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1 Introduction

This report is mainly intended as an internal working report of the IWT project “Wavelet
Based Interactive Video Communication and Image Database Consulting”. It serves several
purposes.

First it wants to give a catalog of wavelet related terminology. Thus a first part of the
report quickly reviews the theory of the wavelet transform in one and two variables.

The compression properties of the biorthogonal Cohen-Daubechies-Feauveau (CDF) wa-
velets are illustrated with a simple compression technique.

Next we discuss the Lifting Scheme into more detail. This scheme is an algorithm, origi-
nally designed to compute second generation wavelets in an efficient way. Later it has been
shown that it can be used to generate also the “classical” (bi)orthogonal wavelets of Cohen-
Daubechies-Feauveau (CDF) type with several advantages over the classical computational
schemes. More precisely, we give an inventory of the lifting steps for CDF wavelet transforms
of type (1,z), (2,z), ..., (6,z).

Classical wavelet transforms convert floating point numbers to floating point numbers.
However, in many multimedia applications (images, video, audio) the input data consists of
integer values only. An advantage of the Lifting Scheme is that it can be converted easily
into a transform that maps integers to integers, while retaining the perfect reconstruction
property. Some implementation aspects of this transform are also discussed.

2 The Wavelet Transform

2.1 The Basic Transform Step

The basic block in a wavelet transform [4] is a filter bank, consisting of 2 filters (cfr. fig. 1). A
discrete signal S is filtered by a high pass filter (¢) and a low pass filter (%), and downsampled.
The results are a high pass (HP) and a low pass (LP) signal, each containing half as much
samples as the input signal S.

For the inverse transform, first the signals H P and LP are upsampled by putting zeroes in
between every sample. After that they are filtered by the filters g and h and the result is added
together. In the case of perfect reconstruction we’ll only consider perfect reconstruction
filter banks here — the resulting signal is equal to the original signal S.

®
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Figure 1: The filter bank algorithm.



The filters g, h, g and h are called wavelet filters if they fulfill certain conditions. The
filters g and h are called dual filters w.r.t. g and h.

2.2 Wavelet and Scaling Functions

The wavelet filters g and h uniquely define a (primal) wavelet function ¢ (z) and a (primal)
scaling function ¢(z). The shape of these functions can easily be found be iteratively applying
an upsampling and filter step on a signal sequence containing only zeros, except for one
sample. Analogously, the filters § and h define a dual wavelet function ¢ (z) and a dual
scaling function ¢(z).

If the filters ¢ and g, and A and h are equal to each other, then the primal and dual
wavelet and scaling functions coincide too. In this case the wavelets are called orthogonal
wavelets. In the other, more generic, case they are called biorthogonal wavelets.

The regularity of a basis function can be measured by the number of vanishing moments.
A function has n vanishing moments if the first n moments M; (j < n)

o0

M; = 2 f(x) dx
J =00
are zero. The more vanishing moments a function has, the smoother the function is.

The mathematical meaning is that all polynomials 27 with a degree 5 < n can be repre-
sented exactly in the basis f;(x) derived from the function f(z):

) = Zaifz'(x)-

2.3 Example: Biorthogonal Cohen-Daubechies-Feauveau

This family of biorthogonal wavelets [2] has some interesting properties:
e The scaling function ¢(x) is always symmetric.
e The wavelet function 1 (x) is always symmetric or antisymmetric.

e The wavelet filters are finite.

z

e The coefficients of the wavelet filters are of the form 5, with z integer and n a natural

number.

These wavelets are commonly classified by the number of vanishing moments they have:
(n,n) means that the primal wavelet ¢(x) — the synthesizing high-pass filter — has n
vanishing moments, while the dual wavelet 1;(7') the analyzing high-pass filter has n
vanishing moments.

The plots of some of the scaling functions ¢(x) and wavelet functions ¢ (z) of this family
are shown in the figures 2, 3 and 4.
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Figure 2: Cohen-Daubechies-Feauveau biorthogonal wavelets.
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Figure 5: The decomposition tree for a wavelet transform.

2.4 Multi-Resolution

The signal LP obtained by filtering with filter h and subsampling resembles the original signal
S very much: it’s a representation of S at a lower resolution level. On the contrary, HP
contains the detail information that’s lost by making the transition to that lower resolution
level [5].

If we treat the low frequency information as a new signal and pass it through the same
filter bank, and repeat these steps several times, we call this a wavelet transform. After
some iterations we retain a very low frequency signal together with the detail information
for the different resolution levels. This is shown by the decomposition tree in fig. 5. The
blocks marked with V,, represent the low frequency signal at resolution level n, while the W,
represent the detail signal for the transition from resolution level n to level n + 1.

Because of the subsampling the length of the low pass signal is divided by two after every
filter step. Thus the wavelet transform has a linear complexity (O(n)) and can be executed
fast.

2.5 The Mathematics behind the Wavelet Transform

The scaling function ¢(z) and the wavelet function v (z) and their duals @(z) and ¢ (z) satisfy
dilation equations which are:

plz) = V2D hpo(2z — k),
k



P(x) = V2D g2z — k),
k

P(r) = V2D he @22 — k),
k

p(z) = V2Y Gk @2z — k).
k

The coefficients hg, g, l~1k and gp represent the coefficients of the filters h, g, h and g
respectively.
We define the basis functions

pinlz) = 22Tp(20x — k),
pin(z) = 22 Ip(2z — k),

with j,k € Z, i.e. ¢ () is a translated and dilated version of ¢(x).
If we have a representation of a function at resolution level j + 1:

@) =Y Nk jrp(),
k
then we can also decompose it into its low pass and high pass components:

F@) =Y Nuwju@) + > vu(z).
z ;

The wanted coefficients A;; and ;; can be found by calculating the inner products with the
dual basis functions:

Mg = (@50,
vie = (f i),

with N
(f,9) = '/700]"(.’17)9(.7;) da.

By using these equations we obtain the formulae for the Fast Wavelet Transform:
Ay = \/52 hi—21 Nji1k,
k

Vie = V2 Ge-a Ajyig-
k

2.6 Properties of Wavelets

e Multi-resolution

e Locality in both the time/space domain and the frequency domain



Figure 6: The two-dimensional wavelet transform.

(bi)Orthogonality

Smooth basis functions (controlled by vanishing moments)

Good approximations (in L?)

Fast transform algorithms (On)

Stable decompositions

2.7 Higher Dimensions

One step of the wavelet transform of a signal with a dimension n higher than 1 is performed
by transforming each dimension of the signal independently. Afterwards the n-dimensional
subband that contains the low pass part in all dimensions is transformed further. The two-
dimensional case is shown in fig. 6.

2.8 A simple compression example

If we transform an image containing N pixels using a wavelet transform, we have N wavelet
coefficients. Now we can consider a very simple image compression algorithm by replacing
the M smallest (in absolute value) wavelet coefficients by zero and comparing the result
after reconstruction with the original image. A graph showing the Peak Signal to Noise
Ratio versus the compression rate (ﬁ) for the well-known “Lena” image and some of the
Cohen-Daubechies-Feauveau wavelet transforms is shown in fig. 7. Different test images yield

different graphs, but the qualitative behavior of the graphs stay the same.

3 The Lifting Scheme

3.1 Introduction

The Lifting Scheme found its roots in a method to improve a given wavelet transform to
obtain some specific properties. Later it was extended to a generic method to create so-
called ‘Second Generation’ wavelets [9, 7, 6, 8].
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Figure 7: Peak Signal to Noise Ratio (PSNR) versus compression rate for some of the Cohen-
Daubechies-Feauveau wavelet transforms.

10



—/

Dual Primal
lifting lifting

— § [0+ () N> = HP
S I 1 S
o]t 1 7

Ry (12— T L () n LP

Figure 8: The Lifting Scheme.

The generic scheme is represented in fig. 8. Here the filters gy, ho and the successive
subsampling are the ‘Lazy’ wavelet transform. This transform doesn’t do anything but split
the original signal S into two sequences containing the odd and the even samples. Afterwards
the transform is ‘lifted’ to a transform with the wanted properties by using one or more of
the filter operations s and/or ¢. Finally the results are normalized by multiplying with the

factors ny respectively ny,.

The inverse transform is immediately clear from looking at the figure: all we have to do
is invert all steps. This is trivial here, unlike with the classical wavelet transform scheme.

Thus the goal is to find one or more lifting filters s and/or ¢, and normalization factors
nyg and nr, such that this scheme is equivalent to the one in fig. 1. One has proved that all
classical wavelet transforms can be implemented using the Lifting Scheme [3].

Advantages of the Lifting Scheme over the classical wavelet transform are:

Generic method

Easier to understand (not introduced using the Fourier transform)

Easier to implement

Faster (x2, but still O(n))

The inverse transform is easier to find

The inverse transform has exactly the same complexity as the forward transform.
Transforms signals with an arbitrary length (need not be 2™)

In-place: requires less memory

Transforms signals with a finite length (without extension of the signal)

Can be used on arbitrary geometries

11



e Can be used on irregular samplings

e Can be extended for weighting functions

e All wavelet filters can be implemented using the Lifting Scheme
e Simple extension to an integer transform possible

The result of a wavelet transform using the Lifting Scheme contains all subband data in
an interleaved form (‘in-place’ transform). However, for some applications the classical order
(‘Mallat’ order [5], cfr. fig. 6) with separated subbands is better suited.

3.2 Algorithm
The flow of a wavelet transform algorithm using the Lifting Scheme looks like:
1. Split:

S; < To9;

di < To41

2. Lifting steps: One or more steps k of the form

a. Primal lifting:

S; Si—Zl;cdj
J

or

b. Dual lifting:

d, — d,*Z’fg‘j
J

3. Normalization:

T

84 nr, - Sy

&
/[\

If the transform is normalized, we have ny, -ny = 1.
As you can see, the inverse transform easily follows from this algorithm: just reverse all
steps.

12



3.3 Example: Biorthogonal Cohen-Daubechies-Feauveau

The analyzing filters for some of the popular biorthogonal Cohen-Daubechies-Feauveau wa-
velets are shown below, together with the lifting steps we obtained by using the technique
described in [3]. Note that the coefficients of the filters are always of the form %, with
z € Z and n € N. This means that all divisions can be implemented using binary shifts.
Unfortunately the coefficients of the lifting steps aren’t always of this form.

3.3.1 CDF (1,z2)

J0.2) g ( 1,1 )

hai) ? ( 1,1 )

hi 3 1/—65 : ( ~1,1,8,8,1,~1 )

hi 5) % : ( 3,3, -22,22,128,128,22, 22, 3.3 )

The lifting steps are:

d, — (]7 — S;
1
S; (%—1) S; + Edl
1,3 1
Si R5 5~ g (=di—1 — 8d; +diy1)
(1,5) 1
S; < S;— ﬁ (3di,2 — 22di,1 — 128(11‘ + 22di+1 — 3di+2)

The normalization factors are:

ng =

ST

3.3.2 CDF (2,12)

Jow) g( 1,-2,1)
V2
8

( 21,2,6,2, 1 )

13



- V2

hoa) ¢ 1gg° (3 —6.-16,38,90,38, 16,63 )

- V2

heo) © Togg” ( 5,10, 34, 78, —123, 324, 700, 324, —123, —78, 34, 10, —5 )

1
di <« d;— 5 (97 + 97+1)
2,2 1
S; (<—) S; — Z ( d,gl — (]7)
1
Sq (%—4) S; — 64 (3(]7 2 — lgdi,1 - 19(]7 + 3(],4_1)
(2,6) 1
S; 4 8 — 51 ( 5d; 3 +39d; 9 — 162d; 1 — 162d; + 39d,; 11 — 5di+2)

The normalization factors are:

ny, =

SIS

3.3.3 CDF (3,12)

93,2 ? (-13.-31)

his) ? (-1,33-1)

hsa) g (8-9,-7,45,45-7,-9,3 )

hss) 5% ( —5,15,19, =97, —26, 350, 350, —26, —97, 19, 15, —5 )

The lifting steps are:

1
S; — S; — §di*1
1
di <« di— 3 (9s; + 3si41)
: 4
S; (}—1) S; + §di
1
S5 (E) S; — % (*3di,1 - 16(]7 + 3(]7+1)

14



(3,5) 1

S; < S;— @ (5di,2 — 34di,1 — 128(11‘ + 34di+1 — 5di+2)

The normalization factors are:

el

3.3.4 CDF (4,12)

I(4.2) ;/—g( “1,4,-6,4, 1 )
hia) g-(3,12,5,40,5,12,3)
V2

Fugy 555 ( —10,40, —2, —192, 140, 560, 140, —192, —2, 40, —10 )
- . V2 [ 35,-140, -55,920, —557, —2932, 2625, 8400,

(46) * g192 "\ 2625, 2932, 557,920, 55, 140,35

The lifting steps are:

1

si ¢ si— g (dia+di)
di < di—(s;+sit1)
4,2 1
s @ 5 17g (73di-1 — 3d)
1
s & g g (52 = 20d; 1 = 29d; + 5disa)
1
s & 7005 (~35dia + 265d;3 — 998d; 1 — 998d; + 265d51 — 35d;12)

The normalization factors are:

nr = 2\/53
V2
n = —.
" 4

15



3.3.5 CDF (5,1)

_ V2
o0 5y ( 1,-5,10,-10,5, 1 )
= V2
hsn) ¢+ g ( 3,-15,20,20, —15,3 )
> V2

hss) @( 5,25, 26, —70, 140, 140,—70,—26,25,—5)

- . V2 (35,-175,120,800, —1357, — 1575, 4200,
(55 4096\ 4200, —1575, —1357,800, 120, —175, 35

The lifting steps are:

1
S; 8 — ﬂ (15di,1 + 5di)
1
di — dz' — E (15SZ' + 93i+1)
5,1 1
S; (<—) S; + gdi
1
S; (§7—3) S; — 5 (*5di,1 - 24(]7 + 5(],4_1)
(5,5) 1
8; 8 (35d;—9 — 230d;_1 — 768d; + 230d;+1 — 35d;12)

2304

The normalization factors are:

ny = 3\/5,
V2
n = —_—.
= 6

3.3.6 CDF (6,12)

_ V2
Ji6.a) 6—4-( 1,-6,15, 20,15, 6,1 )
~ V2
T6.2) 6—4-( —5,30, =56, —14, 154, —14, ~56,30, =5 )
- V2
Rt ¢ o ( 35,210,330, 470, 1827, 252, 3948, 252, —1827, 470, 330, 210,35 )
; V2 [ —63,378,-476, —1554,4404, 1114, —13860, 4158, 28182,
(6:6) * 76384\ 4158, 13860, 1114, 4404, 1554, 476,378, —63

16



The lifting steps are:

1
di <~ di— 5 (si + Sit+1)

1
S; — S — E (9(]771 + 9(]7)
1
d, — d, — g (497 + 487;_|_1)
6,2 1
s & s 35 (—di—1 = 5d;)
(6.4) 1
S; — S; — mﬂ (35d272 - 195dzf] - 195(11 + 35dl+])
1
s & - <oz (~63d; 5 +469d;  — 1686d; 1 — 1686d; — +469d;1 — 63di2)

The normalization factors are:

nr = 4\/53
V2
n = —.
" 8

3.4 The integer wavelet transform

In many applications (e.g. image compression and processing) the input data consists of
integer samples. Unfortunately all of the above transforms assume the input samples are
floating point values. They return floating point values as wavelet coefficients, even if the
input values actually were integer. Rounding the floating point values to integer values
doesn’t help because then we will loose the perfect reconstruction feature.

Fortunately the lifting scheme can be easily modified to a transform that maps integers
to integers and that is reversible, and thus allows a perfect reconstruction [1]. This will be
done by adding some rounding operations, at the expense of introducing a non-linearity in
the transform.

A lifting step basically looks like

1
Ty < T — E ijyj-
J

Here we assume that a,b; € Z, i.e. they are integers. This is true for various wavelet
transforms, among which the Cohen-Daubechies-Feauveau biorthogonal wavelets.

This lifting step can be modified in one of the following ways. A rounding of x to the
nearest integer value will be indicated by {z}.

Full rounding The result of the division by a is rounded:

T; — T; — {72] biyi } .

a

17



Here z; is an integer approximation to z;.

Without rounding We avoid the division by a by multiplying the other terms with a:
77 — ar; — Z bjyj-
J

Here z; = az, and thus the dynamic range of the wavelet coefficients will increase. This
has to be taken into account in later steps. Note that in this case no real rounding
is performed, and thus this can be considered to be an ‘exact’ implementation of the
floating point version, yielding integers.

Mixed form We combine the rounding and multiplication steps of both methods:

N >_; by,
xi<—a1xi—{7j 7] ,
ag
with
ai,az € Z,
ay-ay — Q.

This variant can be used if we want to have more control over the dynamic range of
the resulting z;.

Note that in all of the three cases above the modified lifting step is still reversible, and
thus the perfect reconstruction feature is still present.

If a,b; € Z, we can still use the ‘full rounding’ method to obtain a transform that maps
integers to integers.

Examples

CDF (1,z) This is the well-known Haar transform. The lifting steps

di < d; — s,

1
S; — s8; + Edi,

can be changed into
dz' — dz' — S,

1
S; — S;+ {5(]7},

yielding a transform that maps integers to integers, if we forget about the normalization
factors.

18



CDF (2,z) The lifting steps

can be changed into

di < 2d; — si — siq,
d; 1+ d; }

S; 87;+{ 3

Note that the divider in the second lifting step is changed from 4 to 8 to compensate
for the multiplication with 2 in the first step. An alternative, with rounding in both
steps, would be:

di_ d;
S; 5i+{77‘ 14+ Z}.

3.5 Bounds of wavelet coefficients and bit growth

Ideally we would like the normalization factor for the low-pass data to be v/2 in all cases.
Indeed, then the dynamic range of the low-pass data stays the same if we forget about the
normalization factor. If the input samples are 8-bit values, the low-pass data after applying a
wavelet transform step (the ‘mean’ values) will be 8-bit values too, i.e. there is no bit growth
in the low-pass band.

Of course we will have to ‘remember’ the accumulated normalization factors for every
subband if we want to process the wavelet transformed data later. One way to do this is
to consider each wavelet coefficient (i.e. the value after filtering) to be the mantissa m of a
floating point number in base /2. The exponent e of this floating point number is log 5 of the
accumulated normalization factor, which depends on the subband. Thus the real normalized
value of each coefficient becomes:

z=m- V2"

A special and simpler case of this is the two-dimensional wavelet transform where we
always apply the transform to both the rows and the columns of a matrix. Since v/2xv/2 = 2,
the normalization factor becomes 2 and the base of our floating point numbers can be 2 also.

Example
For CDF (2,2), the lifting steps we use are

di < 2d; — si — siq,
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Figure 9: Two steps of the two-dimensional wavelet transform.

S; Si-i-{

Because of the multiplication by 2 in the first lifting step 1, the d; will be twice as large as

di_1 +d; }
78 .

normal and the normalization factors become

In two dimensions, we will have 4 subbands (LL, HL, LH, HH) after one transform step,

with normalizations factors:

nrr

nre

nNpL

NHH

Applying two wavelet transform steps, as shown in fig. 9, gives the following results. z¢

)

and mg
level [.

= nL

nrg,

= nL-

= ng-

= ng-
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m=2=(v3)’

=y = ()"
m=y=(v2)"
=g =(v2)"

)

represent a coefficient value respectively a mantissa in subband S at decomposition
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