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Abstract

In the gossiping problem, each node in a network starts with a unique piece of information
and must acquire the information of all other nodes using two-way communications between
pairs of nodes. In this paper we investigate gossiping in n-node networks with n odd. We
use a linear cost model in which the cost of communication is proportional to the amount of
information transmitted. In synchronous gossiping, the pairwise communications are organized
into rounds, and all communications in a round start at the same time. We present optimal
synchronous algorithms for all odd values of n. In asynchronous gossiping, a pair of nodes can
start communicating while communications between other pairs are in progress. We provide a
short intuitive proof that an asynchronous lower bound due to Peters, Raabe, and Xu is not

tight.
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1 Introduction

Gossiping is an information dissemination problem in which each node of a communication network
has a piece of information that must be acquired by all the other nodes. Information is communi-
cated between pairs of nodes using two-way communications or calls along the communication links
of the network. Gossiping is a well-studied problem. There are many papers describing algorithms
that minimize the gossip time on various interconnection networks such as hypercubes and meshes.
See [5, 3, 6] for surveys of these results.

There has been less study of the minimum time needed to gossip when the topology of the
interconnection network does not restrict the communication patterns. Knédel [7] proved that the
number of rounds of communication necessary to gossip is [logy(n)] when n is even, and [log,(n)]+1
when n is odd. He also proved sufficiency by describing gossip algorithms that meet the lower
bounds on numbers of rounds. The half-duplex version of this problem, in which communication
links can only be used in one direction at any given time, has also been studied [1, 8]. All of these
papers assume a unit cost model in which a communication takes one time unit independent of the
amount of information being transmitted. When messages are long, a linear cost model is more
realistic since the length of the messages in most gossip algorithms grows exponentially.

In this paper, we assume a store-and-forward, I1-port, full-duplex model in which each com-
munication involves two nodes and the single communication link that connects them, each node
communicates with at most one other node at any given time, and information can flow simultane-
ously in both directions along a link. Each node starts with a message of length 1. Messages can
be concatenated and sent as a single communication. We assume a linear cost model in which the
time to send a message of length k is 8 + kT where 3 is the start-up time to initiate a call between
a pair of nodes and 7 is the propagation time of a message of length 1 along a link. If the two nodes
involved in a call send messages of different lengths, then the time for both nodes to complete the
call is determined by the length of the longer message. A call involving messages of length k can be
thought of as a start-up period that takes time § followed by a sequence of k steps each of which
takes time 7.

A linear cost model can be either synchronous or asynchronous. In the synchronous linear cost
model, a gossip algorithm consists of a sequence of rounds of simultaneous pairwise communications.
All calls in a round start at the same time. Calls in a round may end at different times, depending
on the lengths of the messages, but no node can start a new call until all nodes are ready to start
new calls. In the asynchronous linear cost model, a call can start as soon as both nodes are ready
to communicate. Thus, a pair of nodes can start communicating while calls between other pairs
are in progress. The unit cost model is always synchronous since each call takes one time unit.

Fraigniaud and Peters [4] investigated the structure of minimum-time gossip algorithms using
a linear cost model. They established lower and upper bounds on the time to gossip when the
number of nodes n is even and showed that there is a synchronous minimum-time gossip algorithm
for every even n. They also gave examples to show that minimum-time gossip algorithms for some
odd values of n must be asynchronous - any synchronous algorithm requires strictly more than
minimum time.

Peters, Raabe, and Xu [9] studied gossiping with n odd and a linear cost model. They proved
a general lower bound of ([log,(n)] + 1) + n7 on the time to gossip. This lower bound holds
for all odd n for both the synchronous and asynchronous models. The bound is achievable in the
asynchronous case for some odd values of n, but for n = 2¥ — 1, they proved that every gossip



algorithm requires time strictly greater than ([logy(n)] 4 1)3 4+ n7. For the synchronous case, they
proved stronger lower bounds and conjectured that their lower bounds are achievable for all odd
n. They gave an ad hoc synchronous algorithm that achieves their lower bound for n = 2% — 1.

In Section 2, we briefly review the lower bounds for synchronous gossiping from [9]. In a
preliminary version of this paper [2], we constructed gossip algorithms that achieve the lower
bounds in [9] for approximately 35% of the odd values of n. Our main result in this paper is a
collection of algorithms that achieves the lower bounds for all odd values of n, thereby establishing
the truth of the conjecture in [9]. Our treatment of the synchronous upper bounds is split into two
sections. In Section 3, we consider odd values of n that are in the top half of any range between
two consecutive powers of 2. In Section 4, we consider the bottom halves of the ranges. The proof
in [9] that the general asynchronous lower bound cannot be achieved when n = 2% — 1 is long and
complicated. In Section 5, we give a much shorter and more intuitive proof of this result.

2 Lower Bounds for Synchronous Gossiping

Knédel [7] showed that gossiping in the unit cost model requires [log,(n)]+1 rounds when n is odd.
This lower bound on the number of rounds is also valid for the synchronous linear cost model. We
say that a node is idle during a round of a synchronous gossip algorithm if it is not participating in
a call during that round. Since calls involve pairs of nodes and n is odd, there will be at least one
idle node at any given time. It is now immediate that at least n steps are required to gossip when
n is odd because each node needs to acquire » — 1 pieces of information, and at least one node
is idle during each step. This gives a lower bound of max{([log,(n)] + 1)3,n7}. Peters, Raabe,
and Xu [9] proved a lower bound of ([logy(n)] + 1)3 + n7 for odd n for both the synchronous and
asynchronous cases. They proved stronger lower bounds for the synchronous case by fixing the
number of rounds to be [log,(n)] 4+ 1 and then focussing on the required number of steps. We take
the same approach to synchronous upper bounds.

The required number of rounds, [log,(n)] 4 1, is the same for every odd n between 2¢~1 4 1
and 2% — 1, where k& = [logy(n)]. The required total number of steps and also the required
numbers of steps in each of the rounds depend on whether n is in the bottom half of the range,
2F=1 < < 2871 1 252 o1 the top half of the range, 2871 4+ 2872 < n < 2. We will often refer to
the bottom halves of all ranges collectively as the bottom half and similarly for the top half.

Theorem 1 ([9]) A synchronous gossip algorithm for odd n in the top half which has [logy(n)]+1
rounds requires at least 2n — 2"~ — 1 steps where k = [logy(n)], and k > 2. A feasible sequence of

numbers of steps in the rounds is 1248 ... 2F2

z x where v = n — 2871,

Proof Outline: The numbers of steps listed in the statement of the theorem for the first & — 1
rounds are the maximum numbers of usable steps since nodes can at most double the amount of
information that they know each round. During each round (including the last two rounds), at
least one node must be idle. There must be enough steps in the last two rounds for nodes that
are idle in earlier rounds to receive the information that they are missing. It can be shown that
decreasing the number of steps in any round results in an increase in at least one other round. O



Theorem 2 ([9]) A synchronous gossip algorithm for odd n in the bottom half which has [logy(n)]|+

1 rounds requires at least 2872 — 1 4 2[”_2;_2} + L”_%k_Z)J steps where k = [logy(n)], and k > 2.

A feasible sequence of numbers of steps is 1248 ... 2873 in the first k — 2 rounds. Two of the

last three rounds have z = [#} steps and the other round has y = L#J steps.

Proof Outline: Similar to Theorem 1. a

Conjecture 1 ([9]) There are synchronous gossip algorithms that achieve the lower bounds of
Theorems 1 and 2 for every odd n.

We note that there can be a trade-off between the number of rounds and the number of steps in
a synchronous gossip algorithm. If more than [logy(n)] + 1 rounds are permitted, then the number
of steps can often be reduced. Depending on the relative values of § and 7, the fastest algorithm
could have more than [log,(n)] + 1 rounds. We do not investigate this trade-off in this paper.
See [4] for results and some examples.

3 Synchronous Gossiping in the Top Half

In this section, we describe algorithms that achieve the lower bound of Theorem 1 for all values of
n in the top half. This proves Conjecture 1 for every odd n in the top half of any range between
two consecutive powers of 2, that is, for every odd n, 2F=1 4282 4 1 <n < 2F — 1, k > 3. Our
result is the following.

Theorem 3 For any odd n in the top half, there is a synchronous gossip algorithm with [logy(n)]+
1 rounds and 2n — 2"~ — 1 steps, where k = [logy(n)], k > 2.

Note: Strictly speaking, the terms top half and bottom half, and the corresponding mathematical
definitions do not make sense for k& = 2 since n = 3 is the only odd value in this range. For
convenience, we will consider » = 3 to be in the top half. Note that Theorems 1 and 2 are both
true for n = 3.

As dictated by Theorem 1, our algorithms have & 4+ 1 rounds, where k = [logy(n)], and the
numbers of steps in the rounds are 1 24 8 ... 28F=2 g 2 respectively where 2 = n — 2¥=1. Our
algorithms and proofs of correctness in this section and in Section 4 are based on two properties
of partial gossip algorithms and on the notion of experts. We say that a node is an expert of a
set § if it knows the information of every node in 5. Our partial gossip algorithms for n nodes
have k = [logy(n)] rounds with 2/~ steps in each round ¢ = 1,2,...,k. Note that a partial gossip
algorithm cannot be extended to an optimal complete gossip algorithm in the linear cost model by
the addition of a k + 15 round because round k of an optimal algorithm has 2 < 25! steps. Our
optimal complete gossip algorithms will use one or more partial gossip algorithms as subroutines
during the first [logy(n)] — 2 or [logy(n)] — 1 rounds.

Property A For any odd n > 3, we say that property A, is true if there is a partial gossip
algorithm for n nodes with k = [logy(n)] rounds and 2*~! steps in each round ¢ = 1,2, ...,k such
that after k rounds:



1. 2¥=1 nodes are experts (i.e., know all n pieces of information), and

2. each of the remaining 2 = n — 2! nodes knows at least 2*=1 pieces of information.

Property B For any odd n > 5, we say that property B, is true if there is a partial gossip
algorithm for n nodes with k = [log,(n)] rounds and 27! steps in each round i = 1,2, ...,k such
that at least © = n — 2¥~1 nodes are idle in round k.

To prove Theorem 3, we will first prove that Property A, is true for every odd n > 3. Theorem 3
will then follow easily. The organization of the proof of Property A consists of three propositions
as shown in Figure 1. Proposition 1 establishes Property A in the top half, i.e., A, is true for
every odd n in the top half. The inductive steps are shown with solid lines and arrows in Figure 1.
Proposition 2, shown with dashed lines and arrows in Figure 1, proves that both Properties A and
B hold in the bottom quarter, i.e., for every odd n, 2871 < n < 2F=1 4 283 Proposition 3 is a more
complicated induction; it shows that if Property A holds for an entire range 2= < n < 2%, then
both Properties A and B hold in the second quarter two ranges up, i.e., for every 281 4 2k=1 <«
n < 281 4 2% The steps of Proposition 3 are shown with dotted lines and arrows in Figure 1.
Collectively, the three propositions cover all odd values of n.

Base cases

22

—— Proposition 1
- == Proposition 2

"""" Proposition 3

k=3
k=4
k=5
k=6 i 26

Figure 1: Organization of the proof of Property A

Proposition 1 Property A, is true for every odd n > 3 in the top half.
We will prove Proposition 1 by induction on k = [logy(n)] using three lemmas.

Lemma 1 Let n = 2871 + 2 be an odd number such that k = [logy(n)] and k > 2. If A, is true,
then A,y is true where n' = 25 + 2F=1 4 4.



Proof: Let n = 281 4 2 for any fixed £ > 2 and odd z. Note that 1 < 2 < 2F=1 — 1, since
[logy(n)] = k. Also note that a gossip algorithm for n nodes has k + 1 rounds [7]. Suppose that
A,, is true and let n/ = 28 4 261 4 » = 2k 4 5. Partition the set S of n’ nodes into two subsets
51 and S, such that |S;| = 2% and |S5| = 2%~ + 2 = n. Gossiping among »’ nodes requires k + 2
rounds. During the first £ rounds of a partial gossip algorithm, the nodes of 57 and the nodes of
S, communicate independently. The 2% nodes of S can all be experts of S after k rounds. The
n = 21 4 & nodes of Sy can satisfy property A, after k rounds by assumption. In round k& + 1
of the partial gossip algorithm, the 2¥=1 experts of 55 exchange all of their information with 2%~1
of the experts of 51 to create 2k experts of 51 U 52 = 5. The remaining = nodes of 55 exchange
information with x nodes of 7. After round £+ 1, these 2z nodes and the remaining 2k=1 _ 2 nodes
of S1 each know at least 2¥ pieces of information. Since round k 4 1 has 2¥ steps, all conditions of
Property A, are satisfied.

The algorithm is illustrated in Figure 2. The column of two boxes with bold outlines on the left
shows the situation after k rounds. Round k + 1 is shown in detail and the box on the right shows
the situation after round k£ 4+ 1. The gray shading is used to indicate nodes that are idle during

round & + 1. O
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Figure 2: Proof of Lemma 1

Lemma 2 Let n = 271 4z be an odd number such that k = [logy(n)], 2F"2 + 1 <2 < 2F1 — 1,
and k > 3. If A, is true, then As,_1 is true.

Proof: Suppose that A, is true and consider a set 5 of 2n — 1 nodes. Partition .5 into three subsets
S1, 83, and S5 such that |S1] = n, |S2] = 2¥71, and |S3] = # — 1. Note that k + 2 rounds are
required to gossip among 2n — 1 nodes. During the first £ — 1 rounds of a partial gossip algorithm,
the nodes of 55 and 53 communicate within their own subsets. After £ — 1 rounds, all nodes of 9
and S3 can be experts of their respective subsets because the number of nodes in each subset is at
most 2°~1 and is even. After a partial gossip algorithm of k rounds, the |51| = 7 nodes of §; can
satisfy Property A, by assumption. However, n is odd, so at least one node u of 57 will be idle



during round k. Node u knows at least 2*~1 pieces of information after k — 1 rounds by assumption

Ay, and is free to communicate with a node v of 55 in round k. As shown in Figure 3, round &
of the partial gossip algorithm for 57 has been modified to include this communication between u
and v. The remaining n — 1 nodes of 57 continue to communicate within 57 during round k. Using
Figure 3, it is not difficult to verify that S = .57 U 53 U S5 satisfies all conditions of Property As,_1
after round k + 1. Note that the condition 2 > 252 4+ 1 in the statement of the lemma is required

in round k + 1 to ensure that 2z — 2 — 2k—1 > 0. O
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Figure 3: Proof of Lemma 2

Lemma 3 Let n = 2"=! + 2 be an odd number such that k = [logy(n)], 2872+ 1 <2 <271 -3,
and k> 4. If A, is true, then Ag,11 is true.

Proof: This proof is similar to the proof of Lemma 2. Partition the set 5 of 2n 4 1 nodes into three
subsets S, S, and 93 such that S| = n, |92| = 2871, and |S3] = = + 1. Gossiping among 2n + 1
nodes requires k + 2 rounds. As in the proof of Lemma 2, the nodes of 53 and 55 communicate
within their own subsets during the first £ — 1 rounds of a partial gossip algorithm. After £ — 1
rounds, all nodes of 55 and S35 can be experts of their respective subsets because S5 and S5 are of
even order at most 2¥=1. After k rounds, the nodes of S can satisfy A, by assumption. At least



one node u of 57 is idle during round % of a partial gossip algorithm for 57 and knows at least
2F=1 pieces of information by assumption A,,. As in the proof of Lemma 2, round k& of the partial
gossip algorithm for 57 is modified to include a communication between u and a node v of S5. The
communications during rounds k& and k + 1 of the partial gossip algorithm are shown in Figure 4
and prove that 5 = 57 U 59 U S5 satisfies all conditions of Property Ay,41 after round k£ 4 1. The
condition # > 2¥=2 4 1 is needed to ensure that 2z 4+ 1 — 281 > 0 in round k + 1. The reason for
the condition z < 2¥~!' — 3 (instead of z < 2¥=! — 1 as in Lemma 2) is to ensure that |S3| > |93]

so that S5 has a node v to communicate with node u of 7 in round k. a
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Figure 4: Proof of Lemma 3

Proof of Proposition 1: The case A3 is true by inspection and case A; follows from As by
Lemma 1. Suppose that Property A, is true for every odd n in the top half of some range between
two consecutive powers of 2. That is, A, is true for 28=1 4+ 282 < n < 2% with [logy(n)] = k for
some k > 3. Then A, is true for n = 2¥t1 — 1 by Lemma 1, and for every other odd n in the top
half with [logy(n)] = k£ + 1 by Lemmas 2 and 3. Hence A, holds for every odd n > 3 in the top
half by induction. a



The next two propositions together show that Properties A and B hold in the bottom half.
The two propositions depend on each other: the proof of Proposition 2 assumes the truth of
Proposition 3 and vice versa. See Figure 1.

Proposition 2 Property A, and Property B, are true for every odd n > 5 in the bottom quarter.

Proof: We will prove this result by induction on k = [logy(n)]. The base case n = 5, shown
in Figure 5, proves the proposition for £ = 3. (For convenience, we will consider n = 5 to be in
the bottom quarter of its range even though the term does not really make sense when k = 3.)
In Figure 5, each horizontal line represents one node and the numbers in the boxes indicate the
information received during the communication immediately to the left. For example, in round
2, node 4 sends items 3 and 4 to node 5 and receives item 5. Shading indicates that a node was
idle during the round. The induction step shows that if Properties A and B hold in the bottom
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Figure 5: Base case n = 5 for proof of Proposition 2

half of some range, then both properties hold in the bottom guarter of the next higher range. We
assume the truth of Proposition 3 which states that Properties A and B hold in the second quarter
of every range. Now suppose that the Properties A, and B, are true for some n = 2*=1 4 2 with
k = [logy(n)] and 1 < & < 2872, Thus, n is in the bottom half 2¥=! < n < 28~ 4 2%=2 for some
k > 3. To show that Properties A,y and B, are true for n’ = 2% 4+ 2 = n + 2"=1_ partition the set
S of n’ nodes into subsets S7 and Sy such that |S;| = n = 287! + 2 and |53 = 2"~'. The nodes
of 55 all become experts of 55 by gossiping among themselves for £k — 1 rounds. By assumption,
there is a partial gossip algorithm for 57 that has k& rounds and satisfies Properties A4, and B,.
In particular, there will be z idle nodes of 57 during round & of this partial gossip algorithm by
Property B, and these z idle nodes will know 25! pieces of information of S, by Property A,.
These 2 nodes are free during round k& to exchange information with x nodes of S5 as shown in
Figure 6. Using Figure 6, it can be verified that the n’ nodes of § = 51 U 5, satisfy Properties A,
and B, after k 4+ 1 rounds. This proves the proposition for all n in the bottom quarter assuming
that Proposition 3 is true. a

Proposition 3 Property A, and Property B,, are true for every odd n > 11 in the second quarter.

Proof: We will prove this result by induction on k = [log,(n)]. The base case n = 11, shown
in Figure 7, proves the proposition for & = 4. The induction step will show that if Property A
holds in an entire range between two consecutive powers of 2, then Properties A and B both hold
in the second quarter two ranges up. More precisely, if Property A holds for 2°=1 < n < 2% with
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Figure 6: Proof of Proposition 2
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Figure 7: Base case n = 11 for proof of Proposition 3

k = [logy(n)] for some k > 3, then both Properties A and B hold for 25+ 4 28=1 < 5 < 2k+1 4 ok,
Proposition 1 proves that Property A holds in the top half of any range. We assume the truth of
Proposition 2 which states that Property A (and also Property B) holds in the bottom quarter of
every range. Now suppose that Property A, is true for some n = 281 + z with k& = [log,(n)]
and 1 < 2 < 251 for some k > 3. The algorithm in Figure 8 proves that Properties A, and B,
are true for n/ = 2kt1 1 2F=1 1 4 — p 4+ 2K+ This proves the proposition for all n in the second
quarter assuming that Proposition 2 is true. a
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Figure 8: Proof of Proposition 3

Proof of Theorem 3: Before describing our optimal gossip algorithm for the top half, we need
to complete the proof that Property A, holds for all odd n. The proof is illustrated in Figure 1.
We again use induction on k = [logy(n)]. There are several base cases. Properties Az, As, A7, and
A1 have already been established in the proofs of the three propositions. Property Ag follows from
As by Proposition 2, and Properties A3 and A5 follow from A7 by Proposition 1. This proves
the theorem for £k = 2, k = 3, and k£ = 4. We need to show that if Property A is true for all n
with [logy(n)] = k— 1 and [logy(n)] = k, then Property A is true for all n with [logy(n)] = k+ 1.
Property A, is true in the top half, 2F 4 28=1 < n < 25+ by Proposition 1 from the previous top
half, 28=1 4 28=2 < 5 < 2%, Properties A,, and B, are true in the first quarter, 2% < n < 2% 4 2+=2,
by Proposition 2 from the previous bottom half, 25~ < n < 25=1 4 25=2_ Properties A, and B,
are true in the second quarter, 2% 4+ 2572 < n < 2% 4+ 25=1 by Proposition 3 from the entire range
for k—1, 2572 < n < 251, Thus, Property A, is true for every odd n > 3 by induction.

To complete the proof of the theorem, we use the optimal gossip algorithm shown in Figure 9.
The number of rounds k + 1 = [log,y(n)] + 1, and the number of steps = n — 2+~!
last two rounds, match the lower bound in Theorem 1, as does the total number of steps for the
algorithm, 28=1 — 14 22 = 2n — 2¥=1 — 1. Tt is not difficult to verify that all nodes of § = S5 U S
will be experts of S after round k 4 1. Note that 282 < 2 < 251 so n = 25~ 4+ 2 is in the top
half. O

in each of the

10
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Figure 9: Optimal gossip algorithm in the top half

4 Synchronous Gossiping in the Bottom Half

In this section, we describe algorithms that achieve the lower bound of Theorem 2 for all odd
values of n in the bottom half. As dictated by Theorem 2, our algorithms have k+ 1 rounds, where
k = [logy(n)], the numbers of steps in the first k& — 2 rounds are 1248 ... 2" respectively, two

n—2k—2
2

of the last three rounds have z = | | steps, and the other round has y = L#J steps.

Theorem 4 For any odd n in the bottom half, there is a synchronous gossip algorithm with

[logy(n)] + 1 rounds and 2872 — 1 4+ 2[”_22%2} + L”_%k_2j steps, where k = [logy(n)], k > 3.

Proof: The organization of this proof is more straightforward than the proof for the top half, but
the diagrams are more complicated. The special cases n = k=14 9k=2 _ 1 andn =2814922_3
are shown in Figures 10 and 11 respectively.

For the case n = 2F~1 4 28=2 — 1 (Figure 10), note that z = 2"=% and y = 272 — 1, and we
have chosen to have y steps in the last round (round k + 1). There are enough steps in the last
round for a node to learn all of the information of 51, but not quite enough steps to learn .55 or
S3. Therefore, some nodes need to learn at least one item from 53 or S35 in round k. Fortunately,
there are more than enough steps in round k to permit this.
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Figure 11: Gossip algorithm for n = 2F=1 4 2¥=2 _ 3

For the case n = 2F=1 4+ 282 _3 (Figure 11), z = 2F"2 — 1 and y = 2¥=? —2, and we have chosen

to have y steps in round k£ — 1. So, the step sequence for the rounds is: 1248 .

.. k=3

y z z. The

subset S7 has » = 282 — 1 nodes and z is in the top half. By Theorem 3, we can gossip in S} in
k — 1 rounds with the step sequence, 124 8 ... 2% g g with 2 = 25F=2 — 1 — 2F=3 = 2k=3 _ 1,
Since z is less than the numbers of steps available in rounds k — 2 and k — 1 (which have 2*=2 and
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2F=2 _ 2 steps respectively), the gossiping in 57 can be completed. The number of nodes in Sy is
even, so gossiping can be completed in k& — 1 rounds and the step sequence 1248 ... 2873 y by

Lemma 2.3 in [4].

The structures of the algorithms for the remaining values of n in the bottom half, 281 41 <
n < 2871 4 2k=2 _ 5 depend or whether y is even (and z = y + 1 is odd), or y is odd (and z
is even). Figures 12 and 13 show the first £ — 1 rounds for y even and y odd respectively. Both
algorithms use the fact, established in the previous section, that Property A, holds for all odd
n, and both algorithms use z steps in round k — 1. In both cases, 2873 < y < 2F=2 — 3 and
P34 1< z2=y+1<2"2 -2 Figures 12 and 13 should require no further explanation.

After k — 2 Round k-1
rounds z steps
( ) 2k 1
@ | experts of Sy
experts of 51 & know
z of S3
y=z—1
experts of 51
4 _ 9k=23
experts of S; 2y — 2k—2
\, _J experts of S;
(", E—3 ) & know
-2 2k=% of §
nodes know 2
2578 of S,
=yt E—3
nodes satisfy |95—3 oxperts 2 experts
Property A. |of S of S2 & know
\_ ? ) z of S3
; <
@ 2k—? experts ok—3 experts
of S of S, USs
2:_52 experts 9k=3 _ ok—3 _
o e experts of Ss experts of
S1U.Ss
\_ 1 expert of Sj 1 expert of S

Figure 12: Round k& — 1 when y is even

The last two rounds k& and k + 1 depend on whether y is even or odd, and also on whether n is
in the first quarter or the second quarter. Thus, there are four cases to consider for the last two
rounds. The two algorithms for round k£ — 1 shown in Figures 12 and 13 are common to the first
and second quarters.

The last two rounds in the first quarter are shown for y even and y odd in Figures 14 and 15
respectively. In both cases 2F=1 4+ 1 < p < 281 4 283 _ 1 g0 2F3 <y < 3.2F1 _ 1 and
2341 <2r=y+1<3-28% Also, |S1] =y, |92] = 2, and S5 = 2872, Since y = L”_%ﬁj and
z= [”‘%ﬁ}, we get |93] < y + z. With this information, it is not difficult to verify that all of the
blocks shown in the diagrams contain positive numbers of nodes and that there are enough steps
in rounds k& and k4 1 for each pair of communicating nodes to exchange all of the information

specified. The only other observation that should be made concerns blocks of nodes such as the
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rounds z steps
(@ 1 expert of 5? g} ng;rt of 1 expert of 5?
gk=3 _ 4 gk=3 _
nodes ok=3 _ experts of S; |experts of 51
gatisf experts of 51 & know & know
Propg]rty A z of Ss z of S3
y
y —2F=2
nodes know _
2K=2 of Sy 2y =270 gy gk
\_ J experts of Sy experts of So
( ) & know & know
@ y =27 2ol S 2k of 5y
experts of Sz
_ E—3
z=y+l ok—3 2 2%=% experts
experts of Sy experts of Sy
experts of Sz & know of 52 & know
- of S z of Sa
1 expert of
\_ 1 expert of Sj S1 U Sy 2 experts of
(@ 1 expert of 5? 1 expert of 53 S1U5:
2k—3 2k—3 experts 2k—3 experts
257 experts experts of 53 of S2 US3 of S2 U .53
Of Sg
gk—8 _ 1 k=% 2F=% 1
experts of S experts of experts of
p 3 51 U Sg Sl U SS
\_ J/ \_ J/

Figure 13: Round k& — 1 when y is odd

first and third blocks in Figure 14 which exchange information in round k. The nodes in these two
blocks each know z pieces of information from S5 after £ — 1 rounds and they must all be experts
of S5 after round k. Since |S3| < y + z, there are enough steps in round £ for each node to acquire
the information that it needs, but care must be taken in round k — 1 of Figure 12 that the nodes in
the two blocks acquire complementary information from 55. Similar comments apply to the second
and fourth blocks in round & of Figure 15 and to other pairs of blocks in the two diagrams.

The last two rounds in the second quarter are shown for y even and y odd in Figures 16 and 17
respectively. In both cases 2F=1 4283 4 1 < p < 21 4 2F=2 _ 5 50 3.2k 4 <y <22 _3
and 3-284 41 < 2 =y +1 < 252 -2 As in the first quarter, |S1| = ¥, |S2] = 2, and
S5 = 25=2 < y + 2. Observations similar to the observations for the first quarter also apply to the
second quarter. The only additional observation for the second quarter is that the range of values
of n, and consequently the ranges of y and z, are reduced because the two largest values of n in
the second quarter, n = 2F=1 4 28=2 _ 1 and n = 2%~ 4+ 25=2 — 3, have been handled as special

cases. O

Theorem 3 and Theorem 4 together prove the truth of Conjecture 1 for every odd n.
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rounds y steps z steps
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Figure 14: Last two rounds in first quarter when y is even

5 Asynchronous Gossiping

5.1

Any asynchronous gossip algorithm for n nodes with n odd takes time at least ([logy(n)] +1)5+nt
for any 3 > 0 and 7 > 0 [9]. We will derive several properties of asynchronous gossip algorithms
that take time exactly ([logy(n)] +1)8+ n7 and then derive a contradiction for the case n = 2% —1,

and 8 > 0 and 7 > 0.

First, we need some terminology. We say that a node is busy at a particular time if it is in the

The Equal Exchange Principle
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Figure 15: Last two rounds in first quarter when y is odd

start-up period of a call (which takes time ) or if it is receiving information (which takes time 7
for each unit of information). A node is idle when it is not busy. Note that this definition of idle
is not the same as the definition for synchronous algorithms. In the asynchronous case, there are
two types of idle time. A node can be idle because it is not currently involved in a call. At any
given time during an asynchronous algorithm, there is at least one node idle for this reason because
communications are pair-wise. There may also be nodes which are idle waiting to start their next
calls; a call cannot start until both of the nodes have completed their previous calls. This second
type of idle time occurs when the two nodes involved in a call are exchanging different amounts of
information. At the end of the call there will be a period when one node is considered to be idle
because it is not receiving information even though it is still active sending information.

The total time of a gossip algorithm is the minimum time at which all nodes have received the
information of all other nodes. When referring to the activities of any particular node, we will use
the term step to refer a period during which the node is receiving a piece of information or the
node is idle because it must wait while some other node is receiving a piece of information. A node
can be idle during a step for any of the reasons described in the previous paragraph. Similarly, the
term start-up period will refer to a period during which a node is in the start-up period of a call

16



After k —1 Round % Round £+ 1

rounds y steps z steps
- — ) - ) )
k-3
2 -1 nodes k=3 _q nodes
experts of 51 experts of
& know 2k=2 _ 51 51U Sy 2k=2 _ 1
z of S5 nodes nodes
‘s z—2F? 2z — 2k 72 7 —2k=?
22 =2 nodes experts of nodes
experts of 51 S1USs &
& know z— k3 know 273 —1|z — 2F—2
k-3
2 of 5z nodes of Ss nodes
k=2 _ 21 2k=2 _ 5 k=2 _ 21
nodes experts of nodes
S U S3
k=2 experts 1 node 1 node
of S & know k_3 z—2F3 3
z—2
z of Sa oen nodes
5 k- experts of
nodes S1US & 1 node
know z of S5 |1 node
1 node n experts of
1 expert of S1 U Sy U Ss
1 node S, U S 1 node
z—2k2 z—282%_3
ok—3 experts |nodes gk=3 _ nodes
Of 52 W] Sg
experts of ok=2 _ . _
2k_2—Z—1 S1U52U53
nodes
nodes
3 nodes
k-3
Qk—2 z—2 L _ k=3
z experts of nodes
—— nodes 51U Ss
experts of ok=2 _ ., _q
51U S k2 _ -1 experts of k2 _ 1
nodes S1USs & nodes
know y of Sz
1 expert of
1 expert of S3|1 node Ss & knows |1 node
. J \y_of 52 J \. J

Figure 16: Last two rounds in second quarter when y is even

or a period that it is idle waiting for another node that is in the start-up period of a call. In an
asynchronous algorithm, the steps and start-up periods of the nodes can occur at different times.
However, we can number the steps and start-up periods of each node. In the following, when we
talk about the i*" step of an algorithm, we are referring collectively to the i*P steps of all of the
nodes even though these steps may occur at different times.

Now, we derive some properties of asynchronous gossip algorithms that take time exactly

([logy(n)] + 1)8 + nr.

Property 1 No node can be idle during more than one step of an algorithm.
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Figure 17: Last two rounds in second quarter when y is odd

Proof: Suppose some node u is idle during two or more steps. Since u needs n — 1 steps to acquire
the information of the other nodes, the total number of steps for u, and therefore for the algorithm,
will be greater than n. a
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Property 2 Fach node must be idle during at least one step of the algorithm.

Proof: Suppose that some node u is never idle during a step of the algorithm. Since n is odd,
and steps occur pairwise (because communications occur pairwise), there must be at least one idle
node during each of the n steps of the algorithm. This means that some other node » must be idle
during at least two steps, which contradicts Property 1. a

Property 3 Two nodes cannot be idle during the same step of the algorithm.

Proof: Each node must be idle during at least one step by Property 2 and each node needs n — 1
(busy) steps to acquire the information of the other nodes. Summing the number of steps over all
nodes gives a total requirement of n? steps. Since n is odd, there is at least one idle node during
each step. If two nodes are idle during the same step, then the total number of steps is at least
n? + 1 and this is not possible in an algorithm with n steps. a

Property 4 Fach node is idle during exactly one step, and these idle steps are distinct.

Proof: This follows directly from the other three properties. a

Based on these properties, we get a short proof of the Fqual Frchange Principle first proved
in [9].

Theorem 5 (Equal Exchange Principle [9]) Two nodes exchange the same amount of infor-
mation when they communicate.

Proof: Suppose two nodes u and v send different amounts of information to each other during a
communication. Then one of these nodes, say u, is idle (i.e., not receiving information) during at
least one step s while v is busy receiving information from u. Since the number of nodes is odd,
and since communications occur between pairs of nodes, there must be another node w which is
idle during the same step s. This contradicts Property 3. a

5.2 The Case n =2 —1

The following theorem shows that the lower bound ([logy(n)] + 1)5 4+ n7 cannot be achieved by
any gossip algorithm when n = 2% — 1. A different proof of this result is given in [9]. The proof
that we present here is much shorter and more intuitive.

Theorem 6 Any gossip algorithm for n = 28 — 1 nodes, k > 3, takes time strictly greater than
([logy(n)] + 1)+ nr, for all 5 >0, 7 > 0.
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Proof: A gossip algorithm can be represented as an n x n grid. FEach row represents a node and
each column represents a step of the algorithm. An algorithm represented this way appears to be
synchronous because the diagram does not show the start-up periods. However, the ¢ — th steps of
different nodes need not occur at the same time.

By Property 4, each node must be idle during exactly one step, and these idle steps must be
distinct. Without loss of generality, we can arrange the idle steps along a diagonal. Figure 18
shows the case n = 15 with the idle steps shown in dark gray.

Steps
Nodes 1 2 3 4 5 6 7 8 9 10111213 14 15

=
I

W 0 =~ O Ot ok W N

—_
o

—_
—_

—_
[\]

—_
o

u=14
v=15

Figure 18: Asynchronous gossiping with 15 nodes

Consider the last two nodes, u = 2% —2 and v = 2¥ — 1 (nodes 14 and 15 in Figure 18). Node v
is idle during the first step while all other nodes are busy. When it starts its communication in step
2, it will inherit a delay of 8+ 7 from the node with which it is communicating. So, v can only have
k “active” calls and the numbers of steps in these calls must be 1,2,4,...,2572,25=1 _ 1 as shown
in Figure 18. Any increase in the number of steps in one of the first £ — 1 active calls would violate
the equal exchange principle and any decrease would prevent v from acquiring enough information
for its last call. The pattern for node u is the same as for node v by a similar argument.

Next, consider the 2¥=! — 2 nodes labelled 2 to 2°=! — 1 (nodes 2 to 7 in Figure 18). None of
these nodes is idle before step 287! 4 1. Since the amount of information exchanged during the
i — th call of each of these nodes cannot be greater than 2°~!, none of these nodes can start its
call k later than step 2°~1. Thus, these nodes have at most one call after their idle steps and each
node i, 2 < i < 25~ must exchange exactly i — 1 pieces of information with another node during
its last call. These communications are indicated by light gray rectangles in Figure 18. The only
available nodes for these exchanges are the 2~! — 2 nodes labelled 2%~! to 2% — 3 (nodes 8 to 13).
Therefore, exactly two of the nodes that are active during the last step must exchange ¢ pieces of
information during their last calls for each ¢ = 1,2,...,28=1—1. We can show that this is impossible
by examining node w = 25! (node 8). If node w has k calls before its idle step, then it must
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exchange 2+F-1

nodes (u, v, and w) exchanging 2k=1 _ 1 pieces of information. If node w has k — 1 calls before
its idle step, then it can have calls k and k + 1 after its idle step. During call k£, node w cannot
communicate with any of the nodes 1 through 2¥=! — 1 (nodes 1 to 7) because they must all start
their call £ no later than step 2¥~'. Node w cannot communicate with any of nodes 2°=1 4 1 to
2% — 3 (nodes 9 to 13) because this would leave three nodes with the same amount of information
to exchange during their last calls (node w, the node with which w communicated in call k, and
one of nodes 2 to 2¥=1 — 1). ]

— 1 pieces of information during a single call after its idle step and this gives three

6 Conclusion

We have shown that synchronous gossiping can be completed in time that matches the lower bounds
for all odd values of n. This proves that the conjecture in [9] is true. We have also given a simple
new method to prove the lower bound on asynchronous gossiping for n = 28 — 1. The extension of
this method to other values of n remains open. The trade-offs between the number of rounds and
the number of steps for both synchronous and asynchronous gossiping also remain unexplored.
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