
VILLE – A Language-Independent Program Visualization Tool

 Teemu Rajala Mikko-Jussi Laakso Erkki Kaila Tapio Salakoski
Department of Information Technology

University of Turku
20014 Turku, Finland

{temira, milaak, ertaka, sala}@utu.fi

Abstract
Visualization tools have proven to be useful for enhancing
novice programmers’ learning. However, existing tools
are typically tied to particular programming languages,
and tend to focus on low-level aspects of programming
such as the changing values of variables during program
code execution. In this paper we present a new program
visualization tool, which provides a language-independent
view of learning programming. Moreover, program
execution can be viewed in two languages
simultaneously. Complete with role information of
variables, the tool supports the learning process at a more
abstract level, thus emphasizing the similarities of basic
programming concepts and syntax in all imperative
programming languages..

Keywords: Language independency, teaching
programming, novice programming, program
visualization.

1 Introduction
Teaching programming has provided challenges for
computer science education for many decades.
Constructing and even understanding computer programs
has proven to be highly non-trivial task for most learners
(McCracken et al. 2001, Lister et al. 2004, Tenenberg et
al. 2005). Many computer-based systems have been
developed to aid the learning process, particularly for
novice programmers. Existing systems use various
visualizations and animation techniques to assist the
learners in understanding the behaviour of program
execution (Hundhausen et al. 2002).

In general, most visualization and animation systems are
heavily dependent on a particular programming language,
and can only visualize program execution in that
language. However, the syntax and structure of basic
programming concepts are very similar in all imperative
programming languages. Those concepts include, for
example, control structures (sequence, selection, and
loops), statements, expressions, arrays, and methods.
From a student’s point of view it is not particularly
important to learn how loops are defined and executed in

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007), Koli
National Park, Finland, November 15-18, 2007. Conferences in
Research and Practice in Information Technology, Vol. 88.
Raymond Lister and Simon, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

a particular programming language; it is far more
important to understand the basic principles behind the
loop structure regardless of the programming language in
question.

Grandell et al. (2006) have argued that in programming
courses for novices, the syntax of the programming
language should be as simple as possible. Simple syntax
allows students to focus on learning the very concept of
programming instead of struggling with excessive syntax.
Thus in our opinion a simple pseudo-language could be
used effectively as a first teaching language. When using
a pseudo-language, the algorithm as well as the
corresponding program code can be represented on a
higher level of abstraction, as Boada et al. (2004) and
Stern et al. (1999) have stated. However, as Garner
(2006) has noted, a pseudo-language is often perceived as
a language that can’t be interpreted or executed.

Another abstraction of learning programming is provided
by the roles of variables. Sajaniemi (2002) has defined a
taxonomy of roles of variables, based on their behaviour
during the execution of programs. The concept can be
utilized regardless of programming language or even
programming paradigm. Sajaniemi and Kuittinen (2003)
have noticed that using the role information of variables
in basic programming courses improves the learning
process of students by enhancing their understanding of
the program.

VILLE is a language-independent program visualization
tool providing an abstract view of programming. It can be
used both in lectures and for independent learning. It has
a built-in syntax editor with which users can add new
languages to the tool or modify the syntax of built-in
languages (currently including Java, C++, and a pseudo-
language). The visualizations can be viewed in any of the
defined languages. To emphasize the language
independency, VILLE has a parallel view displaying a
program in two languages simultaneously. It is possible
to trace program execution line by line and monitor
program outputs and changes in variable values. To make
visualization more effective and easily interpretable, there
is an automatically generated textual description of each
code line, including the role information of variables.
VILLE comes with a set of predefined examples, which
can be easily extended. In addition, VILLE’s predefined
or user-defined examples can be published on the web,
allowing students to engage with a learning session at any
time and place.

The structure of this article is as follows: section 2
presents related work, previous studies and related
systems. VILLE and its features are presented in section

3. Section 4 presents the discussion, and finally section 5
presents the conclusions in brief.

2 Related work
Defining visualization is not a simple task. As Petre
(1995, p. 34) has noted: “the question is not ‘Is a picture
worth a thousand words?’, but ‘Does a given picture
convey the same thousand words to all viewers?’ ” Petre
presents the concept of secondary cues, which provide
additional information about visualizations. Ben-Ari
(2001) claimed that graphical and textual descriptions
have to be synchronized, because deciding which issues
of the problem are relevant is a major problem for novice
programmers. Naps et al. (2002) state that visualizations
appear to be useful only if they can engage the learner
into a learning session.

Jeliot 3 (Figure 1) is a tool used in tracing the execution
of Java programs. As the execution advances step by
step, the evaluations of expressions are visualized with
graphical symbols. Jeliot 3 is designed mainly to support
the learning process of novice programmers. Kannusmäki
et al. (2004) evaluated Jeliot 3 with qualitative methods
and pointed out that only students without any previous
programming skills were willing to use it. However,
Jeliot 3 improved the novices’ skills of perceiving if-
statements and loops, understanding objects, and tracing
errors from program code.

JIVE (Gestwicki & Jayaraman 2002) is a program
visualization tool that in addition to code highlighting
visualizes object structure and the calling sequence of
methods. According to Gestwicki and Jayaraman, JIVE
has proved to be a practical tool for program visualization
and debugging.

BlueJ is an example of a static program visualization tool
(Kölling et al. 2003). Unlike dynamic visualization tools
such as Jeliot 3, JIVE and VILLE, static tools don’t
visualize program execution step by step, but instead
focus on visualizing program structure and the relations
between program components. BlueJ has a class view
showing relations between classes and an object dock
containing all initialized objects. According to Kölling et
al. (2003), BlueJ is well suited to teaching programming
with an objects-first approach.

Over the past few decades, many visualization and
animation based applications have been developed,
including JavaVis (Oechsle & Schmitt 2002) which uses
object and sequence diagrams as visualizations, ALVIS
LIVE!, based on the WYSIWYC (What You See Is What
You Code) model and direct manipulation of program
structures (Hundhausen & Brown 2007), and Raptor
(Carlisle et al. 2005), a programming environment that
uses dataflow diagrams for visualization. JHAVE
(Grissom et al. 2003), BALSA-II (Brown 1988), ZEUS
(Brown 1991), XTANGO (Stasko 1992) and TRAKLA2
(Malmi et al. 2004) are algorithm animation systems,
focusing on visualizing data structures and algorithms. In
recent studies (Grissom et al. 2003, Laakso et al. 2005a,
Laakso et al. 2005b) algorithm animation systems have
been successfully applied to teaching data structures and
algorithms.

In conclusion, the tools most related to VILLE are Jeliot
3 and JIVE, which have the same basic purpose and
several common features. However, remarkable
differences still exist in the abstraction level of
visualization. The features of these three tools are
compared in detail in section 4.

3 The VILLE tool
VILLE is a program visualization tool, which can be used
to create and edit programming examples and to observe
events in the examples during their execution. Its main
purpose is to support the learning process of novice
programmers. Teacher can add programming examples to
VILLE and then visualize their execution in lectures or
over the web.

3.1 Key features
In this section we present VILLE’s key features in four
categories: level of abstraction, user interaction, tracing
execution and customization. The categories reflect the
main functions of features in this tool.

3.1.1 Level of abstraction
Language-independency. One of the most important
aspects of VILLE is the ability to view programming
examples in several different programming languages.
When observing program execution in different
languages, a user can discover similarities in their basic
functionalities. It is far more important for the novice
programmer to learn how different programming
concepts actually work than to focus on the syntactical
issues of a specific language. We call this the
programming language independency paradigm.

Defining and adding new languages. As built-in,
VILLE supports Java, pseudocode and C++. The
pseudocode’s definition can be altered to suit a teacher’s
needs. It is also possible to define and add new
programming languages to further extend the language
support.

The parallel view. The program code execution can be
viewed simultaneously in two different programming
languages. This way the user can see how the execution

Figure 1: User interface of Jeliot 3

progresses similarly regardless of syntactical differences
between the languages.

Role information. The role information of variables is
integrated into the code line explanation. According to
Sajaniemi and Kuittinen (2003), the role information of
variables helps learning and enhances understanding of
the program.

3.1.2 User interaction
Code editing. Besides the example creation and editing
view, the program code can also be edited in the
visualization view, allowing users to trace the effects of
changes in execution and visualization. The user’s edits
are not saved in the original example.

Pop-up questions. With the built-in editor the teacher
can create multiple-choice questions and set them to
trigger at certain states of the program execution.

Flexible control of the visualization both forwards and
backwards. The user can move one step at a time, both
forwards and backwards, in the execution of a program.
Examples can also be run automatically with adjustable
speed. Moving backwards in the program execution isn’t
usually possible in similar applications (e.g. Jeliot 3).
Additionally, VILLE has an execution slider with which
the user can progress to any state of the program
execution.

3.1.3 Tracing execution
Call stack. The progress of the program execution
between different methods due to function calls and
returns is visualized with a call stack. When a method is
called, a new window is opened on the call stack. The

window remains on the stack until the method is finished.
When the execution returns to the caller, the return value
is shown on top of the stack. The Call stack is especially
useful in teaching recursion.

Code line explanation. Every code line has an
automatically generated explanation, in which all the
program events on the line are clearly explained.
Furthermore, all possible outputs and variable states are
shown. Code line explanation is a not a feature in most
similar applications.

Visualization row by row. Progress of the program
execution is visualized by highlighting rows in the code.
In addition to highlighting the program row under
execution, VILLE also highlights the previously executed
row with a different colour. This makes the following of
the program execution easier.

Breakpoints. The user can set breakpoints in program
code lines and move between them, both forwards and
backwards. This functionality enables debug-based
control and observation of the program execution.
Backward tracing between breakpoints is not a standard
feature in program code debuggers.

3.1.4 Customization
Example collection. VILLE contains a predefined set of
programming examples grouped into categories based on
their subject. A user can create new categories and
examples or edit the predefined ones. By creating and
editing examples, the teacher can illustrate topics he
thinks are essential in his programming courses.

Publish examples. With the export feature VILLE’s
examples can be saved to an example collection. The

Figure 2: Main view of VILLE

example collection contains a version of VILLE with
example creation and modification functions disabled;
however, runtime modification is still enabled. The
export feature can be used to publish a course’s
programming examples on the web for the students to
use.

3.2 User interface of VILLE
VILLE’s user interface consists of five separate views:
the main view, the example creation and editing view, the
visualization view, the syntax editor and the question
editor.

3.2.1 Main view
When the application starts, the main view is loaded. On
the left side of the view (Figure 2) are the programming
example tree and buttons for controlling the application.
Users can modify examples with the buttons below. The
buttons above the examples can be used to change the
language of the application between Finnish and English,
to export the examples to an example collection, and to
move to the execution of the chosen example. The right
side of the view displays the description and code listing
of a chosen example.

3.2.2 Example creation and editing view
In the creation and editing view (Figure 3) a user can add
Java program code to the left text area; when the translate
button is pressed, VILLE creates pseudocode and C++
translations (and, of course, translations to all the
languages defined) and automatically generates
explanations for each program line. The user can also
write a general description for the programming example.

The translation of the program code is done with syntax
definitions. There is a syntax definition for each
programming language and also for the Finnish and
English explanations. During the translation of the
program, each code line is looked up from the Java
syntax by using keywords, and then translated to other
languages using the equivalent line in their syntax
definitions. Thus, each language added to VILLE should
define all the equivalent syntactical properties featured in
VILLE’s subset of Java syntax.

The events of a program code are solved by going
through the program in its execution order and saving an
execution event for each command. The events are used
in the visualization view to control the visualization of
the program execution.

The translation and execution tracing of programs is now
possible only with Java. We are planning to add an option
for translating code from the other defined languages in
the near future. That will require a program component
that parses the data stored in the variables of non-typed
languages. After this the non-typed languages can be
translated to Java, which can then be used in tracing the
program execution events.

VILLE supports all the Java syntax necessary to teach
introductory programming courses. It can handle the
basic variable types, the main features of the String class,
conditional statements, loop structures, tables and
matrixes, methods, functions and records. With these
programming concepts, the basic functionalities of
programming can be well illustrated.

Figure 3: Creation and editing view of programming examples

3.2.3 Visualization view
In the visualization view (Figure 4) users can follow the
execution of the programming examples. The control
buttons for the visualization and the code listing of the
programming example are located on the left side of the
view. With the controls a user can start automatic
program execution or alternatively move one step at a

time either forwards or backwards in the program. The
user can also add breakpoints to any code line and move
between the breakpoints with controls similar to
debuggers.

The control area can also be used to change the program
code language to any language defined, even during the
execution. On the right side of the view lies the call stack,

Figure 4: Visualization view of VILLE in call stack mode

Figure 5: Visualization view of VILLE in parallel mode

on which the method calls are viewed in their own
frames. The fields at the bottom of the view display the
changes to program states, and the slider beneath those
can be used to move around in the program execution.

The program execution in the visualization view can also
be followed in so-called parallel mode (Figure 5), in
which the program code is viewed in two selectable
languages simultaneously; this way the syntax and the
execution of the selected languages can be effectively
compared.

3.2.4 Syntax editor
With the syntax editor (Figure 6) the teacher can add new
programming languages to the system by defining their
syntactical properties. The editor displays Java syntax
lines on the left side. On the right side of the view, the
user can select a syntax to modify or create completely
new syntaxes. By comparing the Java syntax lines with
matching lines in the modifiable syntax, the user can
create new syntax lines understandable to VILLE.

3.2.5 Question editor
In the question editor view (Figure 7) a user can create
multiple-choice questions and set them to trigger on
selected code lines of a program. On the left side of the
view the user can execute the program to a code line with
controls similar to the visualization view, and then attach
a multiple choice question to the code line. On the right
side of the view the user can type in the question and the
answer choices, select the choice count, and specify the
right answer. All the created questions are displayed in
the bottom right corner of the view.

4 Discussion
To enhance the learning process of novice programmers,
the primary goal of VILLE has been to provide a higher
level of abstraction by emphasizing the programming
language independency paradigm. From the learner’s
point of view it is much more important to understand the
principles behind basic programming concepts, such as
loop control structures, regardless of the programming
language. Thus, the use of a pseudo-language with less
syntactical baggage than most actual programming
languages is recommended for basic programming
courses. With VILLE the teacher can define his own
pseudo-language and then visualize program execution
and its effects on the states of variables and the program
output. However, because the program interpretation in
VILLE is done with Java, the defined pseudo-languages
should have corresponding program structures. The
concept of the roles of variables gives a higher-level
insight to programs, independent of programming
paradigm, based on their variable behaviour. VILLE
automatically generates a description with attached
variable role information for every code line. This aids
the interpretation of program execution as it acts as a
secondary cue, aiding students in understanding the
relations between programming concepts and program
structures, which is essential in the process of learning to
program.

Naps et al. (2002) have specified an engagement
taxonomy that defines six different forms of learner
engagement with visualization technology: 1) no viewing,
2) viewing, 3) responding, 4) changing, 5) constructing
and 6) presenting. VILLE’s feature set covers all these
levels, except of course no viewing, which means that
there is no visualization technology in use, and changing,

Figure 6: Syntax editor view of VILLE

which means that the system asks students for input to
affect the execution of a program (this can, however, be
achieved by altering the variable values in the program
code). The majority of VILLE’s features belong to the
viewing category. Pop-up questions in the learner’s
perspective belong to the responding category. Students
editing code in the visualization view and teachers
creating new examples are clearly constructing
visualizations, and one can engage in presenting just by
demonstrating examples with VILLE to others.

To summarize, VILLE supports learning programming
independent of the programming language. It offers
customization features such as language and example
creation, and provides interactivity by way of pop-up
questions as well as interactive code editing to activate
and engage the learner.

4.1 VILLE vs. Jeliot 3
VILLE and Jeliot 3 are applications that can trace step by
step a program code execution, but there are some
differences between these two novel tools.

From the language perspective, Jeliot 3 supports only
Java, while VILLE supports Java, C++ and a user-
definable pseudo-language, and the language support is
easily extensible. Moreover, a user can view the selected
example simultaneously in parallel with two different
programming languages and compare their syntaxes. This
way we can emphasize the language independency
paradigm which aids the process of changing from one
programming language to other.

The controls are very similar in both applications, but
VILLE makes it possible to step backwards in execution
and to progress to any point of the execution directly with
an execution slider. The absence of backward tracing is
often frustrating when executing programs.

Jeliot 3 uses graphical symbols to visualize changes in
variable states, and the execution of a single statement is
presented with more detail than in VILLE, which presents
variable states in a textual form. Both tools highlight the
code line under execution, but VILLE also highlights the
previously executed line to help the tracing of the
execution.

VILLE automatically generates a description line for
every executed program code line. The description
includes the role information of variables and dynamic
information about variable states. This helps students to
interpret events in the executed code lines.

Jeliot 3 supports asking the users for input. This is not
possible in VILLE. However, with VILLE, students can
be asked questions during program execution, which is
not possible in Jeliot 3.

VILLE includes predefined examples that can be used
directly through the user interface. These examples can
also be published on the internet as an example
collection. This feature is not found in Jeliot 3.

Table 1 presents a comparison between VILLE and Jeliot
3. We have also included JIVE in the comparison,
because it’s quite similar to Jeliot 3.

Figure 7: Question editor view of VILLE

5 Conclusions
Learning to program is a challenging task, and a major
step towards better learning is to go beyond syntactic
features to understand the basic programming concepts.
With this programming language independency
paradigm, the similarities between the basic programming
concepts in all imperative programming languages can be
demonstrated, both syntactically and semantically.
Furthermore, the understanding of the language
independency principle should aid in adapting new
programming languages and in changing from one
language to another.

In the future, VILLE is going to be evaluated on the first
programming courses at University of Turku. In addition
to the learning performance the evaluation will focus on
student engagement and the viability of VILLE’s
features.

In conclusion, VILLE promises an amendment to
introductory programming courses by offering a chance
to look at fundamental issues in an abstract way, and by
allowing the teacher to create and use a programming
language of his own.

6 Acknowledgment
This work was partially supported by Academy of
Finland, project 121396, Automatic Assessment
Technologies for Free Text and Programming
Assignments.

7 References
Ben-Ari, M. (2001). Program Visualization in Theory and

Practice. Informatik/Informatique 2:8-11.

Brown, M.H. (1988). Exploring Algorithms Using Balsa
II. IEEE Computer, 21(5):14-36.

Brown, M.H. (1991). Zeus: A System for Algorithm
Animation and Multi-View Editing. In the Proceedings
of IEEE Workshop on Visual Languages, 4-9. New
York: IEEE Computer Society Press.

Boada I., Soler J., Prados F. and Poch J. (2004). A
Teaching/Learning Support Tool for Introductory
Programming Courses. In the Proceedings of the Fifth
International Conference on Information Technology

 VILLE Jeliot 3 JIVE
General

Supported languages Java, pseudocode and
C++

Java Java

Editable syntaxes yes no no
Define new languages yes no no
Examples various built-in with a

description; possible to
add new ones

some included as files;
possible to save new
examples

possible to add
new ones

Publish examples yes no no
Controls

Continuous running yes yes yes
Adjustable speed yes yes no
Reverse running no no yes
Step forwards yes yes yes
Step backwards yes no yes

Visualization
Call stack yes yes yes
Program line explanation yes no no
Graphical presentation of algorithm no no yes
Variable values yes yes yes
Role information of variables yes no no
Program output yes yes yes
Expression evaluation verbal graphical presentation no
Program code viewed in selectable language;

alternative view with
two languages

Java Java

Interaction with user
Editable programs in visualization state yes yes no
‘Stop-and-think’ questions with pop-ups no yes
Ask input from user no yes no

Technical implementation
Implementation language Java Java Java
Compiles examples with built-in compiler DynamicJava existing JVM
Data model XML ASCII file Java bytecode

Table 1: comparison between VILLE, Jeliot 3 and JIVE

Based Higher Education and Training. ITHET 2004,
604-609.

Carlisle, M.C., Wilson, T.A., Humphries, J.W. and
Hadfield, S.M. (2005). RAPTOR: A Visual
Programming Environment for Teaching Algorithmic
Problem Solving. In the Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science
Education, St. Louis, Missouri, USA, 176-180.

Garner, S. (2006). The Development, Use and Evaluation
of a Program Design Tool in the Learning and
Teaching of Software Development. Issues in
Informing Science and Information Technology, 3:253-
260.

Gestwicki, P. and Jayaraman, B. (2002). Interactive
visualization of Java programs. In Proceedings of
Symposia on Human Centric Computing Languages
and Environments, 226-235.

Grandell, L., Peltomäki, M., Back, R.-J. and Salakoski, T.
(2006). Why Complicate Things? Introducing
Programming in High School Using Python. In
Proceedings of the 8th Australasian Conference on
Computing Education, Hobart, Australia, 52:71-80.

Grissom, S., McNally, M. and Naps, T. (2003).
Algorithm Visualization in CS Education: Comparing
Levels of Student Engagement. In Proceedings of the
ACM Symposium on Software Visualization, San
Diego, California, s. 87–94.

Hundhausen, C.D. and Brown, J.L. (2007). What You
See Is What You Code: A ‘Live’ Algorithm
Development and Visualization Environment for
Novice Learners. Journal of Visual Languages and
Computing, 18(1):22-47.

Hundhausen, C.D., Douglas, S.A. and Stasko, J.D.
(2002). A Meta-study of Algorithm Visualization
Effectiveness. Journal of Visual Languages and
Computing 13:259-290.

Kannusmäki, O., Moreno, A., Myller, N. and Sutinen, E.
(2004). What a Novice Wants: Students Using Program
Visualization in Distance Programming Course. In
Proceedings of the Third Program Visualization
Workshop (PVW'04), Warwick, UK, 126-133.

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.
(2003). The BlueJ system and its pedagogy. Journal of
Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13(4).

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X.,
Korhonen, A. and Malmi, L. (2005a). Multi-
Perspective Study of Novice Learners Adopting the
Visual Algorithm Simulation Exercise System
TRAKLA2. Informatics in Education, 4(1):49-68.

Laakso, M.-J., Salakoski, T. and Korhonen, A. (2005b).
The Feasibility of Automatic Assessment and
Feedback. In Proceedings of Cognition and
Exploratory Learning in Digital Age (CELDA 2005).
IEEE Technical Committee on Learning Technology
and Japanese Society of Information and Systems in
Education. Porto, Portugal, 113-122.

Lister, R., Adams, S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders,
K., Seppälä, O., Simon, B. and Thomas, L. (2004). A
Multi-National Study of Reading and Tracing Skills in
Novice Programmers. SIGCSE Bulletin, 36(4):119-150.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O. and Silvasti, P. (2004). Visual Algorithm
Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education,
3(2):267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001). A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students. ACM SIGCSE
Bulletin, 33(4):125-140.

Naps, T.L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S. and Velázquez-Iturbide, J.
Á. (2002). Exploring the Role of Visualization and
Engagement in Computer Science Education. In
Working group reports from ITiCSE on Innovation and
Technology in Computer Science Education,
35(2):131-152.

Oechsle, R. and Schmitt, T. (2002). JAVAVIS:
Automatic Program Visualization with Object and
Sequence Diagrams Using the Java Debug Interface
(JDI). In Diehl, S. (Ed.), Software Visualization.
vol.2269 of Lecture Notes in Computer Science.
Springer-Verlag, 176-190.

Petre, M. (1995). Why Looking Isn’t Always Seeing:
Readership Skills and Graphical Programming.
Communications of the ACM, 38(6):33-44.

Sajaniemi J. (2002). PlanAni - A System for Visualizing
Roles of Variables to Novice Programmers. University
of Joensuu, Department of Computer Science,
Technical Report, Series A, Report A-2002-4.

Sajaniemi, J. and Kuittinen, M. (2003). Program
Animation Based on the Roles of Variables. In
Proceedings of the 2003 ACM Symposium on Software
Visualization, San Diego, California, 7-ff.

Stasko, J. (1992). Animating Algorithms with XTANGO.
ACM SIGACT News, 23(2):67-71.

Stern, L., Søndergaard, H. and Naish, L. (1999). A
Strategy for Managing Content Complexity in
Algorithm Animation. In Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation
and Technology in Computer Science Education,
Cracow, Poland, 127-130.

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen,
T.-Y., Chinn, D., Cooper, S., Eckerdal, A., Johnson,
H., McCartney, R. and Monge, A. (2005). Students
designing software: a multi-national, multi-institutional
study. Informatics in Education, 4(1):143-162.

