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1 IntroductionGossiping is an information dissemination problem in which each node of a communication networkhas a piece of information that must be acquired by all the other nodes. Information is communi-cated between pairs of nodes using two-way communications or calls along the communication linksof the network. Gossiping is a well-studied problem. There are many papers describing algorithmsthat minimize the gossip time on various interconnection networks such as hypercubes and meshes.See [5, 3, 6] for surveys of these results.There has been less study of the minimum time needed to gossip when the topology of theinterconnection network does not restrict the communication patterns. Kn�odel [7] proved that thenumber of rounds of communication necessary to gossip is dlog2(n)e when n is even, and dlog2(n)e+1when n is odd. He also proved su�ciency by describing gossip algorithms that meet the lowerbounds on numbers of rounds. The half-duplex version of this problem, in which communicationlinks can only be used in one direction at any given time, has also been studied [1, 8]. All of thesepapers assume a unit cost model in which a communication takes one time unit independent of theamount of information being transmitted. When messages are long, a linear cost model is morerealistic since the length of the messages in most gossip algorithms grows exponentially.In this paper, we assume a store-and-forward, 1-port, full-duplex model in which each com-munication involves two nodes and the single communication link that connects them, each nodecommunicates with at most one other node at any given time, and information can 
ow simultane-ously in both directions along a link. Each node starts with a message of length 1. Messages canbe concatenated and sent as a single communication. We assume a linear cost model in which thetime to send a message of length k is � + k� where � is the start-up time to initiate a call betweena pair of nodes and � is the propagation time of a message of length 1 along a link. If the two nodesinvolved in a call send messages of di�erent lengths, then the time for both nodes to complete thecall is determined by the length of the longer message. A call involving messages of length k can bethought of as a start-up period that takes time � followed by a sequence of k steps each of whichtakes time � .A linear cost model can be either synchronous or asynchronous. In the synchronous linear costmodel, a gossip algorithm consists of a sequence of rounds of simultaneous pairwise communications.All calls in a round start at the same time. Calls in a round may end at di�erent times, dependingon the lengths of the messages, but no node can start a new call until all nodes are ready to startnew calls. In the asynchronous linear cost model, a call can start as soon as both nodes are readyto communicate. Thus, a pair of nodes can start communicating while calls between other pairsare in progress. The unit cost model is always synchronous since each call takes one time unit.Fraigniaud and Peters [4] investigated the structure of minimum-time gossip algorithms usinga linear cost model. They established lower and upper bounds on the time to gossip when thenumber of nodes n is even and showed that there is a synchronous minimum-time gossip algorithmfor every even n. They also gave examples to show that minimum-time gossip algorithms for someodd values of n must be asynchronous - any synchronous algorithm requires strictly more thanminimum time.Peters, Raabe, and Xu [9] studied gossiping with n odd and a linear cost model. They proveda general lower bound of (dlog2(n)e + 1)� + n� on the time to gossip. This lower bound holdsfor all odd n for both the synchronous and asynchronous models. The bound is achievable in theasynchronous case for some odd values of n, but for n = 2k � 1, they proved that every gossip1



algorithm requires time strictly greater than (dlog2(n)e+1)�+n� . For the synchronous case, theyproved stronger lower bounds and conjectured that their lower bounds are achievable for all oddn. They gave an ad hoc synchronous algorithm that achieves their lower bound for n = 2k � 1.In Section 2, we brie
y review the lower bounds for synchronous gossiping from [9]. In apreliminary version of this paper [2], we constructed gossip algorithms that achieve the lowerbounds in [9] for approximately 35% of the odd values of n. Our main result in this paper is acollection of algorithms that achieves the lower bounds for all odd values of n, thereby establishingthe truth of the conjecture in [9]. Our treatment of the synchronous upper bounds is split into twosections. In Section 3, we consider odd values of n that are in the top half of any range betweentwo consecutive powers of 2. In Section 4, we consider the bottom halves of the ranges. The proofin [9] that the general asynchronous lower bound cannot be achieved when n = 2k � 1 is long andcomplicated. In Section 5, we give a much shorter and more intuitive proof of this result.2 Lower Bounds for Synchronous GossipingKn�odel [7] showed that gossiping in the unit cost model requires dlog2(n)e+1 rounds when n is odd.This lower bound on the number of rounds is also valid for the synchronous linear cost model. Wesay that a node is idle during a round of a synchronous gossip algorithm if it is not participating ina call during that round. Since calls involve pairs of nodes and n is odd, there will be at least oneidle node at any given time. It is now immediate that at least n steps are required to gossip whenn is odd because each node needs to acquire n � 1 pieces of information, and at least one nodeis idle during each step. This gives a lower bound of maxf(dlog2(n)e + 1)�; n�g. Peters, Raabe,and Xu [9] proved a lower bound of (dlog2(n)e+ 1)� + n� for odd n for both the synchronous andasynchronous cases. They proved stronger lower bounds for the synchronous case by �xing thenumber of rounds to be dlog2(n)e+1 and then focussing on the required number of steps. We takethe same approach to synchronous upper bounds.The required number of rounds, dlog2(n)e + 1, is the same for every odd n between 2k�1 + 1and 2k � 1, where k = dlog2(n)e. The required total number of steps and also the requirednumbers of steps in each of the rounds depend on whether n is in the bottom half of the range,2k�1 < n < 2k�1 + 2k�2, or the top half of the range, 2k�1 + 2k�2 < n < 2k. We will often refer tothe bottom halves of all ranges collectively as the bottom half and similarly for the top half.Theorem 1 ([9]) A synchronous gossip algorithm for odd n in the top half which has dlog2(n)e+1rounds requires at least 2n� 2k�1 � 1 steps where k = dlog2(n)e, and k � 2. A feasible sequence ofnumbers of steps in the rounds is 1 2 4 8 : : : 2k�2 x x where x = n� 2k�1.Proof Outline: The numbers of steps listed in the statement of the theorem for the �rst k � 1rounds are the maximum numbers of usable steps since nodes can at most double the amount ofinformation that they know each round. During each round (including the last two rounds), atleast one node must be idle. There must be enough steps in the last two rounds for nodes thatare idle in earlier rounds to receive the information that they are missing. It can be shown thatdecreasing the number of steps in any round results in an increase in at least one other round. 22



Theorem 2 ([9]) A synchronous gossip algorithm for odd n in the bottom half which has dlog2(n)e+1 rounds requires at least 2k�2 � 1 + 2dn�2k�22 e + bn�2k�22 c steps where k = dlog2(n)e, and k � 2.A feasible sequence of numbers of steps is 1 2 4 8 : : : 2k�3 in the �rst k � 2 rounds. Two of thelast three rounds have z = dn�2k�22 e steps and the other round has y = bn�2k�22 c steps.Proof Outline: Similar to Theorem 1. 2Conjecture 1 ([9]) There are synchronous gossip algorithms that achieve the lower bounds ofTheorems 1 and 2 for every odd n.We note that there can be a trade-o� between the number of rounds and the number of steps ina synchronous gossip algorithm. If more than dlog2(n)e+1 rounds are permitted, then the numberof steps can often be reduced. Depending on the relative values of � and � , the fastest algorithmcould have more than dlog2(n)e + 1 rounds. We do not investigate this trade-o� in this paper.See [4] for results and some examples.3 Synchronous Gossiping in the Top HalfIn this section, we describe algorithms that achieve the lower bound of Theorem 1 for all values ofn in the top half. This proves Conjecture 1 for every odd n in the top half of any range betweentwo consecutive powers of 2, that is, for every odd n, 2k�1 + 2k�2 + 1 � n � 2k � 1, k � 3. Ourresult is the following.Theorem 3 For any odd n in the top half, there is a synchronous gossip algorithm with dlog2(n)e+1 rounds and 2n� 2k�1 � 1 steps, where k = dlog2(n)e, k � 2.Note: Strictly speaking, the terms top half and bottom half, and the corresponding mathematicalde�nitions do not make sense for k = 2 since n = 3 is the only odd value in this range. Forconvenience, we will consider n = 3 to be in the top half. Note that Theorems 1 and 2 are bothtrue for n = 3.As dictated by Theorem 1, our algorithms have k + 1 rounds, where k = dlog2(n)e, and thenumbers of steps in the rounds are 1 2 4 8 : : : 2k�2 x x respectively where x = n � 2k�1. Ouralgorithms and proofs of correctness in this section and in Section 4 are based on two propertiesof partial gossip algorithms and on the notion of experts. We say that a node is an expert of aset S if it knows the information of every node in S. Our partial gossip algorithms for n nodeshave k = dlog2(n)e rounds with 2i�1 steps in each round i = 1; 2; : : : ; k. Note that a partial gossipalgorithm cannot be extended to an optimal complete gossip algorithm in the linear cost model bythe addition of a k + 1st round because round k of an optimal algorithm has x < 2k�1 steps. Ouroptimal complete gossip algorithms will use one or more partial gossip algorithms as subroutinesduring the �rst dlog2(n)e � 2 or dlog2(n)e � 1 rounds.Property A For any odd n � 3, we say that property An is true if there is a partial gossipalgorithm for n nodes with k = dlog2(n)e rounds and 2i�1 steps in each round i = 1; 2; : : : ; k suchthat after k rounds: 3



1. 2k�1 nodes are experts (i.e., know all n pieces of information), and2. each of the remaining x = n� 2k�1 nodes knows at least 2k�1 pieces of information.Property B For any odd n � 5, we say that property Bn is true if there is a partial gossipalgorithm for n nodes with k = dlog2(n)e rounds and 2i�1 steps in each round i = 1; 2; : : : ; k suchthat at least x = n� 2k�1 nodes are idle in round k.To prove Theorem 3, we will �rst prove that Property An is true for every odd n � 3. Theorem 3will then follow easily. The organization of the proof of Property A consists of three propositionsas shown in Figure 1. Proposition 1 establishes Property A in the top half, i.e., An is true forevery odd n in the top half. The inductive steps are shown with solid lines and arrows in Figure 1.Proposition 2, shown with dashed lines and arrows in Figure 1, proves that both Properties A andB hold in the bottom quarter, i.e., for every odd n, 2k�1 < n < 2k�1+2k�3. Proposition 3 is a morecomplicated induction; it shows that if Property A holds for an entire range 2k�1 < n < 2k, thenboth Properties A and B hold in the second quarter two ranges up, i.e., for every 2k+1 + 2k�1 <n < 2k+1 + 2k. The steps of Proposition 3 are shown with dotted lines and arrows in Figure 1.Collectively, the three propositions cover all odd values of n.k = 2 Proposition 2Proposition 3Proposition 1Base cases
k = 6k = 5k = 4k = 3 22BB B B
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Figure 1: Organization of the proof of Property AProposition 1 Property An is true for every odd n � 3 in the top half.We will prove Proposition 1 by induction on k = dlog2(n)e using three lemmas.Lemma 1 Let n = 2k�1 + x be an odd number such that k = dlog2(n)e and k � 2. If An is true,then An0 is true where n0 = 2k + 2k�1 + x. 4



Proof : Let n = 2k�1 + x for any �xed k � 2 and odd x. Note that 1 � x � 2k�1 � 1, sincedlog2(n)e = k. Also note that a gossip algorithm for n nodes has k + 1 rounds [7]. Suppose thatAn is true and let n0 = 2k + 2k�1 + x = 2k + n. Partition the set S of n0 nodes into two subsetsS1 and S2, such that jS1j = 2k and jS2j = 2k�1 + x = n. Gossiping among n0 nodes requires k + 2rounds. During the �rst k rounds of a partial gossip algorithm, the nodes of S1 and the nodes ofS2 communicate independently. The 2k nodes of S1 can all be experts of S1 after k rounds. Then = 2k�1 + x nodes of S2 can satisfy property An after k rounds by assumption. In round k + 1of the partial gossip algorithm, the 2k�1 experts of S2 exchange all of their information with 2k�1of the experts of S1 to create 2k experts of S1 [ S2 = S. The remaining x nodes of S2 exchangeinformation with x nodes of S1. After round k+1, these 2x nodes and the remaining 2k�1�x nodesof S1 each know at least 2k pieces of information. Since round k+ 1 has 2k steps, all conditions ofProperty An0 are satis�ed.The algorithm is illustrated in Figure 2. The column of two boxes with bold outlines on the leftshows the situation after k rounds. Round k+ 1 is shown in detail and the box on the right showsthe situation after round k + 1. The gray shading is used to indicate nodes that are idle duringround k + 1. 2S1 2k stepsRound k + 1roundsAfter k
S22k experts 2k�1 expertsof S1n = 2k�1 + xnodes satisfyProperty An 2k�1 of S2x nodes knowof S1x expertsexperts of S12k�1 � x 2k�1 � xexperts of S12x nodesexperts of S1& know2k�1 of S2 of S1 [ S22k experts2k�1 expertsof S2 2k�1 expertsof S1 [ S2 at least 2knodes know2k�1 + xof S1 [ S22k�1 expertsof S1

Figure 2: Proof of Lemma 1Lemma 2 Let n = 2k�1 + x be an odd number such that k = dlog2(n)e, 2k�2 + 1 � x � 2k�1 � 1,and k � 3. If An is true, then A2n�1 is true.Proof : Suppose that An is true and consider a set S of 2n�1 nodes. Partition S into three subsetsS1, S2, and S3 such that jS1j = n, jS2j = 2k�1, and jS3j = x � 1. Note that k + 2 rounds arerequired to gossip among 2n� 1 nodes. During the �rst k� 1 rounds of a partial gossip algorithm,the nodes of S2 and S3 communicate within their own subsets. After k� 1 rounds, all nodes of S2and S3 can be experts of their respective subsets because the number of nodes in each subset is atmost 2k�1 and is even. After a partial gossip algorithm of k rounds, the jS1j = n nodes of S1 cansatisfy Property An by assumption. However, n is odd, so at least one node u of S1 will be idle5



during round k. Node u knows at least 2k�1 pieces of information after k�1 rounds by assumptionAn, and is free to communicate with a node v of S2 in round k. As shown in Figure 3, round kof the partial gossip algorithm for S1 has been modi�ed to include this communication between uand v. The remaining n� 1 nodes of S1 continue to communicate within S1 during round k. UsingFigure 3, it is not di�cult to verify that S = S1 [S2 [S3 satis�es all conditions of Property A2n�1after round k+ 1. Note that the condition x � 2k�2 + 1 in the statement of the lemma is requiredin round k + 1 to ensure that 2x� 2� 2k�1 � 0. 2
S2S3
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Figure 3: Proof of Lemma 2Lemma 3 Let n = 2k�1 + x be an odd number such that k = dlog2(n)e, 2k�2 + 1 � x � 2k�1 � 3,and k � 4. If An is true, then A2n+1 is true.Proof : This proof is similar to the proof of Lemma 2. Partition the set S of 2n+1 nodes into threesubsets S1, S2, and S3 such that jS1j = n, jS2j = 2k�1, and jS3j = x+ 1. Gossiping among 2n+ 1nodes requires k + 2 rounds. As in the proof of Lemma 2, the nodes of S2 and S3 communicatewithin their own subsets during the �rst k � 1 rounds of a partial gossip algorithm. After k � 1rounds, all nodes of S2 and S3 can be experts of their respective subsets because S2 and S3 are ofeven order at most 2k�1. After k rounds, the nodes of S1 can satisfy An by assumption. At least6



one node u of S1 is idle during round k of a partial gossip algorithm for S1 and knows at least2k�1 pieces of information by assumption An. As in the proof of Lemma 2, round k of the partialgossip algorithm for S1 is modi�ed to include a communication between u and a node v of S2. Thecommunications during rounds k and k + 1 of the partial gossip algorithm are shown in Figure 4and prove that S = S1 [ S2 [ S3 satis�es all conditions of Property A2n+1 after round k + 1. Thecondition x � 2k�2 + 1 is needed to ensure that 2x+ 1� 2k�1 � 0 in round k + 1. The reason forthe condition x � 2k�1 � 3 (instead of x � 2k�1 � 1 as in Lemma 2) is to ensure that jS2j > jS3jso that S2 has a node v to communicate with node u of S1 in round k. 2
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Figure 4: Proof of Lemma 3Proof of Proposition 1: The case A3 is true by inspection and case A7 follows from A3 byLemma 1. Suppose that Property An is true for every odd n in the top half of some range betweentwo consecutive powers of 2. That is, An is true for 2k�1 + 2k�2 < n < 2k with dlog2(n)e = k forsome k � 3. Then An is true for n = 2k+1 � 1 by Lemma 1, and for every other odd n in the tophalf with dlog2(n)e = k + 1 by Lemmas 2 and 3. Hence An holds for every odd n � 3 in the tophalf by induction. 27



The next two propositions together show that Properties A and B hold in the bottom half.The two propositions depend on each other: the proof of Proposition 2 assumes the truth ofProposition 3 and vice versa. See Figure 1.Proposition 2 Property An and Property Bn are true for every odd n � 5 in the bottom quarter.Proof : We will prove this result by induction on k = dlog2(n)e. The base case n = 5, shownin Figure 5, proves the proposition for k = 3. (For convenience, we will consider n = 5 to be inthe bottom quarter of its range even though the term does not really make sense when k = 3.)In Figure 5, each horizontal line represents one node and the numbers in the boxes indicate theinformation received during the communication immediately to the left. For example, in round2, node 4 sends items 3 and 4 to node 5 and receives item 5. Shading indicates that a node wasidle during the round. The induction step shows that if Properties A and B hold in the bottom
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x� 2k�2nodesx� 2k�2nodes knowx of S1 &2k�2 of S2x� 2k�2nodes know2k�2 of S2Figure 9: Optimal gossip algorithm in the top half4 Synchronous Gossiping in the Bottom HalfIn this section, we describe algorithms that achieve the lower bound of Theorem 2 for all oddvalues of n in the bottom half. As dictated by Theorem 2, our algorithms have k+1 rounds, wherek = dlog2(n)e, the numbers of steps in the �rst k � 2 rounds are 1 2 4 8 : : : 2k�3 respectively, twoof the last three rounds have z = dn�2k�22 e steps, and the other round has y = bn�2k�22 c steps.Theorem 4 For any odd n in the bottom half, there is a synchronous gossip algorithm withdlog2(n)e+ 1 rounds and 2k�2 � 1 + 2dn�2k�22 e+ bn�2k�22 c steps, where k = dlog2(n)e, k � 3.Proof : The organization of this proof is more straightforward than the proof for the top half, butthe diagrams are more complicated. The special cases n = 2k�1+2k�2� 1 and n = 2k�1+2k�2� 3are shown in Figures 10 and 11 respectively.For the case n = 2k�1 + 2k�2 � 1 (Figure 10), note that z = 2k�2 and y = 2k�2 � 1, and wehave chosen to have y steps in the last round (round k + 1). There are enough steps in the lastround for a node to learn all of the information of S1, but not quite enough steps to learn S2 orS3. Therefore, some nodes need to learn at least one item from S2 or S3 in round k. Fortunately,there are more than enough steps in round k to permit this.11
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Figure 11: Gossip algorithm for n = 2k�1 + 2k�2 � 3For the case n = 2k�1+2k�2�3 (Figure 11), z = 2k�2�1 and y = 2k�2�2, and we have chosento have y steps in round k� 1. So, the step sequence for the rounds is: 1 2 4 8 : : : 2k�3 y z z. Thesubset S1 has z = 2k�2 � 1 nodes and z is in the top half. By Theorem 3, we can gossip in S1 ink � 1 rounds with the step sequence, 1 2 4 8 : : : 2k�4 x x, with x = 2k�2 � 1� 2k�3 = 2k�3 � 1.Since x is less than the numbers of steps available in rounds k� 2 and k� 1 (which have 2k�3 and12



2k�2 � 2, steps respectively), the gossiping in S1 can be completed. The number of nodes in S2 iseven, so gossiping can be completed in k � 1 rounds and the step sequence 1 2 4 8 : : : 2k�3 y byLemma 2.3 in [4].The structures of the algorithms for the remaining values of n in the bottom half, 2k�1 + 1 �n � 2k�1 + 2k�2 � 5, depend or whether y is even (and z = y + 1 is odd), or y is odd (and zis even). Figures 12 and 13 show the �rst k � 1 rounds for y even and y odd respectively. Bothalgorithms use the fact, established in the previous section, that Property An holds for all oddn, and both algorithms use z steps in round k � 1. In both cases, 2k�3 � y � 2k�2 � 3 and2k�3 + 1 � z = y + 1 � 2k�2 � 2. Figures 12 and 13 should require no further explanation.Round k� 1z stepsS1S2S3
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experts ofFigure 12: Round k � 1 when y is evenThe last two rounds k and k+ 1 depend on whether y is even or odd, and also on whether n isin the �rst quarter or the second quarter. Thus, there are four cases to consider for the last tworounds. The two algorithms for round k � 1 shown in Figures 12 and 13 are common to the �rstand second quarters.The last two rounds in the �rst quarter are shown for y even and y odd in Figures 14 and 15respectively. In both cases 2k�1 + 1 � n � 2k�1 + 2k�3 � 1, so 2k�3 � y � 3 � 2k�4 � 1 and2k�3 + 1 � z = y + 1 � 3 � 2k�4. Also, jS1j = y, jS2j = z, and S3 = 2k�2. Since y = bn�2k�22 c andz = dn�2k�22 e, we get jS3j < y + z. With this information, it is not di�cult to verify that all of theblocks shown in the diagrams contain positive numbers of nodes and that there are enough stepsin rounds k and k + 1 for each pair of communicating nodes to exchange all of the informationspeci�ed. The only other observation that should be made concerns blocks of nodes such as the13
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Figure 13: Round k � 1 when y is odd�rst and third blocks in Figure 14 which exchange information in round k. The nodes in these twoblocks each know z pieces of information from S3 after k � 1 rounds and they must all be expertsof S3 after round k. Since jS3j < y + z, there are enough steps in round k for each node to acquirethe information that it needs, but care must be taken in round k� 1 of Figure 12 that the nodes inthe two blocks acquire complementary information from S3. Similar comments apply to the secondand fourth blocks in round k of Figure 15 and to other pairs of blocks in the two diagrams.The last two rounds in the second quarter are shown for y even and y odd in Figures 16 and 17respectively. In both cases 2k�1 + 2k�3 + 1 � n � 2k�1 + 2k�2 � 5, so 3 � 2k�4 � y � 2k�2 � 3and 3 � 2k�4 + 1 � z = y + 1 � 2k�2 � 2. As in the �rst quarter, jS1j = y, jS2j = z, andS3 = 2k�2 < y + z. Observations similar to the observations for the �rst quarter also apply to thesecond quarter. The only additional observation for the second quarter is that the range of valuesof n, and consequently the ranges of y and z, are reduced because the two largest values of n inthe second quarter, n = 2k�1 + 2k�2 � 1 and n = 2k�1 + 2k�2 � 3, have been handled as specialcases. 2Theorem 3 and Theorem 4 together prove the truth of Conjecture 1 for every odd n.14
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Figure 14: Last two rounds in �rst quarter when y is even5 Asynchronous Gossiping5.1 The Equal Exchange PrincipleAny asynchronous gossip algorithm for n nodes with n odd takes time at least (dlog2(n)e+1)�+n�for any � � 0 and � � 0 [9]. We will derive several properties of asynchronous gossip algorithmsthat take time exactly (dlog2(n)e+1)�+n� and then derive a contradiction for the case n = 2k�1,and � > 0 and � > 0.First, we need some terminology. We say that a node is busy at a particular time if it is in the15
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Round ky stepsAfter k � 1rounds Round k + 1z stepsz � 2k�3nodesnodes& knowexperts of S1 z � 2k�3nodes2k�3 � 1z of S3 2k�2 � z � 1z � 2k�3nodes2z � 2k�2experts of S1& know2k�3 of S2 2k�2 � z � 1nodes1 node
z � 2k�3nodes2k�2 � z � 1nodes2k�3 � 1experts ofS1 [ S32z � 2k�2experts ofS1 [ S2 &know 2k�3�1of S3 z � 2k�3nodesz � 2k�3nodes2k�2 � zS2 [ S3experts of 2k�2 � z � 1nodes1 node1 nodez � 2k�3nodes2k�3 expertsof S2 [ S3 1 nodenodesz � 2k�32k�3 expertsof S2 & knowz of S3 1 expert ofS2 [ S3experts ofS1 [ S2 [ S32k�3 � 1know z of S3S1 [ S2 &experts ofz � 2k�3 1 node1 nodenodesz � 2k�3 � 31 nodenodesz � 2k�3 � 33 nodesnodes2k�2 � z � 1

S3 & knows1 expert of2k�2 � z � 1experts ofS1 [ S3 &know y of S2S1 [ S3experts ofz � 2k�3nodesz � 2k�3nodes2k�2 � z � 12k�3 � 1experts ofS1 [ S3 2k�2 � z � 1nodes 1 nodenodes2k�2 � z � 1z � 2k�3nodes
n experts ofS1 [ S2 [ S3

1 expert of S3 y of S21 nodeFigure 16: Last two rounds in second quarter when y is evenor a period that it is idle waiting for another node that is in the start-up period of a call. In anasynchronous algorithm, the steps and start-up periods of the nodes can occur at di�erent times.However, we can number the steps and start-up periods of each node. In the following, when wetalk about the ith step of an algorithm, we are referring collectively to the ith steps of all of thenodes even though these steps may occur at di�erent times.Now, we derive some properties of asynchronous gossip algorithms that take time exactly(dlog2(n)e+ 1)� + n� .Property 1 No node can be idle during more than one step of an algorithm.17



roundsAfter k � 1 Round k + 1y stepsRound kz steps1 node

nodesy� 2k�3nodes2k�2 � y � 2nodes2k�2 � y � 22k�3 � 1experts ofS1 [ S3 1 nodeS2 [ S3experts of2k�3 y� 2k�3 + 1nodes1 node1 nodeS1 [ S22 experts of y� 2k�3 + 1nodesof S2 & knowz of S32k�3 experts 2k�2 � y � 1nodes2y � 2k�2experts of S2& know2k�3 of S1 y� 2k�3y� 2k�3nodesnodesnodes2k�2 � y � 1nodesy� 2k�3z of S3experts of S12k�3 � 1& know 1 nodey � 2k�3experts ofS1 [ S2 &know z of S32k�2 � y � 1S1 [ S3 & 1 nodeexperts of nodesy � 2k�3know 1 of S2 2k�2 � y � 2nodes

nodesS1 [ S2 [ S3 2y � 3 � 2k�3�1 nodesnodes2k�2 � y � 21 nodenodesy � 2k�3y � 2k�3 + 1S2 [ S3experts ofknow z of S3S1 [ S2 &2 experts of 1 node1 nodenodesy � 2k�3nodes2k�2 � y � 12k�3 expertsof S2 [ S3 nodesy � 2k�3�1 nodes2y � 3 � 2k�3nodes2k�2 � y � 1of S3know 2k�3+1S1 [ S2 &experts of2y � 2k�2 n experts ofS1 [ S2 [ S3
1 expert of S3 1 expert ofS2 [ S3

1 node1 node
1 node1 node1 node1 expert ofS2 [ S31 node experts of3�2k�3�y�3 2k�1 � 2y � 1Figure 17: Last two rounds in second quarter when y is oddProof : Suppose some node u is idle during two or more steps. Since u needs n�1 steps to acquirethe information of the other nodes, the total number of steps for u, and therefore for the algorithm,will be greater than n. 218



Property 2 Each node must be idle during at least one step of the algorithm.Proof : Suppose that some node u is never idle during a step of the algorithm. Since n is odd,and steps occur pairwise (because communications occur pairwise), there must be at least one idlenode during each of the n steps of the algorithm. This means that some other node v must be idleduring at least two steps, which contradicts Property 1. 2Property 3 Two nodes cannot be idle during the same step of the algorithm.Proof : Each node must be idle during at least one step by Property 2 and each node needs n� 1(busy) steps to acquire the information of the other nodes. Summing the number of steps over allnodes gives a total requirement of n2 steps. Since n is odd, there is at least one idle node duringeach step. If two nodes are idle during the same step, then the total number of steps is at leastn2 + 1 and this is not possible in an algorithm with n steps. 2Property 4 Each node is idle during exactly one step, and these idle steps are distinct.Proof : This follows directly from the other three properties. 2Based on these properties, we get a short proof of the Equal Exchange Principle �rst provedin [9].Theorem 5 (Equal Exchange Principle [9]) Two nodes exchange the same amount of infor-mation when they communicate.Proof : Suppose two nodes u and v send di�erent amounts of information to each other during acommunication. Then one of these nodes, say u, is idle (i.e., not receiving information) during atleast one step s while v is busy receiving information from u. Since the number of nodes is odd,and since communications occur between pairs of nodes, there must be another node w which isidle during the same step s. This contradicts Property 3. 25.2 The Case n = 2k � 1The following theorem shows that the lower bound (dlog2(n)e + 1)� + n� cannot be achieved byany gossip algorithm when n = 2k � 1. A di�erent proof of this result is given in [9]. The proofthat we present here is much shorter and more intuitive.Theorem 6 Any gossip algorithm for n = 2k � 1 nodes, k � 3, takes time strictly greater than(dlog2(n)e+ 1)� + n� , for all � > 0, � > 0. 19



Proof : A gossip algorithm can be represented as an n � n grid. Each row represents a node andeach column represents a step of the algorithm. An algorithm represented this way appears to besynchronous because the diagram does not show the start-up periods. However, the i� th steps ofdi�erent nodes need not occur at the same time.By Property 4, each node must be idle during exactly one step, and these idle steps must bedistinct. Without loss of generality, we can arrange the idle steps along a diagonal. Figure 18shows the case n = 15 with the idle steps shown in dark gray.
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Figure 18: Asynchronous gossiping with 15 nodesConsider the last two nodes, u = 2k � 2 and v = 2k� 1 (nodes 14 and 15 in Figure 18). Node vis idle during the �rst step while all other nodes are busy. When it starts its communication in step2, it will inherit a delay of �+� from the node with which it is communicating. So, v can only havek \active" calls and the numbers of steps in these calls must be 1; 2; 4; :::; 2k�2; 2k�1 � 1 as shownin Figure 18. Any increase in the number of steps in one of the �rst k� 1 active calls would violatethe equal exchange principle and any decrease would prevent v from acquiring enough informationfor its last call. The pattern for node u is the same as for node v by a similar argument.Next, consider the 2k�1 � 2 nodes labelled 2 to 2k�1 � 1 (nodes 2 to 7 in Figure 18). None ofthese nodes is idle before step 2k�1 + 1. Since the amount of information exchanged during thei � th call of each of these nodes cannot be greater than 2i�1, none of these nodes can start itscall k later than step 2k�1. Thus, these nodes have at most one call after their idle steps and eachnode i, 2 � i � 2k�1 must exchange exactly i� 1 pieces of information with another node duringits last call. These communications are indicated by light gray rectangles in Figure 18. The onlyavailable nodes for these exchanges are the 2k�1 � 2 nodes labelled 2k�1 to 2k � 3 (nodes 8 to 13).Therefore, exactly two of the nodes that are active during the last step must exchange i pieces ofinformation during their last calls for each i = 1; 2; :::; 2k�1�1. We can show that this is impossibleby examining node w = 2k�1 (node 8). If node w has k calls before its idle step, then it must20



exchange 2k�1 � 1 pieces of information during a single call after its idle step and this gives threenodes (u, v, and w) exchanging 2k�1 � 1 pieces of information. If node w has k � 1 calls beforeits idle step, then it can have calls k and k + 1 after its idle step. During call k, node w cannotcommunicate with any of the nodes 1 through 2k�1 � 1 (nodes 1 to 7) because they must all starttheir call k no later than step 2k�1. Node w cannot communicate with any of nodes 2k�1 + 1 to2k � 3 (nodes 9 to 13) because this would leave three nodes with the same amount of informationto exchange during their last calls (node w, the node with which w communicated in call k, andone of nodes 2 to 2k�1 � 1). 26 ConclusionWe have shown that synchronous gossiping can be completed in time that matches the lower boundsfor all odd values of n. This proves that the conjecture in [9] is true. We have also given a simplenew method to prove the lower bound on asynchronous gossiping for n = 2k � 1. The extension ofthis method to other values of n remains open. The trade-o�s between the number of rounds andthe number of steps for both synchronous and asynchronous gossiping also remain unexplored.References[1] Even, S. and Monien, B. On the number of rounds necessary to disseminate information, inProc. 1st ACM Symp. on Parallel Algorithms and Architectures, Santa Fe, NM, June 1989,318{327.[2] Fertin, G. and Peters, J.G. Odd Gossiping in the Linear Cost Model. Proc. Workshop onCommunication - 23rd Int. Symp. on Mathematical Foundations of Computer Science, Brno,Czech Republic, August 1998.[3] Fraigniaud, P. and Lazard, E. Methods and problems of communication in usual networks.Discrete Applied Math. 53(1994), 79-133.[4] Fraigniaud, P. and Peters, J.G. Minimum Linear Gossip Graphs and Maximal Linear (�; k)-Gossip Graphs. Technical Report 94-06, School of Computing Science, Simon Fraser Univ.,1994. (ftp://fas.sfu.ca/pub/cs/techreports/1994/CMPT94-06.ps.gz)[5] Hedetniemi, S.M., Hedetniemi, S.T., and Liestman, A.L. A survey of gossiping and broadcast-ing in communication networks. Networks 18(1988), 319-349.[6] Hromovi�c, J., Klasing, R., Monien, B., and Peine, R. Dissemination of information in intercon-nection networks (broadcasting and gossiping), in Combinatorial Network Theory, eds. D.-Z.Zhu and D.F. Hsu (Kluwer Academic Publishers, 1995) 125{212.[7] Kn�odel, W. New Gossips and Telephones. Discrete Mathematics 13 (1975) 95.[8] Krumme, D.W., Cybenko, G., and Venkataraman, K.N. Gossiping in minimal time. SIAM J.Comput. 21 (1992) 111{139.[9] Peters, J.G. Raabe, L., and Xu, C. Odd Gossiping. Manuscript, 1996.21


