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Despite ample success in reducing coronary artery disease 
(CAD) risk through reduction of low-density lipopro-

tein cholesterol (LDL-C), there remains substantial residual 
risk.1–4 Recent prospective studies have demonstrated that 
elevated triglycerides (TGs) are independent predictors 
of CAD risk.5–9 Furthermore, TGs are strongly associated 
with incident CAD events in patients with low LDL-C lev-
els treated with statin.10 Thus, triglyceride-rich lipoproteins 
(TRLs) offer a potentially orthogonal risk factor to LDL-C 
for lowering CAD risk, but only if TRLs are causally associ-
ated with atherosclerotic disease.11

Human genetics has the potential to reveal the causal 
relationships of biomarkers found to be associated with dis-
ease outcomes.12–15 For example, genetic variants associated 
with plasma LDL-C levels are consistently associated with 
CAD risk in the right direction,15–18 consistent with a causal 
relationship. Importantly, similar studies have causally 
implicated the key TG-regulating enzyme lipoprotein lipase 
(LPL) in CAD risk. A common gain-of-function LPL vari-
ant, S447X, confers an antiatherogenic lipid profile charac-
terized by low levels of TGs, and in several studies, it has 
been associated with lower incidence of vascular disease or 
myocardial infarction (MI).19–25 Conversely, several loss-of-
function (LOF) LPL variants associated with elevated TG 
levels have been reported to be associated with increased 
CAD risk.21,26 Furthermore, multiple genome-wide associa-
tion studies in the last 5 years have identified common non-
coding variants at the LPL gene locus associated with both 
TG and CAD risk in the same direction.27–29

Beyond LPL itself, common variants that influence TG 
levels are significantly associated with CAD risk even after 
adjusting for their effects on other lipid traits.30 Do et al30 sur-
veyed 185 single-nucleotide polymorphisms (SNPs) that were 
genome-wide significantly associated with ≥1 plasma lipid 
trait and identified a subset of 44 SNPs with large effects on 
TG levels but minimal effects on LDL-C. They tested the asso-
ciation of these SNPs with CAD in >86 000 individuals. The 

strength of association of the SNPs with TG levels predicted 
the magnitude of association with CAD risk. Among the com-
mon variants with strong associations with both TG and CAD 
were those at a gene locus containing the genes APOC3 and 
APOA5, which encode apolipoproteins (apoC-III and apoA-V, 
respectively), found on TRLs and known to be the regulators of 
LPL activity and TG levels.

ApoC-III is a key regulator of fasting and postprandial plasma 
TG levels and is thought to act at multiple nodes influencing 
TG homeostasis. A small (8.8 kDa) secreted apolipoprotein, 
apoC-III, is expressed in the liver and intestine and circulates 
on and exchanges between TRLs and high-density lipoprotein 
(HDL).31,32 Several studies have suggested that apoC-III nega-
tively regulates LPL activity.33 Further insight gained from 
transgenic mice overexpressing APOC3 and Apoc3 knockout 
mice has shown that apoC-III delays very LDL (VLDL)–TG 
hydrolysis in vivo and may delay the catabolism of TRL rem-
nants by the liver and other tissues.34–37 In addition, 1 human 
coding variant in APOC3, K78E, is associated with low TG and 
high HDL-C levels and was shown to reduce VLDL secretion 
in vivo.38 This suggests that APOC3 may contribute to plasma 
lipids at least in part through influencing hepatic VLDL assem-
bly and secretion.

Like apoC-III, apoA-V is also an exchangeable apolipopro-
tein between HDLs and TRLs, which is primarily secreted from 
the liver. It is a 39-kDa protein and has a low concentration in 
human plasma (≈150 ng/mL)39 compared with the major apo-
lipoproteins, including apoC-III. Despite its low abundance, 
apoA-V is thought to play a crucial role in TG metabolism. 
Apoa5 knockout mice demonstrate profound hypertriglyc-
eridemia, whereas human APOA5 transgenic mice have sig-
nificantly lower plasma TG than controls.40 ApoA-V has been 
shown to enhance LPL activity on VLDL particles. Recent 
work has suggested that it may do so by facilitating proxim-
ity between TRLs and LPL in part through apoA-V’s interac-
tion with glycosylphosphatidylinositol-anchored HDL binding 
protein 1, a chaperone for LPL. Like apoC-III, apoA-V may 
have a critical intracellular role in regulating TG metabolism 
as well. Numerous studies in cultured hepatocyte-like cell lines 
have suggested that apoA-V accumulates in the endoplasmic 
reticulum after translation and remains associated with hepatic 
lipid droplets.39

Sequencing Reveals APOC3 and APOA5 as 
Causal Mediators of CAD Risk

Two recent reports, published concurrently in the New 
England Journal of Medicine, used complementary 
approaches to demonstrate that LOF mutations in APOC3 are 
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robustly associated with lower TG and decreased incidence 
of CAD.41,42 One of these studies, a large collaboration of the 
Exome Sequencing Project of the National Heart, Lung, and 
Blood Institute, sequenced the exomes of 3734 subjects and 
tested the association of identified mutations, either individu-
ally or in aggregate within a gene, that were associated with 
plasma TG.41 They identified 7 coding variants in APOC3 
in a total of 33 individuals. Of these variants, all were rare 
in frequency, with 3 missense, 1 nonsense, and 3 splice-site 
variants identified. When tested in aggregate, the APOC3 
variants were robustly associated with lower TG (by 39 mg/
dL) relative to noncarriers. Four of the 7 variants were found 
in heterozygosity at an aggregate frequency of 1 in 150 in 
individuals of European descent. These variants were associ-
ated with approximately half of the circulating apoC-III con-
centrations of noncarriers, supporting the notion that these 
variants conferred the loss of apoC-III function. The authors 
tested the association of these 4 variants with the presence of 
CAD in >110 000 subjects and found 40% lower CAD risk 
in mutation carriers. Notably, 1 of the 4 variants studied by 
Crosby et al,41 a nonsense mutation R19X (rs76353203) was 
previously shown in an Amish population to reduce TG and 
improve the clearance of dietary fat in an oral fat challenge 
and was associated with reduced coronary artery calcium 
scores, a surrogate measurement of atherosclerosis.43

Working independently in Denmark, Jørgensen et al42 tested 
the association of plasma TG with the presence of ischemic 
vascular disease (CAD or cerebrovascular disease) in 2 pro-
spective cohorts comprising 75 725 subjects.21 They found 
that the subjects with TG <90 mg/dL had significantly lower 
risk of ischemic vascular disease compared with the sub-
jects with TG >350 mg/dL. Initial deep medical resequenc-
ing of the exons of APOC3 and subsequent genotyping in the 
larger cohort identified 260 heterozygous carriers for 1 of 3 
APOC3 mutations, which were associated with lower fasting 
TG. The 3 variants identified by this approach were among 
the 4 SNPs that drove the association of APOC3 variants with 
TG described by the Exome Sequencing Project of National 
Heart, Lung, and Blood Institute. Of the 75 725 subjects stud-
ied, 10 797 subjects developed ischemic vascular disease, of 
which 7557 had ischemic heart disease. When separated by 
APOC3 genotype, they noted a 41% reduction in risk of vas-
cular disease among mutation carriers. The association of the 
variants with lower incidence of vascular disease was attenu-
ated when comparisons were adjusted for nonfasting TG lev-
els in the participants, implying that the effect of apoC-III on 
TG levels is at least partially responsible for the protection 
from disease conferred by the variants.

These 2 recent studies present the argument that apoC-III’s 
influence on plasma TG is responsible for the relationship of 
apoC-III with CAD risk. However, given apoC-III’s pleio-
tropic influence on lipoprotein metabolism and additional 
contributions to vascular risk, others have suggested that 
this interpretation may be incomplete. Cohen et al44 recently 
commented on the possibility that the reduced LDL-C levels 
in APOC3 mutation carriers may account for the observed 
protection from vascular disease. ApoC-III on intermediate-
density lipoproteins and LDLs is thought to delay hepatic 

clearance of these particles by lipoprotein receptors, and 
LDL-containing apoC-III was shown to be positively associ-
ated with development of coronary heart disease.34,35,45 In addi-
tion, LDL-bound apoC-III was shown to be associated with 
levels of the proatherogenic small dense LDL independently 
of plasma TG.46 For these reasons, deeper mechanistic studies 
in humans carrying these variants are warranted to explore the 
exact contribution(s) attributable to APOC3 LOF that confers 
protection from vascular risk. These studies will undoubtedly 
require an isolated study of the specific candidate processes 
influenced by apoC-III in carriers versus noncarriers of the 
identified mutations.

In contrast to these studies identifying disease-protective 
APOC3 LOF coding variants, studies of APOA5 have revealed 
several risk-conferring LOF coding variants. Several coding 
variants have been implicated in severe hypertriglyceridemia 
or hyperchylomicronemia through case-control and family-
based sequencing studies.47 Many of these studies identi-
fied rare variants in APOA5 but demonstrated that they were 
robustly associated with hypertriglyceridemic phenotypes 
when considered in aggregate.47,48 In addition, some common 
coding variants in APOA5 associated with increased TG have 
also been attributed to increased CAD risk.49,50

In December 2014, investigators from the Broad Institute 
reported in Nature a large exome sequencing experiment in 
early-onset MI cases compared with older healthy controls 
that implicated APOA5.51 To test the hypothesis that rare 
alleles may contribute to the extreme phenotype of early-
onset MI, Do et al51 performed exome sequencing in a dis-
covery cohort of 1027 early MI cases (men, ≤50 years old 
and women, ≤ 60 years old) and 946 older controls without 
MI (men, ≥60 years old and women, ≥70 years old) through 
participation in the Exome Sequencing Project of National 
Heart, Lung, and Blood Institute, selecting subjects from a 
total of 11 studies. In assessing the results of this sequencing 
effort, the authors collapsed rare variants in the same gene and 
tested their aggregate frequency within a given gene between 
cases and controls (gene-burden testing).52,53 They compared 
the collective variants within each gene between cases and 
controls by 3 metrics of variant annotation: nonsynonymous 
variants without functional annotation, deleterious variants 
as identified by the prediction tool PolyPhen2-HumDiv, and 
disruptive (indel, frameshift, nonsense, and splice-site) vari-
ants only. This preliminary effort did not identify any variants 
studied collectively that were associated with MI when using 
a significance threshold of P=8×10−7, a conservative limit to 
account for testing ≈20 000 genes by 3 different variant clas-
sification schemes.

On expansion of the exome sequencing effort from 1973 
to 9793 participants (4703 MI cases and 5090 controls), the 
investigators performed gene-burden testing again and found 
that rare alleles in the LDLR were significantly associated with 
the risk of MI. In total, they identified 285 LDLR variants in 
cases compared with 208 in controls, resulting in an effect size 
of 1.5 fold (P=4×10−6). To comprehensively filter the identified 
variants to yield the mostly likely functional ones for associa-
tion testing with MI, the authors developed 5 sets of criteria 
based on combinations of existing coding variant prediction 
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tools and applied each set of criteria to the identified variants. 
After applying the more stringent annotation criteria sets, the 
authors found an even greater enrichment of rare LDLR vari-
ants in MI cases, with an effect size of 13 fold when only vari-
ants considered to be most disruptive were included (9×10−5). 
A total of 156 unique nonsynonymous coding, splice-site, and 
frameshift variants within LDLR were identified, of which 
77 were previously reported as underlying causes of familial 
hypercholesterolemia, suggesting that the identified variants 
could cause MI through disruption of LDLR function and 
subsequent LDL-C elevation. This study provides hypothesis-
free support for the well-established observation that geneti-
cally elevated LDL-C levels are frequently associated with 
increased risk of early MI.54,55 Further functional study of the 
remaining 79 novel, rare LDLR variants will be required to 
determine whether and how they disrupt LDLR gene function 
and cause familial hypercholesterolemia.

The second major finding of this study was borne from 
additional targeted sequencing of 6 candidate genes (APOA5, 
CHRM5, SMG7, LYRM1, APOC3, and NBEAL1) that were 
identified as nominally significant (P<0.005) in the initial 
exome sequencing discovery phase. The coding regions of 
these 6 candidate genes were initially resequenced in 2 indepen-
dent cohorts, 1 Italian cohort comprising 1716 early MI cases 
and 1519 controls, and another cohort from Ottawa consisting 
of 552 early MI cases and 586 controls. These initial efforts 
revealed an enrichment of rare APOA5 mutations in early MI 
cases, prompting further sequencing of this gene in additional 
cohorts. Overall, sequencing of APOA5 in 6721 early MI cases 
and 6711 MI-free controls identified 46 individual rare single-
nucleotide variations. These variants were identified in 93 MI 
cases versus 42 healthy controls, and the >2-fold risk of MI 
in mutation carriers was primarily driven by variants found in 
only 1 or 2 study participants (private or near-private variants). 
Application of each of the 5 sets of variant annotation criteria 
for deleteriousness demonstrated a significant enrichment of 
rare APOA5 alleles in MI cases, with greater relative risk of MI 
in individuals harboring variants deemed more deleterious by 
stricter criteria sets (strict and disruptive criteria).

The plasma lipids of harmful APOA5 mutation carriers are 
important especially in light of the findings from the authors’ 
previous study of CAD-protective APOC3 variants associ-
ated with plasma TG. APOA5 mutation carriers in the exome 
sequencing study had 63 mg/dL higher fasting TG and 14 
mg/dL lower HDL-C than noncarriers, but notably, plasma 
LDL-C was comparable between carriers and noncarriers. 
These findings suggest that disruption of APOA5 gene func-
tion increases the risk of CAD/MI through a mechanism that 
increases TRLs but does not involve alteration of LDL levels 
and provides further support to the previous evidence impli-
cating genetically elevated TRLs in the risk of CAD/MI.

Targeting the LPL Pathway to  
Reduce CAD Risk

These recent studies have provided powerful evidence that 
plasma levels of TRLs are causally related to the development 
of CAD and specifically that apoC-III promotes and apoA-V 
protects against CAD. The results of Do et al51 implicating 

APOA5 LOF with increased TGs, no elevation in LDL-C, but 
increased MI risk also adds credence to the concept that it is the 
reduction in TRLs that primarily drives the association of the 
APOC3 variants with reduced CAD/vascular disease incidence. 
Collectively, these 3 studies thus offer strong support to the 
hypothesis that intervention to lower TRL levels may decrease 
the risk of CAD. Taken together with previous investigations, 
they implicate the LPL pathway as a potential target for reduc-
ing the risk of CAD through modulation of TRL metabolism. 
Translating these findings to tangible therapeutic strategies will 
undoubtedly necessitate a better understanding of how the LPL 
pathway and its regulators, such as apoC-III and apoA-V, actu-
ally work in concert to regulate this metabolism.

In the case of apoC-III, 1 therapy to reduce its production 
is already in clinical development. ISIS Pharmaceuticals has 
developed an antisense oligonucleotide that silences APOC3 
expression in the liver.56 This small chemically modified oli-
gonucleotide is delivered subcutaneously and is internalized in 
the liver where it inhibits the translation of APOC3 mRNA and 
promotes mRNA degradation through activation of RNase H. 
This anti-APOC3 antisense oligonucleotide has been reported 
to significantly reduce plasma apoC-III and TG levels and 
blunt postprandial TG elevations on treatment of rodent mod-
els and a nonhuman primate model with anti-APOC3 anti-
sense oligonucleotide and in healthy human volunteers.56 In 
December 2014, this anti-APOC3 antisense oligonucleotide 
was reported to reduce TG levels in 3 patients with familial 
chylomicronemia.57 Based on the human genetics, the expec-
tation is that intervention to reduce plasma apoC-III levels will 
not only reduce TG levels but also decrease the risk of CAD.

Alternative approaches to targeting apoC-III will benefit 
from better structural elucidation of the apoC-III protein and 
mechanistic insights into the effects of the disease-protective 
variants identified. Although 3 of the 4 APOC3 variants mainly 
responsible for the robust association with lower TG and CAD 
risk putatively function through affecting the production of full-
length apoC-III protein (2 splice-site and 1 nonsense variant), 
the fourth variant, A43T (rs147210663), is a missense variant. 
This suggests that the variant may alter apoC-III function in a 
manner to render it less effective in maintaining plasma TG. 
A previous study of the biochemical properties of this variant 
suggested that it may alter lipid binding and thus may influence 
the exchangeability of apoC-III among lipoproteins or stabil-
ity in circulation.58 Further insight into apoC-III structure and 
lipid-binding properties, and the specific effects of such mis-
sense variants on these properties, may aid the development 
of small molecules or other structure-guided therapeutics that 
target a defined property of apoC-III function.

Development of treatments focused on enhancing the activ-
ity of apoA-V is conceptually more difficult to envision. 
Nevertheless, any efforts to do this will also benefit from careful 
structure–function studies of the lipid- and lipoprotein-binding 
properties of this protein. Given the low plasma concentration 
of apoA-V, studies of its structure–function relationships may 
offer insight into domains that could be modulated to increase 
binding affinity for VLDLs, promote retention or increased 
stability of the protein in a lipid-bound state. Interestingly, 
among the APOA5 variants identified by exome sequencing, 
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2 nonsynonymous missense variants were among those pre-
dicted to be deleterious by all 5 prediction algorithms used. 
These variants, Arg289Cys and Arg343Cys, both occur in the 
C-terminus of apoA-V, a region previously implicated as criti-
cal for lipid binding.59 Further insight on apoA-V’s structural 
composition and function will undoubtedly be gleaned from 
careful study of the most functionally deleterious coding vari-
ants identified from the exome and targeted sequencing. Such 
investigations are already underway; for example Sharma 
et al60 demonstrated in the October 2014 issue of ATVB that 1 
of the identified APOA5 variants, Gly185Cys, disrupts apoA-
V function by promoting aberrant disulfide bond formation of 
the mutant protein. This work combined the study of the vari-
ant through viral vector–mediated expression in Apoa5 knock-
out mice with biochemical characterization of apoA-V from 
the plasma human carriers of the mutation. Such synergistic 
approaches will be necessarily to fully understand the implica-
tions of the many novel mutations identified and relate them to 
the physiology of plasma TG turnover.

These recent studies also raise interest in the prospect 
of targeting other regulators of LPL-mediated TG metabo-
lism, including the angiopoietin-like (ANGPTL) proteins 
ANGPTL3 and ANGPTL4.61 Like apoC-III, ANGPTL3 

and ANGPTL4 are thought to inhibit LPL activity, lead-
ing to elevated plasma TG levels, although their respective 
mechanisms conferring LPL inhibition may be distinct.61–66 
Both common and rare variants in ANGPTL3 are associ-
ated with plasma TG levels, and rare ANGPTL3 LOF muta-
tions underlie the Mendelian condition familial combined 
hypolipidemia, characterized by low plasma TG in addi-
tion to other lipid classes.66–69 Although common variants at 
the ANGPTL4 locus are associated primarily with HDL-C 
levels, rare coding mutations are robustly associated with 
reduced plasma TG.66–68,70 These findings taken together 
suggest that pharmacological inhibition of these ANGPTLs 
could reduce plasma TGs by a mechanism similar to that 
of anti-APOC3 focused therapies and result in reduced 
CAD risk. However, unlike the clear directional association 
of the APOC3 variants to TG and CAD risk in the 2 New 
England Journal of Medicine studies, the evidence link-
ing ANGPTL3 and ANGPTL4 LOF to CAD risk has been 
smaller or inconsistent.71–74 The viability of targeting the 
ANGPTLs to reduce the risk of CAD will thus depend on 
both larger human genetics studies of clear LOF variants 
and better understanding of the physiological interplay of 
these proteins with different lipoprotein subclasses.
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Figure. Roles of apoC-III and apoA-V in plasma triglyceride (TG) metabolism. ApoC-III and apoA-V are both found on TG-rich lipopro-
tein particles, such as very low-density lipoprotein cholesterol (VLDL) and chylomicrons, which are synthesized and secreted from the 
liver or intestinal enterocytes, respectively. ApoC-III inhibits lipoprotein lipase (LPL) activity, as do other secreted proteins ANGPTL3 and 
ANGPTL4. In contrast, apoA-V activates LPL activity. LPL-mediated TG lipolysis subsequently results in VLDL remnants from VLDL or 
chylomicron remnant particles derived from chylomicrons, both of which are enriched in cholesterol relative to TG. These particles may be 
taken up by the liver through interaction with specific lipoprotein receptors (VLDLR, LDLR, LRP1, and others), a process which is inhibited 
by apoC-III. VLDL remnants can be further modified by LPL and hepatic lipase (HL) to result in cholesterol-enriched LDL particles. If not 
removed from circulation, these various types of triglyceride-rich lipoproteins may be taken up by macrophages in the arterial wall, where 
they may contribute to vascular inflammation and atherosclerosis.
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In summary, a remarkable confluence of robust human 
genetics findings for the past 6 months has convincingly and 
causally implicated triglycerides and TG-rich lipoproteins in 
the development of cardiovascular risk. Specifically, the LPL 
pathway and its reciprocal regulators apoC-III and apoA-V 
have been found to have a remarkably important influence 
on the risk of CAD (Figure). TRLs can be added to the list 
of apoB-containing lipoproteins, joining LDL and Lp(a), as 
causal risk factors of CAD. Whether novel interventions to 
reduce plasma levels of TRLs will be orthogonal and additive 
to LDL reduction in reducing cardiovascular risk remains to 
be established.
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