
WebIBC: Identity Based Cryptography for Client Side Security
in Web Applications

Zhi Guan, Zhen Cao, Xuan Zhao, Zhong Chen, Xianghao Nan
School of Electronics Engineering and Computer Science

Peking University, Beijing 100871, China
{guanzhi, caozhen, zhaoxuan, chen, nanxh}@infosec.pku.edu.cn

Abstract

The growing popularity of web applications in the last
few years has led users to give the management of their data
to online application providers, which will endanger the se-
curity and privacy of the users. In this paper, we present
WebIBC, integrate public key cryptography into web appli-
cations without any browser plugins. The public key of We-
bIBC is provided by identity based cryptography, eliminates
the need of public key and certificate online retrieval; the
private key is supplied by the fragment identifier of the URL
inspired from BeamAuth [6]. The test and evaluation shows
that WebIBC is secure and efficient on theory and practice.

1 Introduction

With the increasing popularity of Web 2.0 applications
like Google Gmail and Google Docs, people are mov-
ing their private data and communication information from
their local storage to the online application providers. These
online applications offer reliable storages and ease to ac-
cess services. With the AJAX [19] techniques these appli-
cations only rely on browsers with common features include
HTML, javascript and CSS, without the need of installing
any browser plugins or software. These applications make
the exchange, management and access of data much simpler
than previous desktop applications.

While acquiring ease of use services, users will have
to give the control of their data privacy to the application
providers. Although application providers announced that
these private data will not be abused and will be auto-
matically handled without the involvement of administra-
tor, these applications did not provide any mechanisms to
guarantee this promise. Users have to trust the providers
to be reliable and honest, and will “do no evil”. But some
providers have “done evil”. One famous example is Yahoo

providing user information in its email system to govern-
ment that helped land a journalist in prison for 10 years [1].
And the leakage of private information will bring greater
harm to enterprise users. Some providers like Google and
Yahoo also provide services such as Google Apps for enter-
prise users to take the place of their own email servers and
applications. The misuse of provider’s privilege will bring
huge loses for their customers.

1.1 Related Work

Public key cryptography based solutions for the desk-
top counterpart of the above web applications have been de-
ployed widely for many years. Pretty Good Privacy (PGP)
[20] and S/MIME [16]are two de facto standard, and have
been implemented within applications inside many desktop
mail clients. The key management of these solutions re-
quire ad hoc trust management such as PGP “Web of Trust”
or centralized Public Key Infrastructure (PKI). Generally,
these methods can be classified into desktop software and
browser plugins. A collection of these tools are listed in
[2].

1.2 Challenges

Public key cryptography is a fundamental building block
for information security that can provide authentication, au-
thorization, integrity and non-repudiation. But public key
cryptography was seldom utilized in web applications. The
challenges are in twofold:

1. The first challenge is how to get the recipient’s public
key. In traditional PKI, sender needs to visit an on-
line database to find recipients public key and certifi-
cates. Or sender must keep a local database include all
possible recipients public key, like PGP. But for web
applications, none of these methods are practical. In
web browsers javascript programs are restricted in a
sandbox. Javascript can only access contents inside the



pages from the same origin. Which means javascript
cannot access an LDAP from another server or access
local public key database.

2. For the same reason, it is hard to import private key
into javascript program. For some solutions, a plugin
developed with native language will create a bridge be-
tween the browser and the local system. The plugins,
for example, IE ActiveX, will provide a javascript ob-
ject as the interface the access a local file or cryptogra-
phy devices, such as smart card and USB secure token,
which is applied in some e-band systems.

1.3 Our Contribution

In WebIBC, two mechanisms are integrated to resolve
the above challenges and providing security and privacy for
client side web users. The first one is Identity Based Cryp-
tography (IBC), a type of public key cryptography in which
the public key can be an arbitrary string. With IBC scheme,
WebIBC can provide public key encryption and digital sig-
nature for the web applications without the need of online
searching and retrieving of public keys or certificates. Be-
cause the recipient’s email address, is his public key, can
be easily read from the HTTP form in the message sending
web page. The javascript implementation of IBC can make
WebIBC to be easily integrated into any web applications,
and run in all browsers, even text based http clients with
javascript extension, such as w3m [5] and lynx [3]. The
other is to provide the private key from the URL fragment
identifier, the substring starting from the first “#” symbol
of a URL. In WebIBC, the private key is encoded into the
fragment identifier component of the web application URL.

1.4 Paper Organization

This paper is organized as follows: in section 2 we intro-
duce WebIBC with related theory and techniques, followed
by the description of the system architecture and implemen-
tation in section 3, and then the performance and security
evaluation in section 4. At last section we conclude the pa-
per and introduce future works.

2 WebIBC Basic

In this section, we will introduce IBC and fragment iden-
tifier in details firstly, then illustrate the system model of a
WebIBC protected web application.

2.1 Identity-Based Cryptography

Identity-based cryptography (IBC) is a form of public
key cryptography for which the public key can be an ar-
bitrary string, include email address, domain name, and

phone number and user name. The concept was first in-
troduced by Shamir in 1984 [17], used to eliminate the
complexity of public key and certificate management. In
a scenario that Alice wants to send a message to Bob at
bob@domain.com, Alice will not need to retrieve Bobs
public key and certificates from a online LDAP (Light-
weight Directory Access Protocol) server or from a secure
channel, she just simply encrypts the message with bobs
email address “bob@domain.com” by an identity based en-
cryption (IBE) scheme. And Bob can decrypt the message
with the same scheme. IBS can be classified into Iden-
tity Based Encryption (IBE), Identity Based Signature (IBS)
and Identity Based Authenticated Key Agreement proto-
col, or classified by the complexity assumption the scheme
based on [10]. After the concept was first suggested, IBS
schemes [17], [15], [13] were sooner founded, but IBE
scheme is a more challenging problem. Until 2001, the
Boneh-Franklin IBE based on Weil pairing was suggested.
After that, a serious of IBE schemes were provided include
[12], [8], [18].

In the web browser and javascript environment, the
schemes based on pairing are too complex and over kill.
These schemes require at least 512 bits elliptic curve while
only provide security similar to 160 bits Elliptic Curve
Diffie-Hellman (ECDH) and Elliptic Curve Digital Signa-
ture Algorithm (ECDSA). This is the motivation for select-
ing Combined Public Key (CPK) cryptosystem as our IBC
scheme. A revision version of CPK algorithm is introduced
here, which simplify the origin one still remain the security.

2.2 Combined Public Key

The CPK cryptosystem is based on the elliptic curve
cryptography (ECC). Let the elliptic curve domain pa-
rameters discussed in this paper are a sextuple: T =
(p, a, b,G, n, h) consisting of an integer p specifying the
finite field Fp, two element a, b ∈ Fp specifying an el-
liptic curve E(Fp) defined by the equation E : y2 ≡
x3+a·x+b (mod p), a base point G = (xG, yG) on E(Fp),
a prime n which is the order of G, and an integer h which is
the cofactor h = E(Fp)/n. The ECC key pair (d, Q) asso-
ciated with T consists of an elliptic curve secret key d which
is an integer in the interval [1, n − 1], and an elliptic curve
public key Q = (xQ, yQ) which is the point Q = dG. One
character of ECC key pair is that the combination of private
keys and corresponding public keys in ECC is still a pair
of elliptic curve keys. For example, s1, s2 are private key
in elliptic curve, the corresponding public keys are Q1, Q2

that Q1 = s1 ·G, Q2 = s2 ·G; s = s1 + s2, Qt = st ·G =
(s1 + s2) · G = (s1 · G) + (s2 · G) = Q1 + Q2 . So the
combination of key pairs will generate a new key pairs.



2.2.1 System Setup

In the setup procedure, a trusted authority will generate a
master secret in the system and public parameters known to
all entities. Every entity needs to authenticate him to au-
thority, and the authority will extract the private key from
the master secret according to entity’s identity. In IBC, the
authority providing private key extraction service is called
a Private Key Generator (PKG). The master key in CPK
scheme is a matrix in which elements are ECC private keys.
The PKG will choose two positive integer w and k as the
column count and row count of the matrix. The elements of
matrix are randomly generated private keys with ECC do-
main parameter T . The matrix is denoted with SKM (Secret
Key Matrix).

SKM =


r11 r12 · · · r1k

r21 r22 · · · r2k

...
...

. . .
...

rw1 rw2 · · · rwk


The public domain parameters in CPK are a Public Key

Matrix (PKM) derived from SKM. PKM has the same size
with SKM, the corresponding elements in SKM and PKM
compose a key pair in ECC domain parameters T .

PKM = SKM ·G

=


P11 P12 · · · P1k

P21 P22 · · · P2k

...
...

. . .
...

Pw1 Pw2 · · · Pwk



=


r11 ·G r12 ·G · · · r1k ·G
r21 ·G r22 ·G · · · r2k ·G

...
...

. . .
...

rw1 ·G rw2 ·G · · · rwk ·G


The public parameters also include a cryptography hash

algorithm denoted by Map, which map an arbitrary string
into indexes of the matrix, which can be used to choose
a subset of elements in SKM or PKM . The detail of
Map will be describe in next subsection. So the master
key of CPK scheme is MSK and public parameters are
{T,w, k, MPK, Map}.

In the original scheme, the Map algorithm is imple-
mented though a list of functions satisfy random oracle
model. Thus in this paper we simplified the original one
to a standard hash algorithm, that satisfy the hash length is
equal or larger than the required index total bits. The sim-
plified Map algorithm is defined as follows:

Input: Matrix column count w and row count k, hash
function H , lH is hash size of H , make sure that
lH >

⌈
logk

2

⌉
.

Output: {s0, s1, · · · , sw}, for every si, 0 < i < w, 0 <
si < k

Operation:

• h← H(ID).

• i from 0 to k: si ← h % w, h←
⌊

h
w

⌋
.

2.2.2 Key Pair Extraction

In an IBC system, the PKG (Private Key Generator) act as
two roles, the first is a authority. When a user register in
the system, it need to provide some credentials that he has
own the identity. The PKG will generate a private key ac-
cording to the identity. The private key should be delivered
to the user by a secure channel. This can be approached
by any methods. In CPK scheme, given an identity, the
corresponding private key can be extracted from the private
matrix SKM and the public key can be extracted from the
public matrix PKM . Given ID is the identity string, rij is
the element of SKM at (i, j), Pij is the element of PKM
at (i, j). The extraction procedures are as follows:

{s0, s1, · · · , sw} ←Map(ID)

d = ri,si

Q = Pi,si

And d is the private key, Q is the public key, from section
2.1.1 it is proved that (d, Q) is also an ECC key pair [18].

2.2.3 Encrypt and Sign

After PKG is established, the master secret will be gener-
ated and kept securely in PKG, the public parameters will
be public to every user. A registered user can get his pri-
vate key from the PKG, the other users’ public keys from
the public matrix. The key pair is a standard ECC key pair
and any standard ECC signature and encryptions schemes
include ECDSA, ECDH and Elliptic Curve Integrated En-
cryption Scheme (ECIES) can be used.

2.3 URI Fragment Identifier

Fragment identifier is an optional component of a Uni-
form Resource Identifier (URI) [7]. As the name implies,
it addresses a fragment of the resource denoted by the
fragment-free URI. In a URI, the fragment identifier com-
ponent is indicated by the presence of the first “#” character
and terminated by the end of the URI. For example, a URL
with a fragment identifier looks like: http://domain.
com/index.html#frag id The fragment identifier in
a URL is used by the browser to jump to a given portion



of the HTML document. Because fragment identifier spec-
ified portion is only valid within the context of the main re-
source, location and changing the portion neither need to re-
load the page from the server, nor need to pass the fragment
identifier from the browser to the server. So the content
of fragment identifier will never appear over the network.
This character means that identifier can act as a container
to store private information, such as authentication token or
secret key, for client side web applications. Although frag-
ment identifiers have been used in many web applications,
it was first BeamAuth [6] to used as a security token. We-
bIBC is inspired by BeamAuth to provide private key from
the fragment identifier to on page javascript IBC system.

The browser will retrieve and display a page with
URL http://domain.com/index.html#frag id
as follows:

1. Remove the fragment identifier from the URL,
use the remaining address http://domain.com/
index.html to retrieve the page. Domain name
(“domain.com”) and path inside the server (“in-
dex.html”) will be send over the network separately to
DNS server and the application server.

2. When retrieving the whole page, the browser if there
exists a portion named by the fragment identifier. If not
exist, the browser will ignore the fragment identifier.

3. The downloaded javascript in the page can read at-
tributes of the Document Object Model (DOM) ob-
ject, include the original URL from the attribute “win-
dow.document.URL”, then it can parse the fragment
identifier string from the original URL string, and use
it for any propose.

2.4 Working Flow

In a scenario that Alice wants to send a secure message
throw a web mail enhanced with WebIBC, the working flow
is as follows:

1. The authority trusted by Alice and Bob establishes a
PKG. And generate the public system parameters in-
clude the public matrix PKM .

2. Web application embeds WebIBC into these systems
together with the public system parameters released by
the PKG.

3. Alice registers to the PKG to get her private key dA.
PKG will create a URL of the web application, en-
codes Alice’s private key into the fragment identifier
and append it to the URL.

4. Alice receives the URL with her private key, and adds
it to the bookmark of her browser.

5. Now Alice can use this bookmark to log into the web
application, the WebIBC javascript files will also be
downloaded from the server, include the public matrix
of system.

6. Alice uses this web application as normal, entering
Bob’s email address and message content into the
form.

7. When Alice press the send button, javascript program
will get the email address from the form, and extract
Bob’s public key from the matrix. Use this public
key with Elliptic Curve Integrated Encryption Scheme
(ECIES) to encrypt the message.

8. If Alice wants, she can also sign an ECDSA signature
with the private key imported from the bookmark URL
fragment identifier component. And then the message
will be sent to the server.

9. Bob can also retrieve a URL from the PKG and use it
to verify and decrypt Alice’s message.

It should be notice that all the cryptography operations
are all done within the browser, and the server can only re-
ceive the ciphertext. The security and privacy of end users
can be protected from attacks both on network and server
side. From another point of view, server is also free from
the burden of cryptography operations which means We-
bIBC is a good model for distributed computation based on
web browsers.

3 Implementation

The WebIBC include three components: (1) The
JavaScript Crypto Library that implements CPK scheme in
javascript (2) IBC PKG server that provides private key ex-
traction services, and (3) Web Application Server in which
a web mail is provided for the demonstration of concept
of WebIBC . In this section, we describe our implementa-
tion details of WebIBC. All the system, demonstration and
benchmarks are available at http://infosec.pku.
edu.cn/∼guanzhi/webibc/

3.1 JavaScript Crypto Library

The core function of WebIBC is provided by a javascript
crpyto library that can be integrated into any web appli-
cations. This library includes a set of cryptography algo-
rithms; include SHA-1, AES, big integer operations, ECC
and CPK. We get the SHA-1 and AES javascript implemen-
tation from the Internet. And Big Integer implementation
from a javascript RSA library. The BigInteger is designed
for RSA, and not efficient for ECC, we implement efficient
big integer reduction for NIST primes.



3.2 PKG Server and Web Server

The PKG server act as a trusted authority in the system.
It generates the master key and public system parameters,
and provider private key extraction services to users. Be-
fore applying WebIBC, user must authenticate himself to
the PKG; prove the ownership of the identity string, in our
demo system, is an email address. If the authentication suc-
ceeds, user can retrieve his private key from the server. For
the demonstration, we also provide a sample implement an
on page PKG server by javascript. It is not secure, just to
show how it runs.

We implement a simple web mail as our application
server. After login, user can send a message and view re-
ceived messages.

4 Performance and Evaluation

In this section computation and bandwidth overheads of
WebIBC are evaluated from tests and analysis firstly. The
benchmark result shows that the performance of our prove
of concept implementation is acceptable for both users and
browsers. Optimization methods from algorithm and pro-
gramming practice introduced later can enhance the effi-
ciency of WebIBC immensely; the estimated delay will be
unnoticeable to users. The security of WebIBC under some
possible attacks will also be discussed at the end of this sec-
tion.

4.1 Computation Overhead

Computation overhead is determined by many factors,
include the performance of testing environment, how much
data to process, how many recipients are involved and the
needed security level of cryptography schemes. Before the
evaluation, two questions must be answered; the first is what
are the average values of these factors for a given appli-
cation? the other is, what is the maximum overhead can
the application sustain without destroying user experiences?
For a practical mechanism, answer of the second question
must be satisfied, while how to satisfy the above factors is a
tradeoff that can be the design choice of the system.

We select distinct machines for the test. Our main bench-
mark environment is an Apple MacBook laptop with 1.83
GHz Intel Core 2 Duo processor, 2 GB RAM and installed
with dual operating systems. The javascript programs are
tested in Safari 3.03, Firefox 2.0.0.9, Opera 9.24 on Mac
OS X and Internet Explorer 7 (IE7) on Windows XP Pro-
fessional. We also test the system on a much older Dell
desktop computer with 2.6 GHz Pentium 4 processor and
256 MB RAM running Internet Explorer 6 (IE6).

From some tests the second question is sooner found.
For all the four browsers there is a timeout mechanism

on the JavaScript programs. When a javascript program
running over about 5 seconds without any response, the
browser will consider the program to be a “Slow Script”, so
pause it and display an alert dialog to ask the user whether
to terminate it or not. The 5 seconds limit is not affected by
the speed of the computer; it remains the same in all our test
machines. This alert will break the running and confuse the
user, so 5 seconds may be considered as the upper bound of
computation time overhead.

The computation of WebIBC is mainly coming from
three basic cryptography building blocks: AES, SHA-1
and big integer module MULtiply (MUL) operation. The
MUL is the main computation component of ECC and CPK.
When the unit performance is known, the total running time
can be estimated for specific factors. The table below shows
the result of test on the unit speed of these functions.

We run a benchmark include SHA-1, AES with 128 bits
key and 192 bits big integer MUL on different browsers, so
we can estimate the total computation overhead of WebIBC
with different data sets and system parameters. The unit of
SHA-1 and AES result is bytes per millisecond, the unit of
MUL is times per milliseconds.

IE Safari Firefox Opera
SHA-1 20.5 22.1 39.4 25.1
AES 13. 46 14.6 15.4 8.4
MUL 1.12 2.09 1.91 1.39

Now let us consider the factors will affect the final result:

ECC Key Length Every CPK operation require k elliptic
curve point addition and one scalar multiply. The de-
tails of these algorithm will not be introduced here, the
descriptions will be found in [?]. One point addition
include 10 MULs, one point doubling include 8 MULs.
Given l is the key length in bits, there need l point dou-
bling and 0.5l point addition on average. The selected
key length is 192 bits, provide security same to 1776
bits RSA. This requires about 2500 MUL operations
for a CPK encryption.

Payload Size The average data size is different for various
applications. For example the most popular web mail,
email statics from UC Berkeley [4] show that the aver-
ages email content size is 1863 bytes. So we use 3 dif-
ferent testing data size, 0.5KB, 2KB and 10KB. In our
test we did not consider the process of email attach-
ments, for one reason is attachment might be several
megabytes which is too large for current JavaScript
cryptography functions to process, the other is we did
not find a method for JavaScript to get the attachment
before it is sent to the server through a HTTP POST.

The result of our test is shown in figure 1.
Even on the slowest browser with the biggest data size,

the total time is from 2.1 seconds to 3.6 seconds, less than



0.5KB 2KB 10KB
Safari
Firefox
IE
Opera

1383.7 1492 2071
1523 1661 2401
1459 1698 2791
2110 2349 3628

0

1000

2000

3000

4000

Safari Firefox IE Opera

0.5 KB
2 KB
10 KB

Figure 1. Evaluation result of computation
overhead

the 5 seconds limitation. For the average data size - 2KB
and the 3 of the most popular browsers IE, Firefox and Sa-
fari, the overhead is about the same, from 1.4 seconds to 1.6
seconds.

4.2 Possible Optimization

Our tests on the slower computer will exceed the 5 sec-
onds limits. So WebIBC still need some optimization to
fulfill the need of old machines. For the implementation of
WebIBC, some possible optimization method is listed here.

1. Reduce ECC key length from 192 bits to 160 bits,
which provide the security similar to 1128 bits RSA.
The amount of MUL operations will be reduced to
83% of 192 bits key. The time for every MUL will
also be reduced.

2. Faster ECC algorithm. In our prove of concept imple-
mentation, the slowest point scalar multiply algorithm
is used. In [?] some optimized algorithms are intro-
duced. And for encrypt and sign operations, 66% of
the scalar multiply can pre computed.

3. Technique methods. Although the cryptography op-
erations are very time consuming, compare to user’s
performance, include thinking and writing the mes-
sage, the overhead of cryptography operation can be

neglected. With Web 2.0 javascript techniques, these
operations can be separately finished during the long
period when user editing the message. The perfor-
mance of AES and SHA-1 (about 20KB per seconds)
is much faster than people’s editing speed.

4.3 Bandwidth Overhead

The bandwidth overhead caused by WebIBC is coming
from the downloading of javascript crypto library and sys-
tem public parameters of IBC scheme. In our prototype,
the crypto library include AES, SHA-1, big integer opera-
tion, ECC and CPK javascript implementations. Current to-
tal WebIBC javascript code size is 61KB, about 1600 lines.
The size of public system parameters is determined by the
size of the CPK public matrix. Given c is the matrix column
count and the r is row count, there need about 96 × c × r
bytes to store the public matrix with uncompressed elliptic
curve points, or about 49× c× r bytes with compressed el-
liptic curve points. In a 32× 32 matrix with 192 bits ECC,
the size is less than 100KB.

The format of elliptic curve points is a tradeoff in We-
bIBC. Although the compressed format decrease half of the
matrix size, there need r extra computations to get the y co-
ordinate of the mapped elliptic curve points. From our last
test, it shows that at current state the computation is the bot-
tleneck of our system, because compare to a web page, the
bandwidth overhead is acceptable, and if the browser has
cache on these javascript files, it can be neglect.

4.4 Security Analysis

In this section, we will define the attack model and analy-
sis the security of the WebIBC system. In this paper we
use CPK algorithm as the IBE algorithm implementation
in the WebIBC. There are two reasons for us to use this
algorithm. At the first, CPK is an Identity Based Cryptog-
raphy algorithm that can do both IBE and IBS. Do not like
other algorithms like BF-IBE or PKI based algorithms like
DSA, these algorithms can only provide one mechanism,
only encryption or only signature. The other reason is that
javascript is not an efficient language, especially for cryp-
tography algorithm implementations. For BF-IBE, (in this
place, we will add some simulations on the efficiency of the
two algorithms).

4.4.1 Security of Cryptography

The security of WebIBC is depending on the security of
cryptography algorithms it applies. We will discuss the se-
curity of these cryptography algorithms from theory and
practice. In WebIBC we apply CPK as our fundamental
IBC scheme. As we have discussed, CPK is a bounded IBC
scheme, it can defend a fixed number of collude users.



One of the solutions is to replace CPK with other proved
secure IBE schemes, for example, Boneh Franklin IBE have
been proved secure in theory. But at current web applica-
tion environment, these schemes are not efficient enough.
For Boneh Franklin IBE [9] is based on Weil pairing, the
computation need the computation at least 512 bit elliptic
curve. At current we do not have an implementation of BF-
IBE on javascript, from a benchmark of ECC performance,
the 512 bit elliptic curve is ten times slower than the 160 bit
elliptic curve, and the ECC point scalar multiply is only a
low level operation. So at current, BF-IBE is not practical.
Cocks IBE is also not efficient on bandwidth, for every bit
of plaintext, the output ciphertext will be expanded to 2048
bit.

The security of cryptographic hash algorithm should also
be considered. The hash algorithm will be used in two
places, the CPK map function and by the digital signature
procedure. In our implementation we use SHA-1, while
SHA-1 has recently been shown to have certain weaknesses.
This weakness can be resolved by replacing SHA-1 with
stronger SHA-2 family hash algorithms. The later test in
next sub section shows that the computation overhead of
hash algorithm in WebIBC for average email data size is
neglectful.

4.5 Private Key Security

Modern browsers implement the same-origin policy that
prohibits a web object from one site from accessing web
objects served from a different site. Browsers currently en-
force this by checking that the two objects’ originating do-
main names, ports and protocols match. However, if the at-
tacker controls the domain mapping, the same-origin policy
will be broken. This attack can be accomplished by Trojan
horse to tamper the /etc/hosts config file or through the DNS
rebinding attack. Then the javascript downloaded from the
attacker server can gain complete control of the session, in-
clude the private key in the fragment identifier. Some recent
researches [14], [11] have address the attack on same-origin
policy but without widespread deployments. So WebIBC is
still vulnerable to these attacks.

4.5.1 Phishing

Phishing attacks use both social engineering and technical
subterfuge to steal consumers’ personal identity data and
financial account credentials. Social-engineering schemes
use ’spoofed’ e-mails to lead consumers to counterfeit web-
sites designed to trick recipients into divulging financial
data such as credit card numbers, account usernames, pass-
words and social security numbers. Hijacking brand names
of banks, e-retailers and credit card companies, phishers of-
ten convince recipients to respond. Technical subterfuge

schemes plant crimeware onto PCs to steal credentials di-
rectly, often using Trojan keylogger spyware. Pharming
crimeware misdirects users to fraudulent sites or proxy
servers, typically through DNS hijacking or poisoning.

4.5.2 Server Cheating

One possible threat is coming from the application server.
In WebIBC, the cryptosystem implemented by JavaScript is
embedded in the application pages that downloaded from
application HTTP servers. The security of WebIBC de-
pended on the reliable of the correctness of the JavaScript
program and data. If the server provide fake script, the se-
curity will be broken.

We provide some solutions to this problem:

1. WebIBC is a mechanism provided to some honest ser-
vice provider like Google Mail, to provide a guaran-
tee to customers that they can protect users privacy by
mechanism, not just policy. And because WebIBC is
totally “open source”, users can check if the provider
release a valid security implementation.

2. In a web page, JavaScript can be link from other ad-
dresses, So the implementation can be downloaded
from a trust server, for example, the server belonging
to the PKG.

3. Some browsers have generalized plugins that can re-
place some contents in a web page, such as CSS or
scripts. Users can utilize this kind of plugins to insert
the trusted WebIBC implementations into the page.

4.6 Limitation

There are still some limitations in our system, include:
the javascript is provided by the service provider, so it might
be modified. And for an email application, the attachment
is hard to be protected by WebIBC.

5 Conclusion and Future Works

In this paper, we present WebIBC to protect the client
side security and privacy of web applications. WebIBC in-
tegrating identity based cryptosystem into web based ap-
plications and is total established by javascript without any
browser plugins. The performance of WebIBC prototype is
acceptable and has potential to be highly optimized. The
security and some possible attacks on WebIBC are also dis-
cussed. The future work of WebIBC is to evaluation the fea-
sibility of other IBC schemes on WebIBC, especially Boneh
Franklin IBE.



References

[1] CNN news: Yahoo accused of misleading congress.
http://www.cnn.com/2007/US/10/16/yahoo.congress/.

[2] Epic online guide to practical privacy tools.
http://www.epic.org/privacy/tools.html.

[3] Lynx: a text browser for the world wide web.
http://lynx.browser.org/.

[4] UC Berkerly email stats.
http://www2.sims.berkeley.edu/research/projects/how-
much-info/internet/.

[5] W3m, a text-based browser and pager.
http://w3m.sourceforge.net/.

[6] B. Adida. Beamauth: two-factor web authentication with a
bookmark. In CCS ’07: Proceedings of the 14th ACM con-
ference on Computer and communications security, pages
48–57, New York, NY, USA, 2007. ACM.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform re-
source identifier (URI): General syntex. 2005.

[8] D. Boneh and X. Boyen. Secure identity based encryption
without random oracles. 2004.

[9] D. Boneh and M. Franklin. Identity-based encryption from
the Weil pairing. Lecture Notes in Computer Science, 2139,
2001.

[10] X. Boyen. General ad hoc encryption from exponent inver-
sion ibe, 2007.

[11] D. W. Chris Karlof, J. D. Tygar and U. Shankar. Dynamic
pharming attacks and locked same-orgin policies for web
browsers. ACM Conference on Computer and Communi-
cations Security, 2007.

[12] C. Cocks. An identity based encryption scheme based on
quadratic residues. Lecture Notes In Computer Science,
2260:360–363, 2001.

[13] F. Hess. Efficient identity based signature schemes based on
pairings, 2003. SAC 2002.

[14] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting browsers from dns rebinding attack. ACM Con-
ference on Computer and Communications Security, 2007.

[15] K. Paterson. Id-based signatures from pairings on elliptic
curves.

[16] B. Ramsdell. RFC 2633 - S/MIME version 3 message spec-
ification.

[17] A. Shamir. Identity-based cryptosystems and signature
schemes. Crypto ’84, pages 47– 53, 1985.

[18] W. Tang and X. Nan. CPK Cryptosystem. 2004.
[19] C. Wenz. Javascript und ajax. 2007.
[20] P. Zimmermann. The official PGP user’s guide. 1995.


