

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

614

Extensive Review of SQLIA‘s Detection and Prevention

Techniques
Monali R. Borade

1
, Neeta A. Deshpande

 2

1
 Matoshri College of Enginering and Research Centre, Pune University, Nashik-422101 Maharashtra

2
 Assistant Professor, Matoshri College of Enginering and Research Centre, Pune University, Nashik-422101 Maharashtra

Abstract— Security of web applications is becoming one of

the major concerns today. As per our survey 70% of web

applications over the internet are vulnerable to SQL injection

attacks (SQLIA’s). SQL injection attacks pose serious

security threat to these databases and web applications.

Through SQLIA’s attackers gain unrestricted access to the

databases of applications and potentially sensitive

information. Many methods to address this problem have

been proposed in the literature, some having the scope for

extension. Methods employ only a subset of the prevention

and detection techniques. An extensive survey was done to

review and uncover these issues. The paper strongly focuses

on the review work of SQL injection attacks and their

detection and prevention approaches known to date. This

paper elaborates the survey done for 30 techniques and the

attacks they can withstand. An in depth study of the

techniques and their performance against SQLIA’s is focused

in the paper. Also for each strategy its strengths and

weaknesses are addressed along with comparative analysis.

Keywords— Detection, Modification, Prevention, SQL

injection attacks, Strategies, Vulnerabilities, Web application

security.

I. INTRODUCTION

In recent years the development of internet had huge

impact on human life, commerce and culture. As each coin

have two sides: the World Wide Web also has both pros

and cons. Many web applications like social networking

sites, E-commerce or web portals, online shopping portal

had became central point of everybody‘s life. These web

applications plays vital role in maintaining security of data

stored underlying databases. Unsecured web applications

allow injection attacks to perform unwanted operations on

backend databases and theft of data. So security of web

applications has become a necessity. SQL injection is a

major concern belongs to code injection problem categories

as described in [3] [11]. In these attacks, data provided by

the user is included in an SQL query in such a way that part

of the user‘s input is treated as SQL code. By taking

advantage of these vulnerabilities, an attacker can gain

access to web applications and underlying databases by

submitting SQLCommands.

The main reason of SQL injection vulnerabilities is

insufficient validation of inputs. To address this developers

have proposed a range of detection and prevention

strategies [2] that provides defensive approaches such as

encoding user inputs, performing input validations. A

rigorous and systematic application of these approaches

makes an effective solution for detecting and preventing

SQLIA‘s. To address these issues this review paper

presents a comprehensive survey of SQL injections attacks

known to date. The paper focuses on characterization of

attacks, illustrates their effects, and provides example of

how that attack could be possible. These set of attacks then

evaluated to compare strengths and weaknesses of the

solutions. The result of comparison shows the effectiveness

of solutions.

The remaining paper is organized as follows: section 2

provides background information on SQLIA‘s and related

concepts. Section 3 presents example application

containing vulnerability. Section 4 briefly focuses on

different attack types. Section 5 focuses on current

techniques for detection and prevention of SQLIA‘s.

Section 6 shows summarized comparison of all techniques.

Finally in section 7 this paper is concluded and there will

be a discussion on future trends and directions.

II. BACKGROUND OF SQLIA‘S

An SQL injection attack occurs when an attacker

manipulates the intended effects of SQL query by inserting

new SQL keywords or operators into the query. Attacker

sends this modified query to a user input box in a web form

of a web application to gain unauthorized access. This

input is converted in an SQL query in such a way that it

forms an SQL code [2] [3]. This is generalized definition

of SQL injection. Interested readers can refer to [35] for

more formal definition of SQLIA‘s. Rest of the part of this

section describes two important characteristics of SQLIA‘s:

Injection Mechanisms and Attack Intent.

A. SQL Injection Mechanisms

Malicious SQL Statements can be inserted into injection

vulnerable application by different input mechanisms. This

section focuses on most common injection mechanisms.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

615

1) Injection through user inputs: In this type, attacker

injects malicious SQL commands into user input query. A

web application can read user inputs by many ways

depending on the environment in which the application is

developed and deployed. In most of the cases the user input

comes from web form that is transmitted to the web

application via HTTP GET or POST requests [14]. Using

this type of injection, attacker can gain unauthorized access

of web application and its underlying database.

2) Injection through server variables: Server variables are

collection of variables containing HTTP , environmental

variables, network headers etc. web application use these

variables in variety of ways such as logging usage statistics

and identifying browsing trends. If these variables are use

to logged into database without sanitization, it could cause

SQL injection vulnerability [30]. As attacker can forge the

values in HTTP and network headers, they can expose

these vulnerabilities by placing an SQLIA directly into the

headers. When the query log to the server, the unsanitized

variables get issued to the database and the attack in the

forged header then takes place.

3) Injection through cookies: Cookies are stored on the

client machines which are files containing state information

gathered by web applications. These cookies can be used to

restore the client‘s state information when client returns to

the web application. As client has full control over the

cookies, a malicious client can modify the contents of the

cookies to built SQL Queries to submit the attack to the

web application. [8]

4) Second Order Injection: In this type attacker sends

malicious inputs to the system or database to directly

perform SQLIA when the input is used at a later time. The

objective of this type of attack significantly differs from

regular SQLIA‘s (first –order injection attacks). Second –

order injections are not intended to occur at the time of

input reaches to application or database but the attacker

relays on the knowledge of where the and when the input

will be used and plans the attack so that it executes during

the usage of application or database. To clarify we present

a classic example of a second order injection attack (taken

from [1]). In this example, a user registers on a website

using a seeded username, such as ―admin‘—―. The

application will properly escape the single quotes from

input before storing it in database, preventing its potentially

malicious effects. At this point the attacker modifies his or

her password, an operation typically involving 1) checking

that the user knows the current password and 2) changing

the password if the check is successful.

To perform this web application might form an SQL

command as follows:

query String=”UPDATE users SET password =’ ”+new

Password+” ’WHERE username=’ ”+ username+” ’

AND password’ ’ ”+old Password+” ’ ”

newPassword and oldPassword are the new and old

passwords given by user respectively, and username is the

name of the user currently logged-in (i.e. ‗‗admin‘--‗‘).

Therefore the query string that is sent to the database is:

UPDATE users SET password =’ newPwd ’WHERE

username= ‘admin’---‘AND password=’oldPwd ’

(The query assumes that newPassword and oldPassword

are ―newPwd‖ and ―oldPwd‖).

Because ―---―is the SQL comment operator, everything

after this is ignored by the database. Therefore, the result of

this query is that the database changes the password of the

administrator (―admin‖) to an attacker specified value.

These types of injections are usually difficult to detect and

prevent because the point of injection and point where the

attack actually takes place are different.

B. Attack Intent

Attacks can also be characterized based on the goal or

intention of the attacker [2]. Therefore each of the attack

type described in section 4 has one of the following

intention or goal.

1) Injectable parameters Identification: Here attacker finds

parameters and user input fields that are vulnerable to

SQLIA‘s and probe a web application accordingly.

2) Database fingerprinting: The attacker discovers the type

and version of database that a Web application is using.

Databases respond differently to different queries and

attacks, and this information can be used to ―fingerprint‖

the database. Knowing the type and version of the database

used by a Web application allows an attacker to craft

database specific Attacks. [2].

3) Extracting data: These types of attacks employ

approaches that extract data values from the database.

Depending on the type of the Web application, this

information could be sensitive and highly desirable to the

attacker. Attacks with this intent are the most common type

of SQLIA.

4) Modification of Data: this type involves adding and

modifying data in a database.

5) Performing denial of service: This involves shutdown of

database of web application, and denying services to users.

Locking and dropping database tables type of attack also

comes under this category.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

616

6) Evading detection: This type refers to certain attack

approaches that are employed to avoid auditing and

detection by system protection mechanisms [2].

7) Authentication Bypassing: This type of attack is

intended to allow attacker to bypass database and web

application authentication mechanisms. And attacker gains

all the rights and access privileges to databases and

applications.

8) Executing remote commands: These types of attacks

aims to execute arbitrary commands on the database for ex.

stored procedures or functions available to database users.

9) Performing Privilege Escalations: These types of attacks

are intended to take advantages of errors in code and

logical flaws to escalate privileges of attacker.

III. EXAMPLE APPLICATION CONTAINING VULNERABILITY

Before discussing the various attack types, we introduce

an example application that contains SQL injection

vulnerability [2]. We use this example in the next section

to provide attack examples.

1. String login, password, pin, query

2. login = getParameter("login");

3. password = getParameter("pass");

3. pin = getParameter("pin");

4.Connection conn.createConnection("MyDataBase");

5. query = "SELECT accounts FROM users WHERE

login=‘" +

6. login + "‘ AND pass=‘" + password +

7. "‘ AND pin=" + pin;

8. ResultSet result = conn.executeQuery(query);

9. if (result!=NULL)

10. displayAccounts(result);

11. else

12. displayAuthFailed();

Figure 1: Excerpt of Servlet implementation.

The example shows a simple vulnerability that could be

prevented using a straightforward coding fix approach. We

use this example simply for illustrative purposes because it

is easy to understand and illustrate many different types of

attacks. The code in Figure 1 implements the login

functionality for a web application similar to the

implementations of login functionality found in existing

Web-based applications. The code in the example uses the

input parameters login, pass, and pin to dynamically build

an SQL query and submit it to a database. For example, if a

user submits login, password, and pin as ―monk,‖ ―secret,‖

and ―321,‖ the application dynamically builds and submits

the query:

SELECT accounts FROM users WHERE login=’monk’

AND pass=’secret’ AND pin=321

If the login, password, and pin match the corresponding

entry in the database, monk‘s account information is

returned and then displayed by function displayAccounts

(). If there is no match in the database, function

displayAuthFailed () displays an appropriate error message.

IV. TYPES OF SQLIA‘S

This section presents and discusses the different kinds of

SQLIAs known to date. For each attack type, it provide a

descriptive name, one or more attack intents, a description

of the attack, an attack example, and a set of references to

publications and Web sites that discuss the attack technique

and its variations in greater detail.[2] [9].

The different types of attacks are generally not

performed in isolation; many of them are used together or

sequentially, depending on the specific aim of the attacker.

Note also that there are countless variations of each attack

type. For space reasons, we do not present all of the

possible attack variations but instead present a single

representative example [9] [10].

A. Tautologies

Attack Intent: Bypassing authentication, identifying

injectable parameters, extracting data.

Description: Tautology-based attack is used to inject code

in one or more conditional statements so that they always

evaluate to true. This technique is most commonly used to

bypass authentication pages and extract data. If the attack is

successful, the code either displays all of the returned

records or performs some action if at least one record is

returned.

Example: In this example attack, an attacker submits ― ‘ or

1=1 - -‖

The Query for Login mode is:

SELECT * FROM user_info WHERE loginID=’’ or 1=1

-- AND pass1=’’

The code injected in the conditional (OR 1=1)

transforms the whole WHERE clause into a tautology. The

query evaluates to True for each row in the table and

returns all of them. In above example, the returned set

evaluates to a not null value, which causes the application

to conclude that the user authentication was successful.

Therefore, the application would invoke method

user_main.aspx and to access the application.

References: [6, 7, 8, 13]

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

617

B. Illegal/Logically Incorrect Queries

Attack Intent: performing database finger-printing,

extracting data, identifying injectable parameters

Description: The error message sent from databases on

being sending wrong SQL query sometimes contain some

useful debugging information. This could help attacker in

finding parameters which are vulnerable in the web

application and hence in the database of the application.

Example- The error message for sending a wrong password

may be like:-

Select * from <tablename> where userId = <id> and

password = <wrongPassword> or 1=1;

From this information the attacker is likely come to

know the table name and name of the fields in the database

which could be used further to prepare a more organized

attack. For ―Credit Cards.‖ A similar strategy can be used

to systematically extract the name and type of each column

in the database. Using this information about the schema of

the database, an attacker can create further attacks that

target specific pieces of information.

References: [1, 22, 28]

C. Union Query

Attack Intent: Bypassing Authentication, extracting data.

Description: In union-query attacks, an attacker exploits a

vulnerable parameter to change the data set returned for a

given query. In union-query attacks, Attackers do this by

injecting a statement of the form: UNION SELECT <rest

of injected query> because the attackers completely control

the second/injected query they can use that query to

retrieve information from a specified table. The result of

this attack is that the database returns a dataset that is the

union of the results of the original first query and the

results of the injected second query. [13, 10, 2]

Example: Referring to the running example, an attacker

could inject the text ―‘ UNION SELECT cardNo from

CreditCards where acctNo=10032 - -‖ into the login field,

which produces the following query:

SELECT accounts FROM users WHERE login=’’

UNION SELECT cardNo from CreditCards where

acctNo=10032 -- AND pass=’’ AND pin=

Assuming that there is no login equal to ―‖, the original

first query returns the null set, whereas the second query

returns data from the ―CreditCards‖ table. In this case, the

database would return column ―cardNo‖ for account

―10032.‖ The database takes the results of these two

queries, unions them, and returns the single query to the

application.

In many applications, the effect of this operation is that

the value for ―cardNo‖ is displayed along with the account

information.

References: [1, 28, 21]

D. Piggy-backed Queries

Attack Intent: Extracting data, adding or modifying data,

performing denial of service, executing remote commands.

Description: In this type of attack where an attacker

appends ―;‖ and a query which can be executed on the

database. It could be one of the very dangerous attacks on

databases which could damage or may completely destroy

a table. If this attack is successful then there could be huge

loss of data. [10]

Example: If the attacker inputs ―‘; drop table users - -‖ into

the pass field, the application generates the query:

SELECT accounts FROM users WHERE login=’doe’

AND pass=’’; drop table users --’ AND pin=123

After executing the first query, the database would

recognize the query delimiter (―;‖) and executes the

injected second query. The result of execution of the second

query would be to drop table users, which would likely

destroy valuable information. Other types of queries could

insert new users into the database or execute stored

procedures. It should be noted that many databases do not

need a special character to separate distinct queries, so

simply scanning for a query Separator is not an effective

way to prevent this type of attack.

References: [1, 28, 18]

E. Stored Procedure

Attack Intent: Performing privilege escalation, performing

denial of service, executing remote commands.

Description: Stored procedure is routines stored in the

database and run by the database engine. These procedures

can be either user-defined procedures or procedures

provided by the database by default. Depending on the type

of stored procedure there are different ways to attack. The

vulnerability here is same as in web applications. Moreover

all the types of SQL injection applicable for a web

application are also going to work at this level.

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

EXEC("SELECT accounts FROM users

WHERE login=’" +@userName+ "’ and pass=’"

+@password+

"’ and pin=" +@pin);

GO

Figure 2: Stored procedure for checking credentials.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

618

Example: This example shows how a parameterized stored

procedure can be exploited through an SQLIA. In the

above example, we assume that the query string

constructed at lines 5, 6 and 7 of our example has been

replaced by a call to the stored procedure defined in Figure

2. In this example the stored procedure returns a true/false

value indicating whether the user‘s credentials

authenticated correctly. To launch an SQLIA, the attacker

simply injects ―‘; SHUTDOWN; - -‖ into either the

userName or password fields. This injection causes the

stored procedure to generate the following query:

SELECT accounts FROM users WHERE login=’doe’

AND pass=’ ’; SHUTDOWN; -- AND pin=

At this point, this attack simply works like a piggy-back

attack. The first query is executed normally, and after that

the second malicious query is executed, which results in a

database shut down. This example shows that stored

procedures can be vulnerable to the same range of attacks

as traditional application code.

References: [1, 4, 9, 10, 24, 28, 21, 18]

F. Blind Injection

Attack Intent: Data extraction, Data theft.

Description: It becomes difficult for an attacker to get

information about a database when developers hide the

error message coming from the database and send a user to

a generic error displaying page [5]. It‘s the point when an

attacker can send a set of true/false questions to steal/theft

data.

Example- SELECT name FROM <tablename>

WHERE id=<username> and 1 =0 -- AND pass =

SELECT name FROM <tablename> WHERE

id=<username> and 1 = 1 -- AND pass =

Both the queries after execution will return an error

message. In case the web application is secure, but if the

inputs are not validated in advanced then the chances of

injection exist. If attacker receives an error after submitting

the first query, he might not know that, was it because of

input validation or error in query formation. After that on

submission of the second query which is always true if

there is no error message then it clearly states that id field

is vulnerable.

References: [10, 28, 18]

G. Timing Attacks

Attack Intent: Server shutting down.

Description: In this type of attack timing delays are

observed in response from a database which helps to gather

information from a database.

Here SQL engine is forced to execute a long running

query or a time delay statement with the help of if-then

statement that depends on the logic that has been injected.

It is possible to determine whether injected statement was

true or false depending on how much time page takes to

load. The keyword WAITFOR combined with the branches

can cause response delay for a given time in a database.

Example- Declare @s varchar(500) select @s =

db_nameO if (ascii(substring(@s, I, I)) & (power(3, 0)))

> O waitfor delay '0:0:20'

In this example database gets paused for twenty seconds

if in the database used, the first bit of the first byte of the

name is 1.So, when condition will be true this code is

injected to produce response delay in time.

References: [10, 5, 12, 18]

H. Inference

Attack Intent: Identifying injectable parameters, extracting

data, determining database schema.

Description: In this type of attack, the query is modified to

recast it in the form of an action that is executed based on

the answer to a true/false question about data values in the

database [10]. In this type of injection, attacker generally

tries to attack a site that has been secured enough so that,

when an injection has succeeded, there is no usable

feedback via database error messages. As database error

messages are unavailable to provide the attacker with

feedback, Attackers must use a different method of

obtaining a response from the database. In this situation,

the attacker injects commands into the site and then

observes how the function/response of the Website

changes. By carefully observing, when the site changes its

behavior, the attacker can deduce not only whether certain

parameters are vulnerable, but also additional information

about the values in the database. There are two well-known

attacks that are based on inference. They allow an attacker

to extract data from a database and detect vulnerable

parameters.

References: [10, 2]

I. Alternate Encodings

Attack Intent: Evading detection of vulnerabilities.

Description: This technique is used to modify injection

query by using alternate encodings, means replacing

characters in query by some other characters or symbols

like – Unicode, ASCII, hexadecimal. In this way attacker

can escape the filter for ―wrong characters‖. It could be

extremely harmful for web application if used in

combination with other techniques as it can target different

layers of a web application.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

619

All different kinds of SQL injection attack can be hidden

using this method.

Example- SELECT name FROM <tablename> WHERE

id=’’ and password=O; exec (char (O

x73687574646j776e))

The actual character is returned by the char function

used here that takes hexadecimal encoded characters as an

input. During execution this encoded string gets converted

into shutdown command for database.

References: [10, 2, 13]

J. Deny Database service

Attack Intent: Denying Database services, shutdown of

server, DDOS.

Description: This type of attack is used in the websites to

issue a denial of service by shutting down the SQL Server.

A powerful command recognized by SQL Server is

SHUTDOWN WITH NOWAIT [19]. This causes the server

to shutdown, immediately stopping the Windows services.

After this command has been issued, the administrator must

restart the service be manually

Example 1: Select password from user_info where

LoginId=';shutdown with nowait; --' and Password='0'

The '--' character sequence denotes the 'single line

comment' sequence in Transact - SQL, and the ';' character

denotes the end of one query and the beginning of another.

If the attacker has used the default SA account, or has

acquired the required privileges, SQL server will shut

down, and will need a restart in order to function again.

This attack is used to stop the database service of a

particular web application.

Example 2:

Select * from user_info where LoginId=’1; xp_cmdshell

‘format c:/q /yes ‘; drop database mydb; --AND

pass1= 0

This command is used to format the C:\ drive used by

the Attacker.

V. EXISTING TECHNIQUES FOR DETECTION AND

PREVENTION OF SQLIA‘S

Researchers have proposed a variety of techniques to

address the problem of SQL injection. These techniques

range from development best coding practices to fully

automated frameworks for detecting and preventing

SQLIAs. This section reviews these proposed Techniques

and summarizes the advantages and disadvantages

associated with each technique.

A. Defensive Coding Practices

The main reason of SQL injection vulnerabilities is

improper input validation. Therefore, the best solution for

eliminating these vulnerabilities is to apply suitable

defensive coding Practices. Hence this section summarizes

some of the best practices proposed in the literature for

preventing SQL injection vulnerabilities.

1) Input type checking: SQLIAs can be performed by just

injecting commands into a string or numeric parameter. A

simple check of such inputs can prevent many attacks.

2) Encoding of inputs: In this type of practice, Injection

into a string parameter is often accomplished through the

use of meta-characters that trick the SQL parser into

interpreting user input as SQL tokens. An effective solution

is to use functions to encode a string in such a way that all

meta-characters are specially encoded and interpreted by

the database as normal characters.

3) Positive pattern matching: developers should use some

pattern matching algorithms or input validation routines to

differentiate bad inputs and good inputs. This approach is

generally called positive validation. In this developer will

be able to specify all the forms of legal input, positive

validation is a safer way to check inputs.

4) Identification of all input sources: Developers must

check all input to their application. As outlined in Section

2.1, there are many possible sources of input to an

application. If these inputs are used to construct a query,

this can lead to a way for an attacker to introduce an

SQLIA. Simply put, all input sources must be checked.

Although defensive coding practices are the best

possible way to prevent SQL injection vulnerabilities, but

their application is problematic in practice. Defensive

coding is prone to human errors and is not as completely

and rigorously applied as automated techniques [20, 23,

and 33].

B. Detection and Prevention Techniques

1) Black Box Testing : Huang and colleagues [19]

proposed WAVES in year 2003, a black-box technique for

testing Web applications for SQL injection vulnerabilities.

The technique uses a Web crawler to identify all points in a

Web application that can be used to inject SQLIAs. It then

builds attacks that target such points based on a specified

list of patterns and attack techniques. WAVES then

monitors the application‘s response to the attacks and uses

machine learning techniques to improve its attack

methodology.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

620

This technique improves over most penetration-testing

techniques by using machine learning approaches to guide

its testing. However, like all black-box and penetration

testing techniques, it cannot provide guarantees of

completeness.

2) Static Code Checkers: JDBC-Checker is a technique

proposed by C. Gould, Z. Su, and P. Devanbu. In year 2004

for static checking of the type correctness of dynamically-

generated SQL queries [12, 13]. This technique was

developed to be used to prevent attacks that take advantage

of type mismatches in a dynamically-generated query

string. JDBC-Checker is able to detect one of the root

causes of SQLIA vulnerabilities due to improper type

checking of input. However, this technique would not catch

more general forms of SQLIAs because most of these

attacks consist of syntactically and type correct queries.

3) Tautology checker: a technique proposed by

Wassermann and Su in year 2004, gives an analysis

framework for security in web application. It uses static

analysis combined with automated reasoning to verify that

the SQL queries generated in the application layer cannot

contain a tautology [37]. The primary drawback of this

technique is that its scope is limited to detecting and

preventing tautologies and cannot detect other type of

vulnerabilities.

4) Instruction Set Randomization : SQLRand is a

technique proposed by S. W. Boyd and A. D. Keromytis in

year 2004 for preventing SQL injection attacks by

instruction set randomization. In this technique the SQL

keywords are attached with the key generated by the

randomization Algorithm [5]. When an attacker, who has

no knowledge of the key, attacks the application, the

attempt fails because the query constructed by the attack

will not match with the query that contains the randomly

generated key. The keywords in both the queries will differ,

and prevents SQL injection attack. Since it‘s a static

analysis technique, the security of server‘s web databases is

not compromised in case of an attack on the proposed

method. However, implementation of a proxy server for

randomization and de-randomization adds to the

performance overhead.

5) Static and Dynamic Analysis Techniques: Two recent

related approaches, SQLGuard [6] proposed by G.T.

Baehre, B. W. weide and P.A.G. Sivilotti in year 2005 and

SQLCheck [35] proposed by Z. Su & G. Wassermann in

year 2006 also check queries at runtime to see if they

conform to a model of expected queries. In these

approaches, the model is expressed as a grammar that only

accepts legal queries.

In SQLGuard, the model is deduced at runtime by

examining the structure of the query before and after the

addition of user-input. In SQLCheck, the model is specified

independently by the developer. Both approaches use a

secret key to delimit user input during parsing by the

runtime checker, so security of the approach is dependent

on attackers not being able to discover the key.

6) Amnesia: Amnesia [15] [16] [17] is technique proposed

by W. G. Halfond and A. Orso, in year 2005. In this

approach, a combination of static analysis and run-time

monitoring is used for prevention of SQL injection. In

static phase The AMNESIA tool builds a model of all the

queries that are generated by the application. For this

purpose, the tools access the entire source code. In the

dynamic phase, the query built during run-time is validated

against the model built during the Static phase.

7) CANDID: CANDID [41] is a technique proposed by

Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N.

Venkatakrishna for Preventing SQL Injection Attacks using

Dynamic Candidate Evaluations. This approach

dynamically mines the programmer-intended query

structure and compares this structure with the actual query.

It is used to run the application on candidate inputs that are

benign. However, it‘s not a practical approach because the

problem of finding such inputs is undesirable.

8) Taint Based Approaches

a. WebSSARI: WebSSARI detects input-validation related

errors using information flow analysis [20] proposed by Y.

Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y.

Kuo., In year 2004. In this approach, static analysis is used

to check taint flows against preconditions for sensitive

functions. It detects the points in which preconditions have

not been met and can suggest filters and sanitization

functions that can be automatically added to the

application. To satisfy these preconditions. The WebSSARI

system works by considering sanitized input that has

passed through a predefined set of filters.

b. JAVA static Tainting: Java static Tainting Proposed by

V. B. Livshits and M. S. Lam [23] in year 2005 for Finding

Security Errors in Java Programs with Static Analysis. The

basic approach is to use information Flow techniques to

detect when tainted input has been used to construct an

SQL query. These queries are then flagged as SQLIA

vulnerabilities. As it uses a conservative analysis and has

limited support for untainting operations, hence they can

generate a relatively high amount of false positives.

Varieties of dynamic taint analysis approaches have been

proposed.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

621

c. Web app. Hardening: Web App. Hardening [31]

proposed by Nguyen-Tuong and colleagues and CSSE [32]

proposed by Pietraszek and Berghe modify a PHP

interpreter to track precise per-character taint information.

The techniques use a context sensitive analysis to detect

and reject queries by checking whether untrusted input has

been used to create certain types of SQL tokens. A common

drawback of these two approaches is that they require

modifications to the runtime environment, which affects

portability.

d. JAVA DYNAMIC TAINTING: JAVA Dynamic Tainting

[15] is a technique proposed by V. Haldar, D. Chandra, and

M. Franz in year 2005 and SecuriFly [26] proposed by M.

Martin, B. Livshits, and M. S. Lam in year 2005

implements a similar approach for Java. However, these

techniques do not use the context sensitive analysis

employed by the other two approaches and track taint

information on a per-string basis (as opposed to per

character).

9) New Query Building Approaches: SQL DOM [27] is a

technique proposed by R. McClure and I. Kruger in year

2005 and Safe Query Objects [7] proposed by W. R. Cook

and S. Rai, used encapsulation of database queries to

provide a safe and reliable way to access databases. These

techniques provides an effective solution to avoid the

SQLIA problem by changing the query-building process

from an unregulated to the approach using string

concatenation to a systematic one that uses a type-checked

API

10) Intrusion Detection Systems: It is a technique proposed

by Valeur and colleagues [36] in year 2006 to detect

SQLIAs. Their IDS system is based on a machine learning

technique that is trained using a set of typical application

queries. This technique builds models of the typical queries

and then monitors the application at runtime to identify

queries that do not match the model.

11) Proxy Filters

a. Security Gateway [33] proposed by D. Scott and R.

Sharp is a proxy filtering system that forces the input

validation rules on the data flowing to a Web application.

Using their Security Policy Descriptor Language (SPDL),

developers provided the constraints and specify

transformations to be applied to application parameters as

they flow from the Web page to the application server.

b. Automated fix generation to secure SQL statements [38]

proposed by Stephan Thomas and Laurie Williams in year

2007 is a technique that gathers information of known

vulnerable SQL statements, generates a fix (alternative

code) and then replaces this vulnerability with the

generated code. This method, however, is based on an

assumption that the language of development, database

connector and database system support prepared statements

[38]. It also assumes that the vulnerable code has

equivalent data types as the corresponding field in the

database. In case of mismatching Data types, it assumes

that the compiler will handle run-time type conversions.

12) Pattern Matching Algorithm [40] : proposed by

Prabakar ,M.A Karthikeyan, M. Marimuthu, K. in year

2013 is a technique that can be used to identify or detect

any anomaly packet from a sequential action. Injection

attack is a method that can inject any kind of malicious

string or anomaly string on the original string. Most of the

pattern based techniques are used static analysis and

patterns are generated from the attacked statements. This

technique proposed a detection and prevention method for

preventing SQL Injection Attack (SQLIA) using Aho-

Corasick pattern matching algorithm.

13) Frameworks for SQL Retrieval on Web Application

Security [39]: A technique proposed by Haeng Kon Kim in

year 2010 presents a framework for SQL retrieval on web

application security. This technique is divided into two

modules - Pattern Creation Module (PCM) and Attack

Detection Module (ADM). PCM creates a model of attacks

based on the patterns observed from previous attacks, while

ADM checks if the query fired by the application matches

an existing pattern.

VI. TECHNIQUES EVALUATIONS

A. Comparative Analysis for SQL Injection Attacks and

Solution Techniques

Every approach has some advantages depending on the

settings of the system configured, so it would not be easy to

get an idea about which solution or technique is the best.

Table 4 shows a chart of different approaches against

different kinds of SQL injection attacks. It also shows a

comparative analysis of SQL injection detection and

prevention techniques with attack types. Table 1 shows

objective of various solution approaches, table 2 shows

comparison of various SQLIA‘s detection focused

approaches with respect to attack types, while table 3

shows comparison of various SQLIA‘s prevention focused

approaches with respect to attack types.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prabakar,%20M.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Karthikeyan,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Marimuthu,%20K..QT.&newsearch=true

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

622

Tables 2 and 3 summarize the results of evaluation of all

the techniques. We use four different types of markings are

used to indicate how a technique performed with respect to

a given attack type. The symbol ―tick‖ denotes that a

technique can successfully stop all attacks of that type.

Conversely, the symbol ―cross‖ denotes that a technique is

not able to stop attacks of that type. Two different symbols

to classify techniques that are only partially effective. The

symbol ―◦‖ denotes a technique that can address the attack

type considered, but cannot provide any guarantees of

completeness. An example of one such technique would be

a black-box testing technique such as WAVES [19] or the

IDS based approach from Valeur and colleagues [36]. The

symbol ―−,‖ denotes techniques that address the attack type

considered only partially because of intrinsic limitations of

the underlying approach. For example, JDBCChecker [12,

13] detects type-related errors that enable SQL injection

vulnerabilities. However, because type-related errors are

only one of the many possible causes of SQL injection

vulnerabilities, this approach is classified as only partially

handling each attack type.

Although there exist variety approaches to identify and

prevent these attacks [2], only a few of them have been

implemented practically. Hence, this comparison is based

on analytical evaluation rather than empirical experience.

B. Evaluation with Respect to Injection Mechanisms

Each of the techniques is addressed with respect to their

handling of various injection mechanisms that are defined

in Section 2.1. Although most of the techniques do not

specifically address all of those injection mechanisms, all

but two of them could be easily extended to handle all such

mechanisms. The two exceptions are Security Gateway and

WAVES. Security Gateway can examine only URL

parameters and cookie fields. Because it resides on the

network between the application and the attacker, it cannot

examine server variables and second-order injection

sources, which do not pass through the gateway. WAVES

can only address injection through user input because it

only generates attacks that can be submitted to the

application through the Web page forms.

C. Evaluation with Respect to Deployment Requirements

As each of the techniques have different deployment

requirements. To determine the effort and infrastructure

required to use the technique, the author‘s description of

the technique and its current implementation is examined

and each technique evaluated with respect to the following

criteria:

(1) Does the technique require developers to modify

their code base? (2) What is the degree of automation of the

detection aspect of the approach? (3) What is the degree of

automation of the prevention aspect of the approach?

(4) What infrastructure (not including the tool itself) is

needed to successfully use the technique? The results of

this classification are summarized in Table 4.

D. Evaluation of Prevention Focused Techniques with

Respect to Defensive Coding Practices

Initial evaluation of the techniques against the various

attacks types shows that the prevention-focused techniques

perform very well against most of these attacks. The

hypothesis shows that this result is due to the fact that

many of the prevention techniques are actually applying

defensive coding best practices to the code base. Therefore,

each of the prevention-focused techniques is examined and

classified with respect to the defensive coding practice that

they enforce. Not surprisingly, it is observed that these

techniques enforce many of these practices. Table 5

summarizes, for each technique, which of the defensive

coding practices it enforces.

Table 1

Objective Of various approaches

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

623

Table 2

Comparisons Of Various SQLIA’s Detection Focused Approaches With Respect To Attck Types

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

624

Table 3

Comparison of prevention-focused techniques with respect to attack types.

Table 4

Comparison of techniques with respect to deployment requirements

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

625

Table 5

Evaluation of Code Improvement Techniques with Respect to Common Development Errors

VII. CONCLUSION

This paper has presented a survey and comparison of

current techniques for detecting and preventing SQLIAs.

To perform this evaluation, first various types of SQLIAs

known to date are identified and then the considered

techniques were evaluated in terms of their ability to detect

and/or prevent such attacks. Also different mechanisms

through which SQLIAs can be introduced into an

application and which techniques were Able to handle

which mechanisms were identified. Finally, the deployment

requirements of each technique were summarized and

evaluated to what extent its detection and prevention

mechanisms could be fully automated.

This evaluation found several trends in the results. Many

of the techniques have problems while handling attacks that

take advantages of poorly-coded stored procedures and are

not able to handle attacks that disguise themselves using

alternate encodings. Section 6.4 suggests that the difference

between general detection prevention techniques and

prevention focused techniques could be explained by the

fact that prevention-focused techniques try to incorporate

defensive coding best practices into their attack prevention

mechanisms.

VIII. FUTURE SCOPE

Future evaluation work should focus on evaluating the

techniques precision and effectiveness in practical

implementation. Empirical evaluations can be carried out

such as those presented in related work (e.g., [17, 36])

would allow the comparison of the performance of the

different detection and prevention techniques when they are

applied against real-world attacks and legitimate inputs.

Acknowledgment

The authors wish to thank university Of Pune. This work

is supported in part by a grant from university of Pune

under grant no 13ENG001169.

REFERENCES

[1] C. Anley. Advanced SQL Injection In SQL Server Applications.
White paper, Next Generation Security Software Ltd., 2002.

[2] William G.J. Hal fond and Alessandro Orso, ―A Classification of

SQL injection attacks and Countermeasures‖, proc IEEE int‘l Symp.
Secure Software Engg., Mar. 2006.

[3] D. Aucsmith. Creating and Maintaining Software that Resists
Malicious Attack. http://www.gtisc.gatech.edu/bio aucsmith.html,

September 2004. Distinguished Lecture Series.

[4] F. Bouma. Stored Procedures are Bad, O‘kay? Technical

report,Asp.NetWeblogs,November2003.http://weblogs.asp.net/fbou

ma/archive/2003/11/18/38178.aspx.

[5] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL

Injection Attacks. In Proceedings of the 2nd Applied Cryptography

and Network Security (ACNS) Conference, pages 292–302, June
2004.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree
Validation to Prevent SQL Injection Attacks. In International

Workshop on Software Engineering and Middleware (SEM), 2005.

[7] W. R. Cook and S. Rai. Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries. In Proceedings of the 27th

International Conference on Software Engineering (ICSE 2005).

[8] M. Dornseif. Common Failures in Internet Applications May 2005.

http://md.hudora.de/presentations/

[9] Subodh Raikar. SQL Injection Prevention using Runtime Query
Modeling and Keyword Randomization.

[10] Abhishek Kumar Baranwal. Approaches to detect SQL injection and
XSS in web applications. EECE 571B, TERM SURVEY PAPER,

APRIL 2012

[11] T. O. Foundation. Top Ten Most Critical Web Application
Vulnerabilities,2005.

http://www.owasp.org/documentation/topten.html.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 10, October 2013)

626

[12] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis

Tool for SQL/JDBC Applications. In Proceedings of the 26th
International Conference on Software Engineering (ICSE 04) –

Formal Demos, pages 697–698, 2004.

[13] Indrani Balasundaram. , Dr. E. Ramara. An Approach to Detect and
Prevent SQL Injection Attacks in Database Using Web Service.

IJCSNS International Journal of Computer Science and Network

Security, VOL.11 No.1, YEAR 2012

[14] N. W. Group. RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1.

Request for comments, The Internet Society, 1999.

[15] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation

for Java. In Proceedings 21st Annual Computer Security

Applications Conference, Dec. 2005.

[16] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring

for Neutralizing SQL-Injection Attacks. In Proceedings of the IEEE
and ACM International Conference on Automated Software

Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

[17] W. G. Halfond and A. Orso. Combining Static Analysis and

Runtime Monitoring to Counter SQL-Injection Attacks. In

Proceedings of the Third International ICSE Workshop on Dynamic
Analysis (WODA 2005), pages 22–28, St. Louis, MO, USA, May

2005.

[18] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, Washington, second edition, 2003.

[19] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security
Assessment by Fault Injection and Behavior Monitoring. In

Proceedings of the 11th International World Wide Web Conference

(WWW 03), May 2003.

[20] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.

Securing Web Application Code by Static Analysis and Runtime

Protection. In Proceedings of the 12th International World Wide
Web Conference (WWW 04), May 2004.

[21] S. Labs. SQL Injection. White paper, SPI Dynamics, Inc., 2002.
http://www.spidynamics.com/assets/documents/

WhitepaperSQLInjection.pdf.

[22] D. Litchfield. Web Application Disassembly with ODBC Error
Messages. Technical document, @Stake, Inc., 2002.

http://www.nextgenss.com/papers/webappdis.doc.

[23] V. B. Livshits and M. S. Lam. Finding Security Errors in Java

Programs with Static Analysis. In Proceedings of the 14th Usenix

Security Symposium, pages 271–286, Aug. 2005.

[24] C. A. Mackay. SQL Injection Attacks and Some Tips on How to

Prevent Them. Technical report, The Code Project, January2005.

[25] O. Maor and A. Shulman. SQL Injection Signatures Evasion. White

paper, Imperva, April 2004. http://www.imperva.com/application

defense center/white papers/sql injection signatures evasion.html.

[26] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errors

and Security Flaws Using PQL: A Program Query Language. In
Proceedings of the 20th annual ACM SIGPLAN conference on

Object oriented programming systems languages and applications

(OOPSLA 2005), pages 365–383, 2005.

[27] R. McClure and I. Kr¨uger. SQL DOM: Compile Time Checking of

Dynamic SQL Statements. In Proceedings of the 27th International

Conference on Software Engineering (ICSE 05), pages 88–96, 2005.

[28] S. McDonald. SQL Injection: Modes of attack, defense, and why it

matters. White paper, GovernmentSecurity.org, April 2002.

[29] S. McDonald. SQL Injection Walkthrough. White paper,

SecuriTeam,May2002.http://www.securiteam.com/securityreviews/5

DP0N1P76E.html.

[30] T. M. D. Network. Request.servervariables collection. Technical

report, Microsoft Corporation, 2005.
http://msdn.microsoft.com/library/default.Asp?url=/library/en-

us/iissdk/html/9768ecfe-8280-4407-b9c0-844f75508752.asp.

[31] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting

Information. In Twentieth IFIP International Information Security

Conference (SEC 2005), May 2005.

[32] T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks

through Context-Sensitive String Evaluation. In Proceedings of
Recent Advances in Intrusion Detection (RAID2005), 2005.

[33] D. Scott and R. Sharp. Abstracting Application-level Web Security.
In Proceedings of the 11th International Conference on the World

Wide Web (WWW 2002), pages 396–407, 2002.

[34] K. Spett. Blind sql injection. White paper, SPI Dynamics, Inc., 2003.
http://www.spidynamics.com/whitepapers/ Blind SQLInjection.pdf.

[35] Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. In The 33rd Annual Symposium on

Principles of Programming Languages (POPL 2006), Jan. 2006.

[36] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to
the Detection of SQL Attacks. In Proceedings of the Conference on

Detection of Intrusions and Malware and Vulnerability Assessment

(DIMVA), Vienna, Austria, July 2005.

[37] G. Wassermann and Z. Su. An Analysis Framework for Security in

Web Applications. In Proceedings of the FSE Workshop on
Specification and Verification of Component-Based Systems

(SAVCBS 2004), pages 70–78, 2004.

[38] Stephen Thomas and Laurie Williams. Using Automated Fix
Generation to Secure SQL Statements. In Proceedings of the Third

International Workshop on Software Engineering for Secure

Systems, SESS ‘07, pages 9–, Washington, DC, USA, 2007. IEEE
Computer Society.

[39] Haeng Kon Kim. Frameworks for SQL retrieval on Web Application
Security. In Proceedings of the International Multiconference of

Engineers and Computer Scientists, volume 1, page 5, Hong Kong,

2010. IMECS, International Association of Engineers.

[40] Prabakar, M.A. ; Karthikeyan, M. ; Marimuthu, K. An efficient

technique for preventing SQL injection attack using pattern
matching algorithm IEEE International Conference on Emerging

Trends in Computing, Communication and Nanotechnology (ICE-

CCN), 2013 Digital Object Identifier: 10.1109/ICE-

CCN.2013.6528551 Publication Year: 2013, Page(s): 503 – 506

[41] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N.

Venkatakrishnan. CANDID : Preventing SQL Injection Attacks
using Dynamic Candidate Evaluations. In Proceedings of The 14th

ACM conference on Computer and communications security, CCS

‘07, pages 12–24, New York, NY, USA, 2007. ACM.

http://www.nextgenss.com/papers/webappdis.doc
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prabakar,%20M.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Karthikeyan,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Marimuthu,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6522357
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6522357
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6522357
http://dx.doi.org/10.1109/ICE-CCN.2013.6528551
http://dx.doi.org/10.1109/ICE-CCN.2013.6528551

