
780 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

Pfinder: Real-Time Tracking
of the Human Body

Christopher Richard Wren, Ali Azarbayejani,

Trevor Darrell, and Alex Paul Pentland

Abstract —Pfinder is a real-time system for tracking people and
interpreting their behavior. It runs at 10Hz on a standard SGI Indy
computer, and has performed reliably on thousands of people in many
different physical locations. The system uses a multiclass statistical
model of color and shape to obtain a 2D representation of head and
hands in a wide range of viewing conditions. Pfinder has been
successfully used in a wide range of applications including wireless
interfaces, video databases, and low-bandwidth coding.

Index Terms —Blobs, blob tracking, real-time, person tracking, 3D
person tracking, segmentation, gesture recognition, mixture model,
MDL.

———————— ✦ ————————

1 INTRODUCTION

APPLICATIONS such as video databases, wireless virtual reality
interfaces, smart rooms, very-low-bandwidth video compression,
and security monitoring all have in common the need to track and
interpret human behavior. The ability to find and follow people’s
head, hands, and body is therefore an important visual problem.

To address this need we have developed a real-time system
called Pfinder (“person finder”) that substantially solves the
problem for arbitrarily complex but single-person, fixed-camera
situations. Use of image-to-image registration techniques [1], [10],
as a preprocessing step, allow Pfinder to function in the presence
of camera rotation and zoom, but real-time performance cannot be
achieved without special-purpose hardware. The system provides
interactive performance on general-purpose hardware, has been
tested on thousands of people in several installations around the
world, and has performed quite reliably.

Pfinder has been used as a real-time interface device for infor-
mation, and performance spaces [18], video games [18], and a dis-
tributed virtual reality populated by artificial life [4]. It has also
been used as a preprocessor for gesture recognition systems, in-
cluding one that can recognize a 40-word subset of American Sign
Language with near perfect accuracy [17].

Pfinder adopts a Maximum A Posteriori Probability (MAP) ap-
proach to detection and tracking of the human body using simple
2D models. It incorporates a priori knowledge about people pri-
marily to bootstrap itself and to recover from errors. The central
tracking and description algorithms, however, can be applied
equally well to tracking vehicles or animals, and in fact, we have
done informal experiments in these areas. Pfinder is a descendant
of the vision routines originally developed for the ALIVE system
[9], which performed person tracking but had no explicit model of
the person, and required a controlled background. Pfinder is a
more general, and more accurate, method for person segmenta-
tion, tracking, and interpretation.

(a)

(b)

(c)

Fig. 1. (a) Video input (n.b. color image, shown here in grayscale).
(b) segmentation. (c) A 2D representation of the blob statistics.

2 BACKGROUND

The notion of grouping atomic parts of a scene together to form blob-
like entities based on proximity and visual appearance is a natural
one, and has been of interest to visual scientists since the Gestalt psy-
chologists studied grouping criteria early in this century [6].

In modern computer vision processing, we seek to group image
pixels together, and to segment images based on visual coherence,
but the features obtained from such efforts are usually taken to be
the boundaries, or contours, of these regions rather than the re-
gions themselves. In very complex scenes, such as those contain-
ing people or natural objects, contour features have proven unreli-
able and difficult to find and use.

The blob representation that we use was developed by
Pentland and Kauth et al. [12], [8], as a way of extracting an ex-
tremely compact, structurally meaningful description of multi-
spectral satellite (MSS) imagery. In this method, feature vectors at
each pixel are formed by adding (x, y) spatial coordinates to the
spectral (or textural) components of the imagery. These are then
clustered so that image properties such as color and spatial simi-
larity combine to form coherent connected regions, or “blobs,”
in which all the pixels have similar image properties. This blob
description method is, in fact, a special case of recent Minimum
Description Length (MDL) algorithms [5], [16].

0162-8828/97/$10.00 © 1997 IEEE

————————————————

• The authors are with the MIT Media Laboratory, Perceptual Computing Sec-
tion, 20 Ames Street, Cambridge MA 02139 USA.

 E-mail: cwren@media.mit.edu, ali@alchemy3d.com, trevor@interval.com,
sandy@media.mit.edu.

Manuscript received 3 Nov. 1995; revised 1 May 1997. Recommended for
acceptance by J. Daugman.
For information on obtaining reprints of this article, please send e-mail to:
transpami@computer.org, and reference IEEECS Log Number 105031.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997 781

The Pfinder system is related to body-tracking research such as
Rehg and Kanade [14], Rohr [15], and Gavrila and Davis [7] that
use kinematic models, or Pentland and Horowitz [13] and Metaxas
and Terzopoulos [11] who use dynamic models. However, in con-
trast to Pfinder, these other systems all require accurate initializa-
tion and use local image features. Consequently, they have diffi-
culty with occlusion and require massive computational resources.

Functionally, our systems are perhaps most closely related to
the work of Bichsel [3] and Baumberg and Hogg [2]. These systems
segment the person from the background in real time using only a
standard workstation. Their limitation is that they do not analyze
the person’s shape or internal features, but only the silhouette of
the person. Consequently, they cannot track head and hands, de-
termine body pose, or recognize any but the simplest gestures.

3 STEADY STATE TRACKING

We will first describe Pfinder’s representations and operation in the
“steady-state” case, where it has already found and built represen-
tations of the person and scene. In the following sections, we will
then describe the model-building, and error recovery processes.

3.1 Modeling the Person
We can represent these 2D regions by their low-order statistics.
Clusters of 2D points have 2D spatial means and covariance matri-
ces, which we shall denote m and K. The blob spatial statistics are
described in terms of their second-order properties; for computa-
tional convenience we will interpret this as a Gaussian model:

Pr
exp

O

O K O

K
b g

b g b g

b g
=

- - -
L
NM

O
QP

-1
2

2

1

2
1
2

m mT

m

p
(1)

The Gaussian interpretation is not terribly significant, because we
also keep a pixel-by-pixel support map showing the actual occu-
pancy. We define sk(x, y), the support map for blob k, to be

s x y x y k
k , ,c h c h= ŒRST

1
0 otherwise

(2)

The aggregate support map s(x, y) over all the blob models repre-
sents the segmentation of the image into spatio-color classes.

Like other representations used in computer vision and signal
analysis, including superquadrics, modal analysis, and eigenvec-
tor representations, blobs represent the global aspects of the shape
and can be augmented with higher-order statistics to attain more
detail if the data supports it. The reduction of degrees of freedom
from individual pixels to blob parameters is a form of regulariza-
tion which allows the ill-conditioned problem to be solved in a
principled and stable way.

Each blob has a spatial (x, y) and color (Y, U, V) component.
Color is expressed in the YUV color space. We could addition-
ally use motion and texture measurements as part of the blob
descriptions, but current hardware has restricted us to use posi-
tion and color only. Because of their different semantics, the
spatial and color distributions are assumed to be independent.
That is, Kk is block-diagonal, with uncoupled spatial and spec-
tral components. Each blob can also have a detailed representa-
tion of its shape and appearance, modeled as differences from
the underlying blob statistics. The ability to efficiently compute
compact representations of people’s appearance is useful for
low-bandwidth applications [4].

The statistics of each blob are recursively updated to combine
information contained in the most recent image with knowledge
contained in the current class statistics and the priors.

3.2 Modeling the Scene
We assume that the majority of the time Pfinder will be processing
a scene that consists of a relatively static situation such as an office,
and a single moving person. Consequently, it is appropriate to use
different types of model for the scene and for the person.

We model the scene surrounding the human as a texture sur-
face; each point on the texture surface is associated with a mean
color value and a distribution about that mean. The color distri-
bution of each pixel is modeled with the Gaussian described by a
full covariance matrix. Thus, for instance, a fluttering white
curtain in front of a black wall will have a color covariance that
is very elongated in the luminance direction, but narrow in the
chrominance directions.

We define m0 to be the mean (Y, U, V) of a point on the texture
surface, and K0 to be the covariance of that point’s distribution.
The spatial position of the point is treated implicitly because, given
a particular image pixel at location (x, y), we need only consider
the color mean and covariance of the corresponding texture loca-
tion. The scene texture map is considered to be class zero.

One of the key outputs of Pfinder is an indication of which
scene pixels are occluded by the human, and which are visi-
ble. This information is critical in low-bandwidth coding, and
in the video/graphics compositing required for “augmented
reality” applications.

In each frame, visible pixels have their statistics recursively
updated using a simple adaptive filter.

m mt t= + - -a ay 1 1b g (3)

This allows us to compensate for changes in lighting, and even
for object movement. For instance, if a person moves a book it
causes the texture map to change in both the locations where the
book was, and where it now is. By tracking the person, we can
know that these areas, although changed, are still part of the texture
model and thus update their statistics to the new value. The updat-
ing process is done recursively, and even large changes in illumina-
tion can be substantially compensated within two or three seconds.

3.3 The Analysis Loop
Given a person model and a scene model, we can now acquire a
new image, interpret it, and update the scene and person models.
To accomplish this there are several steps: predict the appearance
of the user in the new image using the current state of our model;
for each image pixel and for each blob model, calculate the likeli-
hood that the pixel is a member of the blob; resolve these pixel-by-
pixel likelihoods into a support map; and update the statistical
models of all blob models. Each of these steps will now be de-
scribed in more detail.

3.3.1 Predict Model Parameters
The first step is to update the spatial model associated with each
blob using the blob’s dynamic model, to yield the blob’s predicted
spatial distribution for the current image:

$ $ $ $ $X X G Y X
n n n n n n n n

= + -RST
UVW- -1 1

(4)

where the estimated state vector $X includes the blob’s position
and velocity, the observations $Y are the mean spatial coordinates
of the blob in the current image, and the filter $G is the Kalman
gain matrix assuming simple Newtonian dynamics.

3.3.2 Measure Likelihoods for Each Class
For each image pixel we must measure the likelihood that it is a
member of each of the blob models and the scene model.

782 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

For each pixel in the new image, we define y to be the vector
(x, y, Y, U, V). For each class k (e.g., for each blob and for the
corresponding point on the scene texture model) we then meas-
ure the log likelihood

d
m

k k

T

k k k= - - - - --1
2

1
2 2 21y K y Km mc h c h b gln ln p (5)

Self-shadowing and cast shadows are a particular difficulty in
measuring the membership likelihoods, however we have found
the following approach sufficient to compensate for shadowing.
First, we observe that if a pixel is significantly brighter (has a
larger Y component) than predicted by the class statistics, then we
do not need to consider the possibility of shadowing. It is only in
the case that the pixel is darker that there is a potential shadow.

When the pixel is darker than the class statistics indicate, we
therefore normalize the chrominance information by the bright-
ness, U* = U/Y, and V* = V/Y. This normalization removes the
effect of changes in the overall amount of illumination. For the
common illuminants found in an office environment this step has
been found to produce a stable chrominance measure despite
shadowing.

The log likelihood computation then becomes

d

m
k

T

k k k

=

- - - - -* * *- * * *1
2

1
2 2 21y K y Kkm me j e j b gln ln p

(6)

where y* is (x, y, U*, V*) for the image pixel at location (x, y), m k
* is

the mean (x, y, U*, V*) of class k and Kk
* is the corresponding co-

variance.

3.3.3 Determine Support Map
The next step is to resolve the class membership likelihoods at
each pixel into support maps, indicating for each pixel whether it
is part of one of the blobs or of the scene. Spatial priors and con-
nectivity constraints are used to accomplish this resolution.

Individual pixels are then assigned to particular classes: either
to the scene texture class or a foreground blob. A classification
decision is made for each pixel by comparing the computed class
membership likelihoods and choosing the best one (in the MAP
sense), e.g.,

s(x, y) = argmaxk(d k(x, y)) (7)

Fig. 2. The morphological grow operation.

Connectivity constraints are enforced by iterative morphologi-
cal “growing” from a single central point, to produce a single re-
gion that is guaranteed to be connected (see Fig. 2). The first step is
to morphologically grow out a “foreground” region using a mix-
ture density comprised of all of the blob classes. This defines a
single connected region corresponding to all the parts of the user.
Each of the individual blobs are then morphologically grown, with

the constraint that they remain confined to the foreground region.
This results in a set of connected blobs that fill out the fore-

ground region. However the boundaries between blobs can still be
quite ragged due to misclassification of individual pixels in the
interior of the figure. We therefore use simple 2D Markov priors to
“smooth” the scene class likelihoods.

3.3.4 Update Models
Given the resolved support map s(x, y), we can now update the
statistical models for each blob and for the scene texture model. By
comparing the new model parameters to the previous model pa-
rameters, we can also update the dynamic models of the blobs.

For each class k, the pixels marked as members of the class are
used to estimate the new model mean mk:

$m m mk k k

T
E= - -L
NM

O
QPy yc h c h (8)

and the second-order statistics become the estimate of the model’s
covariance matrix Kk,

$K y yk k k

T
E= - -L
NM

O
QPm mc h c h (9)

This process can be simplified by re-writing it in another form
more conducive to iterative calculation. The first term can be built
up as examples are found, and the mean can be subtracted when it
is finally known:

E Ek k

T T
k ky y yy- -L

NM
O
QP = -m m m mTc h c h (10)

For computational efficiency, color models are built in two differ-
ent color spaces: the standard (Y, U, V) space, and the brightness-
normalized (U*, V*) color space.

Errors in classification and feature tracking can lead to instabil-
ity in the model. One way to ensure that the model remains valid
is to reconcile the individual blob models with domain-specific
prior knowledge. For instance, some parameters (e.g., color of a
person’s hand) are expected to be stable and to stay fairly close to
the prior distribution, some are expected to be stable but have
weak priors (e.g., shirt color) and others are both expected to
change quickly and have weak priors (e.g., hand position).

Intelligently chosen prior knowledge can turn a class into a
very solid feature tracker. For instance, classes intended to follow
flesh are good candidates for assertive prior knowledge, because
people’s normalized skin color is surprisingly constant across dif-
ferent skin pigmentation levels and radiation damage (tanning).

4 INITIALIZATION

Pfinder’s initialization process consists primarily of building rep-
resentations of the person and the surrounding scene. It first
builds the scene model by observing the scene without people in
it, and then when a human enters the scene it begins to build up a
model of that person.

The person model is built by first detecting a large change in
the scene, and then building up a multiblob model of the user over
time. The model building process is driven by the distribution of
color on the person’s body, with blobs added to account for each
differently-colored region. Typically separate blobs are required
for the person’s hands, head, feet, shirt and pants.

The process of building a blob-model is guided by a 2D contour
shape analysis that recognizes silhouettes in which the body parts
can be reliably labeled. For instance, when the user faces he cam-
era and extends both arms (what we refer to as the “star fish” con-
figuration) then we can reliably determine the image location of
the head, hands, and feet. When the user points at something, then

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997 783

we can reliably determine the location of the head, one hand, and
the feet.

These locations are then integrated into blob-model building
process by using them as prior probabilities for blob creation and
tracking. For instance, when the face and hand image positions are
identified we can set up a strong prior probability for skin-colored
blobs.

The following subsections describe the blob-model building
process in greater detail.

4.1 Learning the Scene
Before the system attempts to locate people in a scene, it must
learn the scene. To accomplish this Pfinder begins by acquiring a
sequence of video frames that do not contain a person. Typically
this sequence is relatively long, a second or more, in order to ob-
tain a good estimate of the color covariance associated with each
image pixel. For computational efficiency, color models are built in
both the standard (Y, U, V) and brightness-normalized (U*, V*)
color spaces.

4.2 Detect Person
After the scene has been modeled, Pfinder watches for large de-
viations from this model. New pixel values are compared to the
known scene by measuring their Mahalanobis distance in color
space from the class at the appropriate location in the scene model,
as per (5).

If a changed region of the image is found that is of sufficient
size to rule out unusual camera noise, then Pfinder proceeds to
analyze the region in more detail, and begins to build up a blob
model of the person.

4.3 Building the Person Model
To initialize blob models, Pfinder uses a 2D contour shape analysis
that attempts to identify the head, hands, and feet locations. When
this contour analysis does identify one of these locations, then a
new blob is created and placed at that location. For hand and face
locations, the blobs have strong flesh-colored color priors. Other
blobs are initialized to cover clothing regions. The blobs intro-
duced by the contour analysis compete with all the other blobs to
describe the data.

When a blob can find no data to describe (as when a hand or
foot is occluded), it is deleted from the person model. When the
hand or foot later reappears, a new blob will be created by either
the contour process (the normal case) or the color splitting process.
This deletion/addition process makes Pfinder very robust to oc-
clusions and dark shadows. When a hand reappears after being
occluded or shadowed, normally only a few frames of video will
go by before the person model is again accurate and complete.

4.3.1 Integrating Blobs and Contours
The blob models and the contour analyzer produce many of the
same features (head, hands, feet), but with very different failure
modes. The contour analysis can find the features in a single frame
if they exist, but the results tend to be noisy. The class analysis pro-
duces accurate results, and can track the features where the contour
can not, but it depends on the stability of the underlying models and
the continuity of the underlying features (i.e., no occlusion).

The last stage of model building involves the reconciliation of
these two modes. For each feature, Pfinder heuristically rates the
validity of the signal from each mode. The signals are then
blended with prior probabilities derived from these ratings. This
allows the color trackers to track the hands in front of the body—

(a) (b)

(c) (d)

Fig. 3. (a) Chris Wren playing with Bruce Blumberg’s virtual dog in the ALIVE space. (b) Playing SURVIVE. (c) Real-time reading of American
Sign Language (with Thad Starner doing the signing). (d) Trevor Darrell demonstrating vision-driven avatars.

784 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

when the hands produce no evidence in the contour. If the class
models become lost due to occlusion or rapid motion, the contour
tracker will dominate and will set the feature positions once they
are re-acquired in the contour.

5 LIMITATIONS

Pfinder explicitly employs several domain-specific assumptions to
make the vision task tractable. When these assumptions break, the
system degrades in specific ways. Due to the nature of Pfinder’s
structure and since the model of the user is fairly weak, the system
degrades gracefully and recovers in two or three frames once the
assumption again holds.

Pfinder expects the scene to be significantly less dynamic than
the user. Although Pfinder has the ability to compensate for small,
or gradual changes in the scene or the lighting, it cannot compen-
sate for large, sudden changes in the scene. If such changes occur,
they are likely to be mistakenly considered part of the foreground
region, and an attempt will be made to explain them in the user
model.

Another limitation, related to the dynamic scene problem, is
that the system expects only one user to be in the space. Multiple
users don’t cause problems in the low level segmentation or blob
tracking algorithms, but do cause significant difficulties with the
gesture recognition system that attempts to explain the blob model
as a single human figure.

6 PERFORMANCE

We find RMS errors in Pfinder’s tracking on the order of a few
pixels, as shown in Table 1. Here, the term “hand” refers to the
region from approximately the wrist to the fingers. An “arm” ex-
tends from the elbow to the fingers. For the translation tests, the
user moves through the environment while holding onto a straight
guide. Relative error is the ratio of the RMS error to the total path
length.

TABLE 1
PFINDER ESTIMATION PERFORMANCE

Test Hand Arm
translation

(X,Y)
0.7 pixels
(0.2% rel)

2.1 pixels
(0.8% rel)

rotation
(Q)

4.8 degrees
(5.2% rel)

3.0 degrees
(3.1% rel)

For the rotation error test, the user moves an appendage
through several cycles of approximately 90 degree rotation. There
is no guide in this test, so neither the path of the rotation, nor even
its absolute extent, can be used to directly measure error. We settle
for measuring the noise in the data. The RMS distance to a low-
pass filtered version of the data provides this measure.

7 APPLICATIONS

Although interesting by itself, the full implications of real-time
human tracking only become concrete when the information is
used to create an interactive application. Pfinder has been used to
explore several different human interface applications.

7.1 A Modular Interface
Pfinder provides a modular interface that allows client applica-
tions to request subsets of the information that Pfinder provides. A
wide range of data is exported through the Pfinder interface: blob
model statistics; polygon representation of the support map; video
texture bounding box with alpha map; semantically labeled fea-
tures (e.g., head, right hand, etc.); and static gestures (e.g., stand-
ing, sitting, pointing, etc.).

7.2 Gesture Control for ALIVE, SURVIVE
In many applications it is desirable to have an interface that is
controlled by gesture rather than by a keyboard or mouse. One
such application is the Artificial Life IVE (ALIVE) system [9].
ALIVE utilizes Pfinder’s support map polygon to define alpha
values for video compositing (placing the user in a scene with
some artificial life forms in real-time). Pfinder’s gesture tags and
feature positions are used by the artificial life forms to make deci-
sions about how to interact with the user, as illustrated in Fig. 3a.

Pfinder’s output can also be used in a much simpler and direct
manner. The position of the user and the configuration of the
user’s appendages can be mapped into a control space, and sounds
made by the user are used to change the operating mode. This
allows the user to control an application with their body directly.
This interface has been used to navigate a 3D virtual game envi-
ronment as in SURVIVE (Simulated Urban Recreational Violence
IVE) [18] (illustrated in Fig. 3b).

7.3 Recognition of American Sign Language
One interesting application attends only to the spatial statistics of
the blobs associated with the users hands. Starner and Pentland
[17] used this blob representation together with hidden Markov
modeling to interpret a 40-word subset of American Sign Lan-
guage (ASL). Using this approach they were able to produce a
real-time ASL interpreter with a 99 percent sign recognition accu-
racy. Thad Starner is shown using this system in Fig.3c.

7.4 Avatars and Telepresence
Using Pfinder’s estimates of the user’s head, hands, and feet posi-
tion it is possible to create convincing shared virtual spaces. The
ALIVE system, for instance, places the user at a particular place in
the virtual room populated by virtual occupants by compositing
real-time 3D computer graphics with live video. To make a con-
vincing 3D world, the video must be placed correctly in the 3D
environment, that is, video of the person must be able to occlude,
or be occluded by, the graphics [4].

The high level description of the user is also suitable for very-
low bandwidth telepresence applications. On the remote end in-
formation about the user’s head, hand, and feet position is used to
drive an video avatar that represents the user in the scene [4]. One
such avatar is illustrated in Fig.3d. It is important to note that the
avatars need not be an accurate representation of the user, or be
human at all.

8 HARDWARE

Pfinder is implemented on the SGI architecture using the VL
(Video Library) interface. A typical frame rate on sixteenth resolu-
tion (160 ¥ 120 pixel) frames is 10Hz, using a 200MHz R4400 proc-
essor Indy with Vino Video. For input, we use a JVC-1280C, single
CCD, color camera. It provides an S-video signal to the SGI digit-
izers.

9 CONCLUSION

Pfinder demonstrates the utility of stochastic, region-based fea-
tures for real-time image understanding. This approach allows
meaningful, interactive-rate interpretation of the the human form
without custom hardware. The technique is stable enough to sup-
port real applications as well as higher-order vision techniques.

REFERENCES
[1] A. Azarbayejani and A. Pentland, “Recursive Estimation of Mo-

tion, Structure, and Focal Length,” Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 17, no. 6, pp. 562–575, June 1995.

[2] A. Baumberg and D. Hogg, “An Efficient Method for Contour
Tracking Using Active Shape Models,” Proc. Workshop Motion of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997 785

Nonrigid and Articulated Objects. Los Alamitos, Calif.: IEEE CS
Press, 1994.

[3] M. Bichsel, “Segmenting Simply Connected Moving Objects in a
Static Scene,” Trans. Pattern Analysis and Machine Intelligence,
vol. 16, no. 11, pp. 1,138–1,142, Nov. 1994.

[4] T. Darrell, B. Blumberg, S. Daniel, B. Rhodes, P. Maes, and
A. Pentland, “Alive: Dreams and Illusions,” ACM SIGGraph, Com-
puter Graphics Visual Proc., July 1995.

[5] T. Darrell and A. Pentland¸ “Cooperative Robust Estimation Us-
ing Layers of Support,” Trans. Pattern Analysis and Machine Intelli-
gence, vol. 17, no. 5, pp. 474–487, May 1995.

[6] W.D. Ellis, A Source Book of Gestalt Psychology. New York: Har-
court, Brace, 1938.

[7] D.M. Gavrila and L.S. Davis, “Towards 3D Model-Based Tracking
and Recognition of Human Movement: A Multi-View Approach,”
Int’l Workshop Automatic Face- and Gesture-Recognition, Zurich. Los
Alamitos, Calif.: IEEE CS Press, 1995.

[8] R.J. Kauth, A.P. Pentland, and G.S. Thomas, ”Blob: An Unsuper-
vised Clustering Approach to Spatial Preprocessing of Manu-
scripts Imagery,” Proc. 11th Int’l Symp. Remote Sensing of the Envi-
ronment, Ann Arbor, Mich., Apr. 1977.

[9] P. Maes, B. Blumberg, T. Darrell, and A. Pentland, “The ALIVE
System: Full-Body Interaction With Animated Autonomous
Agents,” ACM Multimedia Systems, to appear.

[10] S. Mann and R.W. Picard, “Video Orbits: Characterizing the Co-
ordinate Transformation Between Two Images Using the Projec-
tive Group,” IEEE Trans. Image Processing, to appear.

[11] D. Metaxas and D. Terzopoulos, “Shape and Non-Rigid Motion
Estimation Through Physics-Based Synthesis,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 15, pp. 580–591, 1993.

[12] A. Pentland, “Classification by Clustering,” Proc. Symp. Machine
Processing of Remotely Sensed Data, Los Alamitos, Calif.: IEEE CS
Press, June 1976.

[13] A. Pentland and B. Horowitz, “Recovery of Nonrigid Motion and
Structure,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 13, no. 7, pp. 730–742, July 1991.

[14] J. Rehg and T. Kanade, “Visual Tracking of High DOF Articulated
Structures: An Application to Human Hand Tracking, European
Conf. Computer Vision, pp. B:35–46, 1994.

[15] K. Rohr, “Towards Model-Based Recognition of Human Move-
ments in Image Sequences,” CVGIP: Image Understanding, vol. 59,
no. 1, pp. 94–115, Jan. 1994.

[16] H.S. Sawhney and S. Ayer, “Compact Representations of Videos
Through Dominant and Multiple Motion Estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 18,
no. 8, pp. 814–831, 1996.

[17] T. Starner and A. Pentland, “Real-Time American Sign Language
Recognition From Video Using Hidden Markov Models,” Proc.
Int’l Symp. Computer Vision, Coral Gables, Fla., 1995. Los Alami-
tos, Calif.: IEEE CS Press.

[18] C. Wren, F. Sparacino, A. Azarbayejani, T. Darrell, T. Starner,
K.A.C. Chao, M. Hlavac, K. Russell, and A. Pentland, “Perceptive
Spaces for Peformance and Entertainment: Untethered Interaction
Using Computer Vision and Audition,” Applied Artificial Intelli-
gence, vol. 11, no. 4, pp. 267–284, June 1997.

