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1 IntroductionThis report is mainly intended as an internal working report of the IWT project \WaveletBased Interactive Video Communication and Image Database Consulting". It serves severalpurposes.First it wants to give a catalog of wavelet related terminology. Thus a �rst part of thereport quickly reviews the theory of the wavelet transform in one and two variables.The compression properties of the biorthogonal Cohen-Daubechies-Feauveau (CDF) wa-velets are illustrated with a simple compression technique.Next we discuss the Lifting Scheme into more detail. This scheme is an algorithm, origi-nally designed to compute second generation wavelets in an e�cient way. Later it has beenshown that it can be used to generate also the \classical" (bi)orthogonal wavelets of Cohen-Daubechies-Feauveau (CDF) type with several advantages over the classical computationalschemes. More precisely, we give an inventory of the lifting steps for CDF wavelet transformsof type (1; x), (2; x), . . . , (6; x).Classical wavelet transforms convert oating point numbers to oating point numbers.However, in many multimedia applications (images, video, audio) the input data consists ofinteger values only. An advantage of the Lifting Scheme is that it can be converted easilyinto a transform that maps integers to integers, while retaining the perfect reconstructionproperty. Some implementation aspects of this transform are also discussed.2 The Wavelet Transform2.1 The Basic Transform StepThe basic block in a wavelet transform [4] is a �lter bank, consisting of 2 �lters (cfr. �g. 1). Adiscrete signal S is �ltered by a high pass �lter (eg) and a low pass �lter (eh), and downsampled.The results are a high pass (HP ) and a low pass (LP ) signal, each containing half as muchsamples as the input signal S.For the inverse transform, �rst the signalsHP and LP are upsampled by putting zeroes inbetween every sample. After that they are �ltered by the �lters g and h and the result is addedtogether. In the case of perfect reconstruction | we'll only consider perfect reconstruction�lter banks here | the resulting signal is equal to the original signal S.
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The �lters g, h, eg and eh are called wavelet �lters if they ful�ll certain conditions. The�lters eg and eh are called dual �lters w.r.t. g and h.2.2 Wavelet and Scaling FunctionsThe wavelet �lters g and h uniquely de�ne a (primal) wavelet function  (x) and a (primal)scaling function '(x). The shape of these functions can easily be found be iteratively applyingan upsampling and �lter step on a signal sequence containing only zeros, except for onesample. Analogously, the �lters eg and eh de�ne a dual wavelet function e (x) and a dualscaling function e'(x).If the �lters g and eg, and h and eh are equal to each other, then the primal and dualwavelet and scaling functions coincide too. In this case the wavelets are called orthogonalwavelets. In the other, more generic, case they are called biorthogonal wavelets.The regularity of a basis function can be measured by the number of vanishing moments.A function has n vanishing moments if the �rst n momentsMj (j � n)Mj = Z 1�1 xjf(x) dxare zero. The more vanishing moments a function has, the smoother the function is.The mathematical meaning is that all polynomials xj with a degree j < n can be repre-sented exactly in the basis fi(x) derived from the function f(x):xj =Xi aifi(x):2.3 Example: Biorthogonal Cohen-Daubechies-FeauveauThis family of biorthogonal wavelets [2] has some interesting properties:� The scaling function '(x) is always symmetric.� The wavelet function  (x) is always symmetric or antisymmetric.� The wavelet �lters are �nite.� The coe�cients of the wavelet �lters are of the form z2n , with z integer and n a naturalnumber.These wavelets are commonly classi�ed by the number of vanishing moments they have:(n; ~n) means that the primal wavelet  (x) | the synthesizing high-pass �lter | has nvanishing moments, while the dual wavelet e (x) | the analyzing high-pass �lter | has ~nvanishing moments.The plots of some of the scaling functions '(x) and wavelet functions  (x) of this familyare shown in the �gures 2, 3 and 4.
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 (x) = p2Xk gk '(2x� k);e'(x) = p2Xk ehk e'(2x� k);e (x) = p2Xk egk e'(2x� k):The coe�cients hk, gk, ehk and egk represent the coe�cients of the �lters h, g, eh and egrespectively.We de�ne the basis functions'j;k(x) � 22=j'(2jx� k); j;k(x) � 22=j (2jx� k);with j; k 2 Z, i.e. 'j;k(x) is a translated and dilated version of '(x).If we have a representation of a function at resolution level j + 1:f(x) =Xk �j+1;k 'j+1;k(x);then we can also decompose it into its low pass and high pass components:f(x) =Xl �j;l 'j;l(x) +Xl j;l  j;l(x):The wanted coe�cients �j;l and j;l can be found by calculating the inner products with thedual basis functions: �j;l = hf; e'j;li;j;l = hf; e j;li;with hf; gi � Z 1�1 f(x) g(x) dx:By using these equations we obtain the formulae for the Fast Wavelet Transform:�j;l = p2Xk ehk�2l �j+1;k;j;l = p2Xk egk�2l �j+1;k:2.6 Properties of Wavelets� Multi-resolution� Locality in both the time/space domain and the frequency domain8



Figure 6: The two-dimensional wavelet transform.� (bi)Orthogonality� Smooth basis functions (controlled by vanishing moments)� Good approximations (in L2)� Fast transform algorithms (On)� Stable decompositions2.7 Higher DimensionsOne step of the wavelet transform of a signal with a dimension n higher than 1 is performedby transforming each dimension of the signal independently. Afterwards the n-dimensionalsubband that contains the low pass part in all dimensions is transformed further. The two-dimensional case is shown in �g. 6.2.8 A simple compression exampleIf we transform an image containing N pixels using a wavelet transform, we have N waveletcoe�cients. Now we can consider a very simple image compression algorithm by replacingthe M smallest (in absolute value) wavelet coe�cients by zero and comparing the resultafter reconstruction with the original image. A graph showing the Peak Signal to NoiseRatio versus the compression rate ( NN�M ) for the well-known \Lena" image and some of theCohen-Daubechies-Feauveau wavelet transforms is shown in �g. 7. Di�erent test images yielddi�erent graphs, but the qualitative behavior of the graphs stay the same.3 The Lifting Scheme3.1 IntroductionThe Lifting Scheme found its roots in a method to improve a given wavelet transform toobtain some speci�c properties. Later it was extended to a generic method to create so-called `Second Generation' wavelets [9, 7, 6, 8].9
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� Can be used on irregular samplings� Can be extended for weighting functions� All wavelet �lters can be implemented using the Lifting Scheme� Simple extension to an integer transform possibleThe result of a wavelet transform using the Lifting Scheme contains all subband data inan interleaved form (`in-place' transform). However, for some applications the classical order(`Mallat' order [5], cfr. �g. 6) with separated subbands is better suited.3.2 AlgorithmThe ow of a wavelet transform algorithm using the Lifting Scheme looks like:1. Split: si  x2idi  x2i+12. Lifting steps: One or more steps k of the forma. Primal lifting: si  si �Xj lkj djorb. Dual lifting: di  di �Xj lkj sj3. Normalization: si  nL � sidi  nH � diIf the transform is normalized, we have nL � nH = 1.As you can see, the inverse transform easily follows from this algorithm: just reverse allsteps. 12



3.3 Example: Biorthogonal Cohen-Daubechies-FeauveauThe analyzing �lters for some of the popular biorthogonal Cohen-Daubechies-Feauveau wa-velets are shown below, together with the lifting steps we obtained by using the techniquedescribed in [3]. Note that the coe�cients of the �lters are always of the form z2n , withz 2 Z and n 2 N. This means that all divisions can be implemented using binary shifts.Unfortunately the coe�cients of the lifting steps aren't always of this form.3.3.1 CDF (1; x)eg(1;x) : p22 � � 1;�1 �eh(1;1) : p22 � � 1; 1 �eh(1;3) : p216 � � �1; 1; 8; 8; 1;�1 �eh(1;5) : p2256 � � 3;�3;�22; 22; 128; 128; 22;�22;�3; 3 �The lifting steps are:di  di � sisi (1;1) si + 12disi (1;3) si � 116 (�di�1 � 8di + di+1)si (1;5) si � 1256 (3di�2 � 22di�1 � 128di + 22di+1 � 3di+2)The normalization factors are: nL = p2;nH = p22 :3.3.2 CDF (2; x)eg(2;x) : p24 � � 1;�2; 1 �eh(2;2) : p28 � � �1; 2; 6; 2;�1 � 13



eh(2;4) : p2128 � � 3;�6;�16; 38; 90; 38;�16;�6; 3 �eh(2;6) : p21024 � � �5; 10; 34;�78;�123; 324; 700; 324;�123;�78; 34; 10;�5 �The lifting steps are:di  di � 12 (si + si+1)si (2;2) si � 14 (�di�1 � di)si (2;4) si � 164 (3di�2 � 19di�1 � 19di + 3di+1)si (2;6) si � 1512 (�5di�3 + 39di�2 � 162di�1 � 162di + 39di+1 � 5di+2)The normalization factors are: nL = p2;nH = p22 :3.3.3 CDF (3; x)eg(3;x) : p28 � � �1; 3;�3; 1 �eh(3;1) : p24 � � �1; 3; 3;�1 �eh(3;3) : p264 � � 3;�9;�7; 45; 45;�7;�9; 3 �eh(3;5) : p2512 � � �5; 15; 19;�97;�26; 350; 350;�26;�97; 19; 15;�5 �The lifting steps are:si  si � 13di�1di  di � 18 (9si + 3si+1)si (3;1) si + 49disi (3;3) si � 136 (�3di�1 � 16di + 3di+1)14



si (3;5) si � 1288 (5di�2 � 34di�1 � 128di + 34di+1 � 5di+2)The normalization factors are: nL = 3p22 ;nH = p23 :3.3.4 CDF (4; x)eg(4;x) : p216 � � �1; 4;�6; 4;�1 �eh(4;2) : p232 � � 3;�12; 5; 40; 5;�12; 3 �eh(4;4) : p2512 � � �10; 40;�2;�192; 140; 560; 140;�192;�2; 40;�10 �eh(4;6) : p28192 �  35;�140;�55; 920;�557;�2932; 2625; 8400;2625;�2932;�557; 920;�55;�140; 35 !The lifting steps are:si  si � 14 (di�1 + di)di  di � (si + si+1)si (4;2) si � 116 (�3di�1 � 3di)si (4;4) si � 1128 (5di�2 � 29di�1 � 29di + 5di+1)si (4;6) si � 14096 (�35di�3 + 265di�2 � 998di�1 � 998di + 265di+1 � 35di+2)The normalization factors are: nL = 2p2;nH = p24 :
15



3.3.5 CDF (5; x)eg(5;x) : p232 � � 1;�5; 10;�10; 5;�1 �eh(5;1) : p216 � � 3;�15; 20; 20;�15; 3 �eh(5;3) : p2128 � � �5; 25;�26;�70; 140; 140;�70;�26; 25;�5 �eh(5;5) : p24096 �  35;�175; 120; 800;�1357;�1575; 4200;4200;�1575;�1357; 800; 120;�175; 35 !The lifting steps are:di  di � 15sisi  si � 124 (15di�1 + 5di)di  di � 110 (15si + 9si+1)si (5;1) si + 13disi (5;3) si � 172 (�5di�1 � 24di + 5di+1)si (5;5) si � 12304 (35di�2 � 230di�1 � 768di + 230di+1 � 35di+2)The normalization factors are: nL = 3p2;nH = p26 :3.3.6 CDF (6; x)eg(6;x) : p264 � � 1;�6; 15;�20; 15;�6; 1 �eh(6;2) : p264 � � �5; 30;�56;�14; 154;�14;�56; 30;�5 �eh(6;4) : p22048 � � 35;�210; 330; 470;�1827; 252; 3948; 252;�1827; 470; 330;�210; 35 �eh(6;6) : p216384 �  �63; 378;�476;�1554; 4404; 1114;�13860; 4158; 28182;4158;�13860; 1114; 4404;�1554;�476; 378;�63 !
16



The lifting steps are:di  di � 16 (si + si+1)si  si � 116 (9di�1 + 9di)di  di � 13 (4si + 4si+1)si (6;2) si � 132 (�5di�1 � 5di)si (6;4) si � 11024 (35di�2 � 195di�1 � 195di + 35di+1)si (6;6) si � 18192 (�63di�3 + 469di�2 � 1686di�1 � 1686di �+469di+1 � 63di+2)The normalization factors are: nL = 4p2;nH = p28 :3.4 The integer wavelet transformIn many applications (e.g. image compression and processing) the input data consists ofinteger samples. Unfortunately all of the above transforms assume the input samples areoating point values. They return oating point values as wavelet coe�cients, even if theinput values actually were integer. Rounding the oating point values to integer valuesdoesn't help because then we will loose the perfect reconstruction feature.Fortunately the lifting scheme can be easily modi�ed to a transform that maps integersto integers and that is reversible, and thus allows a perfect reconstruction [1]. This will bedone by adding some rounding operations, at the expense of introducing a non-linearity inthe transform.A lifting step basically looks likexi  xi � 1aXj bjyj:Here we assume that a; bj 2 Z, i.e. they are integers. This is true for various wavelettransforms, among which the Cohen-Daubechies-Feauveau biorthogonal wavelets.This lifting step can be modi�ed in one of the following ways. A rounding of x to thenearest integer value will be indicated by fxg.Full rounding The result of the division by a is rounded:exi  xi �(Pj bjyja ) :17



Here exi is an integer approximation to xi.Without rounding We avoid the division by a by multiplying the other terms with a:exi  axi �Xj bjyj:Here exi = ax, and thus the dynamic range of the wavelet coe�cients will increase. Thishas to be taken into account in later steps. Note that in this case no real roundingis performed, and thus this can be considered to be an `exact' implementation of theoating point version, yielding integers.Mixed form We combine the rounding and multiplication steps of both methods:exi  a1xi �(Pj bjyja2 ) ;with a1; a2 2 Z;a1 � a2 = a:This variant can be used if we want to have more control over the dynamic range ofthe resulting exi.Note that in all of the three cases above the modi�ed lifting step is still reversible, andthus the perfect reconstruction feature is still present.If a; bj 62 Z, we can still use the `full rounding' method to obtain a transform that mapsintegers to integers.ExamplesCDF (1; x) This is the well-known Haar transform. The lifting stepsdi  di � si;si  si + 12di;can be changed into di  di � si;si  si + �12di� ;yielding a transform that maps integers to integers, if we forget about the normalizationfactors. 18



CDF (2; x) The lifting steps di  di � 12 (si + si+1) ;si  si � 14 (�di�1 � di) ;can be changed into di  2di � si � si+1;si  si + �di�1 + di8 � :Note that the divider in the second lifting step is changed from 4 to 8 to compensatefor the multiplication with 2 in the �rst step. An alternative, with rounding in bothsteps, would be: di  di � �si + si+12 � ;si  si + �di�1 + di4 � :3.5 Bounds of wavelet coe�cients and bit growthIdeally we would like the normalization factor for the low-pass data to be p2 in all cases.Indeed, then the dynamic range of the low-pass data stays the same if we forget about thenormalization factor. If the input samples are 8-bit values, the low-pass data after applying awavelet transform step (the `mean' values) will be 8-bit values too, i.e. there is no bit growthin the low-pass band.Of course we will have to `remember' the accumulated normalization factors for everysubband if we want to process the wavelet transformed data later. One way to do this isto consider each wavelet coe�cient (i.e. the value after �ltering) to be the mantissa m of aoating point number in base p2. The exponent e of this oating point number is logp2 of theaccumulated normalization factor, which depends on the subband. Thus the real normalizedvalue of each coe�cient becomes: x = m � p2e:A special and simpler case of this is the two-dimensional wavelet transform where wealways apply the transform to both the rows and the columns of a matrix. Since p2�p2 = 2,the normalization factor becomes 2 and the base of our oating point numbers can be 2 also.ExampleFor CDF (2; 2), the lifting steps we use aredi  2di � si � si+1;19
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Figure 9: Two steps of the two-dimensional wavelet transform.si  si + �di�1 + di8 � :Because of the multiplication by 2 in the �rst lifting step 1, the di will be twice as large asnormal and the normalization factors becomenL = p2;nH = p24 :In two dimensions, we will have 4 subbands (LL;HL;LH;HH) after one transform step,with normalizations factors: nLL = nL � nL = 2 = �p2�2nLH = nL � nH = 12 = �p2��2nHL = nH � nL = 12 = �p2��2nHH = nH � nH = 18 = �p2��6Applying two wavelet transform steps, as shown in �g. 9, gives the following results. x(l)Sand m(l)S represent a coe�cient value respectively a mantissa in subband S at decompositionlevel l.
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Level 0 LL : x(0)LL = m(0)LL = mLL � 20Level 1 LL : x(1)LL = m(1)LL � �p2�2 = m(1)LL � 21LH : x(1)LH = m(1)LH � �p2��2 = m(1)LH � 2�1HL : x(1)HL = m(1)HL � �p2��2 = m(1)HL � 2�1HH : x(1)HH = m(1)HH � �p2��6 = m(1)HH � 2�3Level 2 LL : x(2)LL = m(2)LL � �p2�2 � �p2�2 = m(2)LL � 22LH : x(2)LH = m(2)LH � �p2�2 � �p2��2 = m(2)LH � 20HL : x(2)HL = m(2)HL � �p2�2 � �p2��2 = m(2)HL � 20HH : x(2)HH = m(2)HH � �p2�2 � �p2��6 = m(2)HH � 2�2
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