86

3
43

86
4

43
86

5
43

86
6

43
86

7
43

86
8

43
86

9
43

87
0

43
87

1
43

87
2

43
87

3
43

87
4

43
87

5
43

87
6

43
88

0
43

88
1

43
88

4
43

88
5

43
88

6
43

88
7

43
89

0
43

89
1

43
89

2
43

89
3

43
89

4
43

89
6

43
89

7
43

89
8

43
89

9
43

90
1

43
90

2
43

90
4

43
90

5
43

90
7

43
90

8
43

90
9

43
91

0
43

91
2

43
91

3
43

91
4

43
91

5
43

91
6

43
91

7
43

91
9

43
92

0
43

92
1

43
92

2
43

92
3

43
92

4
43

92
6

43
92

7
43

92
9

43
93

0
43

93
4

43
93

5
43

93
6

43
93

8
43

94
0

43
94

1
43

94
2

43
94

3
43

94
4

43
94

5
43

94
6

43
94

8
43

94
9

43
95

2
43

95
3

43
95

4
43

95
5

43
95

7
43

95
8

43
96

2
43

96
3

43
96

4
43

96
5

43
96

6
43

96
7

43
96

8
43

97
3

43
97

4
43

98
1

43
98

6
43

98
7

43
98

8
43

98
9

43
99

1
43

99
3

43
99

4
43

99
9

44
00

0
44

00
1

44
00

2
44

00
7

44
01

0
44

01
1

44
01

3
44

01
6

44
01

8
44

01
9

44
02

0
44

02
1

44
02

2
44

02
4

44
02

5
44

02
6

44
02

7
44

02
8

44
02

9
44

03
4

44
03

5
44

03
6

44
03

7
44

03
8

44
03

9
44

04
4

44
04

5
44

04
6

44
04

7
44

04
8

44
04

9
44

05
4

44
05

7
44

06
8

44
07

3
44

08
2

44
08

3
44

08
4

44
09

0
44

09
2

44
09

4
44

09
5

44
09

7
44

09
8

44
09

9
44

10
1

44
10

2
44

10
3

44
10

4
44

10
5

44
10

7
44

11
0

44
11

1
44

11
2

44
11

3
44

11
5

44
11

6
44

11
9

44
12

0
44

12
1

44
12

3
44

12
5

44
12

9
44

13
2

44
13

5
44

13
6

44
13

8
44

13
9

44
14

1
44

14
2

44
14

3
44

14
4

44
14

5
44

14
6

44
14

7
44

14
8

44
14

9
44

15
6

44
15

7
44

15
8

44
15

9
44

16
0

44
16

1
44

16
2

44
16

3
44

16
4

44
16

5
44

16
6

44
16

7
44

56
9

44
57

0
44

57
1

44
76

9
44

77
0

44
77

1
46

14
7

46
18

0
46

21
6

46
21

7
46

26
1

46
27

6
46

28
6

46
32

9
46

33
0

46
33

2
46

33
4

46
33

5
46

33
6

46
33

7
46

36
4

46
37

1
46

39
0

46
40

3
46

42
6

46
47

0
46

49
8

0
221
401
402
403
427
9885
10353
10847
10864
10896
10941
10982
10984
11010
11030
11047
11507
11618
11707

3569

1e
−

01
1e

+
01

1e
+

03

48
60

7
48

60
8

48
60

9
48

61
0

48
61

1
48

61
2

48
61

3
48

61
4

48
61

5
48

61
6

48
61

7
48

61
8

48
61

9
48

62
0

48
62

1
48

62
2

48
62

3
48

62
4

48
62

5
48

62
6

48
62

7
48

62
8

48
62

9
48

63
0

48
63

6
48

63
8

0
11485
11580
11745

3590

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

52
69

7
52

69
8

52
69

9
52

70
0

52
70

1
52

70
2

52
70

3
52

70
4

52
70

5
52

70
6

52
70

7
52

70
8

52
70

9
52

71
2

52
71

3
52

71
4

52
71

5
52

71
6

52
71

7
52

71
9

52
72

0
52

75
0

52
75

6
52

75
7

52
75

8
52

75
9

52
76

0
52

76
1

52
76

2

0
10661
11303

3626

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

53
14

1
53

16
5

53
16

8
53

17
0

53
17

2
53

17
8

53
18

6
53

19
1

53
22

1
53

22
3

53
27

0
53

27
1

53
27

2
53

27
3

53
27

4
53

27
5

53
27

6
53

28
1

53
28

2
53

29
3

53
29

4
53

33
4

53
33

5
53

34
1

53
34

2
53

34
3

53
35

7
53

36
8

53
37

0
53

45
6

53
45

8
53

48
5

53
52

2
53

52
3

53
52

4
53

52
5

53
53

4
53

53
5

53
54

6
53

54
7

53
54

9
53

56
6

53
57

2
53

57
3

53
67

5
53

67
9

53
71

4
53

71
5

53
71

6
53

71
7

53
72

2
53

72
3

53
72

4
53

72
5

53
72

6
53

72
7

53
73

0
53

73
1

53
73

5
53

73
6

53
73

7
53

73
8

56
07

9
56

08
0

58
24

4

0
426
10151
10293
10759
10760
10959
10960
11014
11093
11392
11486
11579
11673

3647

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

60
59

0
60

59
1

60
59

2
60

59
3

60
59

4
60

59
5

60
59

6
60

59
7

60
59

9
60

60
0

60
60

1
60

60
2

60
60

6
60

60
7

60
60

8
60

61
2

60
61

7
60

61
8

60
61

9
60

62
0

60
62

1
60

62
2

60
62

7
60

62
8

60
62

9
60

63
4

60
64

0
60

64
1

60
64

3
60

64
4

60
64

5
60

64
6

60
65

1
60

66
5

60
66

9
60

67
2

60
68

2
60

68
8

60
68

9
60

69
3

60
75

2
60

75
4

60
75

8
60

76
0

60
76

3
60

76
9

60
78

4
60

78
8

60
98

3
61

02
0

61
05

0
61

07
4

61
07

9
61

08
1

62
78

9
62

79
0

62
79

1
62

79
2

62
79

3
62

79
5

62
91

3
62

95
1

62
95

4
62

96
9

62
98

9
62

99
0

62
99

1
62

99
2

62
99

3
62

99
4

63
05

1
63

11
5

63
13

3
63

14
8

63
18

0
63

18
5

64
86

4
65

62
6

65
62

7
65

63
2

65
65

1
65

65
6

65
66

7
65

66
9

65
67

0
65

67
1

0
330
1155
1214
10267
10945
11282

3669

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

50
0.

0

65
78

9
65

79
0

65
79

1
65

79
2

65
79

3
65

79
4

65
79

5
65

79
6

65
79

7
65

79
9

65
80

0
65

80
1

65
80

2
65

80
3

65
80

4
65

80
5

65
80

6
65

80
7

65
80

8
65

80
9

65
81

1
65

81
2

65
81

3
65

81
4

65
81

6
65

81
7

65
81

8
65

82
1

65
82

4
65

82
6

65
83

0
65

83
1

65
83

2
65

83
3

65
83

4
65

83
5

65
83

7
65

83
8

65
83

9
65

84
0

65
84

1
65

84
2

65
84

3
65

84
4

65
84

5
65

84
6

65
84

7
65

84
8

65
85

0
65

85
1

65
85

2
65

85
4

65
85

6
65

85
7

65
85

9
65

86
1

65
86

5
65

87
0

65
87

3
65

87
5

65
87

8
65

88
3

65
89

4
65

89
5

65
89

6
65

89
7

65
90

4
65

90
5

65
91

1
65

91
3

65
91

4
65

93
8

65
98

5
65

98
9

65
99

2
65

99
3

65
99

4
65

99
8

66
00

5
66

00
8

66
01

2
66

02
4

66
02

5
66

02
8

66
03

1
66

03
2

66
03

8
66

04
0

66
04

4
66

04
5

66
06

4
66

06
6

66
07

0
66

07
4

66
07

5
66

07
6

66
07

7
66

07
8

66
07

9
66

08
5

66
19

1
66

19
2

66
19

4
66

19
5

66
19

7
66

19
8

66
20

0
66

20
1

66
20

5
66

20
9

66
21

0
66

21
1

66
22

0
66

22
3

66
22

4
66

23
4

66
23

5
66

23
7

66
25

1
66

25
2

66
25

3
66

26
4

68
37

0
68

37
1

68
37

2
68

37
3

68
37

4
68

37
5

68
37

6
68

37
7

68
37

8
68

37
9

68
38

0
68

38
1

68
38

2
68

38
3

68
38

4
68

38
5

68
38

6
68

38
7

68
38

8
68

38
9

68
39

0
68

39
2

68
39

3
68

39
5

68
39

8
68

39
9

69
28

8
69

29
0

69
29

1
69

29
2

69
29

5
69

29
7

69
29

8
69

29
9

69
30

2
69

30
6

69
31

2
69

31
5

69
31

6
69

34
7

69
37

7
69

37
8

69
38

1
69

38
2

69
38

3
69

38
4

69
38

6
69

39
1

69
39

3
69

39
4

69
39

7
69

39
8

69
40

0
69

40
2

0
432
1066
1075
9956
9965
10183
10219
10248
10311
10413
10571
10649
10712
10823
11245
11444
11521
11535

4043

1e
−

01
1e

+
01

1e
+

03

Figure C.7: Clustering precision for 20 MSSP customers—clustering stage. X and Y axes are
the same as in Fig. 8.11a.

181

1 2 3 5 6 7 8 9 10 16 17 18 19 24 28 60 61 80 81 83 84

0
11019
11057
11058
11635

3288

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
59

7

10
60

0

0
11531

3362

0.
1

0.
2

0.
5

1.
0

2.
0

15
69

7

15
70

6

15
70

8

15
70

9

15
85

8

15
86

0

0
10890

3363

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

21
20

8

21
20

9

21
21

0

21
21

1

21
23

4

21
23

5

21
23

7

21
23

8

21
25

4

0

3380

1
5

10
50

10
0

50
0

10
00

28
81

1

28
98

0

31
02

8

31
03

5

31
15

5

31
18

2

31
19

8

31
31

4

0
521
536
545
550
561
568
575
580
592
601
606
613
621
626
636
643
650
660
761
772
775
782
791
796
972
979
10889

3473

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

50
0.

0

33
64

5
33

65
1

33
65

7
33

65
9

33
66

2
33

66
4

33
67

8
33

71
4

33
71

9
33

72
0

33
72

1
33

72
3

33
73

1
33

74
0

33
74

3
33

74
8

33
78

3
33

78
4

33
78

7
33

78
8

33
78

9
33

80
6

33
81

2
33

83
7

33
83

8
33

83
9

33
84

2
33

85
3

33
85

8
33

86
1

33
87

6
33

90
0

33
90

1
33

90
2

33
90

3
33

90
4

33
90

6
33

90
7

33
90

8
33

90
9

33
91

0
33

91
1

33
91

3
33

91
5

33
91

6
33

91
7

33
93

2
33

95
6

33
95

7
33

95
8

33
95

9
33

96
0

33
96

1
33

96
2

33
96

4
33

96
5

33
96

6
33

96
7

33
96

8
33

96
9

33
97

6
33

97
7

33
98

3
33

98
5

33
99

2

0
322
323
342
381
385
398
417
460
462
474
476
509
514
518
529
530
540
542
554
558
565
572
577
589
596
608
617

3482

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

34
35

1

34
35

3

37
00

4

37
07

3

37
08

3

37
22

3

37
26

1

37
27

8

0
429

3488

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

39
39

7

39
39

8

39
39

9

39
40

3

39
40

5

0
10682

3491

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

40
49

0

40
49

1

40
49

2

40
54

9

40
55

0

40
58

7

41
39

9

0
9881
10506
10947
11131

3520

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

41
46

8
41

46
9

41
47

0
41

47
2

41
48

3
41

48
4

41
48

5
41

48
7

41
48

8
41

49
8

41
50

1
41

50
3

41
50

4
41

50
5

41
50

7
41

50
8

41
51

0
41

51
1

41
51

2
41

51
6

41
51

7
41

52
7

41
53

1
41

53
6

41
53

7
41

55
7

41
55

9

0
10887
11000
11615

3532

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

42
41

5
42

46
5

43
02

0
43

06
7

43
06

8
43

06
9

43
07

1
43

07
3

43
07

4
43

07
6

43
07

8
43

07
9

43
10

2
43

10
4

43
10

5
43

10
6

43
10

7
43

10
9

43
11

0
43

11
2

43
12

3
43

12
4

43
14

4
43

31
8

43
35

3

0
382
511
520
535
544
549
560
567
574
579
591
600
605
612
625
635
642
649
659
760
771
774
781
790
795
971
977

3565

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

43
63

0
43

63
7

43
64

1
43

64
2

43
67

2
43

74
6

43
76

7
43

77
5

43
77

6
43

77
9

43
78

1
43

78
4

43
78

5
43

79
1

43
79

3
43

79
5

43
79

9
43

80
0

43
80

6
43

81
0

43
81

1
43

81
4

43
82

1
43

82
2

43
82

5
43

83
0

43
83

1
43

83
4

43
83

8
43

83
9

43
84

1
43

84
9

43
85

0
43

85
4

43
85

8
43

85
9

43
86

3
43

86
7

43
86

8
43

87
0

43
87

3
43

87
4

43
87

6
43

88
0

43
88

4
43

88
5

43
89

1
43

89
3

43
89

4
43

89
7

43
90

1
43

90
2

43
90

7
43

90
8

43
91

2
43

91
4

43
91

5
43

91
6

43
92

2
43

92
3

43
92

6
43

92
9

43
93

0
43

93
4

43
93

5
43

93
8

43
94

0
43

94
1

43
94

8
43

95
2

43
95

3
43

95
4

43
95

5
43

95
7

43
95

8
43

96
2

43
96

3
43

96
6

43
96

7
43

96
8

43
98

1
44

02
8

44
03

8
44

04
8

44
06

8
44

10
5

44
11

3
44

11
6

44
12

9
44

56
9

44
57

0
44

57
1

44
77

0
44

77
1

46
14

7
46

18
0

46
21

6
46

21
7

46
26

1
46

27
6

46
28

6
46

36
4

46
37

1
46

39
0

46
40

3
46

42
6

46
47

0

0
221
401
402
403
10847
10982
11507
11618

3569

1e
−

01
1e

+
01

1e
+

03

48
60

7
48

60
8

48
60

9
48

61
0

48
61

1
48

61
2

48
61

3
48

61
4

48
61

5
48

61
6

48
61

7
48

61
8

48
61

9
48

62
0

48
62

1
48

62
2

48
62

3
48

62
4

48
62

5
48

62
6

48
62

7
48

62
8

48
62

9
48

63
0

0

3590

2
5

10
20

50
10

0
20

0

52
69

7

52
69

8

52
69

9

52
70

0

52
70

3

52
70

4

52
70

5

52
70

6

52
70

7

52
70

8

52
75

0

52
75

6

52
75

7

52
75

8

52
75

9

52
76

1

52
76

2

0
11303
11505

3626

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

53
14

1
53

16
5

53
17

0
53

17
2

53
17

8
53

18
6

53
19

1
53

22
1

53
22

3
53

27
0

53
27

1
53

27
2

53
27

3
53

27
4

53
27

5
53

27
6

53
28

2
53

29
3

53
29

4
53

34
1

53
35

7
53

36
8

53
37

0
53

45
6

53
45

8
53

48
5

53
54

6
53

54
9

53
56

6
53

57
2

53
57

3
53

67
5

53
67

9
53

71
4

53
71

5
53

71
6

53
71

7
53

72
2

53
72

3
53

72
4

53
72

5
53

72
6

53
72

7
53

73
0

53
73

1
53

73
5

53
73

6
53

73
7

53
73

8
58

24
4

0
10293
10759
10760
11093
11392
11486
11579
11673

3647

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

60
59

0
60

59
1

60
59

2
60

59
3

60
59

4
60

59
5

60
59

6
60

59
7

60
59

9
60

60
0

60
60

1
60

60
2

60
60

6
60

60
7

60
60

8
60

61
2

60
61

7
60

61
8

60
66

5
60

66
9

60
67

2
60

68
2

60
68

8
60

68
9

60
69

3
60

75
2

60
75

4
60

75
8

60
76

0
60

76
3

60
76

9
60

78
4

60
78

8
60

98
3

62
78

9
62

79
0

62
79

1
62

79
2

62
79

3
62

79
5

62
91

3
62

95
1

62
95

4
62

96
9

62
98

9
62

99
0

62
99

1
62

99
2

62
99

3
62

99
4

63
11

5
63

13
3

63
14

8
63

18
0

63
18

5
64

86
4

65
62

6
65

62
7

65
63

2
65

65
1

65
65

6
65

66
7

65
66

9
65

67
0

65
67

1

0
330
10267
10945

3669

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

50
0.

0

65
79

7
65

79
9

65
80

0
65

80
1

65
80

2
65

80
4

65
80

7
65

80
8

65
80

9
65

81
1

65
81

7
65

83
0

65
83

5
65

83
7

65
83

9
65

84
1

65
84

2
65

84
3

65
84

5
65

84
6

65
84

7
65

84
8

65
85

0
65

85
7

65
86

5
65

87
3

65
87

5
65

87
8

65
89

4
65

89
5

65
89

6
65

89
7

65
90

5
65

91
1

65
93

8
65

99
2

65
99

3
65

99
4

65
99

8
66

02
8

66
03

1
66

03
2

66
06

4
66

06
6

66
07

0
66

19
5

66
23

4
66

23
5

66
23

7
66

25
1

66
25

2
66

25
3

69
28

8
69

29
0

69
29

1
69

29
2

69
29

5
69

29
7

69
29

8
69

29
9

69
30

2
69

30
6

69
31

2
69

31
5

69
31

6
69

37
8

69
38

1
69

38
3

69
38

4
69

38
6

69
39

3
69

39
7

69
39

8
69

40
0

69
40

2

0
10571
10649
10712
10823
11245
11521

4043

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

Figure C.8: Clustering precision for 20 MSSP customers—filtering stage. X and Y axes are
the same as in Fig. 8.11b.

182 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

10
38

7

10
59

1

11
01

9

11
05

7

11
05

8

11
50

6

11
51

6

11
59

8

11
63

5

11
64

5

0
1
2
3
4
5
6
7
8
9
10
16
17
18
19
20
21
22
23
24
25
26
27
28
29
59
60
61

3288

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

99
66

10
00

1

10
11

1

10
20

9

10
24

0

10
49

0

10
49

8

10
50

9

10
61

4

10
98

5

11
07

5

11
15

0

0
9405
9463
9464
9465
9502
9503
9516
9519
9520
9523
9525
9527
9528
9530
9532

3359

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

98
74

98
83

98
84

10
00

0
10

00
6

10
00

9
10

01
7

10
07

6
10

13
8

10
18

1
10

18
9

10
30

4
10

84
5

10
86

3
10

89
9

10
97

2
11

00
5

11
20

4
11

46
1

11
53

1
11

59
3

0
10390
10391
10392
10393
10394
10395
10396
10397
10398
10588
10589
10592
10595
10597
10599
10602
10726
10735

3362

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

99
53

10
01

3
10

13
6

10
19

8
10

24
2

10
26

2
10

29
8

10
38

6
10

40
1

10
64

3
10

64
6

10
65

4
10

74
7

10
84

2
10

85
3

10
89

0
11

01
1

11
08

0
11

11
1

11
14

9
11

20
1

11
23

3
11

29
4

11
34

2
11

41
4

11
51

8
11

58
2

11
69

8

0
15826
15830
15831
15832
15833
15834
15836
15837
15838
15839
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15855
15856
15858
15859
15860
15862
15863

3363

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

99
17

10
25

5

10
58

5

10
58

8

11
35

0

11
55

0

11
60

1

0
21208
21209
21210
21211
21212
21213
21214
21215
21234
21235
21237
21238
21245
21254

3380

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
08

2

11
43

1

0
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22847

3408

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

49
4

10
02

5

10
19

1

10
92

2

11
00

2

11
39

1

11
48

4

11
49

5

11
74

9

0
23755
23756
23757
23758
23759
23761
23945
24056

3426

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

52
1

53
6

54
5

55
0

56
1

56
8

57
5

58
0

59
2

60
1

60
6

61
3

62
1

62
6

63
6

64
3

65
0

66
0

76
1

77
2

77
5

78
2

79
1

79
6

97
2

97
9

11
62

12
09

10
88

9

0
28980
31182
31198
31314

3473

0.
1

0.
2

0.
5

1.
0

2.
0

32
2

32
3

34
2

38
1

38
5

39
8

41
5

41
7

42
4

46
0

46
2

47
4

47
6

50
9

51
4

51
8

52
9

53
0

54
0

54
2

55
4

55
8

56
5

57
2

57
7

58
9

59
6

60
8

61
7

62
3

63
3

64
0

64
7

66
2

76
5

76
7

77
7

78
6

79
3

80
0

80
4

80
6

96
7

98
1

10
72

10
73

10
87

7

0
33158
33714
33723
33726
33727
33735
33740
33743
33783
33784
33787
33788
33789
33806
33812
33901
33903
33905
33906
33907
33908
33910
33917
33932
33956
33957
33958

3482

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

42
9

99
38

10
00

8
10

04
9

10
11

3
10

12
4

10
23

9
10

35
0

10
36

8
10

37
0

10
47

4
10

73
3

10
81

7
10

84
3

10
89

2
10

90
2

10
90

5
10

90
7

10
91

6
10

91
8

10
95

5
11

03
9

11
10

9
11

11
8

11
14

2
11

14
4

11
19

2
11

19
8

11
21

2
11

32
0

11
41

2
11

49
6

11
58

4
11

62
1

0
34351
34353
37223
37239
37240
37243
37244
37261
37278

3488

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

99
01

10
07

8

10
25

8

10
68

2

10
74

0

11
34

7

11
62

3

11
64

4

0
39397
39398
39399
39403
39405
39461
39462
39491
39492
39493
39499

3491

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

98
81

10
31

4

10
50

6

10
94

7

10
95

0

11
13

1

0
40491
40492
40497
40498
40549
40550
40551
40554
40555
40556
40587
40589

3520

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

99
54

10
88

7

10
99

4

11
00

0

11
61

5

0
41468
41469
41470
41471
41472
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41495
41496
41498
41499
41500

3532

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

50
0.

0

38
2

51
1

52
0

53
5

54
4

54
9

56
0

56
7

57
4

57
9

59
1

60
0

60
5

61
2

62
5

63
5

64
2

64
9

65
9

76
0

77
1

77
4

78
1

79
0

79
5

97
1

97
7

11
58

12
05

10
88

8

0
42465
43067
43104
43105
43106
43107
43109
43110
43112
43123
43124
43144
43353

3565

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

22
1

40
1

40
2

40
3

42
7

98
85

10
35

3
10

37
2

10
63

5
10

84
7

10
86

4
10

89
6

10
94

1
10

98
2

10
98

4
11

01
0

11
03

0
11

04
7

11
50

7
11

61
8

11
70

7
11

72
8

0
43591
43705
43768
43775
43776
43778
43779
43781
43783
43784
43785
43786
43791
43792
43794
43795
43796
43798
43799
43800
43801
43802
43803
43804
43805
43806
43808

3569

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

10
59

0

11
48

5

11
58

0

11
74

5

0
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48636
48638

3590

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

10
17

9

10
37

4

10
66

1

10
83

7

11
30

3

11
50

5

0
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52712
52713
52714
52715
52716
52717
52719
52720
52756
52757
52758
52759
52760
52761

3626

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

42
6

10
10

3

10
15

1

10
29

3

10
75

9

10
76

0

10
95

9

10
96

0

11
01

4

11
09

3

11
39

2

11
48

6

11
50

2

11
57

9

11
60

9

11
67

3

0
53141
53165
53168
53170
53172
53178
53186
53191
53221
53223
53270
53271
53272
53273
53274
53275
53276
53281
53282
53293
53294
53334
53335
53341
53342
53343
53357

3647

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

33
0

11
55

12
14

10
26

7

10
33

1

10
94

5

11
28

2

0
60590
60591
60592
60593
60594
60595
60596
60597
60599
60600
60601
60602
60606
60607
60608
60612
60617
60618
60619
60620
60621
60622
60627
60628
60629
60634
60640

3669

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

43
2

10
66

10
75

99
56

99
65

10
18

3

10
21

9

10
24

8

10
31

1

10
41

3

10
57

1

10
64

9

10
71

2

10
82

3

11
24

5

11
44

4

11
52

1

11
53

5

0
65789
65790
65791
65792
65793
65794
65795
65796
65797
65799
65800
65801
65802
65803
65804
65805
65806
65807
65808
65809
65811
65812
65813
65814
65816
65818
65821

4043

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

Figure C.9: Clustering recall for 20 MSSP customers—clustering stage. X and Y axes are the
same as in Fig. 8.11c.

183

10
38

7

10
59

1

11
01

9

11
05

7

11
05

8

11
50

6

11
51

6

11
59

8

11
63

5

11
64

5

9
8
7
6
5
3
28
24
2
16
10
1
−

3288

0
50

0
10

00
15

00

99
66

10
00

1

10
11

1

10
20

9

10
24

0

10
49

0

10
49

8

10
50

9

10
61

4

10
98

5

11
07

5

11
15

0

−

3359

0
20

40
60

80
10

0

98
74

98
83

98
84

10
00

0
10

00
6

10
00

9
10

01
7

10
07

6
10

13
8

10
18

1
10

18
9

10
30

4
10

84
5

10
86

3
10

89
9

10
97

2
11

00
5

11
20

4
11

46
1

11
53

1
11

59
3

10600
−

3362

0
20

40
60

80

99
53

10
01

3
10

13
6

10
19

8
10

24
2

10
26

2
10

29
8

10
38

6
10

40
1

10
64

3
10

64
6

10
65

4
10

74
7

10
84

2
10

85
3

10
89

0
11

01
1

11
08

0
11

11
1

11
14

9
11

20
1

11
23

3
11

29
4

11
34

2
11

41
4

11
51

8
11

58
2

11
69

8

15709
15708
15706
15697
−

3363

0
50

0
10

00
15

00

99
17

10
25

5

10
58

5

10
58

8

11
35

0

11
55

0

11
60

1

−

3380

0
50

10
0

15
0

20
0

25
0

10
08

2

11
43

1

−

3408

0
10

0
20

0
30

0
40

0

49
4

10
02

5

10
19

1

10
92

2

11
00

2

11
39

1

11
48

4

11
49

5

11
74

9

−

3426

0
20

40
60

80

52
1

53
6

54
5

55
0

56
1

56
8

57
5

58
0

59
2

60
1

60
6

61
3

62
1

62
6

63
6

64
3

65
0

66
0

76
1

77
2

77
5

78
2

79
1

79
6

97
2

97
9

11
62

12
09

10
88

9

31155
31035
31028
28811
−

3473

0
1

2
3

4

32
2

32
3

34
2

38
1

38
5

39
8

41
5

41
7

42
4

46
0

46
2

47
4

47
6

50
9

51
4

51
8

52
9

53
0

54
0

54
2

55
4

55
8

56
5

57
2

57
7

58
9

59
6

60
8

61
7

62
3

63
3

64
0

64
7

66
2

76
5

76
7

77
7

78
6

79
3

80
0

80
4

80
6

96
7

98
1

10
72

10
73

10
87

7

33932
33917
33916
33915
33913
33911
33910
33909
33908
33907
33904
33903
33902
33901
33900
33876
33861
33858
33853
33842
33839
33838
33837
33748
33731
33721
33720
33719

3482

0
5

10
15

20
25

30

42
9

99
38

10
00

8
10

04
9

10
11

3
10

12
4

10
23

9
10

35
0

10
36

8
10

37
0

10
47

4
10

73
3

10
81

7
10

84
3

10
89

2
10

90
2

10
90

5
10

90
7

10
91

6
10

91
8

10
95

5
11

03
9

11
10

9
11

11
8

11
14

2
11

14
4

11
19

2
11

19
8

11
21

2
11

32
0

11
41

2
11

49
6

11
58

4
11

62
1

37083
37073
37004
−

3488

0
10

20
30

40
50

60
70

99
01

10
07

8

10
25

8

10
68

2

10
74

0

11
34

7

11
62

3

11
64

4

39405
39403
39399
39398
39397
−

3491

0
50

10
0

15
0

20
0

25
0

30
0

98
81

10
31

4

10
50

6

10
94

7

10
95

0

11
13

1

41399
40549
40492
40491
40490
−

3520

0
10

0
20

0
30

0

99
54

10
88

7

10
99

4

11
00

0

11
61

5

41517
41504
41488
41485
41484
41483
41472
41470
41469
41468
−

3532

0
10

0
20

0
30

0
40

0
50

0

38
2

51
1

52
0

53
5

54
4

54
9

56
0

56
7

57
4

57
9

59
1

60
0

60
5

61
2

62
5

63
5

64
2

64
9

65
9

76
0

77
1

77
4

78
1

79
0

79
5

97
1

97
7

11
58

12
05

10
88

8

43318
43102
43079
43078
43076
43074
43073
43071
43069
43068
43067
43020
42415
−

3565

0
10

20
30

40
50

22
1

40
1

40
2

40
3

42
7

98
85

10
35

3
10

37
2

10
63

5
10

84
7

10
86

4
10

89
6

10
94

1
10

98
2

10
98

4
11

01
0

11
03

0
11

04
7

11
50

7
11

61
8

11
70

7
11

72
8

46286
46276
46261
46217
46216
46180
46147
44571
44570
44569
43941
43935
43930
43926
43916
43914
43908
43902
43901
43894
43885
43880
43876
43874
43867
43859
43854
43850

3569

0
10

00
20

00
30

00
40

00
50

00

10
59

0

11
48

5

11
58

0

11
74

5

−

3590

0
50

10
0

15
0

10
17

9

10
37

4

10
66

1

10
83

7

11
30

3

11
50

5

52750
52708
52707
52706
52705
52704
52703
52700
52699
52698
52697
−

3626

0
50

10
0

15
0

20
0

42
6

10
10

3

10
15

1

10
29

3

10
75

9

10
76

0

10
95

9

10
96

0

11
01

4

11
09

3

11
39

2

11
48

6

11
50

2

11
57

9

11
60

9

11
67

3

58244
53485
53370
53368
53357
53341
53272
53270
53191
53186
53141
−

3647

0
50

0
10

00
15

00
20

00

33
0

11
55

12
14

10
26

7

10
33

1

10
94

5

11
28

2

65671
65670
65669
65667
65656
65651
65632
65627
65626
62969
62954
62951
62913
62795
62793
62792
62791
62790
62789
60788
60784
−

3669

0
10

0
20

0
30

0
40

0

43
2

10
66

10
75

99
56

99
65

10
18

3

10
21

9

10
24

8

10
31

1

10
41

3

10
57

1

10
64

9

10
71

2

10
82

3

11
24

5

11
44

4

11
52

1

11
53

5

66066
66032
66031
66028
65998
65994
65993
65911
65865
65857
65835
65830
65817
65797
−

4043

0
50

0
10

00
15

00
20

00
25

00

Figure C.10: Clustering recall for 20 MSSP customers—filtering stage. X and Y axes are the
same as in Fig. 8.11d.

184 APPENDIX C. CLUSTERING MSSP DATASETS RESULTS

Bibliography

[Aes] Aesop. The boy who cried “Wolf!”. Folks tale. This version was taken and adapted
from the web page at http://www.rickwalton.com/folktale/bryant19.html.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the ACM-SIGMOD 1993
International Conference on Management of Data, pages 207–216, Washington,
D.C., 1993.

[AKA91] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algo-
rithms. Machine Learning, 6(1):37–66, 1991.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI/MIT Press, 1996.

[And80] James P. Anderson. Computer security threat monitoring and surveillance. Tech-
nical report, James P. Anderson Co., 1980.

[Axe99] Stefan Axelsson. The base-rate fallacy and its implications for the intrusion detec-
tion. In Proceedings of the 6th ACM Conference on Computer and Communications
Security, pages 1–7, Kent Ridge Digital Labs, Singapore, 1999.

[Axe05] Stefan Axelsson. Understanding Intrusion Detection Through Visualization. PhD
thesis, Chalmers University of Technology, 2005.

[Bel92] Steven M. Bellowin. There be dragons. In Proceedings of the 3rd USENIX Security
Symposium, Baltimore, MD, 1992.

[Bel93] Steven M. Bellowin. Packets found on an Internet. Computer Communications
Review, 23(3):26–31, 1993.

[BHC+00] Eric Bloedorn, Bill Hill, Alan Christiansen, Clem Skorupka, Lisa Talbot, and
Jonathan Tivel. Data mining for improving intrusion detection. Technical report,
MITRE Corporation, 2000.

[Blo98] Hendrik Blockeel. Top-Down Induction of First Order Logical Decision Trees. PhD
thesis, Katholieke Universiteit Leuven, 1998.

[Bra87] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145–1159, 1987.

185

http://www.rickwalton.com/folktale/bryant19.html

186 BIBLIOGRAPHY

[CAMB02] Frédéric Cuppens, Fabien Autrel, Alexandre Miège, and Salem Benferhat. Cor-
relation in an intrusion detection process. In Proceedings SÉcurité des Communi-
cations sur Internet (SECI02), pages 153–171, 2002.

[CD03] D. Curry and H. Debar. Intrusion detection message exchange format data model
and extensible markup language (xml) document type definition. Technical report,
Internet Engineering Task Force, Intrusion Detection Working Group, 2003.

[Ces90] Bojan Cestnik. Estimating probabilities: A crucial task in machine learning. In
Proceedings of the Ninth European Conference on Artificial Intelligence (ECAI-
1990), pages 147–149, Stockholm, Sweden, 1990.

[CG04] Ira Cohen and Moises Goldszmidt. Properties and benefits of calibrated classi-
fiers. In Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino
Pedreschi, editors, Proceedings of PKDD 2004: 8th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases, volume 3202 of Lecture
Notes in Computer Science, pages 125–136. Springer-Verlag, 2004.

[Cho70] C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory, 16(1):41–46, 1970.

[CM02] Frédéric Cuppens and Alexandre Miège. Alert correlation in a cooperative intrusion
detection framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 202–215, 2002.

[CN89] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning,
3:261–283, 1989.

[CO00] Frédéric Cuppens and Rodolphe Ortalo. LAMBDA: A language to model a
database for detection of attacks. In Recent Advances in Intrusion Detection
(RAID2000), volume 1907 of Lecture Notes in Computer Science, pages 197–216.
Springer-Verlag, 2000.

[Coh95] William W. Cohen. Fast effective rule induction. In Armand Prieditis and Stu-
art Russell, editors, Proceedings of the 12th International Conference on Machine
Learning, pages 115–123, Tahoe City, CA, 1995. Morgan Kaufmann Publishers.

[Coh96] William W. Cohen. Learning trees and rules with set-valued features. In
AAAI/IAAI, Vol. 1, pages 709–716, 1996.

[Com91] Comission of the European Communities. Information Technology Security Eval-
uation Criteria. Version 2.1, 1991.

[Cuf05] Andy Cuff. Talisker intrusion detection prevention systems. Web page at http:
//www.networkintrusion.co.uk/ids.htm, 2005.

[Cup01] Frédéric Cuppens. Managing alerts in a multi-intrusion detection environment. In
Proceedings 17th Annual Computer Security Applications Conference, pages 22–31,
New Orleans, 2001.

[Dar01] Dark Tangent. DEF CON 9. Web page at http://www.defcon.org/html/
defcon-9/defcon-9-post.html, 2001.

http://www.networkintrusion.co.uk/ids.htm
http://www.networkintrusion.co.uk/ids.htm
http://www.defcon.org/html/defcon-9/defcon-9-post.html
http://www.defcon.org/html/defcon-9/defcon-9-post.html

BIBLIOGRAPHY 187

[DC01] Olivier Dain and Robert K. Cunningham. Fusing a heterogeneous alert stream into
scenarios. In Proceedings of the 2001 ACM Workshop on Data Mining for Security
Application, pages 1–13, Philadelphia, PA, 2001.

[Den87] Dorothy E. Denning. An intrusion detection model. IEEE Transactions on Soft-
ware Engineering, SE-13(2):222–232, 1987.

[Der03] Renaud Deraison. The Nessus Project. Web page at http://www.nessus.org,
2000-2003.

[DG06] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
ROC curves. In Proceedings of the Twenty-Third International Conference on
Machine Learning (ICML-2006), page (to appear), Pittsburgh, PA, 2006.

[DH00] Chris Drummond and Robert C. Holte. Explicitly representing expected cost: An
alternative to ROC representation. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 198–
207. ACM Press, 2000.

[Die98] Thomas G. Dietterich. Approximate statistical test for comparing supervised clas-
sification learning algorithms. Neural Computation, 10(7):1895–1923, 1998.

[DK03] Luc De Raedt and Kristian Kersting. Probabilistic logic learning. ACM-SIGKDD
Explorations, special issue on Multi-Relational Data Mining, 5(1):31–48, 2003.

[Dom99] Pedro Domingos. Metacost: A general method for making classifiers cost-sensitive.
In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 155–164, San Diego, CA, 1999.

[DP97] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning, 23(2–3):103–130, 1997.

[DW01] Hervé Debar and Andreas Wespi. Aggregation and correlation of intrusion-
detection alerts. In Recent Advances in Intrusion Detection (RAID2001), volume
2212 of Lecture Notes in Computer Science, pages 85–103. Springer-Verlag, 2001.

[DWV99] Harris Drucker, Donghui Wu, and Vladimir N. Vapnik. Support vector machines
for spam categorization. IEEE Transactions on Neural Networks, 10(5):1048–1054,
1999.

[EDQ96] Babak Esfandiari, Gilles Deflandre, and Joël Quinqueton. An interface agent
for network supervision. In Proceedings of the ECAI-96 Workshop on Intelligent
Agents for Telecom Applications, Budapest, Hungary, 1996.

[Fan01] Wei Fan. Cost-Sensitive, Scalable and Adaptive Learning Using Ensemble-based
Methods. PhD thesis, Columbia University, 2001.

[Faw03] Tom Fawcett. ROC graphs: Notes and practical considerations for researchers
(HPL-2003-4). Technical report, HP Laboratories, 2003.

[FFHO04] C. Ferri, P. Flach, and J. Hernández-Orallo. Delegating classifiers. In Proceedings
of 21th International Conference on Machine Leaning (ICML-2004), pages 106–
110, Alberta, Canada, 2004. Omnipress.

http://www.nessus.org

188 BIBLIOGRAPHY

[FHO04] C. Ferri and J. Hernández-Orallo. Cautious classifiers. In Proceedings of ROC Anal-
ysis in Artificial Intelligence, 1st International Workshop (ROCAI-2004), pages
27–36, Valencia, Spain, 2004.

[Fla03] Peter Flach. The geometry of ROC space: Understanding machine learning metrics
through roc isometrics. In Proceedings of the Twentieth International Conference
on Machine Learning (ICML-2003), pages 194–201, Washington, DC, 2003. AAAI
Press.

[Fla04] Peter Flach. The many faces of roc analysis in machine learning. Tutorial at ICML-
2004. Web page at http://www.cs.bris.ac.uk/∼flach/ICML04tutorial/, 2004.

[FLSM00] Wei Fan, Wenke Lee, Salvatore J. Stolfo, and Matthew Miller. A multiple model
cost-sensitive approach for intrusion detection. In Proceedings of the ECML 2000,
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 142–153, Barcelona, Spain, 2000. Springer-Verlag.

[FPSM92] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in
databases: An overview. AI Magazine, ?(?):213–228, 1992.

[FW05] P. A. Flach and S. Wu. Repairing concavities in ROC curves. In Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI’05), pages
702–707, Edinburgh, Scotland, 2005.

[GC00] Christophe Giraud-Carrier. A Note on the Utility of Incremental Learning. AI
Communications, 13(4):215–223, 2000.

[Get03] Lise Getoor. Link mining: A new data mining challenge. SIGKDD Explorations,
5(1):84–89, 2003.

[GHH+01] Robert P. Goldman, Walter Heimerdinger, Steven A. Harp, Christopher W. Geib,
Vicraj Thomas, and Robert L. Carter. Information modeling for intrusion report
aggregation. In DISCEX-2001 Conference Proceedings, pages 46–59, Anaheim,
CA, Jun 2001.

[GL00] Dragan Gamberger and Nada Lavrač. Reducing misclassification costs. In Princi-
ples of Data Mining and Knowledge Discovery, 4th European Conference (PKDD
2000), volume 1910 of Lecture Notes in Artificial Intelligence, pages 34–43, Lyon,
France, 2000. Springer Verlag.

[Gra69] Clive W. Granger. Investigating causal relationships by econometric methods and
cross-spectral methods. Econometrica, 34:424–428, 1969.

[Gra02] Paul Graham. A plan for spam. Web page at http://www.paulgraham.com/spam.
html, 2002.

[HB99] S. Hettich and S. D. Bay. The UCI KDD Archive. Web page at http://kdd.ics.
uci.edu, 1999.

[HCC92] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery in databases:
An attribute-oriented approach. In Proceedings 18th International Conference on
Very Large Databases (VLDB), pages 547–559, Vancouver, Canada, Aug. 1992.

http://www.cs.bris.ac.uk/~flach/ICML04tutorial/
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/spam.html
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu

BIBLIOGRAPHY 189

[HCC93] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in
relational databases. IEEE Transactions on Knowledge and Data Engineering,
5(1):29–40, 1993.

[HGC95] D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243,
1995.

[HKM+96] K. Hätönen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. Knowl-
edge discovery from telecommunication network alarm databases. In Proceedings of
the Twelfth International Conference on Data Engineering, pages 115–122. IEEE
Computer Society, 1996.

[HL98] John D. Howard and Thomas A. Longstaff. A common language for computer
security incidents. Technical report, CERT, 1998.

[HLMS90] Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The architec-
ture of a network level intrusion detection system. Technical report, University of
New Mexico, 1990.

[HM82] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

[How97] John D. Howard. An Analysis of Security Incidents on the Internet 1989–1995.
PhD thesis, Carnegie Mellon University, 1997.

[HWHM02] Guy Helmer, Johny S.K. Wong, Vasant Honavar, and Les Miller. Automated
discovery of concise predictive rules for intrusion detection. The Journal of Systems
and Software, 60(2):165–175, 2002.

[IBM02] IBM. IBM Tivoli Risk Manager. Tivoli Risk Manager User’s Guide. Version 4.1,
2002.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[JD02] Klaus Julisch and Marc Dacier. Mining Intrusion Detection Alarms for Actionable
Knowledge. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 366–375, Edmonton, Alberta,
Canada, 2002.

[JLM03] Van Jacobson, Craig Leres, and Steven McCanne. TCPDUMP public repository.
Web page at http://www.cpdump.org/, 2003.

[JSW02] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW
2002), pages 49–63, 2002.

[Jul01] Klaus Julisch. Mining Alarm Clusters to Improve Alarm Handling Efficiency. In
Proceedings 17th Annual Computer Security Applications Conference, pages 12–21,
New Orleans, LA, Dec. 2001.

http://www.cpdump.org/

190 BIBLIOGRAPHY

[Jul03a] Klaus Julisch. Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Security (TISSEC), 6(4):443–471,
2003.

[Jul03b] Klaus Julisch. Using Root Cause Analysis to Handle Intrusion Detection Alarms.
PhD thesis, University of Dortmund, Germany, 2003.

[KCM03] Kenneth A. Kaufman, Guido Cervone, and Ryszard S. Michalski. An applicaion
of Symbolic Learning to Intrusion Detection: Preliminary Results from the LUS
Methodology. Reports of the Machine Learning and Inference Laboratory MLI
03-2, Machine Learning and Inference Laboratory, George Mason University, 2003.

[Kle99] Mika Klemettinen. A Knowledge Discovery Methodology for Telecommunication
Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[KMT99] Mika Klemettinen, Heikki Mannila, and Hannu Toivonen. Rule discovery in
telecommunication alarm data. Journal of Network and Systems Management,
7(4):395–423, 1999.

[Krs98] Ivan Victor Krsul. Software Vulnerability Analysis. PhD thesis, Purdue University,
1998.

[LBMC94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A
taxonomy of computer program security flaws. ACM Computing Surveys (CSUR),
26(3):211–254, 1994.

[LC94] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for su-
pervised learning. In Proceedings of ICML-94, 11th International Conference on
Machine Learning, pages 148–156. Morgan Kaufmann Publishers, San Francisco,
CA, 1994.

[LD94] Nada Lavrač and Sašo Džeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

[Lee99] Wenke Lee. A Data Mining Framework for Constructing Features and Models for
Intrusion Detection Systems. PhD thesis, Columbia University, 1999.

[LFG+00] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristo-
pher R. Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod,
Robert K. Cunningham, and Marc A. Zissman. Evaluating intrusion detection sys-
tems: The 1998 DARPA off-line intrusion detection evaluation. In Proceedings of
the 2000 DARPA Information Survivability Conference and Exposition, volume 1,
pages 1012–1035, Hilton Head, SC, 2000.

[LFM+02] Wenke Lee, Wei Fan, Matthew Miller, Salvatore J. Stolfo, and Erez Zadok. Toward
cost-sensitive modeling for intrusion detection and response. Journal of Computer
Security, 10(1–2):5–22, 2002.

[LHF+00] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Ku-
mar Das. The 1999 DARPA off-line intrusion detection evaluation. Computer
Networks: The International Journal of Computer and Telecommunications Net-
working, 34(4):579–595, 2000.

BIBLIOGRAPHY 191

[LKD05] Niels Landwehr, Kristian Kersting, and Luc De Raedt. nFOIL: Integrating naive
Bayes and FOIL. In M. Veloso and S. Kambhampat, editors, Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), pages 795–
800, Pittsburgh, PA, 2005.

[LLO+03] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver. The use of honeynets
to detect exploited systems across large enterprise networks. In Proceedings of the
4th IEEE Information Assurance Workshop, West Point, NY, 2003.

[LS98] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[LWS02] Richard Lippmann, Seth Webster, and Douglas Stetson. The effect of identifying
vulnerabilities and patching software on the utility of network intrusion detection.
In Recent Advances in Intrusion Detection (RAID2002), volume 2516 of Lecture
Notes in Computer Science, pages 307–326. Springer-Verlag, 2002.

[MC03] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for network anomaly detection. In
Recent Advances in Intrusion Detection (RAID2003), volume 2820 of Lecture Notes
in Computer Science, pages 220–237. Springer-Verlag, 2003.

[McH00] John McHugh. The 1998 Lincoln Laboratory IDS evaluation. A critique. In Recent
Advances in Intrusion Detection (RAID2000), volume 1907 of Lecture Notes in
Computer Science, pages 145–161. Springer-Verlag, 2000.

[McH01] John McHugh. Testing intrusion detection systems: A critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln Lab-
oratory. ACM Transactions on Information and System Security, 3:262–294, 2001.

[MCZH00] Stefanos Manganaris, Marvin Christensen, Dan Zerkle, and Keith Hermiz. A data
mining analysis of RTID alarms. Computer Networks: The International Journal
of Computer and Telecommunications Networking, 34(4):571–577, Oct 2000.

[MDK+97] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET
curve in assessment of detection task performance. In Proceedings of the European
Conference on Speech Technology, pages 1895–1898, Rhodes, Grece, 1997.

[MH02] José Maŕıa and Gómez Hidalgo. Evaluating cost-sensitive unsolicited bulk email
categorization. In Proceedings of the 2002 ACM Symposium on Applied Computing,
pages 615–620. Springer-Verlag, 2002.

[MHL94] Biswanath Mukherjee, Todd L. Heberlein, and Karl N. Levitt. Network intrusion
detection. IEEE Network, 8(3):26–41, 1994.

[Mic69] R.S. Michalski. On the quasi-minimal solution of the general covering problem. In
Proceedings of the V International Symposium on Information Processing (FCIP
69)(Switching Circuits), volume A3, pages 125–128, Bled, Yugoslavia, 1969.

[Mit97] Tom M. Mitchel. Machine Learning. Mc Graw Hill, 1997.

192 BIBLIOGRAPHY

[MIT99] MIT Lincoln Laboratory. 1999 DARPA intrusion detection evaluation data
set. Web page at http://www.ll.mit.edu/IST/ideval/data/1999/1999 data
index.html, 1999.

[MIT04] MITRE. Common Vulnerabilites and Exposures. Web page at http://cve.mitre.
org, 1999–2004.

[MM95] M.A. Maloof and R.S. Michalski. A partial memory incremental learning method-
ology and its application to computer intrusion detection. Reports of the Machine
Learning and Inference Laboratory MLI 95-2, Machine Learning and Inference
Laboratory, George Mason University, 1995.

[MM02] Marcus A. Maloof and Ryszard S. Michalski. Incremental learning with partial
instance memory. In Proceedings of Foundations of Intelligent Systems: 13th In-
ternational Symposium, ISMIS 2002, volume 2366 of Lecture Notes in Artificial
Intelligence, pages 16–27. Springer-Verlag, 2002.

[MMDD02] Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducasse. M2D2: A
formal data model for IDS alert correlation. In Recent Advances in Intrusion
Detection (RAID2002), volume 2516 of Lecture Notes in Computer Science, pages
115–137. Springer-Verlag, 2002.

[Moz06] Mozilla Corporation. mozilla Thunderbird. Web page at http://www.mozilla.
com/thunderbird/, 2005–2006.

[MT96] Heikki Mannila and Hannu Toivonen. Discovering generalized episodes using mini-
mal occurrences. In Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96), pages 146–151. AAAI/MIT Press,
1996.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Mininig Knowledge Discovery, 1(3):259–289,
1997.

[Mug95] Stephen Muggleton. Inverse entailment and Progol. New Gen. Comput., 13:245–
286, 1995.

[NC02] Peng Ning and Yun Cui. An intrusion alert correlator based on prerequisities
of intrusions (TR-2002-01). Technical report, North Carolina State University,
Raleigh, NC, 2002.

[NCR02a] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing intrusion alerts via cor-
relation. In Recent Advances in Intrusion Detection (RAID2002), volume 2516 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

[NCR02b] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, pages 245–254, 2002.

[NE98] Richard Nock and Babak Esfandiari. Oracles and assistants: Machine learning
applied to network supervision. In Proceedings of the 12th in Canadian Conference

http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html
http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html
http://cve.mitre.org
http://cve.mitre.org
http://www.mozilla.com/thunderbird/
http://www.mozilla.com/thunderbird/

BIBLIOGRAPHY 193

on Artificial Intelligence, volume 1418 of Lecture Notes in Computer Science, pages
86–98. Springer-Verlag, 1998.

[NIS04] NIST. ICAT Metabase. Web page at http://icat.nist.gov/, 2000–2004.

[NRC01] Peng Ning, Douglas S. Reeves, and Yun Cui. Correlating alerts using prerequisites
of intrusions (TR-2001-13). Technical report, North Carolina State University,
Raleigh, NC, 2001.

[Pax99] Vern Paxson. Bro: A system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435–2463, 1999.

[PB88] Mark Paradies and David Busch. Root cause analysis at Savannah river plant. In
Proceedings of the IEEE Converence on Human Factors and Power Plants, 1988.

[PDP05] Fabien Pouget, Marc Dacier, and Van Hau Pham. Leurre.Com: on the advantages
of deploying a large scale distributed honeypot platform. In ECCE’05, E-Crime
and Computer Conference, Monaco, 2005.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible
Inference. Morgan Kaufmann Publishers, 1988.

[Pea00] Joseph P. Pickett and et al., editors. The American Heritage Dictionary of the
English Language. Boston: Houghton Mifflin Company, 2000.

[PEG97] Terry R. Payne, Peter Edwards, and Claire L. Green. Experience with Rule In-
duction and k-Nearest Neighbor Methods for Interface Agents that Learn. IEEE
Transactions on Knowledge and Data Engineering, 9(2):329–335, 1997.

[PF98] Foster Provost and Tom Fawcett. Robust classification systems for imprecise en-
vironemnts. In Proceedings of the Fifteenth National Conference on Artificial In-
tellignence (AAAI-98), pages 706–713. AAAI Press, 1998.

[PF01] Foster Provost and Tom Fawcett. Robust classification for impresice environments.
Machine Learning Journal, 42(3):203–231, 2001.

[PFV02] Philip A. Porras, Martin W. Fong, and Alfonso Valdes. A mission-impact-based ap-
proach to INFOSEC alarm correlation. In Recent Advances in Intrusion Detection
(RAID2002), volume 2516 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

[PHP04a] The PHP Group. PHP hypertext preprocessor. Web page at http://www.php.net,
2001–2004.

[php04b] The phpBB Group. phpBB.com. Web page at http://www.phpbb.com, 2001–2004.

[Pie04] Tadeusz Pietraszek. Using adaptive alert classification to reduce false positives in
intrusion detection. In Recent Advances in Intrusion Detection (RAID2004), vol-
ume 3324 of Lecture Notes in Computer Science, pages 102–124, Sophia Antipolis,
France, 2004. Springer-Verlag.

http://icat.nist.gov/
http://www.php.net
http://www.phpbb.com

194 BIBLIOGRAPHY

[Pie05] Tadeusz Pietraszek. Optimizing abstaining classifiers using ROC analysis. In Ma-
chine Learning, Proceedings of the Twenty-second International Conference (ICML
2005), pages 665–672, Bonn, Germany, 2005.

[Pie06] Tadeusz Pietraszek. On the optimization of abstaining classifiers using ROC anal-
ysis. Machine Learning Journal, (to appear), 2006.

[Pie07] Tadeusz Pietraszek. Classification of intrusion detection alerts using abstaining
classifiers. Intelligent Data Analysis Journal, 11(3):(to appear), 2007.

[PMAS94] Michael J. Pazzani, Partick Murphy, Kamal Ali, and David Schulenburg. Trading
off coverage for accuracy in forecasts: Applications to clinical data analysis. In
Proceedings of AAAI Symposium on AI in Medicine, pages 106–110, Stanford,
CA, 1994.

[PN98] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion and denial of
service: Eluding network intrusion detection. Technical report, Secure Networks
Inc., 1998.

[Pro04] N. Provos. A virtual honeypot framework. In Proceedings of the 11th USENIX
Security Symposium, pages 92–99, San Francisco, CA, 2004.

[PT05] Tadeusz Pietraszek and Axel Tanner. Data mining and machine learning—Towards
reducing false positives in intrusion detection. Information Security Technical Re-
port, 10:169–183, 2005.

[PV05] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Recent Advances in Intrusion De-
tection (RAID2005), volume 3858 of Lecture Notes in Computer Science, pages
124–145, Seattle, WA, 2005. Springer-Verlag.

[QCJ93] J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In Machine
Learning: ECML-93, European Conference on Machine Learning, Proceedings, vol-
ume 667, pages 3–20, 1993.

[QL03] Xinzhou Qin and Wenke Lee. Statistical causality analysis of INFOSEC alert data.
In Recent Advances in Intrusion Detection (RAID2003), volume 2820 of Lecture
Notes in Computer Science, pages 73–93, Pittsburgh, PA, 2003. Springer-Verlag.

[QL04] Xinzhou Qin and Wenke Lee. Discovering novel attack strategies from INFOSEC
alerts. In Computer Security - ESORICS 2004, 9th European Symposium on Re-
search Computer Security, volume 3193 of Lecture Notes in Computer Science,
pages 439–456, Sophia Antipolis, France, 2004. Springer-Verlag.

[Qui86] Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.

[R D04] R Development Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2004. ISBN
3-900051-00-3.

BIBLIOGRAPHY 195

[RA00] Ronald W. Ritchey and Paul Ammann. Using model checking to analyze network
vulnerabilities. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P 2000), pages 156–165, 2000.

[Roe05] Martin Roesch. SNORT. The Open Source Network Intrusion System. Web page
at http://www.snort.org, 1998–2005.

[RZD05] James Riordan, Diego Zamboni, and Yann Duponchel. Billy Goat, an accurate
worm-detection system (revised version) (RZ 3609). Technical report, IBM Zurich
Research Laboratory, 2005.

[SDHH98] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian approach to
filtering junk e-mail. In AAAI Workshop on Learning for Text Categorization,
pages 55–62, Madison, WI, 1998.

[Sec04] SecurityFocus. BugTraq. Web page at http://www.securityfocus.com/bid,
1998–2004.

[Sen05] Ted E. Senator. Multi-stage classification. In Proceedings of the 5th IEEE Inter-
national Conference on Data Mining (ICDM 2005), pages 386–393, Houston, TX,
2005. IEEE Computer Society.

[SGVS99] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A high-performance network
intrusion detection system. In ACM Conference on Computer and Communications
Security, pages 8–17, Kent Ridge Digital Labs, Singapore, 1999.

[SHJ+02] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. Automated generation and analysis of attack graphs. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P 2002), pages 254–265, 2002.

[SP01] Umesh Shankar and Vern Paxson. Active mapping: Resisting NIDS evasion with-
out altering traffic. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, pages 44–62, Oakland, CA, 2001.

[SP03] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection
signatures with context. In Proceedings of the 10th ACM Conference on Computer
and Communication Security, pages 262–271, Washington, DC, 2003.

[spa06a] The Apache SpamAssassin Project. Web page at http://spamassassin.apache.
org/, 2002–2006.

[spa06b] Spam statistics. Web page at http://spamlinks.net/stats.htm/, 2006.

[SS04] Maheshkumar Sabhnani and Gursel Serpen. Why machine learning algorithms fail
in misuse detection on KDD intrusion detection data set. Intelligent Data Analysis,
8(4):403–415, 2004.

[Ste92] James Stewart. Calculus. Brooks Cole, 1992.

[Sun95] SunSoft. SunSHIELD Basic Security Module. SunSoft, 1995.

[Szy00] Wis lawa Szymborska. Poems New and Collected. Harvest Books, 2000.

http://www.snort.org
http://www.securityfocus.com/bid
http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://spamlinks.net/stats.htm/

196 BIBLIOGRAPHY

[Tin98] K.M. Ting. Inducing cost-sensitive trees via instance weighting. In Proceedings
of The Second European Symposium on Principles of Data Mining and Knowledge
Discovery, volume 1510 of Lecture Notes in AI, pages 139–147. Springer-Verlag,
1998.

[Tor00] Francesco Tortorella. An optimal reject rule for binary classifiers. In Advances in
Pattern Recognition, Joint IAPR International Workshops SSPR 2000 and SPR
2000, volume 1876 of Lecture Notes in Computer Science, pages 611–620, Alicante,
Spain, 2000. Springer-Verlag.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[Vig03] G. Vigna. Teaching hands-on network security: Testbeds and live exercises. Jour-
nal of Information Warfare, 3(2):8–25, 2003.

[vL02] Wim van Laer. From Propositional to First Order Logic in Machine Learning and
Data Mining. Induction of First Order Rules with ICL. PhD thesis, Katholieke
Universiteit Leuven, 2002.

[VMV05] F. Valeur, D. Mutz, and G. Vigna. A learning-based approach to the detection
of SQL attacks. In Proceedings of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), Vienna, Austria, 2005.

[VS00] Alfonso Valdes and Keith Skinner. An approach to sensor correlation. In Recent
Advances in Intrusion Detection (RAID2000), volume 1907 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[VS01] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In Recent Ad-
vances in Intrusion Detection (RAID2001), volume 2212 of Lecture Notes in Com-
puter Science, pages 54–68. Springer-Verlag, 2001.

[VVCK04] F. Valeur, G. Vigna, C.Kruegel, and R. Kemmerer. A comprehensive approach to
intrusion detection alert correlation. IEEE Transactions on Dependable and Secure
Computing, 1(3):146–169, 2004.

[WF00] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools with
Java implementations. Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[WL01] Jia Wang and Insup Lee. Measuring false-positive by automated real-time corre-
lated hacking behavior analysis. In Information Security 4th International Confer-
ence, volume 2200 of Lecture Notes in Computer Science, pages 512–535. Springer-
Verlag, 2001.

[Wol06] Wolfram Research Inc. Lagrange Multiplier—from Wolfram MathWorld. Web page
at http://mathworld.wolfram.com/LagrangeMultiplier.html, 1999–2006.

[Zam01] Diego Zamboni. Using Internal Sensors for Computer Intrusion Detection. PhD
thesis, Purdue University, 2001.

[ŽDS05] Bernard Ženko, Sašo Džeroski, and Jan Struyf. Learning predictive clustering
rules. In Francesco Bonchi and Jean-Francois Boulicaut, editors, Proceedings of

http://mathworld.wolfram.com/LagrangeMultiplier.html

BIBLIOGRAPHY 197

Knowledge Discovery in Inductive Databases: 4th International Workshop (KDID
2005), volume 3933 of Lecture Notes in Computer Science, pages 234–250, Porto,
Portugal, 2005.

[ZE01] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers. In Proceedings of the Eigh-
teenth International Conference on Machine Learning (ICML-2001), pages 609–
616, Williams College, Williamstown, MA, 2001. Morgan Kaufmann Publishers.

198 BIBLIOGRAPHY

Table of Symbols

Machine Learning
I instance space I = {i1, i2, . . . , in}, in our application pertains to alerts

{Ai},
C classifier mapping an instance space I to a class space C,
L machine-learning method producing a classifier C,
R scoring classifier,
Cτ classifier constructed from a scoring classifier R using a threshold τ ,
“+”, “−” classes assigned by a binary classifier,
“+”, “−”, “?” classes assigned by an abstaining binary classifier,
C confusion matrix, describing the performance of a classifier,
TP , TN , FP , FN true positives, true negatives, false positives and false negatives cal-

culated from a 2× 2 confusion matrix,
tp, tn, fp, fn true-positive rate, true-negative rate, false-positive rate and false-

negative rate calculated from a 2× 2 confusion matrix,
N , P number of negative and positive instances for binary classification,
Co cost matrix, modeling class-dependent misclassification costs,
CR, ICR cost ratios: the quotient of the two misclassification costs in 2 × 2

cost matrix Co,
w weight used with Weighting to construct a cost-sensitive classifier,
fROC , f ′ROC , f ′′ROC ROC curve and its derivatives mapping false-positive rate (fp) to

true-positive rate (tp),
fPR precision-recall function mapping precision (p) to recall (r),
fDET DET function, a non-linear transform of both variables of ROC func-

tion,
rc misclassification cost per classified example.

Intrusion Detection
L alert log, containing a sequence of alerts {A1, A2, . . . , Ai, . . . , An}.

For some applications (e.g., clustering, learning a classifier) can be
considered a set,

Ai an alert, represented as a tuple of attributes (T1, T2, . . . , Ti, . . . , Tn),
Ti alert attribute,
U utility function describing the utility of the system, with the follwow-

ing three components: misclassified alerts, analyst’s workload and
abstentions,

O human analyst performing the manual classification of alerts,
s false-positive sampling rate for ALAC and ALAC+.

199

200 BIBLIOGRAPHY

Abstaining Classifiers, ALAC+
A abstaining classifier,
Aα,β abstaining classifier constructed from two classifiers Cα and Cβ ,
E evaluation model for abstaining classifiers, one of: ECB, EBA and EBI ,
fpα, fpβ false-positive rates of classifiers Cα and Cβ defining the abstaining

classifier Aα,β,
rcCB misclassification cost in a cost-based model,
rcB , rcBA, rcBI misclassification cost in bounded model (bounded-improvement and

bounded-abstention), calculated per actually classified instance
c23, c13 additional components of a cost matrix in a cost-based model,
k abstention window,
f fraction improvement over the rc of the optimal binary classifier,
kmax maximum abstention window in a bounded-abstention model,
rcmax maximum misclassification cost in a bounded-improvement model,
fmin minimum improvement over the optimal binary classifier in a

bounded-improvement model,
wb, wCα , wCβ

weights corresponding to the optimal binary classifier, classifiers Cα
and Cβ (ALAC+).

Clustering, Two-stage Alert-Classification System
Gi tree-based generalization hierarchy for attribute Ti,
Pi, Fi patterns {Pi} discovered by descriptive modeling (e.g., in the case of

CLARAty they would be generalized alerts), filters {Fi} are derived
from patterns {Pi} so that they can be applied to future alerts,

RC,i clustering run,
coveragec(X) cluster coverage in the clustering stage,
coveragef (X) cluster coverage in the filtering stage,
PPj cluster persistency,
PRC,i

average cluster persistency for the entire clustering run RC,i,
CP , CR clustering precision and recall.

Index

Ai, 43
O, 5, 24
C, 23
CR, 28
FN , 28
FP , 28
G, 114
ICR, 28
L, 24
Ti, 43
TN , 28
TP , 28
U , 5
fmin, 87
fROC , 29
fp, 29
k, 76
rc, 28
s, 52
tp, 29
w, 102

abstaining classifier, 71, 72
bounded-abstention model, 77

algorithm, 81
bounded-improvement model, 83

algorithm, 85
cost-based model, 74
rule-learners, 101

Adaptive Learner for Alert Classification, 49
Agent Mode, 51
Recommender Mode, 50
with Abstaining Classifiers, 99

aggregation, see alert management, aggrega-
tion

ALAC, see Adaptive Learner for Alert Clas-
sification

ALAC+, see Adaptive Learner for Alert Clas-
sification, with Abstaining Classifiers

alert classifier, 5
alert management

aggregation, 36, 151–153
analyzing alerts, 8
background knowledge, 53, 62
correlation, 35, 36, 151–153
global picture, 4
multi-class vs. binary classification, 60
root causes, 8

alert representation, 43
area under curve, 30
attack

definition, 36
AUC, see area under curve
automated cluster-processing system, 117

feature-construction mode, 117
filtering mode, 118

availability, see C.I.A. triad

BA, see abstaining classifier, bounded-abstention
model

BI, see abstaining classifier, bounded-improvement
model

binary classifier, 23
bounded-abstention model, see abstaining clas-

sifier, bounded-abstention model
bounded-improvement model, see abstaining

classifier, bounded-abstention model

C.I.A triad, 13
calibrated binary classifier, 23
CB, see abstaining classifier, cost-based model
CLARAty, 114

algorithm, 115
generalization hierarchies, 114

classifier, 22, 23
clustering precision, 126

charts, 130
clustering recall, 126

201

202 INDEX

charts, 130
confidentiality, see C.I.A. triad
confusion matrix, 28
correlation, see alert management, correlation
cost curves, 95
cost matrix, 28
cost-based model, see abstaining classifier, cost-

based model
CSSE, see intrusion detection systems,CSSE

datasets
DARPA 1999 Data Set, 44
Data Set B, 45
MSSP datasets, 46
types, 41

DET curves, 94

false positives
definition, 1
reasons for, 2
solutions

categorization, 2, 145
FC, see automated cluster-processing system,

feature-construction mode
FI, see automated cluster-processing system,

filtering mode

generalized alert, 115
coverage, 115

IDS, see intrusion detection systems
incident

definition, 36
integrity, see C.I.A. triad
intrusion

definition, 1, 14
intrusion detection systems, 14–17

architecture, 15
CSSE, 19–21
signature, 18
Snort, 17–19

Managed Security Services Provider, 46
misclassification cost, rc, 28
MSSP, see Managed Security Services Provider

optimal classifier, 30

precision-recall curves, 92

Ra, 23
ranker, 23
Receiver Operating Characteristic, 29
RIPPER, 57
ROC, see Receiver Operating Characteristic
root cause analysis, see alert management,

root causes

signature, see intrusion detection systems,signature
Snort, see intrusion detection systems,Snort

thesis statement, 9, 146

watermark condition, 73

	Acknowledgments
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Motivation
	False Positives
	Existing Solutions
	Introducing the Analyst: The Global Picture of Alert Management

	Why Learning Alert Classifiers Works and Why It is a Difficult Learning Problem
	Classifying Alerts: False Positives, True Positives or Other Classes?
	Thesis Statement and Contributions
	Overview

	Intrusion Detection and Machine-Learning Background
	Intrusion Detection
	Intrusion Detection Systems
	Two examples of IDSs
	Conclusions

	Machine Learning
	Classification
	Basic Techniques
	Evaluating Classifiers
	ROC Analysis
	Unsupervised Techniques

	Summary

	State of the Art
	Multiple Facets of Related Work
	Building IDSs Using Machine Learning
	Spam Filtering
	Interface Agents
	Alert Correlation
	Frequent Episodes & Association Rules
	Sensor Profiling
	CLARAty---Data Mining and Root Cause Analysis
	Summary

	Datasets Used
	Datasets Available
	Datasets Used & Alert Labeling
	Alert Representation
	DARPA 1999 Data Set
	Data Set B
	MSSP Datasets

	Summary

	Adaptive Alert Classification
	ALAC---Adaptive Learner for Alert Classification
	Recommender Mode
	Agent Mode

	Background Knowledge
	Choosing Machine-Learning Techniques
	Learning an Interpretable Classifier from Examples.
	Background Knowledge and Efficiency.
	Confidence of Classification.

	Applying RIPPER to ALAC
	Cost-Sensitive and Binary vs. Multi-Class Classification
	Batch-Incremental Learning.

	ALAC Evaluation
	Evaluation Methodology
	Background Knowledge
	Results Obtained with DARPA 1999 Data Set
	Results Obtained with Data Set B
	Understanding the Rules
	Conclusions

	Summary

	Abstaining Classifiers using ROC Analysis
	Introduction
	Background
	ROC-Optimal Abstaining Classifier
	Cost-Based Model
	Bounded Models
	Bounded-Abstention Model
	Bounded-Improvement Model

	Experiments
	Constructing an Abstaining Classifier
	Testing Methodology
	Results---Cost-Based Model
	Results---Bounded Models

	Alternative Representations to ROC Curves
	Precision-Recall and ROC Curves
	DET Curves
	Cost Curves

	Related Work
	Conclusions and Future Work

	ALAC+---An Alert Classifier with Abstaining Classifiers
	ALAC Meets with Abstaining Classifiers
	The Problem with Rule Learners

	ALAC+ Evaluation
	Choosing Evaluation Models for ALAC+
	Setting System Parameters
	Cost Results
	Conclusions

	Summary

	Combining Unsupervised and Supervised Learning
	Why Unsupervised Learning Makes Sense
	Retrospective Alert Analysis
	Subsequent Alert Classification

	CLARAty---Algorithm Description
	Generalization Hierarchies
	CLARAty Algorithm
	Cluster Descriptions and Filtering

	Automated Cluster-Processing System
	CLARAty Evaluation
	Evaluation Methodology
	Setting System Parameters
	Cluster Persistency
	Number of Clusters and Total Coverage
	Automated Cluster Processing
	Cluster Precision and Recall
	Clustering Precision and Recall Charts
	Conclusions

	Combining Clustering with ALAC in a Two-Stage Alert-Classification System
	CLARAty and ALAC Evaluation
	ROC analysis
	DARPA 1999 Data Set
	Data Set B
	MSSP Datasets
	Conclusions

	Summary

	Summary, Conclusions and Future Work
	Summary
	Conclusions
	Future Work

	Alert Correlation
	Correlation Terminology
	Alert Correlation Systems
	Tivoli Aggregation and Correlation Component
	Probabilistic Alert Correlation
	Alert-Stream Fusion
	Hyper-alert Correlation
	Cooperative Intrusion Detection Framework
	Correlated Hacking Behavior
	M2D2 Formal Data Model
	Statistical Correlation Models
	Comprehensive IDS Alert Correlation

	Abstaining Classifier Evaluation Results
	Clustering MSSP Datasets Results
	Bibliography
	Table of Symbols
	Index

