Robust and Efficient Incentives for Cooperative
Content Distribution

Michael Sirivianos Xiaowei Yang Stanislaw Jarecki
Department of Computer Science
University of California, Irvine
{msirivia,xwy,stasi¢@ics.uci.edu

Abstract—Content distribution via the Internet is becoming now partnered with BitTorrent, Inc [5]. This trend indicate

increasingly popular. To be cost-effective, commercial ettent that P2P protocols enable a site to cost-effectively diste
providers are now using peer-to-peer (P2P) protocols suchsa content

BitTorrent to save bandwidth costs and to handle peak demansl Wh i tent id pop tocol. it
When an online content provider uses a P2P protocol, it faces en an oniine content provider uses a protocol, 1

an incentive issue: how to motivate its clients to upload toheir faces an incentive issue: how to motivate clients that ssse
peers. content to upload to others. This issue is of paramount im-

This paper presents Dandelion, a system designed to addressportance because the performance of a P2P network is highly
this issue. Unlike previous incentive-compatible systemsuch as dependent on the users’ willingness to contribute theinipl

BitTorrent, our system provides non-manipulable incenties for . - . o
clients to upload to their peers. A client that honestly uplads bandwidth. In addition, in a competitive market, a content

to its peers is rewarded in the following two ways. First, if prov_iderwith paying customers needs to offer better qyalit
its peers are unable to reciprocate its uploads, the content Service guarantees than the ones offered by free P2P content
provider rewards thg client’'s service with credit. This credit can distribution systems. However, selfish (rational) usensdte
Eeewgerggegggog (a‘lstﬁgu;in(t)g Sggjrscgg;ig;gcgmg;t”;ggg:try not to share their bandwidth without external incentivels [6
and have appropr‘iate uplink capacity, the client is rewardel with Although the pOP“'ar BitTorrent _prOtOC,OI’ has mco_rpochte_
reciprocal uploads from its peers. the rate_—based tit-for-tat (TFT) |nce_nt|ve mechanlsm,s_thl

In designing Dandelion, we trade scalability for the ability to mechanism bears two weaknesses. First and foremost, it does
provide robust incentives for cooperation. The evaluationof our not encourage clients to seed, i.e. to upload to other peers
prototype system on PlanetLab demonstrates the viability bour gfter completing the file download. Second, it is vulnerable

approach. A Dandelion server that runs on commodity hardwae

W?t'i’)] a moderate access link is capable of supportingyup to a fe to maqlpulat!on [7-10], allowing modified Cllent§ to freea

thousand clients. The download completion time for these iints @nd still achieve download rates equal to or higher than the

is substantially reduced due to the additional upload capaty —ones of cooperative clients (8§ II-B,VI-C).

offered by strongly incentivized uploaders. In previous work, we introduced Dandelion [11], a protocol
that provides provably non-manipulable incentives fordasg

Index Terms—Peer-to-peer, content distribution, incentives, and is not susceptible to free-riding. Although the protoco

fair-exchange, symmetric cryptography. was shown to be sufficiently scalable, its incentive medani
was completely centralized. In this paper, we built upon our
l. Introduction initial design and propose changes tpattially decentralize

the protocol. These changes render Dandelion more scalable

Content distribution via the Internet is becoming increasvhile they maintain its original desirable properties: usb
ingly popular among the entertainment industry and thecentives for cooperation and performance comparable to
consumers alike. For example, Hulu [1] streams authorizédte most efficient content distribution systems to date. Our
content for NBC, Fox and other networks. However, thmodified protocol provides robust incentives using two mech
increasing demand for digital content is overwhelming thenisms.
infrastructure of online content providers [2]. An attimet The first mechanism guarantees strict fair-exchange of con-
approach for commercial online content distribution is thint uploads for real monetary value. This mechanism isulisef
use of peer-to-peer (P2P) protocols. This approach does witen a client has content that interests its peer but the peer
require a content provider to over-provision its bandwittth has no content of interest to reciprocate wiielfishclients
handle peak demands, nor does it require the provider to rélye. rational clients that do not upload unless they expect
solely on purchased service from a third-party such as Akamlae rewarded) earn credit when they upload valid content to
Instead, a P2P protocol such as BitTorrent [3] harnessesthgir peers. Credit can be redeemed at a content provider for
clients’ unused uplink bandwidth, and saves the bandwiddliscounts on the content or for other types of monetary asvard
and computing resources of a content provider. Huang etfal. Given appropriate pricing schemes, we expect that a selfish
showed that peer-assisted content distribution can suliiety client is motivated to serve content to its peers. We refer to
reduce the operating costs of Video on Demand servicélsis mechanism asredit-based exchange
To that effect, BBC has successfully launched its iPlayer The second mechanism renders the protocol more scalable
peer-assisted VoD service, and leading content providers hby partially decentralizing it, while preventing free-nd. It

enables clients that are mutually interested in each atheH. Background
?:éﬁg:grga;;[:cgfl*{aliﬂg:e%ar?g;dggé\é\ée ree)jgr];onthem Dandelion’s design addresses the incentive issues in P2P
A kev challenge lies in m(ak'n the é chan 'g of Cor]c_ontent distribution protocols such as BitTorrent [3] and
tent Iy ds f 9 c;'t]I'-f ient ! gd t'x | gh'l b eMule [17]. In this section, we motivate the design of Dan-
ent uploads Tor credit etlicient and practical, While TabuUgyq ;g by discussing the weaknesses of BitTorrent’s irgent
to manipulation. Practice has shown that this problem echanism
a major stumbling bl.OCk f(_)r the commercial ado_pt|on O In the rest of this paper we use a BitTorrent-like terminol-
m|crop.ayment-ba§ed incentive schemes [.12]' Manlputybmogy_ A seederrefers to a client that uploads to its peers after
is a primary contributor to the weak adoption of credit-luiase . : .
. . . .1t has completed its download. keecheris a client that has
(micropayment-based) incentive schemes for commercial pu) - .
. N not completed its download. Aree-rider refers to a client
poses because it makes content distributors wary of suta:.ltaq : . .
. . . : O‘1at downloads content from other peers without incurring
monetary losses in case the client software is compromised.

We address this challenge based on the insight that t%r@/ cost, I.e without uploading content or without expegdin

. . . : urrency. Aswarmrefers to all clients that actively participate
content provider itself is a trusted third party (TTP) an|8n the protocol for a given content item. Theoking algorithm

can mediate the content exchange between its clients. Underr
. . refers to the client-side function of selecting peers tooagl
the credit-based exchange protocol, clients exchangefdata : .
; - ; content to (unchoke) in parallel, based on a predetermined
credit and a server mediates the transaction. The server use - L . i
. . L cCriterion. Optimistic unchokingefers to temporarily unchok-
only efficient symmetric cryptography on critical data math. .
. . ing a peer, although that peer does not currently satisfy the
and sends only short messages to its clients. : o . T ;
. . : unchoking criterion. Clients optimistically unchoke a pée
In our setting, any unfairness during TFT exchanges re: . : . :
. expectation that the peer will eventually satisfy the urkihg
sults in monetary losses for the peer that does not recelvef .
. ' . o .~ ~criterion.
its deserved reciprocation. We address this issue using an
optlm_lstlc falr-exchange_protogol_ th_at is an adaptatioBAR A. Impact of Seeding
Gossip [13] and classic optimistic fair-exchange exchange
schemes [14, 15]. In optimistic fair-exchange, the trusked The popular BitTorrent protocol employs the rate-based “ti
party is involved only when an error occurs or when dishonefsir-tat” (TFT) incentive mechanism [3]. A peer prefers to
participants do not follow the protocol. Implementing alen upload to (unchoke) another peer that reciprocally uploads
scheme chunk-level tit-for-tat exchanges of plaintexttenn parts of the same file. This mechanism mitigates free-riding
would not guarantee absolute fairness, since the last paer ut does not provide explicit incentives for seeding. Altgh
receives content may refrain from reciprocating. several BitTorrent deployments rely on clients to honestly
As a side-effect of the server-mediated fair-exchange;Daport their uploading history [18], and use this history to
delion discourages unauthorized content distribution Ha tdecide which clients can join a swarm, practice has shown
sense that it gives no incentives for seeders to waste thigsiat clients can fake their upload history [19,20] or codud
bandwidth for uploads to unauthorized clients. Instead, [R1].
provides explicit rewards for them to upload to authorized Seeders improve download completion times, because they
clients. increase the content availability and the aggregate upload
Our work makes the following contributions: bandwidth. In addition, incentives for seeding are crucial
1) The design of Dandelion, a hybrid incentive scheme ftyecause a large portion of P2P clients in the Internet reside
commercial P2P content distribution. It combines an efficiebehind asymmetric links. This means that the total upload
fair-exchange scheme that enables trading of content dploaapacity of the P2P network may be much lower than its

for credit with an optimistic fair-exchange scheme thattées total download capacity. However, lack of incentives leads

the bartering of uplink bandwidth. to BitTorrent swarms being underprovisioned in terms of
2) The prototype implementation of a Dandelion-based systeseeders [22]. In order to rectify this situation one needs to
that is suitable for P2P distribution of static content. persuade peers to remain online to seed after they complete

3) The evaluation of our implementation on PlanetLab [16{heir download. In § VI-B2, we show that the download rates
which identifies the scalability limits of our incentive ntec of leechers in BitTorrent swarms increases substantialiha
anism and demonstrates the plausibility of our approadiumber of clients that seed increases.

In addition, it thoroughly investigates free-riding in listc These observations are corroborated by recent and older
PlanetLab-residing BitTorrent-like networks. measurements in P2P content distribution systems. Izdl et a
The rest of this paper is organized as follows. Section [23] analyzed the lifetime of a healthy torrent with many
provides background and motivates our design. Section $iéeders and derived that almost 40% of the file was uploaded
provides an overview of Dandelion and describes the systdaiy seeders and that on average it took clients twice as much
model under which it is designed to operate. Section Il#me to upload than to download the same quantity of bytes.
describes the design of Dandelion and discusses its pregpertA recent measurement [24] over 1000 torrents and 100000
Section V describes the implementation of our prototypeeers revealed that altruistic nodes that uploaded twice as
system. Section VI presents the experimental evaluation mofich as they downloaded by remaining as seeders comprised
our implementation. In Section VII we discuss prior work andnly 17% of their swarm. Piatek et al. [22] showed that
we conclude in Section VIII. clients that joined 13353 swarms and contributed 100KB/sec

achieved a median download rate of only 14KB/sec and inOur results suggest that the large view exploit has the
25% of the swarms they were not able to download at all. potential to be widely adopted because it is beneficial feefr
addition, they found that 20% of 55,523 swarms had less théders. A dire prediction is that if more and more users that
1 seeder per 10 peers. They conclude that the vast majorityaoé reluctant to upload employ free-riding clients, BitEort
swarms would have significantly more availability and uploacommunities will experience the “tragedy of the commons,”
capacity if downloaders were incentivized to upload afteamtil those users realize that they need to use cooperative
download completion. Furthermore, experience with the élazlients in order to improve their download rates. Dandédion
system [25] has shown that demand for content is heavityn-manipulable incentives explicitly address this isfye
long-tailed; around 80% of downloading involves at most orfgreventing free-riders from obtaining any content without
downloader, therefore it is crucial to keep seeders online. reciprocating or spending money.
. . . The same weakness of BitTorrent’s incentives is experimen-

B. Free-riding in BitTorrent tally demonstrated in a recent work by Locher et al. [10]. In

A general observation is that since BitTorrent’s tit-fat-t addition, Zghaibeh [24] reported that the portion of pebet t
incentives reward cooperative leechers with improved dowfiee-ride and are able to attain good download rates (up to
load times, leechers are always incentivized to uploads TIHOOKB/sec) is already larger than expected (up to 10%).
observation relies on the assumption that users aim onl .
at maximizing their download rates. However in practicdﬁ- Overview and System Model
BitTorrent users may be reluctant to upload even if uplogdin \We now provide an overview of Dandelion and describe
improves their download times. For example, users withggcehe system model under which it is designed to operate. In
providers that impose quotas on outgoing traffic or userk wigddition, we introduce our setting and notation.
limited uplink bandwidth (e.g., 1.5Mbps/128Kbps ADSL) may)
wish to save their uplink for other more critical tasks. A. System Overview

Considering the trade-off between performance and susiWhen the content provider is overloaded, the Dandelion
ceptibility to free-riding [26], BitTorrent purposely deenot serverredirects itsclientsto other clients that are able to serve
implement a strict TFT strategy. In particular, it employsheir requests for content. The content provider splitst&in
rate-based instead of chunk-level TFT, and BitTorrentnttie into verifiablechunks and clients exchange carefully selected
optimistically unchoke peers for relatively long perioddime chunks. The content provider deploys in addition to theegrv
(30 seconds). Furthermore, BitTorrent seeders select fieerat least one client with the complete content (initial sepde
upload to regardless of whether those peers upload to othersThe content is split into multiple chunks in order to enable

Based on the above observations and previous work olients to upload as soon as they receive and verify a small
BitTorrent exploitation [7,8], we employ the “large view”portion of the content. It is also split in order to increase t
exploit [9] to free-ride in BitTorrent-like swarms. The &e entropy of content in the network, facilitating chunk exabas
rider client obtains a larger than normal view of the networkmong peers.
and connects to all peers in its view, while it does not uploadWe discuss the trade-offs in selecting a chunk size in the
any content. Using this exploit in a sufficiently large swarntase of static content distribution in § VI-B1.
a free-rider can find more seeders, which do not employDandelion employs a hybrid incentive mechanism. In case a
tit-for-tat. It can also increase the frequency with whi¢h iclient has content that interests a peer, but that peer dates n
becomes optimistically unchoked, compared to a compligmave content that interests the client, the system entloes t
client, which typically connects to 50-100 peers. In 8§ VI-Cselfish client to upload by rewarding the client with credit.
we extend our free-riding study to further motivate our dasi The system also rewards a selfish client with credit when
We experiment with free-riders in larger PlanetLab-rexidi the peer is unable to reciprocate at the rate it downloads
torrents comprising 0400 leechers and under more realistirom the client. For example, selfish seeders would always be
bandwidth distribution. We also investigate how the exisee rewarded in credit. The server maintains the credit balarice
of seeders affects the effectiveness of the exploit. each of its clients and converts credit to monetary rewards,

Free-rider clients that employ the large view exploit arsuch as discounts on paid content. To ensure that no user
able to download faster than or almost as fast as its titédbr-can be dishonest in the content-for-credit transactions, w
compliant counterparts. In addition, as the number of freemploy a fair-exchange mechanism based on symmetric key
riders increases, the swarm suffers performance degoadati cryptography. This mechanism requires the involvement of

The exploit is more beneficial for free-riders when tha trusted third party in each transaction. We refer to this
swarm has many seeders, in which case some free-riderschanism for exchange of content uploads for credit as
perform better than cooperative clients. When the swartredit-based exchangend the chunks that are uploaded under
has no additional seeders other than the initial seedes; fréhis mechanism asredit-traded
riders do not fare as well. However, they still attain good A Dandelion client employs a tit-for-tat mechanism when its
download rates compared to compliant clients, despitermgly peers can reciprocate with content of interest. That isglibat
on downloading from the initial seeder and on the increase@loads content to a peer at the same rate that the peer apload
frequency with which they become optimistically unchokeatontent to the client. However, a simple tit-for-tat schesueh
In all cases, the swarm suffers performance degradatidmeas a@s BitTorrent’s, is susceptible to the “large view” expléitee-
number of free-riders increases. riders that connect to many peers in their swarm can benefit

considerably by their peers’ initial offers. To address thsue persistent ID. The serve$ associates each client with its au-
we employ an optimistic fair-exchange mechanism [14, 1Hjentication information (client ID and password), the teon
based on public key cryptography. Optimistic fair-exchandgtem it currently downloads or seeds, its credit balancel an
requires the involvement of a trusted third party only inecaghe content it can access. The clients and the server nmaintai
a peer misbehaves. We refer to the tit-for-tat mechanism lassely synchronized clocks using standard techniques) su
TFT-based exchangand the chunks that are uploaded undexs the Network Time Protocol (NTP).

this mechanism a$FT-traded Every clientA that wishes to join the network must establish
a transport layer secure session with the sefyez.g., using
B. System Model TLS [28]. A client sends its ID and password over the secure

We assume two types of clients, which we define as followshannel. The serves generates a random secret key, denoted
o Selfish(rational) clients strategize based on a utility functioiKsa, which is shared withA. Ksa is also sent over the secure
that describes the cost they incur when they upload a chuectkannel. In addition, every Dandelion clieAtobtains from
to their peers and when they pay credit to download a churike server a public/secret key paitKa, SKa) that is issued by
It also describes the benefit they gain when they are rewardbd content provideA’'s peers obtain the public key certificate
with credit for correct chunks they upload. A selfish cliensigned from the server directly from. signa[X] denotes the
aims at maximizing its utility. public key signature ofA on the itemX, using A's secret

A selfish client may consider manipulating the credit systekey SKa. verifya[sign[X], X] denotes the verification oi's
in order to increase its utility by misbehaving as follow$: apublic key signature on the itei, usingA’s public keyPKa.
upload no chunks to a peer, and yet claim credit for themerify[] returns a boolean valu&sa and the public key pair
b) upload garbage either on purpose or due to communicateame renewed upon epoch change.
failure to a peer, and yet claim credit or be reciprocatedh wit The rest of the messages that are exchanged between the
valid content by the peer; ¢) download chunks from selfisferver and the clients are sent over an insecure commuanicati
clients, and yet attempt to avoid being charged or recigimga channel (e.g. over plain TCP), which must originate from the
with chunks; d) attempt to download chunks from selfish peesame IP as the secure session. Similarly, all messagesdretwe
that are not interested in its content without having sudfiti clients are sent over an insecure communication channel.
credit; and e) attempt to boost its credit by colluding with Each client A exchanges only short messages with the
other clients or by opening multiple Dandelion accounts. server. To prevent forgery of the message source and replay
e Malicious clients may be faulty or strategize based oattacks, and to ensure the integrity of the message, each
irregular utility functions, e.g. their utility increaséy harm- message includes a sequence number and a digital signature.
ing others, despite not obtaining credit or content. Thelhe signature is computed as the MAC of the message and the
misbehave as follows: a) attempt to make honest clientsaappgequence number, keyed with the secret Key that A shares
as malicious or dishonest, or attempt to cause them to W#éh the server. Each time a client or the server receive a
charged for chunks they did not obtain; b) attempt to performessage from each other, they check whether the sequence
a denial of service (DoS) attack against the server or slechumber succeeds the sequence number of the previously
clients (this attack would involve only protocol messages, received message and whether the MAC-generated signature
we consider bandwidth or connection flooding attacks oatsisterifies. If either of the two conditions is not satisfied, the
the scope of this work); and c) upload invalid chunks aimingiessage is discarded. The sequence number is reset when time
at disrupting the distribution of content. periodi changes.

We assume that a selfish or malicious client cannot interfereX — Y:[nameé Z,W denotes that the client or servir
with the IP routing and forwarding function, and cannot coisends tor a message of typeame which contain&Z andWw.
rupt messages, but it can eavesdrop messages. In addigon, w, .
assume that communication errors may occur during messlea Des'Qn
transmissions. In this section, we describe the design of Dandelion, which
. . explicitly addresses the challenges posed by selfish and mal
C. Setting and Notation ciorijs cﬁ/ents, as well as the cor%muaicationychannel.

Before we describe our design, we introduce the setting andWe introduce our credit-based exchange cryptographic pro-
notation. tocol for the fair and non-repudiable exchange of content

We use(X) to denote the description of an entity or objectuploads for real monetary value. We also describe our hybrid
e.g. (X) denotes a clienX’s ID, while X denotes the client incentive scheme, which combines the credit-based exehang
itself. H is a cryptographic hash function such as SHAMBC with the TFT-based exchange. The TFT-based exchange al-
is a Message Authentication Code such as HMAC [27], atows peers to directly barter uplink bandwidth resources, a
i refers to a time period (epoch). By we denote epoch warrants the involvement of the trusted third party (TTPlyon
at client or serverX. MACk[X,Y] denotes the MAC of the in case of exceptions. By combining the two cryptographic
concatenation of itemX andY, using the key. protocols, we reduce the load that the credit-based exehang

Due to host mobility and NATs, we do not use Interngbrotocol induced on the online TTP in the original Dandelion
address (IP or IP/source-port) to associate credit andr otipeotocol [11].
persistent protocol information with clients. Instead;leaser ~ Our design is based on the premise that although a low
applies for a Dandelion account and is associated withcast server may not have sufficient network 1/0 resources to

directly serve content to its clients under overload, [29, 3provider rewards uploaders with a credit valtye> O for the

it may have sufficient CPU, memory, and I/O resources tgploading of a chunk, which is fixed for every chunk and
execute many symmetric cryptography operations, to maintavery client. Downloaders sperd credit units for each chunk
protocol state for many clients, to access its clients’@rot they download. A client is awarded sufficient initial cretht
state, and to receive/send short messages. However, CBblynload the complete paid content from its peers, without
memory and I/O are still limited resources. Therefore we aitraving to upload. In this way, slow uploaders do not face
at making the design as efficient as possible. We also argiarvation and they are able to expend their credit at thee rat
that content providers incur lower costs when they purchaseeded to achieve their desired download rate.

the otherwise unused or altruistically offered uplink bartth The content provider redeems a client’s accumulated credit
of their clients than when they purchase bandwidth directfgr monetary rewards, such as discounts on content prices or

from access providers (8 IV-G). service membership fees. We assume that the content provide
) . prices chunk uploads appropriately to ensure that for tis¢ va
A. Credit as Incentives majority of clients, utility increases when they utilizeeth

We aim at providing strong incentives for a selfish client taplink in exchange for credit. We sé = A¢, so that two
upload to a peer that does not possess content of interest ocdlluding clients cannot increase the sum of their credit by
a peer that is unable to upload as fast as the client uploaddatisely claiming that they upload to each other. A client can
it. To this end, we employ a cryptographic protocol to ensueequire a chunk from a peer that is not interested in the
the fair-exchange of content uploads for credit. client’s content only if the client’s credit is greater than We

This protocol involves only efficient symmetric crypto-could alternatively sef\. > Ay, but this would penalize good
graphic operations. Thserveracts as the trusted third partyuploaders who would not be able to recover the full monetary
(TTP) mediating the exchanges of content for credit amagg ialue of the amount of bandwidth they used by reciprocating
clients, and as a credit bank maintaining records of thetdie with the equal amount of bandwidth.
credit balances. When a clieAtuploads to a clienB, it sends A user cannot boost its credit by presenting multiple 1Ds
encrypted content to clied. To decrypt,B must request the (the Sybil attack [32]) and claiming to have uploaded to some
decryption key from the server. The requests for keys sesvedt its registered IDs. This is because each user maintains
the proof thatA has uploaded some contentBoThus, when an authenticated paid account with the provider. The user
the server receives a key request, it creditfor uploading essentially purchases its initial credit, and the net surann
content toB, and charge8 for downloading content. upload-download transaction between any two IDs is zero.

When a clienfA sends invalid content to a clieBt B can de- .
termine its validity only after receiving the decryptionykend C. Client Acces: Control
being charged. To address this problem, our design inclades Before we present Dandelion’s fair-exchange mechanisms,
non-repudiable complaint mechanismAlintentionally sends we describe how Dandelion enables the server and its clients
garbage toB, A cannot deny that it did. In additiorB is to determine which clients are authorized participants. We
prevented from falsely claiming th#t has sent it garbage. also describe how clients obtain information about the eant

The server and the credit base are logical modules and @ the swarm. Figure 1 provides a high-level description
be distributed over a cluster (e.g. using consistent hgshiof the client access control protocol, which is inspired by
based on client ID) to improve scalability and fault-toleza. ticket-granting authentication schemes such as Kerb&3®js |

Although, a single low cost server may scale to a feand we describe it in detail below.
thousands of clients (8 VI-A), a well-provisioned content
provider may purchase more bandwidth and employ sen&tep 1: The protocol starts with the cliel® sending a request
farms that consist of tens or hundreds of Dandelion servefsr the content itenF to the servelS.

In this way, a well provisioned content provider may support B— S:[content requebt(F)
hundreds of thousands of clients at a much lower cost than
if the provider provided a significant portion of the reqdireStep 2: If B has access té¢-, the server chooses a short

uplink capacity itself. list of peers(A)jist, among the ones that are currently in the
) swarm forF. The policy with which these peers are selected
B. Credit Management depends on the specifics of the content distribution system.

Dandelion’s incentive mechanism creates a market, whiéfach list entry contains the ID of the peer and the peer’s
enables a variety of application scenarios. Our protocol iisbound Internet address. For every pdem Ajst, S sends
intended for the case in which users maintain paid accountdicket Tsa = MACkg,[(A), (B), (F),t] to B, wheret is the
with the content provider. The currency employed by Dandeurrent timestamp. The tickéisa is only valid for a certain
lion is directly mapped to real monetary value that cust@metime lengthl yeer and allowsB to request chunks of the content
introduce in the market by purchasing content. We empldi) from client A. When Tsa expires andB still wishes to
real instead of virtual currency to eliminate depletiofflation download fromA, B requests a neWwsa from S. The ticket
and starvation issues that plague typical virtual currendga enablesA to filter out service requests from misbehaving
systems [31]. or unauthorized peers. To ensure integrity in the case Gt sta

Selfish clients may sell upload service to peers that acentent distribution or video on demartlalso sends t® the
unable to reciprocate with equally fast uploads. The cdnteBHA-1 hashH (c) for all chunksc of (F).

@<3' 5 @ MAGCk,[(A), (B), (F),{(c),t,1]). Next, A hashes the ciphertext
S N\ 4,6 S C asH(C). Subsequently, it computes its commitment to the

Client A Client B encrypted chunk a3as= MACkg,[(A), (B),(F),(c),H(C),t].
28 The commitmenflas is only valid for a certain time length
Client Access Control 1,7,9 Credit-based Exchange Lkey, Which forcesB to purchase the chunk at the server before
1. Content request: logininfo ¢ 5. Chunk request: ticket Tas expires. This fact allow# to promptly acquire credit for
2. Content response: list of peers 6. Chunk response: encrypted it . P | . di oA h
and tickets chunk and commitment its service. Promptly acquiring credit may alloWwto use the
Z- g;“fell(“ request: ﬁcket‘ ; gm- tey request: C‘:immi;?‘enf credit to download a file more than one time. It also allows
. unk announcements . ecr. Key response: decr. Ke’ . .
© 9.Comp1aixym£nmitmem Y B to provide chunks almost as soon as they are received,

increasing global throughput at the early stages of theetist
distribution. B has no real incentive to delay paying, since
Figure 1: The client access control and credit-based exchange protas. 't has _tO do it eventually. He may attempt to refrain from
Messages are listed in a “message type:contents” format arahly the most ~ Uploading the content to speedup its download, but any gains
important contents are included. The numbers on the arrows orrespond would be cancelled out by the wait involved in uploading the
to the listed protocol messages and the steps listed in Sexts IV-C content to earn the credit needed to obtain the decrypti;m ke
and IV-D. A — B:[chunk respons€Tas, (F), (c),C.t,ia

Dandelion Server

. Step 7: SinceB does not know the kel(sa that was used to
S— Bi[content respon$dsay,, (Aiist: H (C)iist, (F). i generatd, in step(6), it needs to request from the server.
. , As soon a8 receives the encrypted churikcomputes its own
Step 3:_Upon receiving the server's respongconnects to hash over the received cipherte®t and sends a decryption
each clientA € Aj; to request the contedf). In the rest of key request message ®
this description, we list only the steps that invoBeand a g __| S|[decryption key requestA), (F), (c),H(C'),t,
specific clientA. Tas ia
B — A:[content requebiTsa, (F),t,is
) _) Step 8: If currenttime < t + Liey, and the reported
Step 4: If current-time <t 4 Lpeer and Tsa is not in A's epoch of A is off by at most one,S checks if Tas =
cacheA verifies whetheflsa= MAGc,[(A), (B), (F).t. Ifthe \mag [(A) (B), (F), (c),H(C'),t]. The commitment's Tas
verification fails,A drops this request. Also, i§ is greater than ,qrification may fail either becaus® C due to transmission
A's current time perioda, A learns that it should renew its g oy in step(6) or becaused or B are misbehaving. Since
key with S. Otherwise,A cachesTsa and periodically sends i5 ynaple to determine which is the case, it punishes neither
the chunk announcement message described below, for 1, B and does not update their cred8.does not send
period that the timestamipis fresh. This message contains gne decryption key taB but it notifies B of the discrepancy.
list of chunks thatA owns, (C)iist. B also does so in separatep caseA repeatedly sends invalid chunk response messages,
chunk announcement messages. The specifics of which chugkg; expected to disconnect fro and blacklist it. If B
are announced and and how frequently depend on the typggéps sending invalid decryption key requests that invélve
content distribution. S penalizesB. If the verification succeeds checks whether
A — B:[chunk announcemejn(c)jist B has sufficient credit to purchase the chumlt also checks
again whetheB has access to the contéft). If B is approved,
S chargesB and rewardsA with A credit units. Subse-

D. Exchancing Content Uploads for Credit quently, S computesk, as MAGk,[(A). (B). (F),(c).t,0],
We now describe in detail Dandelion’s cryptographitMACk.,[(A),(B),(F),(c),t,1]) and sends it td.
credit-based exchange protocol (Figure 1). S— B:[decryption key responkéA), (F), (c),k’<C>

Step 5: B and A determine which chunks to download from B usesk’<C> to decrypt the chunk ag = Deqd<C> (C). Next,
each other according to a chunk selection policy. For examplve explain the complaint mechanism.
BitTorrent's locally-rarest-first [3] is suitable for stattontent Step 9: If the decryption fails or ifH(c') # H(c) (step(2),
distribution, while for streaming content or video on dewmhang |V-C), B complains toS by sending the following message.
other policies are appropriate [13, 34.can request chunks B — S[complaint (A), (F),(c), Tas,H(C),t,ia
from B, after it requests and retrievdsg from S. B sends a
request for the missing churkto A. S ignores this message gurrent-time > t + L{(ey where

B — A:[chunk requestTsa, (F), (C),t,is L{(ey> Lkey: L{<ey— Lkey should be greater than the time needed

for B to request and receive a decryption key response, decrypt

Step 6: B's chunk requests are served By as long as the chunk and send a complaint to the server. With this
the timestampt is fresh, andTsa is cached or verifies. condition, a misbehaving clienh cannot avoid unfavorable
A encryptsc using a symmetric encryption algorithBanc, complaint resolution by ensuring that the time elapsed betw
as C = Enq<<C> (c). ke is a key and encryption initializa- the momenA commits to the encrypted chunk and the moment
tion vector pair generated adACqg,[(A), (B),(F),(c),t,0], the encrypted chunk is received Byis slightly less tharn ey.

The client A cannot delay sending the complete chunk ftias uploaded to the peer and the number of TFT-traded chunks
time greater or slightly less thalr:((ey, because in such casethe client has downloaded from the peer. The trade surplus
B’s decryption key request would not be considered valithresholdts is the maximum value that the trade surplus can
by the server. Therefore, in such case B would never geake before the client with the positive trade surplus svatc
to the complaint stage. T'-T should be such that even if the credit-based exchange.
decryption key is received slightly before or after before T The trade surplus takes values greater than one when peers
expires, B would still have time to decrypt the chunk and seradle not able to simultaneously exchange content and thuk nee
a complaint to the server before T' expires. All that is regdi more time to obtain chunks with which to reciprocate. In orde
is that T'-T is greater than the time it takes to process the maintain the trade surplus in the presense of connection
decryption key, decrypt the chunk and send a new complaifailures, the client keeps persistent session informatan

S also ignores the complaint message if a complaint feach of its peers, and identifies peers by their IP.
the sameA andc is in a cache of recent complaints that A strawman approach is to employ a tit-for-tat scheme under
maintains for each clierB. Complaints are evicted from thiswhich clients exchange plaintext chunks, while ensurireg th
cache onceurrent-time> t + L the trade surplus does not exceed a threshold [7,35]. The

If TasAMAGCkg,[(A), (B),(F),(c),H(C'),t], S punishesB. problem with this scheme is that it cannot guarantee alesolut
This is becaus& has already notified® that Tas is invalid in fairness; the last peer that receives content may refraim fr
step(8). If Tas verifies,S caches this complaint, re-computeseciprocating. If in addition a free-rider employs the Yar
k/<C> once again, retrieves from its storage, and encrypts view exploit” or the trade surplus threshold is high, a free-
himself using<’<c>, c = Enck,<C> (c). If the hash of the ciphertext rider can download a substantial amount of content without

H(C") is equal to the valuél(C') thatB sent toS, S decides ?ncurring any cost (see 8§ \{I—C). The free_-rider problc_am
that A has acted correctly anB's complaint is unjustified. is exacerbated under Dandelion, as the gains of free-riders

Subsequentlys drops the complaint request and blackligts translate to monetary Ios_es_ fc_)r th_eir peers. To address this
It also notifiesA, which disconnects frorB and blacklists it. ProPlem. we employ aeptimistic fair-exchangscheme that
Otherwise, ifH (C") # H(C'), Sdecides thaB was cheated by allows clients to barter their uplink in a fair manner. This
A bIacinsisA revokes the,corresponding credit chargeBon scheme involves the server only in case of client misbelavio

and notifiesB that its complaint has been resolved. SimilarI)}?r co_mmuryicgti_on fgilure. It is a purpose-built adaptatiin
B disconnects fronA and locally blacklists it. classic optimistic fair exchange protocols [14,15] and BAR

The server disconnects from a blacklisted clidntmarks G(I)f55|p|[13]._ der (it d) btai
it as blacklisted in the credit file and denies accesa b it a client is a seeder (it does not expect its peers to obtain

attempts to login. Future complaints that concérand are content that interests the client), it always uploads ¢t+edded

non-duplicate, non-expired and with valid commitments: ai:hunks. Otherwise, if the client’s trade surplus with a pieer

ruled againsi without further processing ess than or equal to the specified surplus threshold, eaatt cl
Since a verdict on a complaint can adversely affect a clielji?,sloondf5 to requests for chunks from its selected dowrloade

each client needs to ensure that the commitments it gelsere%%ers with TFT-raded chunks. If the surplus excetishe

are correct even in the rare case of a local 1/O error. Thexisc-:-foC '\e/\% respolr)dsﬁwnhl crgdlt-tlr_;a:(_jretd %hljjnkﬁ' ¢ lients
a client always verifies the read chunk against its hash eefor enacieniuploads a -traded churk to a clientB,

it encrypts the chunk and generates its commitment. € is encrypted using symmetric key cryptography. To decrypt,
B must reciprocate with at least one encrypted TFT-traded

E. Rate-based Tit-for-Tat with Optimistic Fair chunkcp to A. Upon recept_ion of/, A s_ends the decr_yption
key for c to B. In turn,B reciprocates with the decryption key

Exchange for ¢

We now describe how Dandelion combines under onelf B sends an invalid chunk, to A, A can detect it
hybrid scheme the fair-exchange of content uploads foritrednly after sending the decryption key for the valid chunk
(credit-based exchange), with the tit-for-tat trading Hfased c1 to B. To address this issue, we include a non-repudiable
exchange) of content uploads. complaint mechanism similar to the one used by the credit-

The credit-based exchange addresses the fairness issubaised exchange. Unlike the credit-based exchange however,
tit-for-tat-based cooperative content distribution. tdséhat in the TFT-based exchange, senders commit to chunks and
cannot upload at the rate their peers upload to them, pagcryption keys they send using public key signatures. This
the excess offered bandwidth in credit. However, when twe because the server is involved only in case of client
clients are mutually interested in each others content aad anisbehavior. Therefore, clients should be able to detegrifia
able to upload to each other at the same rate, they are abledtidity of the commitments to the transmitted chunks witho
use tit-for-tat incentives, i.e. employ the TFT-based exaje. querying the server as in step (7) IV-D.
The TFT-based exchange aims at reducing the decryption keWote that public key operations are substantially more
request load on the server. It enables a pair of clients ttebarexpensive that symmetric cryptography ones (§ VI-A2). Thus
their uplink resources without requiring the server to ragzli they are unsuitable for credit-based exchange, in which the
their transactions. At the same time, it prevents freeagdi server needs to validate the decryption key request for each

Thetrade surplusof a client with respect to a peer is the thaiploaded chunk. In TFT-based exchange however, the server
difference between the number of TFT-traded chunks thetcligs involved only in case of complain

1) TFT-based Exchange as well as the data that were signed (encrypted chunk hash,

. . . decryption key etc).
After two clients have authenticated each other using the yp y etc)

client access control protocol, they may use TFT-based ex- ! . P
change. We now describe in detail Dandelions cryptographicB — Sfcomplain (A), (F), {c1), TPa,H(Cy). ia
TFT-based exchange protocol. For consistency with theiprev

ous description, we start the enumeration after step (4@f tB andc is in a cache of recent complaints tt&aintains for

client access control protocol. . ,
Step 5: B and A determine which chunks to download fromeaCh clientA or the reported epoch @ is off by more than

each other according to a chunk selection polByand A one. Next, the server checks the validity of the signatulfes.

exchange requests for the missing chuoksndc,. :EZ{ t?}(;;(xevreerlifz\,lglil(ajlackllstﬁ, becaus® could verify itself

If they verify, the server caches the complaint and repro-
duces the correct decryption ke, . It then determines
whetherk .,y matches the one signed By f it does not match,
it blacklistsB. If it matches, it retrieves the churgg from its

local storage and encrypts it wi ,Cl'=Engy (cp). If
Step 6: A's and B's requests are served by each other g yp ey, Cf q<<C1>(1

as long as the timestamp is fresh, and the tickets the hash of the ciphertext(CY) is equal to the valuéi (Cy)
Tsyss are cached or verifyA and B encrypt c; and that A sent toS, S decides tha® has acted correctly an8's
¢ using a symmetric encryption algorithnEng as complaint is unjustified. Subsequentfydrops the complaint
C1=Ena (c1),Co = Eng (c). ke is a key and encryption and blacklistsB. It also notifiesA, which disconnects frons
B (c) s (c) - e ; ; ; 11 / ;
initialization vector pair gecnerated as in st@ of the credit- and blacklists it. Otherwise, #l(C") # H(C'), S decides that

based exchange protocol. Ne&,and B hash the ciphertexts B was cheated b and blacklistsA.

Ci, C,. Subsequently, they compute their commitment to T.he decryption keys for TFT-traded_chunks_ cannot be
the encrypted chunk using their public key. For example, retrieved from the server for a corresponding credit costhis

Signores the complaint message if a complaint for the same

B — A:[chunk reque$tTsa, (F), (C1),t,is

A — B:[chunk reque$tTsa, (F), (C2),t,is

computesT P — siana[H ((AY. (BY. (E). (c1). H(COY. way we discourage senders from not sending the decryption
P A =SIg[H(A), (B), (F), (1), H(CL)) key for the last chunk in stef8) in an attempt to force their
A — B:[chunk responseT Py, (F), (c1),Cr, ia peers to pay them with credit instead.

B — A:[chunk responseT Rs, (F), (c2),Co,ip 2) Hybrid Incentives

Step 7: Since A and B do not know the keyKsa and Ksg ts: trade surplus threshold.

used to generate the decryption kegs, K, in step (6), tsp: trade surplus with peep.

they need to obtain them from each other. As soonAas seg: number of sent encrypted chunks to pgeior
receives the chunk response froBjit computes its own | which a decryption key has not been sent.

hash over the received cipherte® and validatesTFs by | rec,: number of received encrypted chunks from pper
computing verifys[TRs,H((B),(A),(F),(c2),H(Cy),t)]. If | for which a decryption key has not been received.
the signatureT R is valid, A sendsB the decryption key dks,: decryption key surplus fop.

Ky~ If the TRy is invalid, A is expected to disconnect from| |nput: The set of selected downloader pefrs

B and blacklist it, in caseB repeatedly sends invalid chunk |nput: The set of the requested chunks from ppehat
responses. The same steps are takerBhyhen it receives are availableC

the chunk response from. When a client sends a decryption foreach peer pe P do

key for a TFT-traded chunk, it also includes a signature on | foreach chunk ce C do
the decryption key message. For example, cli@momputes if tsp<tsthen
TPKg = sigm[H (B, (c1),k¢,))]- This is to ensure thaB SendTFTTr adedChunk(c)
can complain in case the client sends a valid TFT-traded sep=se¢q+1
chunk but does not send a valid decryption key, which would tsp=tsp+1
constitute a DoS attack. else .
| SendCredit TradedChunk(c)
A — B:[decryption key TPKa, (F), (c1),kc,),ia end
B — A:[decryption key TPKg, (F), (c2),Kic,). i if secp>0 && dkg <1 && (recp >0 ||
dkg,=1) then
We now describe the complaint mechanism for the TF[- Sendbecr ypti onkey(c)
dkg =dks+1
based exchange.
segp=se¢g—1
d
Step 8:In case a clienB receives an invalid TFT-traded- enden
chunk and decryption key combination frofy it can use the end

serverSto resolve complaind sends toS As signatures on
the encrypted chunkT(Pa) and the decryption keyT(PKa)

Algorithm 1: The Hybrid incentive algorithm.

Algorithm 1 specifies how Dandelion combines the credif. Design Properties
based with the TFT-based exchange. Every client maintainsw list th i f desi
the decryption key surpludks, for each of its peerp. dks, © n0\1v 'Z Tf_pLOper es ol_o_ur esll_gn.
is the difference between the number of decryption keys fhEmma selfish or a malicious client cannot assume
TFT-traded chunks the client sent fp and the number of anotherquthorlzed clle@t’s |der_1t|ty and issue messages under
decryption keys the client received from A client sends to A. Thgs, |thcann((j:>tfobta|n ;erv.lczlzt the e>t<)pe_nsé\@fr cause
p a decryption key for a sent TFT-traded chunk if both of the to be charged for service it did not obtain or causeo
following two conditions are satisfied: aks, < 1; and b) it be blacklisted. In addition, it cannot issue a valigh for an

has received TFT-traded chunks from p for which it has nmvalid chunk that it sends to a clieBtand caus® to produce
received decryption keys atks, = 1 a complaint message that would result in a verdict against

credit- and the TFT-based exchange depending on contBfifick only by obtaining the user authentication inforomti
availability and peer upload and download rates. Therefo the shared secret kegsn However user authentication,
we need an algorithm that aims at reducing the amount ¥fd the transmission of the shared secretieyis performed

creditexchanged chunks uploaded to each peer, while itessiPVer the secure session betwekand the serves.

that the client uploads to its peers at the maximum rate its) .]
peers can download from it. Lemma 2 If the serverS charges a clienB A credit units

Rather than employing a complex per-peer resource alifgr a chunkc received from a selfish chen_%, B must have
cation algorithm, we use the following simple scheme. Agceived the corredt, regardiess of the actions taken By
any moment a client selects a specified numbef peers Proof 2 B gets charged only if the commitmeliis that S
to which to upload to using a downloader selection algorithffts fromB in step(7) is valid. This means that the valués
that is almost identical to BitTorrents. This algorithm aimt S€nt toB in Step(3) are the one# used to computéas and
reducing the amount of content that is transmitted enctyptdhat H(C) = H(C'). SinceH is a second pre-image resistant
and thus requires the involvement of the server. At the sarfiy/Ptographic hash thaB computes itself onC’ received
time, it aims at increasing a clients uplink and downlinkom A, C =C'. Thus, B is charged only if the encrypted
utilization. A Dandelion leecher ranks its peers based @n tRhunk received byB is the encrypted chunk to which has
rate with which they upload TFT-exchanged chunks to tfg@mmitted to. Since the sanie; is used byA to encryptc
leecher. A Dandelion seeder ranks its peers based on the g C' and byB to decryptC into ¢/, C = C’ implies that
with which they download from the seeder, as is the case whh= ¢
BitTorrent seeders. Every time pericH, the client selects If A encrypts an invalid chunk and sends it td3, B can
as downloaders theo top ranked peers, and in addition itissue a complain t&. For the complaint to be ruled against
optimistically unchoke® additional peers foP seconds. B, we should haveH(C') = H(C"), whereC” is computed

When a leecher selects the fastest TFT-exchanged chiykS in step(9). SinceTas is accepted bys, all the valuesS
uploaders, it selects peers that are more likely to match #§ed to computdas are the ones thah sent toB, and the
TFT-based upload rate and thus exchange chunks in a tigforhashH(C’) is correctly computed over the cipherteStthat
fashion. This results in invoking the credit-based faicteange A sent toB. ConsequentlyS would generate the sarmie,
mechanism less often. A similar property has been showfith the oneA used. ThereforeSs encryptionC” would not
to hold for BitTorrents chocking algorithm, which induce®€ the same as th@ that A sent toB. ConsequentlyH (C')
clustering between peers that have comparable upload rat@s!ld not be equal té(C”) andSwould reverseB's charge.
[36,37].

The trade surplus threshold values used by the peers carl-Bg1ma 3 If a selfish clientA always encrypts chunkanew
changed locally and the server cannot enforce them. Theriseyhen serving a request, as described in $&n(8 IV-D), and
can only recommend values based on the swarms performaiid@ gets a validc from A, thenA is awardedA. credit units
characteristics (see § VI-B1). Peers may choose to follaw tfrom S, andB is chargedA¢ credit units fromS.
recommendation or not. In general, if the recommendation fBroof 3 A generatek, using a secure MAC function and
the TFT-exchange trade surplus is a low value, peers wowldsecret keyKsa, which is unknown toB because it was
have no problem complying. But if the recommendation iansmitted over the secure session betw&emd the server
a high value peers may be reluctant to comply, becauseSitTherefore, the only way foB to retrievek is to request
would mean that they are more vulnerable to denial of servidgrom S (step(7)), in which caseS logs a charge again&
attacks, and to wasting bandwidth on encrypted chunk upload Note that we are not concerned with another selfish client
that are not reciprocated. Still, clients are motivatedtiml@ E being able to eavesdrop on the plaintext key and the en-
by the recommendation because compliant peers unchoke ¢hgption of chunkc and thus retrieve without being charged.
fastest uploaders of TFT-traded chunks. In this case, the damage to the system is not significant

The decryption keys for TFT-traded chunks cannot be rbecauseA is still rewarded for its upload and secoidis
trieved from the server for the corresponding credit costhis not consuming additional system resources.
way we discourage senders from not sending the decryptioriThe only way B could possibly avoid this charge is
key for the last chunk in step (3) in an attempt to force theloy sending a complaint taS, which includes Tas and
peers to pay them with credit instead. H(C'). For the complaint to be ruled in favor oB, it

10

should hold thatH(C') # H(C"), where C” is computed together or re-encrypting the content and resending itreefo
by S in step (9). However, S will accept Tas only if checking it are not appropriate.
Tas= MAGCk,[(A), (B), (F),(c),H(C'),t]. This means that all Observation 2 If a client does not have sufficient credit,
the valuesS used to computés are the ones thak sent to it cannot download chunks from a selfish peer that is not
B, and that the hasl(C’) is correctly computed over theinterested in the client's content. Our design choice tolve
ciphertextC that A sent toB. Since this is the cas§ would the server in each exchange of content uploads for credit
generate the samlg. that A used, henceSs encryptionC” instead of using the fair exchange technique proposed iy [38
would be the same as tl& that A computed. Consequently,enables the server to check a client’s credit balance, éefor
H(C') would be equal taH(C”) and B would be unable to the client retrieves the decryption key of a chunk.
reverse its charge. In particular clients could abuse the Li et al. scheme [38] as
follows. A user connects undéY's account and downloads a
Lemma 4 A malicious client cannot replay previously sentertificate from the server, which indicates that it has gmou
valid requests to the server or generate decryption keyestgu credit. The certificate cannot indicate how much credit g le
or complaints under another cliets ID. Thus, it cannot because credit may increase. This user downloads the ctample
causeA to be charged for service it did not obtain or caése file and earns some credit in the process too. Then he gives
to be blacklisted because of invalid or duplicate comp#aint A's account to his friend, which now has credit, thus it gets
Proof 4 All messages exchanged between a cliénand a certificate. The new user uses more than its availabletcredi
the server are digitally signed with the shared secrethgy issuing valid commitments (payment orders) signed with its
and include sequence numbers. Both the client and the semvew secret key, which the peers cannot verify whether they
store the last sequence number seen by each other andrépeesent real value in the bank.
sequence numbers are reset up@hange. Thus, a malicious This problem can be solved if we disallow a specific user
client cannot forge the source of the request, neither it cib to download the same content more than once, no matter
resent a request that has already been received. how much content they have uploaded. But this is not prdctica
as the same user may choose to download the files it paid for
Lemma 5 Under the TFT-based exchange scheme, a selfistultiple times from various machines, counting on some of
client B cannot obtain a chunk; from its peerA without his machines uploading a lot and gaining extra credit. Wéwis
expending bandwidth to reciprocate with a valid chumk to avoid limiting how users can use their credit. If a user has
itself. In addition, as stated in [13], a rationBlprefers to paid for access to a file and he has sufficient credit he should
send the short decryption key for an already sent valid chubk able to utilize the network’s resources to download ifraga
Co, rather than repeatedly receive requests for the key fomObservation 3 A malicious clientB can abandon the credit-
based exchange protocol after receiving the encryptedkchun
Proof 5 Given that we use a secure MAC, the client cannetithout completing the transaction. In such ca&ejoes not
obtain the decryption key, unless it reciprocates with cal@v receive any credit, even thoughhas consumed’s resources.
TFT-encrypted chunk. A selfish client may attempt to traisnifhis is a denial of service (DoS) attack agaist Note
invalid content in order to obtain the key in case it does ntiat this attack would require clier® to expend resources
have useful content. However a client that transmits idvalproportional to the resources of the victifg therefore it is
chunks is detected and penalized by the system through tio particularly practical. Furthermore, we prevent disetinat
complaint mechanism. Therefore a client is forced to uplodmwve been designated as misbehavers (blacklisted) in(8fep
a valid encrypted chunk. In such case, the selfish client haisclients that do not maintain paid accounts with the canten
no incentive not to send the valid decryption key for thprovider from launching such attacks; the seiSé&sues short-
TFT-exchanged chunk, because the transmition of the keyliiged ticketsTsa (step(2), § IV-C) only to authorized and non-
a very cheap operation compared to the transmission of thlacklisted clientsTsa is checked for validity byA (steps(4)
chunk. In addition, a rational peer would prefer to send ttend (6) above).
key rather than receive repeated key requests, becauseghe ©bservation 4 A malicious clientA may send a credit-traded
of sending the correct decryption key is less than repeatedhunk with an invalid MAC signature aiming at performing
receive requests. a DoS attack again®, without becoming blacklisted by the
Observation 1 To maintain an efficient content distributionserver. This attack would require clieAtto expend resources
pipeline, a client needs to relay a chunk to its peers as sgmoportional to the resources of the victiB) therefore it is
as it receives it. However, the chunk may be invalid dueot particularly practical. In addition, a victim can beaatted
to communication error or due to client misbehavior. Thiey only one chunk before it locally blacklists the attacker.
performance of the system would be severely degradedFifirthermore as before, we prevent unauthorized clientaes o
clients wasted bandwidth to relay invalid content. To addrethat have been blacklisted by the server from launching such
this issue, Dandelion clients send a decryption key regiestattack.
the server immediately upon receiving the encrypted churiBbservation 5 A malicious clientAx may send a valid TFT-
This design choice enables clients to promptly retrieve tlided chunk to a clierB but not release the decryption key,
chunk in its non-encrypted form and verify its integritygto aiming at performing a DoS attack agaiBstAgain, this attack
uploading the chunk to their peers. Therefore, homomorphigould require clientA to expend resources proportional to
encryption-based approaches or bundling many key requesis resources of the victinB, therefore it is not practical.

11

If the attacker sends an incorrect decryption key, the sengoes towards purchasing the uplink bandwith. Based on cur-
can arbitrate the complaint because the decryption keyrent DSL, Cable and FiOS offers in the US we extrapolate
signed. Subsequently, the server can blacklist the attackeat user uplink bandwidth costs between $2 and $5 per Mbps
and the attacker can no longer obtain tickets to contact mgrer month [39, 40]. On the other hand, depending on location,
peers. In addition, the victims can be attacked by only oritecosts at least $40 to $80 per Mbps for a content provider to
chunk before they locally blacklist the attacker. Furtheren purchase T-3 to OC-12 bandwidth, with the cost of an OC-12
as before, we prevent unauthorized clients or clients thet h installation being on the order of $500000 [41]. We can also
been blacklisted by the server from launching such attack.view uplink bandwidth costs on a per uploaded GB basis.
Observation 6 A malicious clientA may send a TFT-traded Amazon’s S3 Storage Service [42] valuates uplink bandwidth
chunk with an invalid public key signature aiming at perat approximately $0.18 per GB. On the other hand, a user
forming a DoS attack againB; without becoming blacklisted that pays $5 per Mbps per month for his uplink may upload
by the server. Again, this attack is not practical becauseajpproximately 320GB in a month at a cost of approximately
would require clienfA to expend resources proportional to th&0.015 per GB.
resources of the victirB. In addition, a victim can be attacked Therefore, although with Dandelion the content provider
by only one chunk before it locally blacklists the attackeexpends money to purchase its clients’ bandwidth, he might
Furthermore, we prevent unauthorized clients or clien& thincur lower cost compared to purchasing server bandwidth
have been blacklisted by the server from launching suchblattafrom Internet service providers. In addition since the eont
Observation 7 A malicious client cannot DoS attack theproviders sets the prices for uploads he is in control of the
server by sending invalid content to other clients or repaigt peer bandwidth market, thereby he could reward users with
sending invalid complaints aiming at causing the server &ss money than the actual cost of their uplink. Although
perform complaint resolution. That client must be a usér user’s uplink bandwidth may cost more than the content
registered with the system, otherwise it is not able to miprovider is willing to pay, that bandwidth is typically ured
a complaint that merits resolution. Even if the client is ar altruistically assigned to other P2P applications. Qfree,
registered user, it becomes blacklisted by both the ser¥Be communication lines from ISPs are much more reliable,
and its peers the moment an invalid complaint is ruldgowever the reliability issue is offset by the sheer number
against it. In addition, a malicious client cannot attack thof client connections at the disposal of the content pravide
server by sending valid signed messages with duplicatd valiherefore, we hypothesize that our scheme can enable users
complaints. Our protocol detects duplicate complaintsugh to benefit from their spare bandwidth and content providers
the use of timestamps and caching of recent complaints. to tap into that relatively low cost resource. Validatingsth
hypothesis requires a real market experiment, which is ieéyo
Owing to Lemmas 1, 2, 3 and 5 as well as Observatidhe scope of this work.
2, and given that the content provider appropriately vaisiat e note that Dandelion’s reward scheme is not the same as
chunk uploads, Dandelion ensures that most selfish clief@r-byte pricing per-byte or volume-based bandwidth pgci
increase their utility when they upload correct chunks. b t schemes. The arguments in favor of flat rate pricing are not
same time, misbehaving clients cannot increase theityutilidirectly applicable to our case because its charactesistie
Consequently, Dandelion provides strong incentives fostmdlifferent to the Internet or cell phone pricing: in Dandelio

selfish clients to upload to their peers. users do not pay for every byte they receives/sends, instead
they get a discount for every byte it serves. In our setting,
G. Discussion users pay the flat rate for purchasing the content (which is

exactly what many DVD rental or download services currently

We now discuss our scheme’s economic viability and peo), and our micropayments are used towards accumulating
tential for adoption. We argue that a content provider oistaidiscounts. Unlike purchasing access to a communication ser
more gains using our approach than by using a protoaate, users purchase the content (on a per-item or subiseript
such as BitTorrent that does not provide robust incentives thasis) and accumulate credit to be used towards discounts.
seeding. When seeding is not strongly incentivized, a ednterhis business model works well with airline frequent flyer
provider needs to purchase additional hardware and batidwigrograms, with retail store reward cards etc. In constatie
to directly provide a large portion of the required uploagypical per-byte or volume-based pricing for communicatio
capacity. services, our users know what is the maximum amount of

On the other hand, Dandelion enables the content providaoney they will be charged and this is the rate for purchasing
to make a less expensive investment towards rewarding cotie access to the content. Thus, the user does not run the risk
erative peers with real money. As a result, peers are styongf being charged an unanticipated excessive amount of money
incentivized and the total upload capacity of the swarwr being denied further access to the service in case of geera
increases. Nevertheless, it remains an open question whether usdrs wil

Next, we support our insight that it is cheaper for conteifind Dandelion’s pricing and discount model attractive fes ¢
providers to purchase bandwidth from their users than pus-limited prior experience with this model in the context of
chase the infrastructure to directly serve content or paseh P2P content distribution.
the service of third party CDNs. We make the conservative As advocated in [31,43], the proper market-based valua-
assumption that half of the price paid by broadband custeméion of client bandwidth resources according to demand and

12

content rarity is also an important issue, which we are notFor example, selfish seeders have no incentive to facilitate
addressing in this work. Nevertheless, our non-manipalaklnauthorized content distribution. Our scheme motivagesls
hybrid incentive design can be integrated with schemes tleas to behave selfishly and discourages them from behaving
allow variable pricing of resources to address marketdbasaltruistically. That is, seeders are more reluctant to ast
incentive issues in a distributed or centralized way [43, 44dandwidth to upload to unauthorized users when they can use
Such integration would require changes to the chunk atiteir bandwidth to upload to authorized users and earn mon-
peer selection algorithms, as well as the initial assigrimegtary rewards instead. This phenomenon has been empjricall
of credit to new clients. Such algorithms should enable peabserved in various social settings by Frey et al [48] and has
to choose among the resource offerings based on individbalen termed the crowding-out effect: the presence of esitrin
chunk prices and the offered transfer rates. In this work, weotivations (such as financial rewards) results in decrbase
instead focus on the problem of ensuring the fair-exchanmgrinsic motivation (such as ideological altruism).
of payment for content. Practice has shown that this problemin some BitTorrent deployments, content access policies
is a major stumbling block to the commercial adoption cdre enforced by requiring authentication with the tracker.
micropayment-based incentive schemes [12]. However, an unauthorized peer can join the network simply

Our solution breaks the barrier to entry for small contefty finding a single colluding peer that is willing to share its
providers (e.g indie movie studios) and leads to a mosavarm view with it. The unauthorized peers can then download
open and competitive market for Internet resources. A ecdnteontent from authorized seeders, which are by definition
provider no longer has the limited choice between heaglruistic and have no real motivation to deny service to
ily investing in infrastructure or buying third party seres unauthorized peers. Consequently, a single authorizeéodned
(Akamai, BitTorrent inc) to bootstrap. Instead of paying &ut misbehaving peer can facilitate illegal content regilan
substantial initial amount to over-provision hardware angt a large scale.
bandwidth, the content distributor can pay solely for the)
bandwidth its clients have actually contributed. MoreoveM. IMmplementation
the content provider itself is in the advantageous positionThis section describes a prototype C implementation of
of determining the price with which it purchases its clisnt'the Dandelion system, which is suitable for static content
bandwidth. Even well-provisioned content distributorsymadistribution. It uses theDpenSSLtoolkit for cryptographic
use Dandelion to further save on bandwidth costs. This dperations.
illustrated by the relative success of Roo's Peer Delivery Our initial approach was to build Dandelion on existing
Network [45] based on Peer Impact [46]. We improve upoBitTorrent codebase. However, we quickly realized thasit i
Roo’s PDN by offering non-manipulable currency. Roo hasreferably to build our protocol from scratch, as it reqgsire
not publicized their micropayment scheme but it is veryliike extensive modification of all primary BitTorrent functions
that it is not cryptographic. First, the Dandelion server, in addition to swarm view tiagk

Our solution can also be deployed by commercial Contepérforms processing for the fair-exchange protocol. Sécon
Distribution Networks to promote cooperation in peersiesl unlike BitTorrent trackers, a Dandelion server may be CPU or
content distribution. CDN providers are considering the o disk I/O bound instead of network 1/0O bound, depending on
peer-assisted content distribution, in order to offer newdr the capacity of the access link, therefore different pentomce
tier CDN services at reduced costs. This is illustrated &y tloptimization strategies are warranted. Third, the Dawodeli
recent purchase of “Red Swoosh” by Akamai [47]. client performs additional processing for the fair-exalpan

protocol. Fourth, the Dandelion client does not employ-rate

H. Discouraging Unauthorized Content distribu- based tit-for-tat, and thereby its downloader selectiocok-
tion ing) mechanism is substantially different.

A Dandelion client that is not interested in an unauthorized- Server Implementation
peer’s content isliscouragedrom uploading to that peer. This For simplicity, our current implementation combines the
is because such client has no incentive to upload to a peer ottontent provider and the credit management system at aesingl
than the credit he could earn through the use of Dandeliogsrver. It is our future work to scale the Dandelion server by
cryptographic fair-exchange protocol. However, the Dédinde balancing its load over multiple machines. For example, by
server mediates all transactions that employ the fair-@xgh having dispatchers with high downlink bandwidth rediregti
protocol, thus the server is able to not reward a client thedquests to the Dandelion servers hosts that are respefisibl
serves unauthorized peers. the client IDs involved. The assignment of client IDs can be
Clients are able to verify the legitimacy of requests fadone using consistent hashing.
service (step§l) and(5)), hence they can avoid wasting band- Our current server implementation is single-threaded and
width to serve unauthorized clients. Furthermore, prégiseevent-driven. The network 1/O operations are asynchronous
because of this ability, clients can be held legally lialfle and data are transmitted over TCP. In order to scale to thou-

properties discourage users from using Dandelion forallegthe epol | event dispatching mechanism. In our implementa-
content replication and make our solution even more appgalition epol | is used as level-triggered, while its use as edge-
to distributors of copyright-protected digital goods. triggered could further improve performance The serveaesto

13

in heap memory information for each of the clients with whicbetween a request for a chunk is sent and the complete chunk
it has an active Dandelion session. is received according to the equatior= turnaround Timex

The server uses standard file I/O system calls to efficientheerDownloadRatehunkSizeWe described the downloader
manage persistent client information, which is stored ima s selection algorithm in 8§ IV-E.
ple file called the credit file. Each client is assigned anyeintr
the credit file, which keeps the client’s credit, its autfieatton \V/|. Evaluation
information and its file access control information. Eactryen
has the same size and the client ID determines the offset

thﬁ? _entrly of each dcllfentbln rt]he f"?' Thuz ea(c:jh entryhcan anipulable virtual-currency; b) to examine the trade-off
efficiently accessed for both queries and updates. Thetcragl, oq performance and scalability in selecting the chunk

file is sufficiently large to accomodate as many client eatri%ize and trade surplus threshold; c) to motivate our design

asTran be needed. 4 uod onts credit 1 by demonstrating the importance of incentives for seeding
e server queries and updates a client's credit from agjy o impact of free-riding in BitTorrent-like swarms:dan

to the .credit file upon every transact_ion. Yet, it does nocéord) compare the performance of our Dandelion-based static
commitment of the update to persistent storage. 'nSteadtbtntent distribution system to BitTorrerk.

relies on the OS to asynchronously perform the commitment.
If the server application crashes, the update will still bpied A. Server Performance
from the kernel buffer to persistent storage. Still, the OS

In this section, we evaluate and profile the server in terms
may crash or the server may lose power before the UpdaE)efddecr tion kev and complaint request throuahput
data have been committed. However, in practice, a typical yp y P q ghput.

Dandelion deployment would run a stable operating system Server Throughput

ar_1d use backu_p power supply. In add'?'on' the server CQUldA Dandelion server mediates the chunk exchanges between
mirror the credit base on multiple machines, and transastio.

. its clients. The client plaintext download throughput ahd t
would not involve very large amounts of money per user. i .

. . . ; scalability of our system is bound by how fast a server can pro
Hence, we believe it is preferable not to incur the high cos

of committing the credit updates to non-volatile memorgaft cess tr,]e'r decrypt!on key requests (st8p 8 IV-D). Both the
. h . server's computational resources and bandwidth may become
every transaction (operation 14 in Table I, § VI-A2).

Nevertheless, in the face of frequent system failures, we ctc'?e performance botfleneck. We deploy a Dandelion server
. ' q ystem ' W€ C8h a dual Pentium D 2.8GHZ/IMB CPU with 1GB RAM and
avoid the performance penalty of per-transaction commitse

to persistent storage and still provide satisfactory dafatg ggggslgzgggatﬂpgDE?hrgrr:;tn QI]I Llli:ﬁx 'zrf'rSn-i]t-ig)astisgfﬁt\jNVCiIgtT]

guarantees. This can be done by assigning to a helper process ;.. . . '

the task of periodically synchronizing the credit file with\/'fj.lr""m'l".[y in the shareq link and to emulate a low cost serve

persistent storage (§ VI-A2). with uphn_ks_ and downlmk_s that range from 1Mbps tp 5Mbps,
we rate-limit our Dandelion server at the application layer

B. Client Implementation We deploy~1000 clients that run or-100 distinct PlanetLab

The client side is also single-threaded and event—driven.h&)Sts' : .
. .) . : The clients send requests for decryption keys to the server
client may leech or seed multiple files at a time. A client can

) .) . and we measure the aggregate rate with which all clients
be decomposed into two logical modules: a) t@nection . . .
) ; receive decryption key responses. The server always guerie
managementodule; and b) th@eer-servingmodule. . PR
. : and updates the credit record from and to the credit file witho
The connection management module perfopasringand

uploader discoveryWith peering, each client obtains a randorrff)mIng commitment to disk. We run each experiment for a

. . . %Jecified per-client request rate, which varies from 1 to 6
partial swarm view from the server and strives to connect . S
reg/sec. For each request rate, the experiment duratiof is 1

a specified number of peers (typically 50-100). With upIclrad(F:ninutes and the results are averaged over 10 runs.

discovery, a client strives to remain connected to a minimum _. . , .
Figure 2 depicts the server's decryption key response

number of uploading peers. If_the number of recent UplOadftihsroughput for varying server bandwidth. As the bandwidth
drops below a threshold, a client requests from the server a)

) . ._Increases from 1Mbps to 4Mbps, the server's throughput,
new swarm view and connects to the peers in the new view

. ... Indicating that for up to 4Mbps access link, the bottleneck
The peer-serving module perfornt®ntent reconciliation . : :
. - is the bandwidth. For 5Mbps and 4Mbps the throughput is
and downloader selectianContent reconciliation refers to e '
. . . almost equal, indicating that for 5Mbps the bottleneck s th
the function of announcing recently received chunks, reggue

. o . : . "CPU. The results show that a server running on our commodity
ing missing chunks, requesting decryption keys for recdel\((ﬁ,c with 4Mbps or 5Mbps access link can process up3d05

r‘(Eilécryption key requests per second. This result suggests th
with a 256KB chunk size, this server may simultaneously
support almost 3100 clients that download only creditecdad

chunks at 256KB/s. With a larger chunk size and TFT-based

f'I'he goals of this experimental evaluation are: a) to iden-
tl‘ﬂ/ the scalability limits of Dandelion’s centralized non

plementation employs rarest-random-first [49] schedulimg
requesting missing chunks from clients. To efficiently indl
their downlink bandwidth, clients dynamically adjust them
ber of outstanding chunk requeststhat have been sent to

a peer and have not been responded to [3149:11'epend5_ 1Dandelion’s source code for Linux and scripts to run our erpents can
on the observed download rate from the peer and the timedownloaded at http://www.ics.uci.edutsirivia/dandelion.

14

100 F

S

[- . . .

‘\:1 3000 +1 Mo/s —— -] 100

3 2 Mb/s =& .

@ 2500 r3Mb/s K e e % 80} B 1Mbps —+—

g 4 Mb/s < S 10! 2Mbps &~

5 2000 5 Mp/s 5 =

] S R I k] T 3Mbps %

o T 60 N

< K = 4Mbps 3

S 1500 - 8 =

g # s o E 3 5Mbps ----

2 1000 2 - - 2 Y s 1

L 2 L

b S 5

g s0f T F—/—+—/—+ 20 |

o

E’ 0 0 0.1

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Request rate (reg/sec per client) Request rate (reg/sec per client) Request rate (reg/sec per client)

(a) (b) (©)

Figure 2: Server decryption key response throughput evaluation. as dunction of specified per-client key request rate, for varyng server rate-
limits. ~1000 clients send decryption key requests: (a) aggregate agption key response throughput of the Dandelion server; i) server's CPU
utilization(%); (c) server's memory utilization (% in loga rithmic scale).

exchange, each such client receives credit-traded churks &) Server Profiling
lower rate. Thus, the number of supported clients increases We profile the cost of operations at the server aiming at

We also run experiments with- 500 clients each set toidentifying the performance bottlenecks of our design. \&e u
send 10 reg/sec (not depicted in Figure 2). By comparitlde same machine as the one used in the previous section.
the throughput of the 5Mbps server’s throughput in this caseTable | lists the cost of Dandelion operations. Timings for
(3114 reqg/sec) with its throughput when1000 clients send operations 1-4 and 6-8 are obtained usiegr usage() over
5 reg/sec each (3105 req/sec), we infer that the serverB000 executions. Timings for operations 5, 14, 15 and 16 are
throughput is independent of the number of clients sin@pproximated usinget ti neof day() over 10000 executions.
the epoll performance in the examined range of number Operation 5 reads from the disk a new randomly selected
connections is independent of the number of connectedtslier256KB chunk of a 1GB file in each execution. Operations 14-

From Figures 2(b),(c) we make the following observationg® aré performed on a credit file with 10000 44-byte entries.
with respect to CPU and memory utilization at the servefmMings for operations 11-13 are approximated according
when ~1000 clients send 6 reqg/sec. For 5Mbps, the servel® our application layer rate-limiting for SMbps uplink and
CPU utilization reaches-100%, indicating the CPU as thedownlink. They are provided as reference for comparisoh wit

bottleneck. We also observe that the server consumes kss thPU-centric and credit management operations. Operation 6
1% of the available memory, even under overload. uses 8-byte-block Blowfish-CBC with 128-bit key and 128-bit

)))] initialization vector, with at most 8 byte padding. Opevat 1-
A Dandelion server is also responsible for resolving COMr ,se HVIAC-SHA1 with 128-bit key. Operation 7 uses SHA-

plaints (step(9), § IV-D). A complaint resolution involves the 1 - operation 8 uses 1024-bit RSA signatures. For operation
expensive disk 1/0O operation for reading a chunk. Therefolg, \ye use sync() and we disable HDD caching.

it represents a performan_ce bottleneck in case the SYSteMne main tasks of a Dandelion server are to: a) receive
receives too many complaints. We performed an experimenh gecryption key request (operation 11); b) authentitize
with ~1000 clients sending 5 decryption key req/sec, anghcryption key request (operation 1); ¢) verify the comneittn

1_5 cllgnts sending 1 complaint resolution request per S&?peration 2); d) compute the decryption key (operatiore}):
(involving a randomly selected 256KB chunk of a 1GB, ey and update the credit of the two clients involved (aper
file). The 5Mbps server was able to deliver roughly 149,ons 14 and 15); f) sign the decryption key response (ojzerat

decryption key responses per second along with 14 complaﬁ?,t and g) send the decryption key response (operation 12).

resolution responses per second. In another experimeht wit 1}, signed decryption key request and decryption key

~60 complaint sending clients, we measured the maximyls,onses are sent over an insecure TCP connection. A client
complaint resolution throughput of a SMbps Dandelion servggiaplishes and uses the secure TLS channel with the server
to be 52 complaint responses per second. (operation 10) only to send authentication informationc@n
Note that the server does not need to deliver high complajmer Dandelion session), the shared key and the public key pai
resolution throughput for the reasons listed in Obsermatigthe same keys are used for a relatively long period).
6, 8 IV-F. First, complaints can involve only clients thaear As can be seen in Table I, the per-decryption-key-request
registered with the system. Second, once a complaint has besy/ptographic operations of the server (operations 1-4) ar
resolved against a client, that client becomes blacklistedl highly efficient (total 12usec), as only symmetric cryptogra-
all future complaints concerning the misbehaver are automphy is employed. The credit management operations (14 and
ically resolved against him without performing the expeasi 15) are also efficient (total 2dsec). The communication costs
cryptographic and disk I/O operations. In addition, to impr of receiving and sending decryption key responses (opesti
throughput, the expensive disk 1/0O operation can be peddrm11-12) are clearly higher than the cryptographic compaorati
in parallel with the decryption key request processing gisirtosts. In addition, operations 11-12 can take place coantiyr
asynchronous 1/0. with each other and the computational operations.

15

| | gﬁr&({igﬂ?rigpgﬁiﬁon [Size Time (ms) | Leechers are given sufficient initial credit to completely
1 | Authenticate decrvption ke 53 byies 003 download a file, according to the credit management polic
yp Yy Y g g policy
request . discussed in § IV-B. Clients always respond to chunk reguest
2 foem”f’nr;‘:ﬁef&”}‘o”pztggr;%gf?gp?é’que: S8 bytes | .003 from their selected downloaders. We also set the TCP sender
or complaint verification] and receiver buffer size equal to 120KB in order to cover
3| Compute decryption key 19 bytes 003 the bandwidth-delay product. Both BitTorrent and Dandelio
4 | Sign decryption key response 46 bytes | 003 clients determine the number of outstanding chunk requssts
5 Read chunk 256 KB 31 . .
6 | Encrypt chunk 256 KB 2.876 descrlbeq_m § V-B.)
7 | Hash encrypted chunk 256 KB 1.017 In addition, we have adjusted system parameters such as
ryp
8 | Verify public-key commitment for 128 bytes 2 number of unchoked peers and timeouts to achieve good
5 E%Zﬂﬂgp‘;fgﬁ'%‘g; T — 500 performance under our bandwidth distribution in the Plaabt
on 1000 socket descriptors ' environment. In particular, we set the parameters destiibe
10 | Establish SSL session N/A 19 8 IV-E as follows:T=10, n=10, 0=2 andO=30.
(SSL_accept ()) : We aim at making our evaluation representative of real inter
Communication Operation .. . o
1 | Receive decryption key request 96 bytes =76 net peer-to-peer content distribution swarms, while idirig
12 | Transmit decryption key response 84 bytes ~.24 as many PlanetLab nodes as possible. To this end, we partiall
13 | Receive TFT-based exchange complajn204 bytes| ~.55 emulate a typical client uplink bandwidth distribution [50
Credit Management Operation - - ot -
T2 T Ouery credit file NIA 0004 (Table II) by applying per-client application layer rateiting.
15 | Update credit file without N/A ~0.02 To deal with PlanetLab hosts that are are unable to achieve th
commit to disk (rely on OS) bandwidth values specified by that distribution, we impose a
16 | Update credit file and N/A ~9.25 capped bandwidth distribution that does not faithfully eefi
force commit to disk

the one reported in [50]; it excludes nodes with very high
Table I: Timings of Dandelion operations. upload capacity (greater than 350KB/sec).
Since Dandelion aims at enabling content providers to
purchase end-user bandwidth, we expect Dandelion users to
Committing the credit file per transaction (operation 16honnect to the Internet via privately owned residentialaoko
could yield 10-20 times lower decryption key responsgand links. It is reported that these links currently offemest
throughput than relying on the OS to commit credit file update.3Mbps uplink capacity [51]. Nevertheless, we argue that the
(operation 15). capped bandwidth distribution enables us to derive corarigs
The cost of a complaint is substantially higher becaugs the behavior of real P2P swarms that do not include very
in addition to receiving the message (operations 11 or 13)gh capacity peers. In addition, as network administgator
authenticating it and verifying a commitment (operations gf |large organizations, such as academic institutionsofinec
or 8), it involves reading a chunk (operation 5), encrypting increasingly concerned with resource consumption and copy
with the sender’s key (operation 6), and hashing the enedyptight issues, the number of very high capacity academic (or
chunk (operation 7). other) nodes that participate in P2P content distributiary m
The cost of event dispatching (operation 9) is not significafecrease substantially. In addition, we impose a downlate r
if we use the highly efficient and scalabepol | instead distribution to approximate the effect of asymmetric bitosad
of the sel ect API. Indicatively, the less scalabkel ect() links. Clients with less than or equal to 70KB/sec uploaé rat
costs 0.009 ms when used to dispatch 500 sockets and 0.@#¢ assigned a maximum download rate that is 5 times higher
ms when used to dispatch 1000 sockets. On the other haggn their maximum upload rate. The rest of the nodes are
epol | _wait() costs approximately only 0.002 ms for bothassigned a download rate equal to 350KB/sec.
1000 and 100 sockets. This reveals that the choice of eventn particular, we observe that the maximum upload rate
dispatching mechanism is critical for the performance @f thof 80% of hosts in the distribution reported in [50] is less
system. Under the same experimental configuration with tiigan or equal to 350KB/sec. The remaining 20% of hosts
one used in § VI-Al, a 5Mbps server that usegl ect () require upload rates between 350KB/sec and 10000KB/sec.
instead ofepol | _wai t() was able to process only 799 dewe periodically use Dandelion to distribute a 100MB file

cryption key requests per second. to ~500 non-rate-limited hosts and we identify400 nodes
f that are able to attain upload rates equal to or higher than
B. System Performance 350KB/sec. For the 20% of hosts, that require bandwidth

In this section, we experimentally evaluate the behavior between 350KB/sec and 10000KB/sec, we were unable to
the entire Dandelion system on PlanetLab. We examine tientify a sufficient number of hosts able to consistently
impact of chunk size and the trade surplus threshold on thehieve such high rates. Thus, we assigned 350KB/sec upload
performance of the system. In addition, we demonstrate thaes to those nodes. The initial seeders in each experiment
performance gains of providing incentives for seeding.tLasre rate-limited at 250KB/sec.
we compare our system’s performance to BitTorrent’s. In all For each configuration we repeat the experiment 10 times
experiments we run a Dandelion server on the same macharal we extract mean values and 95% confidence intervals over
as the one used in the previous sections, and the servethis swarm-widedownload completion times
rate-limited at 5Mbps. We note that we evaluate a particular implementation of

16

Portion of nodes | 0.05| 0.05| 0.1 | 0.1 | 0.1 | 0.1 .] - .
Bandwidth (KB/sec)| 40 | 50 | 55 | 60 | 65 | 70 start downloading the file almost simultaneously emulating

Poron ofnodes 1 0051 07 1005 T 0051 0051 02 flashcrowd. The duration of each experiment is 2200 sec.
Bandwidth (KB/sec)| 75 100 | 150 | 200 | 250 | 350

Table IlI: Distribution of upload bandwidth of Dandelion and BitTorre nt
peers as used in our PlanetLab experiments. This distribugn draws from
the one reported in [50], but due to PlanetLab bandwidth confraints we

omit hosts with upload capacity higher than 350KB/sec. 1800 - .

1600 |

1400 ¢ ..

1200 +

1000 *

Dandelion that is suitable for static content distributiéx- 800

though our results would vary for other P2P content distribu

tion applications that use different chunk scheduling aeerp 512 o5z s

selection policies, we expect our results to be qualithtive Chunk size (KB) <@

similar, allowing us to extract generic trends in the behav-

ior of such systems. In particular we expect seeding to he

b ficial (i)i/th h kp' d trad P | th gh |de} ure 3. Swarm-wide mean download completion times of~400
enencial an € chunk size anad trade SL.J!‘p us thresnolddiyers as a function of chunk size and trade surplus thresitd ts for
affect performance, regardless of the specifics of the oontg 100ms file. Both the z axis and the gray map depict the downlak

distribution system. completion time. The 95% confidence intervals (not depictedtake values
between 50 and 100 sec.

Download completion time (sec)
w
n

1) Selecting Chunk Size and Trade Surplus Threshold

With this series of experiments we examine the trade-offsFigure 3 shows the leecher mean download completion
involved in selecting the size of the chunk and the trademe as a function of the chunk size and the trade surplus
surplus threshold of the TFT-based exchange. In additi@n, whreshold. We observe that for larger than 256KB chunks, the
motivate our hybrid incentive mechanism by quantifying itsystem’s performance degrades as the chunk size and tlee trad
improvement in scalability over the credit-based-excleamdy surplus threshold increases. For example,sferO, a 256KB
scheme proposed in [11]. chunk size yields better performance (864sec) than a 2048KB

Intuitively, since clients are able to serve a chunk only ahunk size (1263 sec). 256KB chunks guarantee that there
soon as they obtain it, a smaller chunk size yields a moaee sufficiently many distinct chunks for peers to exchange.
efficient distribution pipeline. In addition, when the fils i The beneficial impact of smaller than 256KB chunks in terms
divided into many pieces, chunk scheduling techniques aschof chunk scheduling flexibility is negated by the performanc
rarest-first can be more effective; clients can promptlgalier degrading TCP effects and the increased control overhead. F
and download content of interest. However, a smaller chuskample, fots= 0, a 256KB chunk size yields notably better
size increases the rate with which key requests are sentpgrformance (864 sec) than a 32KB chunk size (1031 sec). In
the server, reducing the scalability of the system. Alsce daddition, we observe that the mean download completionstime
to TCP’s slow start, a small chunk size cannot ensure higbnsistently increases witts and that the degrading impact
bandwidth utilization during the TCP transfer of any chunlof ts on performance increases with the chunk size.

Last, small chunks yield increased control overhead.
In addition, under our optimistic fair exchange scheme,

a receiver is able to acquire a TFT-traded chunk only after % -----------
it reciprocates with a chunk of equal size and retrieves the % """ 1400
decryption key. The larger a received TFT-traded chunkis, t S 1200 1500
longer the receiver may have to wait until it is able to respon g 1§§§ """ §§(8)
with an equally large chunk. Only after decrypting the chunk g 4% 500
the receiver is able to relay it to its peers, therefore aelarg S 0
chunk decreases the efficiency of the distribution pipeline g% @ o

As the trade surplus thresholis and the chunk size a o

increases, trading flexibility also increases. This ermlde Chunk size (KB) 2048«2@@5
client to upload TFT-traded chunks in case its peers cannot

temporarily match the client's upload rate. This results in _

reduction of the rate with which decryption key requests afégure 4. The mean decryption key request rate at the server as a

unction of the chunk size and the trade surplus thresholds for a 100MB
sent to the server. However, a large threshold and chunk sgze P

7 Request rates are extracted in 10 sec intervals over thauration of
may result in clients wasting bandwidth to transmit enceipt the experiment. The 95% confidence intervals (not depictedjake values
chunks that are never reciprocated and decrypted, causbageen 3 and 30 reg/sec.
performance degradation.

We use as performance metrics the mean download comin Figure 4, we observe that the load on the server decreases
pletion time of the clients and the decryption key requeatllo as ts increases. In particular, under our network configurat
on the server. In each configuration, we deploy approximatehe decryption key request load decreases by approximately

~400 Dandelion leechers and one initial seeder. Leechd®% when the system usés= 16 instead ofts= 0. At the

17

same time, the swarm-wide performance degrades only by 9 to
13%, depending on chunk size. Settirsgg= 0 corresponds to
using only credit-based exchange as was originally prapose

in [11], while ts> 0 allows clients that are mutually interested

in each others content to exchange chunks without involving
the server. This result demonstrates the effectivenessiof o
hybrid incentive scheme in improving scalability by redwgi

the servers decryption key request load. As expected, the
server load also decreases as the chunk size increases. The ‘ L
decryption key request load for 32KB chunks varies-600 1 5 10 25 50 100
to ~1200 req/sec depending on ts. For 256KB chunks it varies File Size (MB)

in only ~70 to~190 reqlse(.:' The evaluation for 32K.B Chunklcfi ure 5: Swarm-wide mean download completion times of~400
enables us to roughly predict the load on the serverin a SWalIbhers as a function of file size for varying portion of leduers that
that consists of 8 times more clients but uses 256KB Chunlsgcome seeders. Clients arrive almost simu|taneous|y_

In Figure 4, we observe that the load on the server decreases
astsincreases. In particular, under our network configuration
the decryption key request load decreases by approximately
40% when the system usés= 16 instead ots= 0. At the
same time, the swarm-wide performance degrades only by 9 to
13%, depending on chunk size. Settirsgg= 0 corresponds to
using only credit-based exchange as was originally prapose
in [11], while ts> 0 allows clients that are mutually interested
in each others content to exchange chunks without involving
the server. This result demonstrates the effectivenessiof o
hybrid incentive scheme in improving scalability by redwgi
the servers decryption key request load.

As expected, the server load also decreases as the chunk size
increases. The decryption key request load for 32KB chunkigure 6: Swarm-wide mean download completion times of~400
varies in~600 to~1200 req/sec depending ¢& For 256KB leechers as a function of the client Poisson arrival rate for varying
chunks it varies in only-~70 to ~190 req/sec. The evaluationportion of leechers that become seeders. Clients download 0MB file.
for 32KB chunks enables us to roughly predict the load on
the server in a swarm that consists-08 times more clients
but uses 256KB chunks Figure 5 depicts the mean download completion time over

For this particular swarm configuration, the content previd ~400 leechers as a function of the file size, for varyand\ll
may determine that a 256KB chunk atsgt4 is a good configu- clients join the swarm almost simultaneously. We vary tre fil
ration. It yields a low download completion time (893sec)l ansize to demonstrate that the impact of seeding depends on the
a relatively low server load (132reg/sec). Unless mentionduration of the download, and to demonstrate the behavior
otherwise, in the rest of this evaluation we use these valuegf the system under different workloads. Our results show

the beneficial impact of seeders. For example, for a 100MB
2) Impact of Seeders file, we observe a swarm-wide mean download completion

Dandelions credit-based exchange mechanism strongly fime of 893 sec and 1250 sec whar- 100% anda = 0%,
centivizes clients to remain online after download coniptet respectively. If we express the impact of seeders as the ohti
increasing the number of seeders in a swarm. With tHige mean download time f@=100% over the mean download
series of experiments, we motivate our credit-based exgghatime for a=25% or a=0%, we observe that the impact is
mechanism by demonstrating the performance gains by tiggluced as the file size increases. We observe that as the
existence of additional seeders. file size decreases, the decrease@auses a more dramatic

Intuitively, since typical P2P clients reside behind asynincrease of download completion times. The larger the file
metric links, content distribution swarms are expected 8, the longer leechers remain online to download it, thus
benefit by the existence of additional seeders. Seeders cdhey upload to their peers for longer periods. For smallesfil
plement the swarm’s uplink bandwidth without expending it8owever, peers have to rely heavily on leechers that become
downlink bandwidth. We demonstrate the impact of seedesgeders.
in BitTorrent-like swarms by varying the probability that a We also evaluate the system under varying peer arrival
leecher remains online to seed a file after it completes pstterns. We vary the Poisson parametarnder which new
download. Upon completion of its download, each leechelients join the swarm. Depending on the arrival pattern,
stays in the swarm and seeds with probabilgy which seeders may play a more or a less beneficial role. For example,
varies in 0% to 100%. Leechers start downloading the fiburing a flash crowd (high) many peers finish their download
immediately upon arriving in the swarm. The duration of eaclt approximately the same time and therefore do not benefit
experiment is 2200 sec. each other when they remain online as seedera. decreases,

1400 [7 0% seeders ——
25% seeders =Y
1200 - 100% seeders -3
1000
800 r
600
400

200 -

Mean Download Completion Time (sec)

1400
1200
1000

800

600 -

400 ¢ 0% seeders —+— |

200 - 25% seeders =Y |
100% seeders ~f-

Mean Download Completion Time (sec)

0.25 0.5 0.75 1
Client Poisson arrival rate (joins per sec)

18

new peers can benefit by more older peers that finish their 1

download and remained seeding. Figure 6 depicts the mean

download completion time over alt400 leechers as a function 5 08 Dandelion —8—

of the client Poisson arrival rafe for varyinga and a 100MB g o6l BitTorrent -

file. The results show that seeders substantially benefitnssva E

with low arrival rates, as new peers take advantage of the 8 o4t

additional uplink capacity of peers that arrived earlied an §

became seeders. For example, fore= 0.25, we observe a 02}

swarm-wide mean download completion time of 689 sec and o e
1125 sec whem = 100% anda = 0%, respectively. 0 200 400 600 800 1000 1200 1400

.) . Download Completion Time (sec)
3) Comparison with BitTorrent
Figure 7: CDF of download completion times of~ 400 BitTorrent and

pn“ke B_>|tTorrent, Dandelions I_ncentlve meChanlsm reDandelion clients that download a 100MB file. Dandelion and BTorrent
quires the involvement of a centralized component, Uses ORfients have average download completion time equal to 892 and 937
mistic fair-exchange of content uploads, employs a modifiedc, respectively.
downloader selection algorithm and does not employ subpiec
ing [3]. In this section, we show that these differences db no
have a negative impact on download completion time. a 100MB file divided in 256KB chunks. The duration of each
To this end, we compare the performance of a swarm ekperiment is 2200 sec. Free-riders never upload, nor do the
Dandelion clients with a swarm of BitTorrent (CTorrent DNH-expend credit. Cooperative clients always respond to chunk
3.2) clients. In both swarms, there ar@00 leechers and onerequests from their selected downloaders.
initial seeder, and leechers stay online to seed after dmadnl In each experiment, the swarm includes a group of 20 free-
completion. Dandelion clients employ both the credit-llaseiders and a group of 20 cooperative clients all of which
and TFT-based exchange protocols. have upload and download rate-limits equal to 100KB/sec
Figure 7 presents the CDF of the download completicand 350KB/sec, respectively. In the rest of this evaluation
times for both BitTorrent and Dandelion clients for a 100MBve call the groups of the 20 free-rider and 20 cooperative
file. This illustration shows that a Dandelion swarm caolients, thefree-rider and thereference cooperativgroup,
attain performance comparable to a BitTorrent one, wheeaspectively. The rest of the leechers are rate-limitedtieg
both swarms have the same number of seeders. Although tuthe distribution used in § VI-B. Unless mentioned othesyi
Dandelion implementation appears to outperform BitTasrercooperative and free-rider clients connect to roughly 56 an
we do not claim that a Dandelion-based static content distB50 peers at a time, respectively.
bution system is better-performing. The performance ohbot For each configuration we repeat the experiment 10 times
protocols is highly dependent on numerous parameterswhend we extract mean values and 95% confidence intervals of
we have not exhaustively analyzed. To name a few, such afient download rates. If the client completes its download
the chunk size, the number of peers, the number of unchok#ating the experiment (not always true for free-riderss, it
peers, the interval between unchoked peer set updates enungownload rate is equal to the size of downloaded content
of pending chunk requests and the TCP sender and receitigided by the download completion time. Otherwise, its
buffer size. These parameters need to be fine-tuned acgordiownload rate is the size of downloaded content divided by
to factors such as swarm size, client bandwidth or expecté® experiment duration.
RTT. For Dandelion, we have empirically fine-tuned these Figure 8(a) compares the two groups when the portion of
parameters, however for CTorrent, barring TCP sender ale@chers that remain online to seed varies from 0 to 100%.
receiver buffer size, we have not tuned any other parametewith this measurement we show that the “large view” exploit
- . . . (8 11-B) enables free-riders to tap into scarce system nessu
C. Free-riding in BitTorrent-like Swarms and harm compliant clients by monopolizing the seeders and
In this section, we provide additional motivation for theeusexploiting optimistic unchoking. For comparison purpqg$es
of non-manipulable cryptographic fair-exchange incesstiv each percentage of leechers that become seeders we alsb depi
We demonstrate that under BitTorrent-like incentivesgfrethe download rate of the cooperative group in the absence of
riding is beneficial for free-riders and harmful for coopam free-riders.
clients. We observe that free-riders obtain almost equal download
For all experiments we use a Dandelion implementation mates with their cooperative counterparts in under-piowisd
which we disable the cryptographic fair-exchange protecokwarms with 0% to 25% seeders. Compliant clients suffer a
With disabled fair-exchange protocols, Dandelion’s implgoerformance hit of approximately 15%, comparing to their
mentation is almost identical to BitTorrent's. We use thiperformance in the absence of free-riders. When the swasm ha
implementation because it includes a trade-surplus mésinan50% to 100% leechers that become seeders, free-riderslient
and we have also validated it against BitTorrent (8 VI-B3achieve 5% to 10% higher download rates than cooperative
That is, it employs rate-based tit-for-tat and randomstafiest ones. This result confirms the potential for wide adoption of
chunk scheduling. We deploy400 leechers and one initial free-riding. In well-provisioned swarms, the downloaceraft
seeder. All clients join the swarm simultaneously to dowlo cooperative clients degrades by roughly 10% comparing to

19

160 T T T T 160

140 + Free-riders =X | 140 | Free-riders
Cooperative

160 T T

Free-riders
140 1 Cooperative
120 | No free-riders

120
100 -
80
60 r
40 r
20 r

120
100
80
60
40 +
of g g B |
0

50 100 200 350
Percentage of seeders (%) Number of free-riders Number of peers free-riders connect to

(@) (b) (c)

Figure 8: Swarm-wide mean download rates of a group of 20 free-riders rad a group of 20 cooperative clients that join a swarm of~350 leechers
to download a 100MB file. (a) Download rates for varying percatage of peers that remain online seeding after download coptetion. We also depict
the download rate of cooperative clients in the absence of de-riders (“No free-riders”); (b) Download rates for varying number of free-riders; (c)
Download rates of free-riders when they cannot download frmx seeders, for varying number of peers that they connect to.

100
80
60 r
40 -
20

Download Rate (KB/sec)
Download rate (KB/sec)
Download rate (KB/sec)

their rate in the absence of free-riders. Our results show that the large view exploit is very effestiv
In Figure 8(b), we compare the average performance of tHeder a flashcrowd if the client is able to connect to many
free-rider and the 20-client reference cooperative grautha hundreds of peers, especially if the swarm is well-proviet
number of free-riders ranges from 0 to 100 clients. All lesxsh with seeders. This indicates that BitTorrent not only lacks
become seeders upon download completion. This measufgentives for seeding but its rate-based tit-for-tat mes
ment shows that the wide adoption of free-rider clients eausare also manipulable. Our results also indicate that théogxp
substantial performance degradation in BitTorrent swarnfffects the performance of compliant clients, regardlefss o
When the number of free-riders varies in 50 to 100, th&hether the swarm is well-provisioned; in all cases conmplia
reference Cooperative group attains approximate|y 20%9% 3 clients incur performance degradation in the presenceeef—fr
worse performance than in a swarm with no free-riders. Wiglers. In addition, we demonstrate that without the crypto
also observe that as the number of free-riders increasss, figraphic TFT-based exchange, the large view exploit allows
riders do not fare as well comparing to compliant client®andelion free-riders to download a substantial amount of
When there are 50 free-riders, free-riders have 20% worgentent without expending resources.
performance than their cooperative counterparts.

Figure 8(c) depicts the performance of the free-rider groddll. Related Work
when free-riders do not download from seeders and cooper- .)
ative clients employ a chunk-level TFT scheme. Under this In this _sect_lon we discuss previous WO”.(on incentives for
scheme, leechers upload plaintext chunks to their selecf&?peraﬂon_m peer-to-peer content .d'Str.'bUtlon Systams
downloaders as long as the trade surplus does not excee&\"il.I as previous work on cryptographic fair exchange.
BitTorrent does not currently prevent free-riders from dew L.)
loading from seeders. On the other hand, Dandelion seedérs Pairwise Currency as Incentives

are motivated to upload only encrypted content, for whi@yth |, pop content distribution protocols that employ pairwise
are rewarded. No leechers become seeders. The numbey;@fia| currency (credit) as incentives, clients maintaiedit
peers to which free-riders connect to varies in 50 to 350 fyjances with each of their peers. In this context, credtrse
illustrate the impact of the “large view” exploit. to any metric of a peer’s cooperativeness.

As can be seen in Figure 8(c), when free-riders connectan eMule [17] client rewards cooperative peers by reducing
to 350 peers, they can attain up to 33KB/sec. Although thise time the peers have to wait until they are served by the
is not a good download rate by itself, recall that any gaingient. Swift [52] introduces a pairwise credit-based inad
of a Dandelion free-rider translate to monetary losses thor h]echanism for peer-to-peer file Sharing networks and exam-
peers. With this measurement, we show that the credit-basgéls the available peer strategies. In [7], the authors estgg
exchange substantially reduces the free-rider downlotes.ratackling free-riding in BitTorrent by employing chunk-iehtit-

We also motivate Dandelion’s TFT-based exchange. We sheyy-tat, which is similar to pairwise credit incentives. idar

that even if we employ credit-based exchange and enfoigeal. [53] present the design of a P2P multicast protocol in
strict chunk-level tit-for-tat, free-riders that empldyet“large which a client tracks the difference between the amount of
view” exploit are able to download non-negligible amourits qjata the peer has sent to the client so far and the expected
content without expending credit or uplink bandwidth. per-link throughput. They formally prove that their scheme

We note here that under Dandelion, free-riders may expefudsters cooperation among selfish peers. These pairwidé-cre
credit to download content and upload in exchange for credilased incentive mechanisms bear weaknesses that arer simila
while they use “large view” to exploit the initial plaintextto the ones of rate-based tit-for-tat: a) they provide ndieip
offers of their peers. In this way, free-riders achieve goddcentives for seeding; and b) they can be manipulated lgy fre
download rates while saving on credit. riders that obtain a “large view” of the network, and initat

20

short-lived sessions with numerous peers to exploit thélni cumventing the monetary regulation issues that Karma needs
offers in pairwise transactions. to address.

Scrivener [54] combines pairwise credit balances with a Horne et al. [57] proposed an encryption- and erasure-
transitive trading mechanism. OneHop [50] employs a or@de-based fair exchange scheme for exchange of content
hop transitive reputation mechanism to incent cooperatifor proofs of service, but did not provide an experimental
in BitTorrent. These incentive mechanisms are based on #wluation. Their scheme detects cheating with probaibilis
premise that a client remains perpetually interested in eguarantees, whereas Dandelion deterministically deiaats
changing his earned credit or reputation for content doaaigo punishes cheaters.
from the same network. Unlike Scrivener or OneHop, credit Li et al. [38] proposed a scheme for incentives in P2P
earned by Dandelion clients can be converted into moneta@mvironments that uses fair exchange of proof of servich wit
rewards, providing strong and immediate incentives farrdé chunks of content. The selfish client encrypts a chunk and
to upload, even if the network ceases to offer content thegnds it to its peer, the peer responds with a public-key
interests the client. cryptographic proof of service, and the client completes th

BAR Gossip [13] is suitable for P2P streaming of livéransaction by sending the decryption key. A trusted third
content. Owing to its public-key-based cryptographic faparty (TTP) is involved only in the following cases: a) the
exchange mechanism it is robust to clients that attempet-fr selfish client presents the proofs of service to obtain tredi
ride. However, clients that receive initial optimisticef§ from b) the peer complains for receiving an invalid chunk; and c)
their peers need to expend bandwidth in order to reciprocéli@ peer complains for not receiving the decryption key from
with invalid or old and irrelevant chunk transmissions. Itéhe selfish client. However, unless the server incurs thé hig
verifiable peer selection prevents clients from selectirmmyn cost of frequently renewing the public key certificates afrea
and specific victim peers to DoS attack. However, its veriéiabclient, the credit system is vulnerable to clients that mbta
peer selection technique assumes that no client can join gantent from selfish peers, despite those clients not having
network after the streaming session starts. A consequecesifficient credit. In contrast, in Dandelion, the TTP meetat
verifiable peer selection is that BAR Gossip is resilient tevery cryptographic fair exchange of chunk uploads foritred
the large view exploit. Since BAR Gossip is designed fdffectively preventing a client from obtaining any chunksm
P2P streaming, it does not need to provide incentives feglfish peers without having sufficient credit.
seeding. Therefore, it ensures the fair exchange of contenPPay [58], WhoPay [59] and more recently [43] are micro-
uploads between clients that are interested in the same IR&yment proposals that employ public key cryptography and
broadcast. On the other hand, Dandelion, which needs ate designed for the P2P content distribution case. WhoPay
incentivize seeding for static content distribution or asd has a distributed double-spending detection system based o
on demand, guarantees fair exchange of content uploads ddistributed DHT-based database, but it is vulnerable & pe
virtual currency enabling two peers to trade even if theynarte collusions, and routing attacks on the DHT. MojoNation [60]
mutually interested in each other’s content. In this worle, wused a combination of pairwise balances and tokens that can
describe the specifics of combining Dandelion’s crediteblasbe cashed in a central broker. When the debt during pairwise
exchange with BAR Gossip’s balanced-exchange using trai@nsactions exceeds a specified threshold, the side wath th

surplus limiting and downloader selection. negative balance transfers a credit token to the other by con
tacting a broker. Peerlmpact [46] provides monetary reward
B. Global Currency as Incentives for cooperative behavior. However, the exact mechanisth wit

which the system exchanges service for credit is not puyblicl

It has been widely proposed to use global virtual currengwailable and it appears not to offer our cryptographic non-
to provide incentives in P2P content distribution systemsanipulability guarantees.
This is the basis of the incentive mechanism employed byA very recent BitTorrent extension [61] exchanges cryp-
Dandelion: for each client, the system maintains a cred#graphically signed proofs of service for content uploads
balance, which is used to track the bandwidth that the clieTihe above schemes do not guarantee fair exchange of content
has contributed to the network. for payment. Free-riders may establish short-lived sessio

Karma [55] employs a global virtual currency bank andhany peers, and download small portions of content or obtain
certified-mail-based [56] fair exchange of content for @ payments from without paying or uploading. In additiongfre
proofs. It distributes credit management among multiplgaso riders may send to the uploaders proofs of payment that do not
Karma’s distributed credit management improves scatgbilireflect real credit value. As a result, free-riders may aequi
However, it does not guarantee the integrity of the globalbstantial amount of content without uploading or paying
currency when the majority of the nodes that comprise tleedit, respectively. In addition, free-riders may sengrpents
distributed credit bank are malicious or in a highly dynamithat do not reflect real credit value, also known as double-
network. Furthermore, Karma relies on a secure DHT &pending. WhoPay employs a decentralized double-spending
ensure that credit queries are resolved by appropriatesnodietection mechanism that is based on a distributed DHTebase
In contrast, Dandelion’s centrally maintained global eany database, but this mechanism is vulnerable to peer cofisisio
is non-manipulable by clients, enabling a commercial aonteand attacks on DHT routing.
provider to incentivize client cooperation by offering nedary Similar to Kazaa, Maze [62] users are rewarded points
rewards. Furthermore, Dandelion employs real currency cfor uploading, and expend points for successful downloads.

21

Users that obtain more points than a specified threshold argptography, making its correct implementation a difficul
assigned high bandwidth quotas. However, the system i@hiestask.

users faithfully reporting the amount of content they exade

and it does not guarantee strong identities. Thus, as egporE. Cryptographic Fair-Exchange

in [62], it is vulnerable to Sybil attacks. Furthermore,@®n thore are two main classes of solutions for the classic

uploads result in more credit gai_ns than downloads_ result &ﬂ/ptographic fair exchange problem. One uses simultaneou
charges, the system is susceptible to peer collusions. Itglgsnange by interleaving the sending of the message with the
also vulnerable to source code modifications similar to trépending of the receipt [68-72]. These protocols rely on the

ones experienced in Kazaa [19]. Furthermore, credit in _Maégsumption of equal computational and bandwidth capacity,
does not correspond to real monetary value. Thereforegi$ dQ, ich does not suit the heterogeneous P2P setting.

not incent peers that are no longer interested in downlgadin The other class relies on the use of a trusted [14,15

content from the ngtwor_k and speC|aI_ care must be taken7t§, 74] or semi-trusted [75, 76] third party (TTP). The main
prevent starvation, inflation and deflation issues. differences of these solutions with our scheme are as fellow

In Sharp [63] peers exchange signed tickets for basi§ | the optimistic fair-exchange schemes proposed in [14,
resources such as computing, storage and network capagi.73) the TTP is involved only when a party does not
System participants can issue, subdivide, trade and use {jg,jete the transaction to carry out the transactionfitsel
tickets to allocate resources. However, it does not prowde,, jssye affidavits on what happened during the transaction.
reliable complaint resolution mechanism in case clienftsS& i mechanism can be combined with micropayments to
to honor valid tickets for their resources. In contrast,eiBse g re the fair exchange of content for credit. Howeveikanl
Dandelion is content-resource-oriented, the server iY8W pandelion’s cryptographic protocol for credit-based exuge,
able to resolve complaints by verifying the validity of thech scheme would not prevent double-spending. Although
transferred content. the schemes in [14,15] can determine whether a message
. . originates from a party and whether it is the message that the
C. Reputation Mechanisms originator initially intended to send, they cannot detereni

Reputation mechanisms, e.g. [25, 64, 65], may allow seed@éfdether the message itself is valid, i.e. the integrity of a
to rank their leechers based on the rate with which the leschehunk. Our TFT-based exchange employs a public-key-based
upload to their peers. By employing these mechanisms, tPetimistic fair-exchange scheme similar to [15]. Our sckem
system can in theory prevent free-riders from downloadiritpwever, similar to BAR Gossip, can determine whether the
from seeders. As proposed in [66], the peers of leechersdvotfiansmitted chunks are valid, uniquely identifying a disést
report to the seeders, with which the leechers are connecteeer;
information about the rates with which the leechers uploads2) Unlike [75], [77] and [76], our scheme does not rely
to their peers, and the reputation mechanism would be uggtl untrusted clients to become semi-TTP; 3) Unlike [74],
to rank the truthfulness of the peer reports and the coopdr credit-based exchange scheme does not use public key
erativeness of the leechers. However, reputation systeens eryptography for encryption and for committing to messages
vulnerable to the Sybil attack [32] and collisions, espicia and only requires one client rather than two to contact the
in swarms with small populations, and in the best case off&f P for each transaction. The technique they use to determin
probabilistic guarantees of reputation correctness. whether a message originates from a party is similar to the

Furthermore, reputation-based incentive mechanisms offe used by our complaint mechanism, but our work also
coarse-grained evaluation of a peer’s level of cooperatiars addresses the specifics of determining the validity of the

they are unsuitable for schemes that employ monetary rewvar@essage. 4) Unlike in [14] and [77]'s setting, in Dandelion
the transfer of the encrypted chunk itself is the expensive

D. Double-spending Prevention resource being exchanged. In case the sender misbehaves,

Osipk L 167 h d bthe server would have to send the decrypted chunk himself.
sipkov et al. [67] propose a scheme to prevent dou L?I’le server's resources would be exhausted in case senders

spending in a micropayment-based market, underwhichtslielar receivers mishehaved.One approach could be to digtribut
purchase service from web servers. The following issu%e TTP tasks among the peers, similar to how TRICERT
set obstacles in deploying their solution in the P2P conte[%] distributes the tasks among ”;;ostal agents”. Howewer
distribution setting. First, it requires a relatively staset cannot assume that the Dandelion peers can act as sema'jt’ruste
of entities (e.g. peers) that act as witnesses/trackeriof Cthird parties, because they would not have incentive tooperf
transactions, thus it is not suitable for a highly dynami®P e expensi;/e TTP task of uploading the decrypted chunk in
environment. Second, this solution addresses withessgs se of complaints.

wrongfully claim that a coin has been double-spent, but In

our setting this is not a compelling problem. We are most .
concerned with witnesses that collude with peers by lyirag thkm“' Conclusion

a coin has not been double-spent. Their solution assumes tha his paper describes Dandelion: an incentive scheme for
withesses don't have incentives to collude with clientsermdcooperative (P2P) distribution of paid content. Its priynar
their web-server/client setting, but this assumption doets function is to enable a content provider to motivate itsrike
hold under our setting. Last, their scheme employs complexcontribute their uplink bandwidth.

Our scheme rewards cooperative clients with credit or witho]
reciprocal uploads from their peers. Since it employs non-
manipulable cryptographic schemes for the fair exchange[gi]
resources, the content provider can redeem a client'stdiadi
monetary rewards. Thus, our design provides strong incesti
for clients to seed content and eliminates free-riding.

Our experimental results show that a Dandelion serveg]
running on commodity hardware and with moderate bandwidth
can scale to a few thousand clients. Dandelion’s deployiment,
medium size swarms demonstrates that seeding substantiall
improves swarm-wide performance and that a Dandeliol3?]
based content distribution system can attain performaoce ¢ g
parable to BitTorrent. It also demonstrates that the pregos
hybrid incentive scheme significantly reduces the load d#/]
the server when compared to our previously fully centrallizefzg]
incentives. These facts illustrate the plausibility of design
choice: centralizing the incentive mechanism in order to il
crease resource availability in P2P content distribution. (34

[22]

Acknowledgments [31]

We are thankful to Eddie Kohler, Nikitas Liogkas and the
anonymous reviewers for their fruitful feedback on this kvor (32]

This work was supported by NSF award CNS-0627166. [33]

References -

[1] “Hulu - Watch your Favorites. Anytime. For Free,” wwwloLcom.

[2] “Music denied - Shoppers overwhelm iTunes,” editiom@om/ [35]
2006/TECH/internet/12/28/itunes.slowdown.ap/indexrlAeref=rss
topstories, December 2006. [36]

[3] B. Cohen, “Incentives Build Robustness in BitTorrenity’ P2P Econ
June 2003. [37]

[4] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-onaizand Be
Profitable?” inSIGCOMM August 2007. [38]

[5] “BitTorrent, Inc Launches The BitTorrent EntertainnieNetwork,”
www.bittorrent.com/about/press/bittorrent-inc-labas-the-bittorrent- [39]
entertainment-network, Feb 2007. [40]

[6] D. Hughes, G. Coulson, and J. Walkerdine, “Free RidingGimutella
Revisited: The Bell Tolls?” inEEE Distributed Systems Onlingol. 6, [41]
no. 6, June 2005.

[7] S. Jun and M. Ahamad, “Incentives in BitTorrent InduceéRiding,” [42]
in P2P Econ August 2005.

[8] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiji BitTorrent [43]
For Fun (But Not Profit),” inlPTPS February 2006.

[9] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Freesg in
BitTorrent Networks with the Large View Exploit,” itPTPS February [44]
2006.

[10] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “FRiding in
BitTorrent is Cheap,” irHotNets November 2006. [45]

[11] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki, “Dalimh: Coop- [46]
erative Content Distribution with Robust Incentives,” WSENIX June [47]
2007.

[12] B. Wilcox-O’Hearn, “Experiences Deploying a Largeefe Emergent [48]
Network,” in IPTPS March 2002.

[13] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisind M. Dahlin, [49]
“BAR Gossip,” in OSDI November 2006.

[14] N. Asokan, M. Schunter, and M. Waidner, “Optimistic Rreols for Fair
Exchange,” inACM CCS April 1997. [50]

[15] J. Zhou and D. Gollmann, “An Efficient Non-repudiatiomoBcol,” in
CSFW March 1996.

[16] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, Wawrzoniak, [51]
and M. Bowman, “Planetlab: an overlay testbed for broacccaye
services,” iNSIGCOMM Comput. Commun. Revol. 33, no. 3, 2003, [52]
pp. 3-12.

[17] “The eMule Project,” www.emule-project.net. [53]

[18] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripean
“Influences on Cooperation in Bittorrent Communities,” 2P Econ [54]

August 2005.
[19] “Kazaa Lite,” en.wikipedia.org/wiki/Kazad.ite.

22

“NRPG RatioMaster: Fake Upload and Download Stats of
Torrent to Almost all Bittorrent Trackers,” www.brothefsoom/
nrpg-ratiomaster-78031.html.

Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li, fA
Empirical Study of Collusion Behavior in the Maze P2P Fila8ng
System,” inICDCS June 2007.

M. Piatek, T. Isdal, A. Venkataramani, and T. Andersé@ne Hop
Reputations for File Sharing Workloads,” MSDI, April 2008.

M. lzal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A.drra, and
L. Garces-Erice, “Dissecting BitTorrent: Five Months in arients
Lifetime,” in PAM, April 2004.

Manaf and K. G. Anagnostakis, “On the impact of p2p irtcen
mechanisms on user behavior,” NetEcon+IBC 2007.

Q. Lian, P. Yu, M. Yang, Z. Zhang, Y. Dai, and X. Li, “Robuscentives
via Multi-level Tit-for-tat,” in IPTPS 2006.

B. Fan, D.-M. Chiu, and J. C. Lui, “The Delicate Tradewiffi BitTorrent-
like File Sharing Protocol Design,” itCNP, November 2006.

M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hashrfetions for
Message Authentication,” ibNCS vol. 1109, 1996.
“The Transport Layer Security (TLS) Protocol,
http://www.ietf.org/rfc/rfc4346.txt.

“Quote from PACIFIC BELL: $18000 per month for an OC3dih
shopforoc3.com/, Mar. 2006.

J. Gray, “Distributed Computing Economics,” Microséfesearch, Tech.
Rep., 2003, MSR-TR-2003-24.

J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Sener
A. Vahdat, and B. N. Chun, “Why Markets Could (But Don’t Curtlg)
Solve Resource Allocation Problems in Systems,"HotOS-X June
2005.

J. R. Douceur, “The Sybil Attack,” ilPTPS March 2002.

J. Steiner, C. Neuman, and J. Schiller, “Kerberos: Arth&uatication
Service for Open Network Systems,” WSENIX Winter Conference
1988.

B. Cheng, X. Liu, Z. Zhang, and H. Jin, “A measurementdgtwf a
peer-to-peer video-on-demand system,1RTPS 2007.

A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzind Improv-
ing a BitTorrent Networks Performance Mechanisms,” 2006.

A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustey and Sharing
Incentives in BitTorrent Systems,” June 2007.

A.-T. Gai, F. Mathieu, F. de Montgolfier, and J. ReynitStratification
in P2P Networks: Application to BitTorrent,” ilCDCS 2007.

J. Li and X. Kang, “Proof of Service in a Hybrid P2P Enviroent,” in
ISPA Workshops2005.

“Broadband promotions,” http://www.broadband- pr@tions.net/.
“Verizon FiOS Internet Packages and Prices,” httppmv22.verizon.
com/content/consumerfios/.

“Shop for bandwidth,” www.shopforbandwidth.com/
t1-lines-t3-lines-ds3-oc3-faste-gige-service.php.

“Amazon simple storage service.” [Online]. Available\url{http:
/lwww.amazon.com/gp/browse.html?node=16427%261

M. J. Freedman, C. Aperjis, and R. Johari, “Prices aghRiManaging
Resources and Incentives in Peer-assisted Content disinty in
IPTPS February 2008.

D. C. Parkes, R. Cavallo, N. Elprin, A. Juda, S. Lahaie, LBbin,
L. Michael, J. Shneidman, and H. Sultan, “ICE: An lterativenbina-
torial Exchange,” inACM Conference on Electronic Commer@905.
“ROO Online Video Network,” http://www.roo.com/.

“Peer impact,” http://en.wikipedia.org/wiki/Pedmpact.

“RedSwoosh, an Akamai Company,” http://www.akamaing
redswoosh.

B. S. Frey, , and R. Jegen, “Motivation crowding thebpp. 589611,
2001.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Mtaining High
Bandwidth Under Dynamic Network Conditions,” IdSENIX April
2005.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, aAdVenkatara-
mani, “Do Incentives Build Robustness in BitTorrent?”N8DI, April
2007.

M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. SartCharac-
terizing residential broadband networks,”IMC, October 2007.

K. Tamilmani, V. Pai, and A. Mohr, “SWIFT: A System witm¢entives
for Trading,” in P2P Econ August 2004.

I. Keidar, R. Melamed, and A. Orda, “EquiCast: Scaladlelticast with
Selfish Users,” inPODC, July 2006.

P. Druschel, A. Nandi, T.-W. J. Ngan, A. Singh, and D. lAkth,
“Scrivener: Providing Incentives in Cooperative ConteristBbution
Systems,” inMiddleware 2005.

Versiof.1,”

[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]
[74]
[75]

[76]

[77]

V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, ‘idar A Secure
Economic Framework for P2P Resource Sharing,P2P Econ June
2003.

B. Schneier, Applied Cryptography, 2nd edition, 1995.

B. Horne, B. Pinkas, and T. Sander, “Escrow Services landntives in
Peer-to-peer networks,” iEC, 2001.

B. Yang and H. Garcia-Molina, “PPay: Micropayments Reer-to-peer
Systems,” inACM CCS October 2003.

K. Wei, Y.-F. Chen, A. J. Smith, and B. Vo, “WhoPay: a Sda#e and
Anonymous Payment System for Peer-to-Peer Environment&CDCS
June 2006.

“The MNet Project,” mnetproject.org.

“The Snowball Traceability Protocol,” http://develer.
snowballnetworks.com/trac.

M. Yang, H. Chen, B. Y. Zhao, Y. Dai, , and Z. Zhang, “Depieent
of a Large-scale Peer-to-Peer Social Network, WIORLDS 2004.
Yun Fu and Jeffrey Chase and Brent Chun and Stephen ®chwd
Amin Vahdat, “Sharp: an architecture for secure resouraipg,” in
SOSPR 2003.

S. D. Kamvar, M. Schlosser, and H. Garcia-Molina, “ThigeaTrust
Algorithm for Reputation Management in P2P Networks,” WWW
2003.

A. Blanc, Y.-K. Liu, and A. Vahdat, “Designing Incenés for Peer-to-
Peer Routing,” inINFOCOM, 2004.

M. Li, J. Lu, and J. Wu, “Free-riding on bittorrent-likeeer-to-peer file
sharing systems: Modeling analysis and improvementTRDS 2007.
I. Osipkov, E. Y. Vasserman, N. Hopper, and Y. Kim, “Coatibhg
double-spending using cooperative p2p systems|CIDCS 2007.

E. F. Brickell, D. Chaum, |. Damg, and J. V. de Graaf, “Gual and
Verifiable Release of a Secret,” BRYPTQ 1988.

R. Cleve, “Controlled Gradual Disclosure schemes fan@®m bits and
their Applications,” inCRYPTQ 1989.

I. B. Damg, “Practical and Provably Secure Release ofear& and
Exchange of Signatures,” EUROCRYPT1994.

T. Okamoto and K. Ohta, “How to Simultaneously ExchaSgerets by
General Assumptions,” iICCS 1994.

S. Even, O. Goldreich, and A. Lempel, “A Randomized Bcot for
Signing Contracts,” inCommunications of the ACMvol. 28, no. 6,
1985.

F. Bao, R. Deng, and W. Mao, “Efficient and Practical Fakchange
Protocols with Off-line TTP,” inS&P, 1998.

J. Zhou and D. Gollmann, “A Fair Non-repudiation Praiftin IEEE
S&P, 1996.

K. Franklin and M. K. Reiter, “Fair exchange with a semmisted third
party,” in CCS 1997.

M. K. Franklin and G. Tsudik, “Secure Group Barter: Mydarty Fair
Exchange with Semi-Trusted Neutral Parties,”Fimancial Cryptogra-
phy, 1998.

G. Ateniese, B. de Medeiros, and M. T. Goodrich, “TRICERA
distributed certified E-mail scheme,” NDSS 2001.

Michael Sirivianos is a Ph.D. candidate in Com-
puter Science at the University of California, Irvine.

Engineering from the National Technical University

from the University of California, San Diego in
2004.

Xiaowei Yangis an Assistant Professor of Computer

Science at the University of California, Irvine. Her

in Computer Science from MIT in 2004.

His research interests include cooperative content
distribution and human verifiable secure device pair-
ing. He received a B.S in Electrical and Computer

of Athens in 2002, and an M.S. in Computer Science

research interests include congestion control, quality
of service, Internet routing architecture, and network
security. She received a B.E. in Electronic Engineer-
ing from Tsinghua University in 1996, and a Ph.D.

23

Stanislaw Jarecki is an Assistant Professor of
Computer Science at the University of California,
Irvine. His research interests are cryptography, secu-
rity, and distributed algorithms. He received a B.S.
in Computer Science from MIT in 1996, and a Ph.D.
in computer science from MIT in 2001.

