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Abstract—Content distribution via the Internet is becoming
increasingly popular. To be cost-effective, commercial content
providers are now using peer-to-peer (P2P) protocols such as
BitTorrent to save bandwidth costs and to handle peak demands.
When an online content provider uses a P2P protocol, it faces
an incentive issue: how to motivate its clients to upload to their
peers.

This paper presents Dandelion, a system designed to address
this issue. Unlike previous incentive-compatible systems, such as
BitTorrent, our system provides non-manipulable incentives for
clients to upload to their peers. A client that honestly uploads
to its peers is rewarded in the following two ways. First, if
its peers are unable to reciprocate its uploads, the content
provider rewards the client’s service with credit. This credit can
be redeemed for discounts on paid content or other monetary
rewards. Second, if the client’s peers possess content of interest
and have appropriate uplink capacity, the client is rewarded with
reciprocal uploads from its peers.

In designing Dandelion, we trade scalability for the ability to
provide robust incentives for cooperation. The evaluationof our
prototype system on PlanetLab demonstrates the viability of our
approach. A Dandelion server that runs on commodity hardware
with a moderate access link is capable of supporting up to a few
thousand clients. The download completion time for these clients
is substantially reduced due to the additional upload capacity
offered by strongly incentivized uploaders.

Index Terms—Peer-to-peer, content distribution, incentives,
fair-exchange, symmetric cryptography.

I. Introduction
Content distribution via the Internet is becoming increas-

ingly popular among the entertainment industry and the
consumers alike. For example, Hulu [1] streams authorized
content for NBC, Fox and other networks. However, the
increasing demand for digital content is overwhelming the
infrastructure of online content providers [2]. An attractive
approach for commercial online content distribution is the
use of peer-to-peer (P2P) protocols. This approach does not
require a content provider to over-provision its bandwidthto
handle peak demands, nor does it require the provider to rely
solely on purchased service from a third-party such as Akamai.
Instead, a P2P protocol such as BitTorrent [3] harnesses its
clients’ unused uplink bandwidth, and saves the bandwidth
and computing resources of a content provider. Huang et al. [4]
showed that peer-assisted content distribution can substantially
reduce the operating costs of Video on Demand services.
To that effect, BBC has successfully launched its iPlayer
peer-assisted VoD service, and leading content providers have

now partnered with BitTorrent, Inc [5]. This trend indicates
that P2P protocols enable a site to cost-effectively distribute
content.

When an online content provider uses a P2P protocol, it
faces an incentive issue: how to motivate clients that possess
content to upload to others. This issue is of paramount im-
portance because the performance of a P2P network is highly
dependent on the users’ willingness to contribute their uplink
bandwidth. In addition, in a competitive market, a content
provider with paying customers needs to offer better quality of
service guarantees than the ones offered by free P2P content
distribution systems. However, selfish (rational) users tend
not to share their bandwidth without external incentives [6].
Although the popular BitTorrent protocol, has incorporated
the rate-based tit-for-tat (TFT) incentive mechanism, this
mechanism bears two weaknesses. First and foremost, it does
not encourage clients to seed, i.e. to upload to other peers
after completing the file download. Second, it is vulnerable
to manipulation [7–10], allowing modified clients to free-ride
and still achieve download rates equal to or higher than the
ones of cooperative clients (§ II-B,VI-C).

In previous work, we introduced Dandelion [11], a protocol
that provides provably non-manipulable incentives for seeding
and is not susceptible to free-riding. Although the protocol
was shown to be sufficiently scalable, its incentive mechanism
was completely centralized. In this paper, we built upon our
initial design and propose changes thatpartially decentralize
the protocol. These changes render Dandelion more scalable,
while they maintain its original desirable properties: robust
incentives for cooperation and performance comparable to
the most efficient content distribution systems to date. Our
modified protocol provides robust incentives using two mech-
anisms.

The first mechanism guarantees strict fair-exchange of con-
tent uploads for real monetary value. This mechanism is useful
when a client has content that interests its peer but the peer
has no content of interest to reciprocate with.Selfishclients
(i.e. rational clients that do not upload unless they expectto
be rewarded) earn credit when they upload valid content to
their peers. Credit can be redeemed at a content provider for
discounts on the content or for other types of monetary awards.
Given appropriate pricing schemes, we expect that a selfish
client is motivated to serve content to its peers. We refer to
this mechanism ascredit-based exchange.

The second mechanism renders the protocol more scalable
by partially decentralizing it, while preventing free-riding. It
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enables clients that are mutually interested in each other’s
content to barter their uplink bandwidth. We refer to the second
mechanism asTit-for-tat-based (TFT-based) exchange.

A key challenge lies in making the exchange of con-
tent uploads for credit efficient and practical, while robust
to manipulation. Practice has shown that this problem is
a major stumbling block for the commercial adoption of
micropayment-based incentive schemes [12]. Manipulability
is a primary contributor to the weak adoption of credit-based
(micropayment-based) incentive schemes for commercial pur-
poses because it makes content distributors wary of substantial
monetary losses in case the client software is compromised.

We address this challenge based on the insight that the
content provider itself is a trusted third party (TTP) and
can mediate the content exchange between its clients. Under
the credit-based exchange protocol, clients exchange datafor
credit and a server mediates the transaction. The server uses
only efficient symmetric cryptography on critical data paths
and sends only short messages to its clients.

In our setting, any unfairness during TFT exchanges re-
sults in monetary losses for the peer that does not receive
its deserved reciprocation. We address this issue using an
optimistic fair-exchange protocol that is an adaptation ofBAR
Gossip [13] and classic optimistic fair-exchange exchange
schemes [14, 15]. In optimistic fair-exchange, the trustedthird
party is involved only when an error occurs or when dishonest
participants do not follow the protocol. Implementing a simple
scheme chunk-level tit-for-tat exchanges of plaintext content
would not guarantee absolute fairness, since the last peer that
receives content may refrain from reciprocating.

As a side-effect of the server-mediated fair-exchange, Dan-
delion discourages unauthorized content distribution in the
sense that it gives no incentives for seeders to waste their
bandwidth for uploads to unauthorized clients. Instead, it
provides explicit rewards for them to upload to authorized
clients.

Our work makes the following contributions:
1) The design of Dandelion, a hybrid incentive scheme for
commercial P2P content distribution. It combines an efficient
fair-exchange scheme that enables trading of content uploads
for credit with an optimistic fair-exchange scheme that enables
the bartering of uplink bandwidth.
2) The prototype implementation of a Dandelion-based system
that is suitable for P2P distribution of static content.
3) The evaluation of our implementation on PlanetLab [16],
which identifies the scalability limits of our incentive mech-
anism and demonstrates the plausibility of our approach.
In addition, it thoroughly investigates free-riding in realistic
PlanetLab-residing BitTorrent-like networks.

The rest of this paper is organized as follows. Section II
provides background and motivates our design. Section III
provides an overview of Dandelion and describes the system
model under which it is designed to operate. Section IV
describes the design of Dandelion and discusses its properties.
Section V describes the implementation of our prototype
system. Section VI presents the experimental evaluation of
our implementation. In Section VII we discuss prior work and
we conclude in Section VIII.

II. Background
Dandelion’s design addresses the incentive issues in P2P

content distribution protocols such as BitTorrent [3] and
eMule [17]. In this section, we motivate the design of Dan-
delion by discussing the weaknesses of BitTorrent’s incentive
mechanism.

In the rest of this paper we use a BitTorrent-like terminol-
ogy. A seederrefers to a client that uploads to its peers after
it has completed its download. Aleecheris a client that has
not completed its download. Afree-rider refers to a client
that downloads content from other peers without incurring
any cost, i.e without uploading content or without expending
currency. Aswarmrefers to all clients that actively participate
in the protocol for a given content item. Thechoking algorithm
refers to the client-side function of selecting peers to upload
content to (unchoke) in parallel, based on a predetermined
criterion. Optimistic unchokingrefers to temporarily unchok-
ing a peer, although that peer does not currently satisfy the
unchoking criterion. Clients optimistically unchoke a peer in
expectation that the peer will eventually satisfy the unchoking
criterion.

A. Impact of Seeding

The popular BitTorrent protocol employs the rate-based “tit-
for-tat” (TFT) incentive mechanism [3]. A peer prefers to
upload to (unchoke) another peer that reciprocally uploads
parts of the same file. This mechanism mitigates free-riding,
but does not provide explicit incentives for seeding. Although
several BitTorrent deployments rely on clients to honestly
report their uploading history [18], and use this history to
decide which clients can join a swarm, practice has shown
that clients can fake their upload history [19, 20] or collude
[21].

Seeders improve download completion times, because they
increase the content availability and the aggregate upload
bandwidth. In addition, incentives for seeding are crucial
because a large portion of P2P clients in the Internet reside
behind asymmetric links. This means that the total upload
capacity of the P2P network may be much lower than its
total download capacity. However, lack of incentives leads
to BitTorrent swarms being underprovisioned in terms of
seeders [22]. In order to rectify this situation one needs to
persuade peers to remain online to seed after they complete
their download. In § VI-B2, we show that the download rates
of leechers in BitTorrent swarms increases substantially as the
number of clients that seed increases.

These observations are corroborated by recent and older
measurements in P2P content distribution systems. Izal et al.
[23] analyzed the lifetime of a healthy torrent with many
seeders and derived that almost 40% of the file was uploaded
by seeders and that on average it took clients twice as much
time to upload than to download the same quantity of bytes.
A recent measurement [24] over 1000 torrents and 100000
peers revealed that altruistic nodes that uploaded twice as
much as they downloaded by remaining as seeders comprised
only 17% of their swarm. Piatek et al. [22] showed that
clients that joined 13353 swarms and contributed 100KB/sec
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achieved a median download rate of only 14KB/sec and in
25% of the swarms they were not able to download at all. In
addition, they found that 20% of 55,523 swarms had less than
1 seeder per 10 peers. They conclude that the vast majority of
swarms would have significantly more availability and upload
capacity if downloaders were incentivized to upload after
download completion. Furthermore, experience with the Maze
system [25] has shown that demand for content is heavily
long-tailed; around 80% of downloading involves at most one
downloader, therefore it is crucial to keep seeders online.

B. Free-riding in BitTorrent
A general observation is that since BitTorrent’s tit-for-tat

incentives reward cooperative leechers with improved down-
load times, leechers are always incentivized to upload. This
observation relies on the assumption that users aim only
at maximizing their download rates. However in practice,
BitTorrent users may be reluctant to upload even if uploading
improves their download times. For example, users with access
providers that impose quotas on outgoing traffic or users with
limited uplink bandwidth (e.g., 1.5Mbps/128Kbps ADSL) may
wish to save their uplink for other more critical tasks.

Considering the trade-off between performance and sus-
ceptibility to free-riding [26], BitTorrent purposely does not
implement a strict TFT strategy. In particular, it employs
rate-based instead of chunk-level TFT, and BitTorrent clients
optimistically unchoke peers for relatively long periods of time
(30 seconds). Furthermore, BitTorrent seeders select peers to
upload to regardless of whether those peers upload to others.

Based on the above observations and previous work on
BitTorrent exploitation [7, 8], we employ the “large view”
exploit [9] to free-ride in BitTorrent-like swarms. The free-
rider client obtains a larger than normal view of the network
and connects to all peers in its view, while it does not upload
any content. Using this exploit in a sufficiently large swarm,
a free-rider can find more seeders, which do not employ
tit-for-tat. It can also increase the frequency with which it
becomes optimistically unchoked, compared to a compliant
client, which typically connects to 50-100 peers. In § VI-C,
we extend our free-riding study to further motivate our design.
We experiment with free-riders in larger PlanetLab-residing
torrents comprising of∼400 leechers and under more realistic
bandwidth distribution. We also investigate how the existence
of seeders affects the effectiveness of the exploit.

Free-rider clients that employ the large view exploit are
able to download faster than or almost as fast as its tit-for-tat
compliant counterparts. In addition, as the number of free-
riders increases, the swarm suffers performance degradation.

The exploit is more beneficial for free-riders when the
swarm has many seeders, in which case some free-riders
perform better than cooperative clients. When the swarm
has no additional seeders other than the initial seeder, free-
riders do not fare as well. However, they still attain good
download rates compared to compliant clients, despite relying
on downloading from the initial seeder and on the increased
frequency with which they become optimistically unchoked.
In all cases, the swarm suffers performance degradation as the
number of free-riders increases.

Our results suggest that the large view exploit has the
potential to be widely adopted because it is beneficial for free-
riders. A dire prediction is that if more and more users that
are reluctant to upload employ free-riding clients, BitTorrent
communities will experience the “tragedy of the commons,”
until those users realize that they need to use cooperative
clients in order to improve their download rates. Dandelion’s
non-manipulable incentives explicitly address this issueby
preventing free-riders from obtaining any content without
reciprocating or spending money.

The same weakness of BitTorrent’s incentives is experimen-
tally demonstrated in a recent work by Locher et al. [10]. In
addition, Zghaibeh [24] reported that the portion of peers that
free-ride and are able to attain good download rates (up to
300KB/sec) is already larger than expected (up to 10%).

III. Overview and System Model
We now provide an overview of Dandelion and describe

the system model under which it is designed to operate. In
addition, we introduce our setting and notation.

A. System Overview
When the content provider is overloaded, the Dandelion

serverredirects itsclientsto other clients that are able to serve
their requests for content. The content provider splits content
into verifiablechunks, and clients exchange carefully selected
chunks. The content provider deploys in addition to the server,
at least one client with the complete content (initial seeder).

The content is split into multiple chunks in order to enable
clients to upload as soon as they receive and verify a small
portion of the content. It is also split in order to increase the
entropy of content in the network, facilitating chunk exchanges
among peers.

We discuss the trade-offs in selecting a chunk size in the
case of static content distribution in § VI-B1.

Dandelion employs a hybrid incentive mechanism. In case a
client has content that interests a peer, but that peer does not
have content that interests the client, the system entices the
selfish client to upload by rewarding the client with credit.
The system also rewards a selfish client with credit when
the peer is unable to reciprocate at the rate it downloads
from the client. For example, selfish seeders would always be
rewarded in credit. The server maintains the credit balanceof
each of its clients and converts credit to monetary rewards,
such as discounts on paid content. To ensure that no user
can be dishonest in the content-for-credit transactions, we
employ a fair-exchange mechanism based on symmetric key
cryptography. This mechanism requires the involvement of
a trusted third party in each transaction. We refer to this
mechanism for exchange of content uploads for credit as
credit-based exchangeand the chunks that are uploaded under
this mechanism ascredit-traded.

A Dandelion client employs a tit-for-tat mechanism when its
peers can reciprocate with content of interest. That is, theclient
uploads content to a peer at the same rate that the peer uploads
content to the client. However, a simple tit-for-tat scheme, such
as BitTorrent’s, is susceptible to the “large view” exploit. Free-
riders that connect to many peers in their swarm can benefit
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considerably by their peers’ initial offers. To address this issue
we employ an optimistic fair-exchange mechanism [14, 15]
based on public key cryptography. Optimistic fair-exchange
requires the involvement of a trusted third party only in case
a peer misbehaves. We refer to the tit-for-tat mechanism as
TFT-based exchangeand the chunks that are uploaded under
this mechanism asTFT-traded.

B. System Model
We assume two types of clients, which we define as follows:

• Selfish(rational) clients strategize based on a utility function
that describes the cost they incur when they upload a chunk
to their peers and when they pay credit to download a chunk.
It also describes the benefit they gain when they are rewarded
with credit for correct chunks they upload. A selfish client
aims at maximizing its utility.

A selfish client may consider manipulating the credit system
in order to increase its utility by misbehaving as follows: a)
upload no chunks to a peer, and yet claim credit for them;
b) upload garbage either on purpose or due to communication
failure to a peer, and yet claim credit or be reciprocated with
valid content by the peer; c) download chunks from selfish
clients, and yet attempt to avoid being charged or reciprocating
with chunks; d) attempt to download chunks from selfish peers
that are not interested in its content without having sufficient
credit; and e) attempt to boost its credit by colluding with
other clients or by opening multiple Dandelion accounts.
• Malicious clients may be faulty or strategize based on
irregular utility functions, e.g. their utility increasesby harm-
ing others, despite not obtaining credit or content. They
misbehave as follows: a) attempt to make honest clients appear
as malicious or dishonest, or attempt to cause them to be
charged for chunks they did not obtain; b) attempt to perform
a denial of service (DoS) attack against the server or selected
clients (this attack would involve only protocol messages,as
we consider bandwidth or connection flooding attacks outside
the scope of this work); and c) upload invalid chunks aiming
at disrupting the distribution of content.

We assume that a selfish or malicious client cannot interfere
with the IP routing and forwarding function, and cannot cor-
rupt messages, but it can eavesdrop messages. In addition, we
assume that communication errors may occur during message
transmissions.

C. Setting and Notation
Before we describe our design, we introduce the setting and

notation.
We use〈X〉 to denote the description of an entity or object,

e.g. 〈X〉 denotes a clientX’s ID, while X denotes the client
itself. H is a cryptographic hash function such as SHA-1,MAC
is a Message Authentication Code such as HMAC [27], and
i refers to a time period (epoch). ByiX we denote epochi
at client or serverX. MACK [X,Y] denotes the MAC of the
concatenation of itemsX andY, using the keyK.

Due to host mobility and NATs, we do not use Internet
address (IP or IP/source-port) to associate credit and other
persistent protocol information with clients. Instead, each user
applies for a Dandelion account and is associated with a

persistent ID. The serverS associates each client with its au-
thentication information (client ID and password), the content
item it currently downloads or seeds, its credit balance, and
the content it can access. The clients and the server maintain
loosely synchronized clocks using standard techniques, such
as the Network Time Protocol (NTP).

Every clientA that wishes to join the network must establish
a transport layer secure session with the serverS, e.g., using
TLS [28]. A client sends its ID and password over the secure
channel. The serverS generates a random secret key, denoted
KSA, which is shared withA. KSA is also sent over the secure
channel. In addition, every Dandelion clientA obtains from
the server a public/secret key pair(PKA,SKA) that is issued by
the content provider.A’s peers obtain the public key certificate
signed from the server directly fromA. signA[X] denotes the
public key signature ofA on the itemX, using A’s secret
key SKA. veri f yA[signA[X],X] denotes the verification ofA’s
public key signature on the itemX, usingA’s public keyPKA.
veri f y[] returns a boolean value.KSA and the public key pair
are renewed upon epoch change.

The rest of the messages that are exchanged between the
server and the clients are sent over an insecure communication
channel (e.g. over plain TCP), which must originate from the
same IP as the secure session. Similarly, all messages between
clients are sent over an insecure communication channel.

Each client A exchanges only short messages with the
server. To prevent forgery of the message source and replay
attacks, and to ensure the integrity of the message, each
message includes a sequence number and a digital signature.
The signature is computed as the MAC of the message and the
sequence number, keyed with the secret keyKSA thatA shares
with the server. Each time a client or the server receive a
message from each other, they check whether the sequence
number succeeds the sequence number of the previously
received message and whether the MAC-generated signature
verifies. If either of the two conditions is not satisfied, the
message is discarded. The sequence number is reset when time
period i changes.

X −→ Y:[name] Z,W denotes that the client or serverX
sends toY a message of typename, which containsZ andW.

IV. Design
In this section, we describe the design of Dandelion, which

explicitly addresses the challenges posed by selfish and mali-
cious clients, as well as the communication channel.

We introduce our credit-based exchange cryptographic pro-
tocol for the fair and non-repudiable exchange of content
uploads for real monetary value. We also describe our hybrid
incentive scheme, which combines the credit-based exchange
with the TFT-based exchange. The TFT-based exchange al-
lows peers to directly barter uplink bandwidth resources, and
warrants the involvement of the trusted third party (TTP) only
in case of exceptions. By combining the two cryptographic
protocols, we reduce the load that the credit-based exchange
protocol induced on the online TTP in the original Dandelion
protocol [11].

Our design is based on the premise that although a low
cost server may not have sufficient network I/O resources to
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directly serve content to its clients under overload, [29, 30]
it may have sufficient CPU, memory, and I/O resources to
execute many symmetric cryptography operations, to maintain
protocol state for many clients, to access its clients’ protocol
state, and to receive/send short messages. However, CPU,
memory and I/O are still limited resources. Therefore we aim
at making the design as efficient as possible. We also argue
that content providers incur lower costs when they purchase
the otherwise unused or altruistically offered uplink bandwidth
of their clients than when they purchase bandwidth directly
from access providers (§ IV-G).

A. Credit as Incentives
We aim at providing strong incentives for a selfish client to

upload to a peer that does not possess content of interest or to
a peer that is unable to upload as fast as the client uploads to
it. To this end, we employ a cryptographic protocol to ensure
the fair-exchange of content uploads for credit.

This protocol involves only efficient symmetric crypto-
graphic operations. Theserveracts as the trusted third party
(TTP) mediating the exchanges of content for credit among its
clients, and as a credit bank maintaining records of the clients’
credit balances. When a clientA uploads to a clientB, it sends
encrypted content to clientB. To decrypt,B must request the
decryption key from the server. The requests for keys serve as
the proof thatA has uploaded some content toB. Thus, when
the server receives a key request, it creditsA for uploading
content toB, and chargesB for downloading content.

When a clientA sends invalid content to a clientB, B can de-
termine its validity only after receiving the decryption key and
being charged. To address this problem, our design includesa
non-repudiable complaint mechanism. IfA intentionally sends
garbage toB, A cannot deny that it did. In addition,B is
prevented from falsely claiming thatA has sent it garbage.

The server and the credit base are logical modules and can
be distributed over a cluster (e.g. using consistent hashing
based on client ID) to improve scalability and fault-tolerance.

Although, a single low cost server may scale to a few
thousands of clients (§ VI-A), a well-provisioned content
provider may purchase more bandwidth and employ server
farms that consist of tens or hundreds of Dandelion servers.
In this way, a well provisioned content provider may support
hundreds of thousands of clients at a much lower cost than
if the provider provided a significant portion of the required
uplink capacity itself.

B. Credit Management
Dandelion’s incentive mechanism creates a market, which

enables a variety of application scenarios. Our protocol is
intended for the case in which users maintain paid accounts
with the content provider. The currency employed by Dande-
lion is directly mapped to real monetary value that customers
introduce in the market by purchasing content. We employ
real instead of virtual currency to eliminate depletion, inflation
and starvation issues that plague typical virtual currency
systems [31].

Selfish clients may sell upload service to peers that are
unable to reciprocate with equally fast uploads. The content

provider rewards uploaders with a credit value∆r > 0 for the
uploading of a chunk, which is fixed for every chunk and
every client. Downloaders spend∆c credit units for each chunk
they download. A client is awarded sufficient initial creditto
download the complete paid content from its peers, without
having to upload. In this way, slow uploaders do not face
starvation and they are able to expend their credit at the rate
needed to achieve their desired download rate.

The content provider redeems a client’s accumulated credit
for monetary rewards, such as discounts on content prices or
service membership fees. We assume that the content provider
prices chunk uploads appropriately to ensure that for the vast
majority of clients, utility increases when they utilize their
uplink in exchange for credit. We set∆r = ∆c, so that two
colluding clients cannot increase the sum of their credit by
falsely claiming that they upload to each other. A client can
acquire a chunk from a peer that is not interested in the
client’s content only if the client’s credit is greater than∆c. We
could alternatively set∆c > ∆r , but this would penalize good
uploaders who would not be able to recover the full monetary
value of the amount of bandwidth they used by reciprocating
with the equal amount of bandwidth.

A user cannot boost its credit by presenting multiple IDs
(the Sybil attack [32]) and claiming to have uploaded to some
of its registered IDs. This is because each user maintains
an authenticated paid account with the provider. The user
essentially purchases its initial credit, and the net sum inan
upload-download transaction between any two IDs is zero.

C. Client AccessControl
Before we present Dandelion’s fair-exchange mechanisms,

we describe how Dandelion enables the server and its clients
to determine which clients are authorized participants. We
also describe how clients obtain information about the content
and the swarm. Figure 1 provides a high-level description
of the client access control protocol, which is inspired by
ticket-granting authentication schemes such as Kerberos [33],
and we describe it in detail below.

Step 1:The protocol starts with the clientB sending a request
for the content itemF to the serverS.

B−→ S:[content request] 〈F〉

Step 2: If B has access toF, the server chooses a short
list of peers〈A〉list, among the ones that are currently in the
swarm forF . The policy with which these peers are selected
depends on the specifics of the content distribution system.
Each list entry contains the ID of the peer and the peer’s
inbound Internet address. For every peerA in Alist, S sends
a ticket TSA = MACKSA[〈A〉,〈B〉,〈F〉,t] to B, where t is the
current timestamp. The ticketTSA is only valid for a certain
time lengthLpeer and allowsB to request chunks of the content
〈F〉 from client A. When TSA expires andB still wishes to
download fromA, B requests a newTSA from S. The ticket
TSA enablesA to filter out service requests from misbehaving
or unauthorized peers. To ensure integrity in the case of static
content distribution or video on demand,S also sends toB the
SHA-1 hashH(c) for all chunksc of 〈F〉.
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Dandelion Server

Client A Client B

Credit-based Exchange

5.  Chunk request: ticket
6.  Chunk response: encrypted 
chunk and commitment
7.  Decr. key request: commitment
8.  Decr. key response: decr. key
9. Complaint: commitment

Client Access Control

1.  Content request: login info
2.  Content response: list of peers 
and tickets
3.  Content request: ticket
4.  Chunk announcements

Figure 1: The client access control and credit-based exchange protocols.
Messages are listed in a “message type:contents” format andonly the most
important contents are included. The numbers on the arrows correspond
to the listed protocol messages and the steps listed in Sections IV-C
and IV-D.

S−→ B:[content response] TSAlist ,〈A〉list,H(c)list,〈F〉,t, iS

Step 3: Upon receiving the server’s response,B connects to
each clientA∈ Alist to request the content〈F〉. In the rest of
this description, we list only the steps that involveB, and a
specific clientA.

B−→ A:[content request] TSA,〈F〉, t, iS

Step 4: If current-time≤ t + Lpeer and TSA is not in A’s
cache,A verifies whetherTSA= MACKSA[〈A〉,〈B〉,〈F〉,t]. If the
verification fails,A drops this request. Also, ifiS is greater than
A’s current time periodiA, A learns that it should renew its
key with S. Otherwise,A cachesTSA and periodically sends
the chunk announcement message described below, for the
period that the timestampt is fresh. This message contains a
list of chunks thatA owns,〈c〉list. B also does so in separate
chunk announcement messages. The specifics of which chunks
are announced and and how frequently depend on the type of
content distribution.

A−→ B:[chunk announcement] 〈c〉list

D. Exchanging Content Uploads for Credit
We now describe in detail Dandelion’s cryptographic

credit-based exchange protocol (Figure 1).

Step 5: B and A determine which chunks to download from
each other according to a chunk selection policy. For example,
BitTorrent’s locally-rarest-first [3] is suitable for static content
distribution, while for streaming content or video on demand
other policies are appropriate [13, 34].A can request chunks
from B, after it requests and retrievesTSB from S. B sends a
request for the missing chunkc to A.

B−→ A:[chunk request] TSA,〈F〉,〈c〉, t, iS

Step 6: B’s chunk requests are served byA as long as
the timestampt is fresh, andTSA is cached or verifies.
A encryptsc using a symmetric encryption algorithmEnc,
as C = Enck〈c〉(c). k〈c〉 is a key and encryption initializa-
tion vector pair generated as (MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,t,0],

MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,t,1]). Next, A hashes the ciphertext
C as H(C). Subsequently, it computes its commitment to the
encrypted chunk asTAS = MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,H(C),t].
The commitmentTAS is only valid for a certain time length
Lkey, which forcesB to purchase the chunk at the server before
TAS expires. This fact allowsA to promptly acquire credit for
its service. Promptly acquiring credit may allowA to use the
credit to download a file more than one time. It also allows
B to provide chunks almost as soon as they are received,
increasing global throughput at the early stages of the content’s
distribution. B has no real incentive to delay paying, since
it has to do it eventually. He may attempt to refrain from
uploading the content to speedup its download, but any gains
would be cancelled out by the wait involved in uploading the
content to earn the credit needed to obtain the decryption keys.

A−→ B:[chunk response] TAS,〈F〉,〈c〉,C,t, iA

Step 7: SinceB does not know the keyKSA that was used to
generatek〈c〉 in step(6), it needs to requestk〈c〉 from the server.
As soon asB receives the encrypted chunk,B computes its own
hash over the received ciphertextC′ and sends a decryption
key request message toS.

B−→ S:[decryption key request] 〈A〉,〈F〉,〈c〉,H(C′),t,
TAS, iA

Step 8: If current-time ≤ t + Lkey, and the reported
epoch of A is off by at most one,S checks if TAS =
MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,H(C′),t]. The commitment’s TAS

verification may fail either becauseC′ 6=C due to transmission
error in step(6) or becauseA or B are misbehaving. SinceS
is unable to determine which is the case, it punishes neither
A or B and does not update their credit.S does not send
the decryption key toB but it notifiesB of the discrepancy.
In caseA repeatedly sends invalid chunk response messages,
B is expected to disconnect fromA and blacklist it. If B
keeps sending invalid decryption key requests that involveA,
S penalizesB. If the verification succeeds,S checks whether
B has sufficient credit to purchase the chunkc. It also checks
again whetherB has access to the content〈F〉. If B is approved,
S chargesB and rewardsA with ∆c credit units. Subse-
quently, S computesk′〈c〉 as (MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,t,0],
MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,t,1]) and sends it toB.

S−→ B:[decryption key response] 〈A〉,〈F〉,〈c〉,k′〈c〉

B usesk′〈c〉 to decrypt the chunk asc′ = Deck′
〈c〉

(C′). Next,
we explain the complaint mechanism.
Step 9: If the decryption fails or ifH(c′) 6= H(c) (step (2),
§ IV-C), B complains toS by sending the following message.

B−→ S:[complaint] 〈A〉,〈F〉,〈c〉,TAS,H(C′),t, iA

S ignores this message ifcurrent-time > t + L′
key, where

L′
key> Lkey. L′

key−Lkey should be greater than the time needed
for B to request and receive a decryption key response, decrypt
the chunk and send a complaint to the server. With this
condition, a misbehaving clientA cannot avoid unfavorable
complaint resolution by ensuring that the time elapsed between
the momentA commits to the encrypted chunk and the moment
the encrypted chunk is received byB is slightly less thanLkey.
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The client A cannot delay sending the complete chunk for
time greater or slightly less thanL′

key, because in such case
B’s decryption key request would not be considered valid
by the server. Therefore, in such case B would never get
to the complaint stage. T’-T should be such that even if the
decryption key is received slightly before or after before T
expires, B would still have time to decrypt the chunk and send
a complaint to the server before T’ expires. All that is required
is that T’-T is greater than the time it takes to process the
decryption key, decrypt the chunk and send a new complaint.

S also ignores the complaint message if a complaint for
the sameA and c is in a cache of recent complaints thatS
maintains for each clientB. Complaints are evicted from this
cache oncecurrent-time> t +L′

key.
If TAS6=MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,H(C′), t], S punishesB.

This is becauseS has already notifiedB that TAS is invalid in
step(8). If TAS verifies,S caches this complaint, re-computes
k′〈c〉 once again, retrievesc from its storage, and encryptsc
himself usingk′〈c〉, C′′ = Enck′

〈c〉
(c). If the hash of the ciphertext

H(C′′) is equal to the valueH(C′) that B sent toS, S decides
that A has acted correctly andB’s complaint is unjustified.
Subsequently,S drops the complaint request and blacklistsB.
It also notifiesA, which disconnects fromB and blacklists it.
Otherwise, ifH(C′′) 6= H(C′), Sdecides thatB was cheated by
A, blacklistsA, revokes the corresponding credit charge onB
and notifiesB that its complaint has been resolved. Similarly,
B disconnects fromA and locally blacklists it.

The server disconnects from a blacklisted clientA, marks
it as blacklisted in the credit file and denies access toA if it
attempts to login. Future complaints that concernA and are
non-duplicate, non-expired and with valid commitments, are
ruled againstA without further processing.

Since a verdict on a complaint can adversely affect a client,
each client needs to ensure that the commitments it generates
are correct even in the rare case of a local I/O error. Therefore,
a client always verifies the read chunk against its hash before
it encrypts the chunk and generates its commitment.

E. Rate-based Tit-for-Tat with Optimistic Fair
Exchange

We now describe how Dandelion combines under one
hybrid scheme the fair-exchange of content uploads for credit
(credit-based exchange), with the tit-for-tat trading (TFT-based
exchange) of content uploads.

The credit-based exchange addresses the fairness issue in
tit-for-tat-based cooperative content distribution. Users that
cannot upload at the rate their peers upload to them, pay
the excess offered bandwidth in credit. However, when two
clients are mutually interested in each others content and are
able to upload to each other at the same rate, they are able to
use tit-for-tat incentives, i.e. employ the TFT-based exchange.
The TFT-based exchange aims at reducing the decryption key
request load on the server. It enables a pair of clients to barter
their uplink resources without requiring the server to mediate
their transactions. At the same time, it prevents free-riding.

The trade surplusof a client with respect to a peer is the the
difference between the number of TFT-traded chunks the client

has uploaded to the peer and the number of TFT-traded chunks
the client has downloaded from the peer. The trade surplus
thresholdts is the maximum value that the trade surplus can
take before the client with the positive trade surplus switches
to credit-based exchange.

The trade surplus takes values greater than one when peers
are not able to simultaneously exchange content and thus need
more time to obtain chunks with which to reciprocate. In order
to maintain the trade surplus in the presense of connection
failures, the client keeps persistent session informationfor
each of its peers, and identifies peers by their IP.

A strawman approach is to employ a tit-for-tat scheme under
which clients exchange plaintext chunks, while ensuring that
the trade surplus does not exceed a threshold [7, 35]. The
problem with this scheme is that it cannot guarantee absolute
fairness; the last peer that receives content may refrain from
reciprocating. If in addition a free-rider employs the “large
view exploit” or the trade surplus threshold is high, a free-
rider can download a substantial amount of content without
incurring any cost (see § VI-C). The free-rider problem
is exacerbated under Dandelion, as the gains of free-riders
translate to monetary loses for their peers. To address this
problem, we employ anoptimistic fair-exchangescheme that
allows clients to barter their uplink in a fair manner. This
scheme involves the server only in case of client misbehavior
or communication failure. It is a purpose-built adaptationof
classic optimistic fair exchange protocols [14, 15] and BAR
Gossip [13].

If a client is a seeder (it does not expect its peers to obtain
content that interests the client), it always uploads credit-traded
chunks. Otherwise, if the client’s trade surplus with a peeris
less than or equal to the specified surplus threshold, each client
responds to requests for chunks from its selected downloader
peers with TFT-traded chunks. If the surplus exceedsts, the
client responds with credit-traded chunks.

When a clientA uploads a TFT-traded chunkc1 to a clientB,
c1 is encrypted using symmetric key cryptography. To decrypt,
B must reciprocate with at least one encrypted TFT-traded
chunkc2 to A. Upon reception ofc′, A sends the decryption
key for c to B. In turn,B reciprocates with the decryption key
for c2.

If B sends an invalid chunkc2 to A, A can detect it
only after sending the decryption key for the valid chunk
c1 to B. To address this issue, we include a non-repudiable
complaint mechanism similar to the one used by the credit-
based exchange. Unlike the credit-based exchange however,
in the TFT-based exchange, senders commit to chunks and
decryption keys they send using public key signatures. This
is because the server is involved only in case of client
misbehavior. Therefore, clients should be able to determine the
validity of the commitments to the transmitted chunks without
querying the server as in step (7) IV-D.

Note that public key operations are substantially more
expensive that symmetric cryptography ones (§ VI-A2). Thus
they are unsuitable for credit-based exchange, in which the
server needs to validate the decryption key request for each
uploaded chunk. In TFT-based exchange however, the server
is involved only in case of complain
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1) TFT-based Exchange

After two clients have authenticated each other using the
client access control protocol, they may use TFT-based ex-
change. We now describe in detail Dandelions cryptographic
TFT-based exchange protocol. For consistency with the previ-
ous description, we start the enumeration after step (4) of the
client access control protocol.
Step 5: B and A determine which chunks to download from
each other according to a chunk selection policy.B and A
exchange requests for the missing chunksc1 andc2.

B−→ A:[chunk request] TSA,〈F〉,〈c1〉, t, iS

A−→ B:[chunk request] TSA,〈F〉,〈c2〉, t, iS

Step 6: A’s and B’s requests are served by each other
as long as the timestampt is fresh, and the tickets
TSA/SB are cached or verify.A and B encrypt c1 and
c2 using a symmetric encryption algorithmEnc, as
C1 = Enck〈c〉(c1),C2 = Enck〈c〉(c2). k〈c〉 is a key and encryption
initialization vector pair generated as in step(6) of the credit-
based exchange protocol. Next,A andB hash the ciphertexts
C1, C2. Subsequently, they compute their commitment to
the encrypted chunk using their public key. For example,A
computesTPA = signA[H(〈A〉,〈B〉,〈F〉,〈c1〉,H(C1))].

A−→ B:[chunk response] TPA,〈F〉,〈c1〉,C1, iA
B−→ A:[chunk response] TPB,〈F〉,〈c2〉,C2, iB

Step 7: Since A and B do not know the keysKSA and KSB

used to generate the decryption keysk〈c1〉,k〈c2〉 in step (6),
they need to obtain them from each other. As soon asA
receives the chunk response fromB,it computes its own
hash over the received ciphertextC′

2 and validatesTPB by
computing veri f yB[TPB,H(〈B〉,〈A〉,〈F〉,〈c2〉,H(C′

2),t)]. If
the signatureTPB is valid, A sendsB the decryption key
k〈c1〉. If the TPB is invalid, A is expected to disconnect from
B and blacklist it, in caseB repeatedly sends invalid chunk
responses. The same steps are taken byB when it receives
the chunk response fromA. When a client sends a decryption
key for a TFT-traded chunk, it also includes a signature on
the decryption key message. For example, clientA computes
TPKB = signA[H(B,〈c1〉,k〈c1〉)]. This is to ensure thatB
can complain in case the client sends a valid TFT-traded
chunk but does not send a valid decryption key, which would
constitute a DoS attack.

A−→ B:[decryption key] TPKA,〈F〉,〈c1〉,k〈c1〉, iA
B−→ A:[decryption key] TPKB,〈F〉,〈c2〉,k〈c2〉, iB

We now describe the complaint mechanism for the TFT-
based exchange.

Step 8: In case a clientB receives an invalid TFT-traded-
chunk and decryption key combination fromA, it can use the
serverS to resolve complains.B sends toS A’s signatures on
the encrypted chunk (TPA) and the decryption key (TPKA)

as well as the data that were signed (encrypted chunk hash,
decryption key etc).

B−→ S:[complaint] 〈A〉,〈F〉,〈c1〉,TPA,H(C′
1), iA

S ignores the complaint message if a complaint for the same
B andc is in a cache of recent complaints thatS maintains for
each clientA or the reported epoch ofA is off by more than
one. Next, the server checks the validity of the signatures.If
they do not verify, it blacklistsB, becauseB could verify itself
that they were invalid.

If they verify, the server caches the complaint and repro-
duces the correct decryption keyk〈c1〉. It then determines
whetherk〈c1〉 matches the one signed byA. If it does not match,
it blacklistsB. If it matches, it retrieves the chunkc′1 from its
local storage and encrypts it withk〈c1〉, C′′

1 = Enck′
〈c1〉

(c1). If

the hash of the ciphertextH(C′′
1) is equal to the valueH(C′

1)
that A sent toS, S decides thatA has acted correctly andB’s
complaint is unjustified. Subsequently,S drops the complaint
and blacklistsB. It also notifiesA, which disconnects fromB
and blacklists it. Otherwise, ifH(C′′) 6= H(C′), S decides that
B was cheated byA and blacklistsA.

The decryption keys for TFT-traded chunks cannot be
retrieved from the server for a corresponding credit cost. In this
way we discourage senders from not sending the decryption
key for the last chunk in step(3) in an attempt to force their
peers to pay them with credit instead.

2) Hybrid Incentives

ts: trade surplus threshold.
tsp: trade surplus with peerp.
secp: number of sent encrypted chunks to peerp for
which a decryption key has not been sent.
recp: number of received encrypted chunks from peerp
for which a decryption key has not been received.
dksp: decryption key surplus forp.
Input : The set of selected downloader peersP
Input : The set of the requested chunks from peerp that

are availableC
foreach peer p∈ P do

foreach chunk c∈C do
if tsp ≤ ts then

SendTFTTradedChunk(c)
secp = secp +1
tsp = tsp +1

else
SendCreditTradedChunk(c)

end
if secp> 0 && dksp < 1 && (recp > 0 ‖
dksp = 1 ) then

SendDecryptionKey(c)
dksp = dksp +1
secp = secp−1

end
end

end
Algorithm 1 : The Hybrid incentive algorithm.
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Algorithm 1 specifies how Dandelion combines the credit-
based with the TFT-based exchange. Every client maintains
the decryption key surplusdksp for each of its peersp. dksp

is the difference between the number of decryption keys for
TFT-traded chunks the client sent top and the number of
decryption keys the client received fromp. A client sends to
p a decryption key for a sent TFT-traded chunk if both of the
following two conditions are satisfied: a)dksp < 1; and b) it
has received TFT-traded chunks from p for which it has not
received decryption keys ordksp = 1.

A Dandelion client must be able to switch between the
credit- and the TFT-based exchange depending on content
availability and peer upload and download rates. Therefore,
we need an algorithm that aims at reducing the amount of
creditexchanged chunks uploaded to each peer, while it ensures
that the client uploads to its peers at the maximum rate its
peers can download from it.

Rather than employing a complex per-peer resource allo-
cation algorithm, we use the following simple scheme. At
any moment a client selects a specified numbern of peers
to which to upload to using a downloader selection algorithm
that is almost identical to BitTorrents. This algorithm aims at
reducing the amount of content that is transmitted encrypted,
and thus requires the involvement of the server. At the same
time, it aims at increasing a clients uplink and downlink
utilization. A Dandelion leecher ranks its peers based on the
rate with which they upload TFT-exchanged chunks to the
leecher. A Dandelion seeder ranks its peers based on the rate
with which they download from the seeder, as is the case with
BitTorrent seeders. Every time periodT, the client selects
as downloaders theno top ranked peers, and in addition it
optimistically unchokeso additional peers forO seconds.

When a leecher selects the fastest TFT-exchanged chunk
uploaders, it selects peers that are more likely to match its
TFT-based upload rate and thus exchange chunks in a tit-for-tat
fashion. This results in invoking the credit-based fair-exchange
mechanism less often. A similar property has been shown
to hold for BitTorrents chocking algorithm, which induces
clustering between peers that have comparable upload rates
[36, 37].

The trade surplus threshold values used by the peers can be
changed locally and the server cannot enforce them. The server
can only recommend values based on the swarms performance
characteristics (see § VI-B1). Peers may choose to follow that
recommendation or not. In general, if the recommendation for
the TFT-exchange trade surplus is a low value, peers would
have no problem complying. But if the recommendation is
a high value peers may be reluctant to comply, because it
would mean that they are more vulnerable to denial of service
attacks, and to wasting bandwidth on encrypted chunk uploads
that are not reciprocated. Still, clients are motivated to abide
by the recommendation because compliant peers unchoke the
fastest uploaders of TFT-traded chunks.

The decryption keys for TFT-traded chunks cannot be re-
trieved from the server for the corresponding credit cost. In this
way we discourage senders from not sending the decryption
key for the last chunk in step (3) in an attempt to force their
peers to pay them with credit instead.

F. Design Properties

We now list the properties of our design.
Lemma 1 A selfish or a malicious client cannot assume
another authorized clientA’s identity and issue messages under
A. Thus, it cannot obtain service at the expense ofA or cause
A to be charged for service it did not obtain or causeA to
be blacklisted. In addition, it cannot issue a validTSA for an
invalid chunk that it sends to a clientB and causeB to produce
a complaint message that would result in a verdict againstA.
Proof 1 A misbehaving client can be successful in such
attack only by obtaining the user authentication information
or the shared secret keyKSA. However user authentication,
and the transmission of the shared secret keyKSA is performed
over the secure session betweenA and the serverS.

Lemma 2 If the serverS charges a clientB ∆c credit units
for a chunkc received from a selfish clientA, B must have
received the correctc, regardless of the actions taken byA.
Proof 2 B gets charged only if the commitmentTAS that S
gets fromB in step(7) is valid. This means that the valuesA
sent toB in Step(3) are the onesA used to computeTAS and
that H(C) = H(C′). SinceH is a second pre-image resistant
cryptographic hash thatB computes itself onC′ received
from A, C = C′. Thus, B is charged only if the encrypted
chunk received byB is the encrypted chunk to whichA has
committed to. Since the samek〈c〉 is used byA to encryptc
into C′ and by B to decryptC into c′, C = C′ implies that
c′ = c.

If A encrypts an invalid chunkc and sends it toB, B can
issue a complain toS. For the complaint to be ruled against
B, we should haveH(C′) = H(C′′), whereC′′ is computed
by S in step(9). SinceTAS is accepted byS, all the valuesS
used to computeTAS are the ones thatA sent toB, and the
hashH(C′) is correctly computed over the ciphertextC that
A sent toB. Consequently,S would generate the samek〈c〉
with the oneA used. Therefore,S’s encryptionC′′ would not
be the same as theC that A sent toB. Consequently,H(C′)
would not be equal toH(C′′) andS would reverseB’s charge.

Lemma 3 If a selfish clientA always encrypts chunkc anew
when serving a request, as described in step(6) (§ IV-D), and
if B gets a validc from A, thenA is awarded∆c credit units
from S, andB is charged∆c credit units fromS.
Proof 3 A generatesk〈c〉 using a secure MAC function and
a secret keyKSA, which is unknown toB because it was
transmitted over the secure session betweenA and the server
S. Therefore, the only way forB to retrievek〈c〉 is to request
it from S (step(7)), in which caseS logs a charge againstB.

Note that we are not concerned with another selfish client
E being able to eavesdrop on the plaintext keyk〈c〉 and the en-
cryption of chunkc and thus retrievec without being charged.
In this case, the damage to the system is not significant
because,A is still rewarded for its upload and secondE is
not consuming additional system resources.

The only way B could possibly avoid this charge is
by sending a complaint toS, which includes TAS and
H(C′). For the complaint to be ruled in favor ofB, it
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should hold thatH(C′) 6= H(C′′), where C′′ is computed
by S in step (9). However, S will accept TAS only if
TAS= MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,H(C′), t]. This means that all
the valuesS used to computeTAS are the ones thatA sent to
B, and that the hashH(C′) is correctly computed over the
ciphertextC that A sent toB. Since this is the case,S would
generate the samek〈c〉 that A used, henceS’s encryptionC′′

would be the same as theC that A computed. Consequently,
H(C′) would be equal toH(C′′) and B would be unable to
reverse its charge.

Lemma 4 A malicious client cannot replay previously sent
valid requests to the server or generate decryption key requests
or complaints under another clientA’s ID. Thus, it cannot
causeA to be charged for service it did not obtain or causeA
to be blacklisted because of invalid or duplicate complaints.
Proof 4 All messages exchanged between a clientA and
the server are digitally signed with the shared secret keyKSA

and include sequence numbers. Both the client and the server
store the last sequence number seen by each other and the
sequence numbers are reset uponi change. Thus, a malicious
client cannot forge the source of the request, neither it can
resent a request that has already been received.

Lemma 5 Under the TFT-based exchange scheme, a selfish
client B cannot obtain a chunkc1 from its peerA without
expending bandwidth to reciprocate with a valid chunkc2

itself. In addition, as stated in [13], a rationalB prefers to
send the short decryption key for an already sent valid chunk
c2, rather than repeatedly receive requests for the key fromA.

Proof 5 Given that we use a secure MAC, the client cannot
obtain the decryption key, unless it reciprocates with one valid
TFT-encrypted chunk. A selfish client may attempt to transmit
invalid content in order to obtain the key in case it does not
have useful content. However a client that transmits invalid
chunks is detected and penalized by the system through the
complaint mechanism. Therefore a client is forced to upload
a valid encrypted chunk. In such case, the selfish client has
no incentive not to send the valid decryption key for the
TFT-exchanged chunk, because the transmition of the key is
a very cheap operation compared to the transmission of the
chunk. In addition, a rational peer would prefer to send the
key rather than receive repeated key requests, because the cost
of sending the correct decryption key is less than repeatedly
receive requests.
Observation 1 To maintain an efficient content distribution
pipeline, a client needs to relay a chunk to its peers as soon
as it receives it. However, the chunk may be invalid due
to communication error or due to client misbehavior. The
performance of the system would be severely degraded if
clients wasted bandwidth to relay invalid content. To address
this issue, Dandelion clients send a decryption key requestto
the server immediately upon receiving the encrypted chunk.
This design choice enables clients to promptly retrieve the
chunk in its non-encrypted form and verify its integrity prior to
uploading the chunk to their peers. Therefore, homomorphic-
encryption-based approaches or bundling many key requests

together or re-encrypting the content and resending it before
checking it are not appropriate.
Observation 2 If a client does not have sufficient credit,
it cannot download chunks from a selfish peer that is not
interested in the client’s content. Our design choice to involve
the server in each exchange of content uploads for credit
instead of using the fair exchange technique proposed in [38],
enables the server to check a client’s credit balance, before
the client retrieves the decryption key of a chunk.

In particular clients could abuse the Li et al. scheme [38] as
follows. A user connects underA’s account and downloads a
certificate from the server, which indicates that it has enough
credit. The certificate cannot indicate how much credit is left,
because credit may increase. This user downloads the complete
file and earns some credit in the process too. Then he gives
A’s account to his friend, which now has credit, thus it gets
a certificate. The new user uses more than its available credit,
issuing valid commitments (payment orders) signed with its
new secret key, which the peers cannot verify whether they
represent real value in the bank.

This problem can be solved if we disallow a specific user
ID to download the same content more than once, no matter
how much content they have uploaded. But this is not practical
as the same user may choose to download the files it paid for
multiple times from various machines, counting on some of
his machines uploading a lot and gaining extra credit. We wish
to avoid limiting how users can use their credit. If a user has
paid for access to a file and he has sufficient credit he should
be able to utilize the network’s resources to download it again.
Observation 3 A malicious clientB can abandon the credit-
based exchange protocol after receiving the encrypted chunk
without completing the transaction. In such case,A does not
receive any credit, even thoughB has consumedA’s resources.
This is a denial of service (DoS) attack againstA. Note
that this attack would require clientB to expend resources
proportional to the resources of the victimA, therefore it is
not particularly practical. Furthermore, we prevent clients that
have been designated as misbehavers (blacklisted) in step(9)
or clients that do not maintain paid accounts with the content
provider from launching such attacks; the serverS issues short-
lived ticketsTSA (step(2), § IV-C) only to authorized and non-
blacklisted clients.TSA is checked for validity byA (steps(4)
and (6) above).
Observation 4 A malicious clientA may send a credit-traded
chunk with an invalid MAC signature aiming at performing
a DoS attack againstB, without becoming blacklisted by the
server. This attack would require clientA to expend resources
proportional to the resources of the victimB, therefore it is
not particularly practical. In addition, a victim can be attacked
by only one chunk before it locally blacklists the attacker.
Furthermore as before, we prevent unauthorized clients or ones
that have been blacklisted by the server from launching such
attack.
Observation 5 A malicious clientAx may send a valid TFT-
traded chunk to a clientB but not release the decryption key,
aiming at performing a DoS attack againstB. Again, this attack
would require clientA to expend resources proportional to
the resources of the victimB, therefore it is not practical.
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If the attacker sends an incorrect decryption key, the server
can arbitrate the complaint because the decryption key is
signed. Subsequently, the server can blacklist the attacker
and the attacker can no longer obtain tickets to contact more
peers. In addition, the victims can be attacked by only one
chunk before they locally blacklist the attacker. Furthermore
as before, we prevent unauthorized clients or clients that have
been blacklisted by the server from launching such attack.
Observation 6 A malicious clientA may send a TFT-traded
chunk with an invalid public key signature aiming at per-
forming a DoS attack againstB, without becoming blacklisted
by the server. Again, this attack is not practical because it
would require clientA to expend resources proportional to the
resources of the victimB. In addition, a victim can be attacked
by only one chunk before it locally blacklists the attacker.
Furthermore, we prevent unauthorized clients or clients that
have been blacklisted by the server from launching such attack.
Observation 7 A malicious client cannot DoS attack the
server by sending invalid content to other clients or repeatedly
sending invalid complaints aiming at causing the server to
perform complaint resolution. That client must be a user
registered with the system, otherwise it is not able to mint
a complaint that merits resolution. Even if the client is a
registered user, it becomes blacklisted by both the server
and its peers the moment an invalid complaint is ruled
against it. In addition, a malicious client cannot attack the
server by sending valid signed messages with duplicate valid
complaints. Our protocol detects duplicate complaints through
the use of timestamps and caching of recent complaints.

Owing to Lemmas 1, 2, 3 and 5 as well as Observation
2, and given that the content provider appropriately valuates
chunk uploads, Dandelion ensures that most selfish clients
increase their utility when they upload correct chunks. At the
same time, misbehaving clients cannot increase their utility.
Consequently, Dandelion provides strong incentives for most
selfish clients to upload to their peers.

G. Discussion

We now discuss our scheme’s economic viability and po-
tential for adoption. We argue that a content provider obtains
more gains using our approach than by using a protocol
such as BitTorrent that does not provide robust incentives for
seeding. When seeding is not strongly incentivized, a content
provider needs to purchase additional hardware and bandwidth
to directly provide a large portion of the required upload
capacity.

On the other hand, Dandelion enables the content provider
to make a less expensive investment towards rewarding coop-
erative peers with real money. As a result, peers are strongly
incentivized and the total upload capacity of the swarm
increases.

Next, we support our insight that it is cheaper for content
providers to purchase bandwidth from their users than pur-
chase the infrastructure to directly serve content or purchase
the service of third party CDNs. We make the conservative
assumption that half of the price paid by broadband customers

goes towards purchasing the uplink bandwith. Based on cur-
rent DSL, Cable and FiOS offers in the US we extrapolate
that user uplink bandwidth costs between $2 and $5 per Mbps
per month [39, 40]. On the other hand, depending on location,
it costs at least $40 to $80 per Mbps for a content provider to
purchase T-3 to OC-12 bandwidth, with the cost of an OC-12
installation being on the order of $500000 [41]. We can also
view uplink bandwidth costs on a per uploaded GB basis.
Amazon’s S3 Storage Service [42] valuates uplink bandwidth
at approximately $0.18 per GB. On the other hand, a user
that pays $5 per Mbps per month for his uplink may upload
approximately 320GB in a month at a cost of approximately
$0.015 per GB.

Therefore, although with Dandelion the content provider
expends money to purchase its clients’ bandwidth, he might
incur lower cost compared to purchasing server bandwidth
from Internet service providers. In addition since the content
providers sets the prices for uploads he is in control of the
peer bandwidth market, thereby he could reward users with
less money than the actual cost of their uplink. Although
a user’s uplink bandwidth may cost more than the content
provider is willing to pay, that bandwidth is typically unused
or altruistically assigned to other P2P applications. Of course,
the communication lines from ISPs are much more reliable,
however the reliability issue is offset by the sheer number
of client connections at the disposal of the content provider.
Therefore, we hypothesize that our scheme can enable users
to benefit from their spare bandwidth and content providers
to tap into that relatively low cost resource. Validating this
hypothesis requires a real market experiment, which is beyond
the scope of this work.

We note that Dandelion’s reward scheme is not the same as
per-byte pricing per-byte or volume-based bandwidth pricing
schemes. The arguments in favor of flat rate pricing are not
directly applicable to our case because its characteristics are
different to the Internet or cell phone pricing: in Dandelion
users do not pay for every byte they receives/sends, instead
they get a discount for every byte it serves. In our setting,
users pay the flat rate for purchasing the content (which is
exactly what many DVD rental or download services currently
do), and our micropayments are used towards accumulating
discounts. Unlike purchasing access to a communication ser-
vice, users purchase the content (on a per-item or subscription
basis) and accumulate credit to be used towards discounts.
This business model works well with airline frequent flyer
programs, with retail store reward cards etc. In constrast to the
typical per-byte or volume-based pricing for communication
services, our users know what is the maximum amount of
money they will be charged and this is the rate for purchasing
the access to the content. Thus, the user does not run the risk
of being charged an unanticipated excessive amount of money
or being denied further access to the service in case of overage.

Nevertheless, it remains an open question whether users will
find Dandelion’s pricing and discount model attractive, as there
is limited prior experience with this model in the context of
P2P content distribution.

As advocated in [31, 43], the proper market-based valua-
tion of client bandwidth resources according to demand and
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content rarity is also an important issue, which we are not
addressing in this work. Nevertheless, our non-manipulable
hybrid incentive design can be integrated with schemes that
allow variable pricing of resources to address market-based
incentive issues in a distributed or centralized way [43, 44].
Such integration would require changes to the chunk and
peer selection algorithms, as well as the initial assignment
of credit to new clients. Such algorithms should enable peers
to choose among the resource offerings based on individual
chunk prices and the offered transfer rates. In this work, we
instead focus on the problem of ensuring the fair-exchange
of payment for content. Practice has shown that this problem
is a major stumbling block to the commercial adoption of
micropayment-based incentive schemes [12].

Our solution breaks the barrier to entry for small content
providers (e.g indie movie studios) and leads to a more
open and competitive market for Internet resources. A content
provider no longer has the limited choice between heav-
ily investing in infrastructure or buying third party services
(Akamai, BitTorrent inc) to bootstrap. Instead of paying a
substantial initial amount to over-provision hardware and
bandwidth, the content distributor can pay solely for the
bandwidth its clients have actually contributed. Moreover,
the content provider itself is in the advantageous position
of determining the price with which it purchases its client’s
bandwidth. Even well-provisioned content distributors may
use Dandelion to further save on bandwidth costs. This is
illustrated by the relative success of Roo’s Peer Delivery
Network [45] based on Peer Impact [46]. We improve upon
Roo’s PDN by offering non-manipulable currency. Roo has
not publicized their micropayment scheme but it is very likely
that it is not cryptographic.

Our solution can also be deployed by commercial Content
Distribution Networks to promote cooperation in peer-assisted
content distribution. CDN providers are considering the use of
peer-assisted content distribution, in order to offer new lower
tier CDN services at reduced costs. This is illustrated by the
recent purchase of “Red Swoosh” by Akamai [47].

H. Discouraging Unauthorized Content distribu-
tion

A Dandelion client that is not interested in an unauthorized
peer’s content isdiscouragedfrom uploading to that peer. This
is because such client has no incentive to upload to a peer other
than the credit he could earn through the use of Dandelion’s
cryptographic fair-exchange protocol. However, the Dandelion
server mediates all transactions that employ the fair-exchange
protocol, thus the server is able to not reward a client that
serves unauthorized peers.

Clients are able to verify the legitimacy of requests for
service (steps(1) and(5)), hence they can avoid wasting band-
width to serve unauthorized clients. Furthermore, precisely
because of this ability, clients can be held legally liable if
they choose to send content to unauthorized clients. These
properties discourage users from using Dandelion for illegal
content replication and make our solution even more appealing
to distributors of copyright-protected digital goods.

For example, selfish seeders have no incentive to facilitate
unauthorized content distribution. Our scheme motivates seed-
ers to behave selfishly and discourages them from behaving
altruistically. That is, seeders are more reluctant to waste
bandwidth to upload to unauthorized users when they can use
their bandwidth to upload to authorized users and earn mon-
etary rewards instead. This phenomenon has been empirically
observed in various social settings by Frey et al [48] and has
been termed the crowding-out effect: the presence of extrinsic
motivations (such as financial rewards) results in decreased
intrinsic motivation (such as ideological altruism).

In some BitTorrent deployments, content access policies
are enforced by requiring authentication with the tracker.
However, an unauthorized peer can join the network simply
by finding a single colluding peer that is willing to share its
swarm view with it. The unauthorized peers can then download
content from authorized seeders, which are by definition
altruistic and have no real motivation to deny service to
unauthorized peers. Consequently, a single authorized, rational
but misbehaving peer can facilitate illegal content replication
at a large scale.

V. Implementation
This section describes a prototype C implementation of

the Dandelion system, which is suitable for static content
distribution. It uses theOpenSSLtoolkit for cryptographic
operations.

Our initial approach was to build Dandelion on existing
BitTorrent codebase. However, we quickly realized that it is
preferably to build our protocol from scratch, as it requires
extensive modification of all primary BitTorrent functions.
First, the Dandelion server, in addition to swarm view tracking,
performs processing for the fair-exchange protocol. Second,
unlike BitTorrent trackers, a Dandelion server may be CPU or
disk I/O bound instead of network I/O bound, depending on
the capacity of the access link, therefore different performance
optimization strategies are warranted. Third, the Dandelion
client performs additional processing for the fair-exchange
protocol. Fourth, the Dandelion client does not employ rate-
based tit-for-tat, and thereby its downloader selection (unchok-
ing) mechanism is substantially different.

A. Server Implementation
For simplicity, our current implementation combines the

content provider and the credit management system at a single
server. It is our future work to scale the Dandelion server by
balancing its load over multiple machines. For example, by
having dispatchers with high downlink bandwidth redirecting
requests to the Dandelion servers hosts that are responsible for
the client IDs involved. The assignment of client IDs can be
done using consistent hashing.

Our current server implementation is single-threaded and
event-driven. The network I/O operations are asynchronous,
and data are transmitted over TCP. In order to scale to thou-
sands of simultaneously connected clients, the server employs
the epoll event dispatching mechanism. In our implementa-
tion epoll is used as level-triggered, while its use as edge-
triggered could further improve performance The server stores
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in heap memory information for each of the clients with which
it has an active Dandelion session.

The server uses standard file I/O system calls to efficiently
manage persistent client information, which is stored in a sim-
ple file called the credit file. Each client is assigned an entry in
the credit file, which keeps the client’s credit, its authentication
information and its file access control information. Each entry
has the same size and the client ID determines the offset of
the entry of each client in the file. Thus each entry can be
efficiently accessed for both queries and updates. The credit
file is sufficiently large to accomodate as many client entries
as may be needed.

The server queries and updates a client’s credit from and
to the credit file upon every transaction. Yet, it does not force
commitment of the update to persistent storage. Instead, it
relies on the OS to asynchronously perform the commitment.
If the server application crashes, the update will still be copied
from the kernel buffer to persistent storage. Still, the OS
may crash or the server may lose power before the updated
data have been committed. However, in practice, a typical
Dandelion deployment would run a stable operating system
and use backup power supply. In addition, the server could
mirror the credit base on multiple machines, and transactions
would not involve very large amounts of money per user.
Hence, we believe it is preferable not to incur the high cost
of committing the credit updates to non-volatile memory after
every transaction (operation 14 in Table I, § VI-A2).

Nevertheless, in the face of frequent system failures, we can
avoid the performance penalty of per-transaction commitments
to persistent storage and still provide satisfactory data safety
guarantees. This can be done by assigning to a helper process
the task of periodically synchronizing the credit file with
persistent storage (§ VI-A2).

B. Client Implementation
The client side is also single-threaded and event-driven. A

client may leech or seed multiple files at a time. A client can
be decomposed into two logical modules: a) theconnection
managementmodule; and b) thepeer-servingmodule.

The connection management module performspeeringand
uploader discovery. With peering, each client obtains a random
partial swarm view from the server and strives to connect to
a specified number of peers (typically 50-100). With uploader
discovery, a client strives to remain connected to a minimum
number of uploading peers. If the number of recent uploaders
drops below a threshold, a client requests from the server a
new swarm view and connects to the peers in the new view.

The peer-serving module performscontent reconciliation
and downloader selection. Content reconciliation refers to
the function of announcing recently received chunks, request-
ing missing chunks, requesting decryption keys for received
encrypted chunks, and replying to chunk requests. Our im-
plementation employs rarest-random-first [49] schedulingin
requesting missing chunks from clients. To efficiently utilize
their downlink bandwidth, clients dynamically adjust the num-
ber of outstanding chunk requestsr that have been sent to
a peer and have not been responded to [3, 49].r depends
on the observed download rate from the peer and the time

between a request for a chunk is sent and the complete chunk
is received according to the equationr = turnaroundTime×
peerDownloadRate/chunkSize. We described the downloader
selection algorithm in § IV-E.

VI. Evaluation
The goals of this experimental evaluation are: a) to iden-

tify the scalability limits of Dandelion’s centralized non-
manipulable virtual-currency; b) to examine the trade-off
between performance and scalability in selecting the chunk
size and trade surplus threshold; c) to motivate our design
by demonstrating the importance of incentives for seeding
and the impact of free-riding in BitTorrent-like swarms; and
d) compare the performance of our Dandelion-based static
content distribution system to BitTorrent.1

A. Server Performance
In this section, we evaluate and profile the server in terms

of decryption key and complaint request throughput.

1) Server Throughput

A Dandelion server mediates the chunk exchanges between
its clients. The client plaintext download throughput and the
scalability of our system is bound by how fast a server can pro-
cess their decryption key requests (step(8), § IV-D). Both the
server’s computational resources and bandwidth may become
the performance bottleneck. We deploy a Dandelion server
on a dual Pentium D 2.8GHZ/1MB CPU with 1GB RAM and
250GB/7200RPM HDD running Linux 2.6.5-1.358smp, which
shares a 100Mbps Ethernet II link. To mitigate bandwidth
variability in the shared link and to emulate a low cost server
with uplinks and downlinks that range from 1Mbps to 5Mbps,
we rate-limit our Dandelion server at the application layer.
We deploy∼1000 clients that run on∼100 distinct PlanetLab
hosts.

The clients send requests for decryption keys to the server
and we measure the aggregate rate with which all clients
receive decryption key responses. The server always queries
and updates the credit record from and to the credit file without
forcing commitment to disk. We run each experiment for a
specified per-client request rate, which varies from 1 to 6
req/sec. For each request rate, the experiment duration is 10
minutes and the results are averaged over 10 runs.

Figure 2 depicts the server’s decryption key response
throughput for varying server bandwidth. As the bandwidth
increases from 1Mbps to 4Mbps, the server’s throughput,
indicating that for up to 4Mbps access link, the bottleneck
is the bandwidth. For 5Mbps and 4Mbps the throughput is
almost equal, indicating that for 5Mbps the bottleneck is the
CPU. The results show that a server running on our commodity
PC with 4Mbps or 5Mbps access link can process up to∼3105
decryption key requests per second. This result suggests that
with a 256KB chunk size, this server may simultaneously
support almost 3100 clients that download only credit-traded
chunks at 256KB/s. With a larger chunk size and TFT-based

1Dandelion’s source code for Linux and scripts to run our experiments can
be downloaded at http://www.ics.uci.edu/∼msirivia/dandelion.
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Figure 2: Server decryption key response throughput evaluation. as afunction of specified per-client key request rate, for varying server rate-
limits. ∼1000 clients send decryption key requests: (a) aggregate decryption key response throughput of the Dandelion server; (b) server’s CPU
utilization(%); (c) server’s memory utilization (% in loga rithmic scale).

exchange, each such client receives credit-traded chunks at a
lower rate. Thus, the number of supported clients increases.

We also run experiments with∼ 500 clients each set to
send 10 req/sec (not depicted in Figure 2). By comparing
the throughput of the 5Mbps server’s throughput in this case
(3114 req/sec) with its throughput when∼ 1000 clients send
5 req/sec each (3105 req/sec), we infer that the server’s
throughput is independent of the number of clients since
the epoll performance in the examined range of number of
connections is independent of the number of connected clients.

From Figures 2(b),(c) we make the following observations
with respect to CPU and memory utilization at the server
when∼1000 clients send 6 req/sec. For 5Mbps, the server’s
CPU utilization reaches∼100%, indicating the CPU as the
bottleneck. We also observe that the server consumes less than
1% of the available memory, even under overload.

A Dandelion server is also responsible for resolving com-
plaints (step(9), § IV-D). A complaint resolution involves the
expensive disk I/O operation for reading a chunk. Therefore
it represents a performance bottleneck in case the system
receives too many complaints. We performed an experiment
with ∼1000 clients sending 5 decryption key req/sec, and
15 clients sending 1 complaint resolution request per sec
(involving a randomly selected 256KB chunk of a 1GB
file). The 5Mbps server was able to deliver roughly 1490
decryption key responses per second along with 14 complaint
resolution responses per second. In another experiment with
∼60 complaint sending clients, we measured the maximum
complaint resolution throughput of a 5Mbps Dandelion server
to be 52 complaint responses per second.

Note that the server does not need to deliver high complaint
resolution throughput for the reasons listed in Observation
6, § IV-F. First, complaints can involve only clients that are
registered with the system. Second, once a complaint has been
resolved against a client, that client becomes blacklistedand
all future complaints concerning the misbehaver are automat-
ically resolved against him without performing the expensive
cryptographic and disk I/O operations. In addition, to improve
throughput, the expensive disk I/O operation can be performed
in parallel with the decryption key request processing using
asynchronous I/O.

2) Server Profiling

We profile the cost of operations at the server aiming at
identifying the performance bottlenecks of our design. We use
the same machine as the one used in the previous section.

Table I lists the cost of Dandelion operations. Timings for
operations 1-4 and 6-8 are obtained usinggetrusage() over
10000 executions. Timings for operations 5, 14, 15 and 16 are
approximated usinggettimeofday() over 10000 executions.
Operation 5 reads from the disk a new randomly selected
256KB chunk of a 1GB file in each execution. Operations 14-
16 are performed on a credit file with 10000 44-byte entries.
Timings for operations 11-13 are approximated according
to our application layer rate-limiting for 5Mbps uplink and
downlink. They are provided as reference for comparison with
CPU-centric and credit management operations. Operation 6
uses 8-byte-block Blowfish-CBC with 128-bit key and 128-bit
initialization vector, with at most 8 byte padding. Operations 1-
4 use HMAC-SHA1 with 128-bit key. Operation 7 uses SHA-
1. Operation 8 uses 1024-bit RSA signatures. For operation
14, we usefsync() and we disable HDD caching.

The main tasks of a Dandelion server are to: a) receive
the decryption key request (operation 11); b) authenticatethe
decryption key request (operation 1); c) verify the commitment
(operation 2); d) compute the decryption key (operation 3);e)
query and update the credit of the two clients involved (opera-
tions 14 and 15); f) sign the decryption key response (operation
4); and g) send the decryption key response (operation 12).

The signed decryption key request and decryption key
responses are sent over an insecure TCP connection. A client
establishes and uses the secure TLS channel with the server
(operation 10) only to send authentication information (once
per Dandelion session), the shared key and the public key pair
(the same keys are used for a relatively long period).

As can be seen in Table I, the per-decryption-key-request
cryptographic operations of the server (operations 1-4) are
highly efficient (total 12µsec), as only symmetric cryptogra-
phy is employed. The credit management operations (14 and
15) are also efficient (total 24µsec). The communication costs
of receiving and sending decryption key responses (operations
11-12) are clearly higher than the cryptographic computation
costs. In addition, operations 11-12 can take place concurrently
with each other and the computational operations.
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Dandelion operation Size Time (ms)
CPU-centric Operation

1 Authenticate decryption key 58 bytes .003
request

2 Generate symmetric cryptography 38 bytes .003
commitment for decryption key request
or complaint verification

3 Compute decryption key 19 bytes .003
4 Sign decryption key response 46 bytes .003
5 Read chunk 256 KB 31
6 Encrypt chunk 256 KB 2.876
7 Hash encrypted chunk 256 KB 1.017
8 Verify public-key commitment for 128 bytes .2

complaint verification
9 Event dispatchingepoll_wait()) N/A 0.002

on 1000 socket descriptors
10 Establish SSL session N/A 19

(SSL_accept())
Communication Operation

11 Receive decryption key request 96 bytes ∼.26
12 Transmit decryption key response 84 bytes ∼.24
13 Receive TFT-based exchange complaint204 bytes ∼.55

Credit Management Operation
14 Query credit file N/A ∼0.004
15 Update credit file without N/A ∼0.02

commit to disk (rely on OS)
16 Update credit file and N/A ∼9.25

force commit to disk

Table I: Timings of Dandelion operations.

Committing the credit file per transaction (operation 16),
could yield 10-20 times lower decryption key response
throughput than relying on the OS to commit credit file updates
(operation 15).

The cost of a complaint is substantially higher because
in addition to receiving the message (operations 11 or 13),
authenticating it and verifying a commitment (operations 2
or 8), it involves reading a chunk (operation 5), encryptingit
with the sender’s key (operation 6), and hashing the encrypted
chunk (operation 7).

The cost of event dispatching (operation 9) is not significant
if we use the highly efficient and scalableepoll instead
of the select API. Indicatively, the less scalableselect()
costs 0.009 ms when used to dispatch 500 sockets and 0.017
ms when used to dispatch 1000 sockets. On the other hand,
epoll_wait() costs approximately only 0.002 ms for both
1000 and 100 sockets. This reveals that the choice of event
dispatching mechanism is critical for the performance of the
system. Under the same experimental configuration with the
one used in § VI-A1, a 5Mbps server that usedselect()
instead ofepoll_wait() was able to process only 799 de-
cryption key requests per second.

B. System Performance
In this section, we experimentally evaluate the behavior of

the entire Dandelion system on PlanetLab. We examine the
impact of chunk size and the trade surplus threshold on the
performance of the system. In addition, we demonstrate the
performance gains of providing incentives for seeding. Last,
we compare our system’s performance to BitTorrent’s. In all
experiments we run a Dandelion server on the same machine
as the one used in the previous sections, and the server is
rate-limited at 5Mbps.

Leechers are given sufficient initial credit to completely
download a file, according to the credit management policy
discussed in § IV-B. Clients always respond to chunk requests
from their selected downloaders. We also set the TCP sender
and receiver buffer size equal to 120KB in order to cover
the bandwidth-delay product. Both BitTorrent and Dandelion
clients determine the number of outstanding chunk requestsas
described in § V-B.

In addition, we have adjusted system parameters such as
number of unchoked peers and timeouts to achieve good
performance under our bandwidth distribution in the PlanetLab
environment. In particular, we set the parameters described in
§ IV-E as follows:T=10, n=10, o=2 andO=30.

We aim at making our evaluation representative of real Inter-
net peer-to-peer content distribution swarms, while including
as many PlanetLab nodes as possible. To this end, we partially
emulate a typical client uplink bandwidth distribution [50]
(Table II) by applying per-client application layer rate-limiting.
To deal with PlanetLab hosts that are are unable to achieve the
bandwidth values specified by that distribution, we impose a
capped bandwidth distribution that does not faithfully reflect
the one reported in [50]; it excludes nodes with very high
upload capacity (greater than 350KB/sec).

Since Dandelion aims at enabling content providers to
purchase end-user bandwidth, we expect Dandelion users to
connect to the Internet via privately owned residential broad-
band links. It is reported that these links currently offer at most
∼3Mbps uplink capacity [51]. Nevertheless, we argue that the
capped bandwidth distribution enables us to derive conclusions
on the behavior of real P2P swarms that do not include very
high capacity peers. In addition, as network administrators
of large organizations, such as academic institutions, become
increasingly concerned with resource consumption and copy-
right issues, the number of very high capacity academic (or
other) nodes that participate in P2P content distribution may
decrease substantially. In addition, we impose a download rate
distribution to approximate the effect of asymmetric broadband
links. Clients with less than or equal to 70KB/sec upload rate,
are assigned a maximum download rate that is 5 times higher
than their maximum upload rate. The rest of the nodes are
assigned a download rate equal to 350KB/sec.

In particular, we observe that the maximum upload rate
of 80% of hosts in the distribution reported in [50] is less
than or equal to 350KB/sec. The remaining 20% of hosts
require upload rates between 350KB/sec and 10000KB/sec.
We periodically use Dandelion to distribute a 100MB file
to ∼500 non-rate-limited hosts and we identify∼400 nodes
that are able to attain upload rates equal to or higher than
350KB/sec. For the 20% of hosts, that require bandwidth
between 350KB/sec and 10000KB/sec, we were unable to
identify a sufficient number of hosts able to consistently
achieve such high rates. Thus, we assigned 350KB/sec upload
rates to those nodes. The initial seeders in each experiment
are rate-limited at 250KB/sec.

For each configuration we repeat the experiment 10 times
and we extract mean values and 95% confidence intervals over
the swarm-widedownload completion times.

We note that we evaluate a particular implementation of
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Portion of nodes 0.05 0.05 0.1 0.1 0.1 0.1
Bandwidth (KB/sec) 40 50 55 60 65 70

Portion of nodes 0.05 0.1 0.05 0.05 0.05 0.2
Bandwidth (KB/sec) 75 100 150 200 250 350

Table II: Distribution of upload bandwidth of Dandelion and BitTorre nt
peers as used in our PlanetLab experiments. This distribution draws from
the one reported in [50], but due to PlanetLab bandwidth constraints we
omit hosts with upload capacity higher than 350KB/sec.

Dandelion that is suitable for static content distribution. Al-
though our results would vary for other P2P content distribu-
tion applications that use different chunk scheduling and peer
selection policies, we expect our results to be qualitatively
similar, allowing us to extract generic trends in the behav-
ior of such systems. In particular we expect seeding to be
beneficial and the chunk size and trade surplus threshold to
affect performance, regardless of the specifics of the content
distribution system.

1) Selecting Chunk Size and Trade Surplus Threshold

With this series of experiments we examine the trade-offs
involved in selecting the size of the chunk and the trade
surplus threshold of the TFT-based exchange. In addition, we
motivate our hybrid incentive mechanism by quantifying its
improvement in scalability over the credit-based-exchangeonly
scheme proposed in [11].

Intuitively, since clients are able to serve a chunk only as
soon as they obtain it, a smaller chunk size yields a more
efficient distribution pipeline. In addition, when the file is
divided into many pieces, chunk scheduling techniques suchas
rarest-first can be more effective; clients can promptly discover
and download content of interest. However, a smaller chunk
size increases the rate with which key requests are sent to
the server, reducing the scalability of the system. Also, due
to TCP’s slow start, a small chunk size cannot ensure high
bandwidth utilization during the TCP transfer of any chunk.
Last, small chunks yield increased control overhead.

In addition, under our optimistic fair exchange scheme,
a receiver is able to acquire a TFT-traded chunk only after
it reciprocates with a chunk of equal size and retrieves the
decryption key. The larger a received TFT-traded chunk is, the
longer the receiver may have to wait until it is able to respond
with an equally large chunk. Only after decrypting the chunk
the receiver is able to relay it to its peers, therefore a large
chunk decreases the efficiency of the distribution pipeline.

As the trade surplus thresholdts and the chunk size
increases, trading flexibility also increases. This enables a
client to upload TFT-traded chunks in case its peers cannot
temporarily match the client’s upload rate. This results in
reduction of the rate with which decryption key requests are
sent to the server. However, a large threshold and chunk size
may result in clients wasting bandwidth to transmit encrypted
chunks that are never reciprocated and decrypted, causing
performance degradation.

We use as performance metrics the mean download com-
pletion time of the clients and the decryption key request load
on the server. In each configuration, we deploy approximately
∼400 Dandelion leechers and one initial seeder. Leechers

start downloading the file almost simultaneously emulatinga
flashcrowd. The duration of each experiment is 2200 sec.
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Figure 3: Swarm-wide mean download completion times of∼400
leechers as a function of chunk size and trade surplus threshold ts for
a 100MB file. Both the z axis and the gray map depict the download
completion time. The 95% confidence intervals (not depicted) take values
between 50 and 100 sec.

Figure 3 shows the leecher mean download completion
time as a function of the chunk size and the trade surplus
threshold. We observe that for larger than 256KB chunks, the
system’s performance degrades as the chunk size and the trade
surplus threshold increases. For example, fors= 0, a 256KB
chunk size yields better performance (864sec) than a 2048KB
chunk size (1263 sec). 256KB chunks guarantee that there
are sufficiently many distinct chunks for peers to exchange.
The beneficial impact of smaller than 256KB chunks in terms
of chunk scheduling flexibility is negated by the performance-
degrading TCP effects and the increased control overhead. For
example, forts= 0, a 256KB chunk size yields notably better
performance (864 sec) than a 32KB chunk size (1031 sec). In
addition, we observe that the mean download completion times
consistently increases withts and that the degrading impact
of ts on performance increases with the chunk size.

 0
 200
 400
 600
 800
 1000
 1200
 1400

Chunk size (KB)
Trade surplus th

reshold

D
e
c
ry

p
ti
o
n
 k

e
y
 r

e
q
. 
ra

te
 (

re
q
/s

e
c
)

32
256

512
1024

2048 0
4

16
32

64
 0

 200
 400
 600
 800

 1000
 1200
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In Figure 4, we observe that the load on the server decreases
as ts increases. In particular, under our network configuration
the decryption key request load decreases by approximately
40% when the system usests= 16 instead ofts= 0. At the



17

same time, the swarm-wide performance degrades only by 9 to
13%, depending on chunk size. Settingts= 0 corresponds to
using only credit-based exchange as was originally proposed
in [11], while ts> 0 allows clients that are mutually interested
in each others content to exchange chunks without involving
the server. This result demonstrates the effectiveness of our
hybrid incentive scheme in improving scalability by reducing
the servers decryption key request load. As expected, the
server load also decreases as the chunk size increases. The
decryption key request load for 32KB chunks varies in∼600
to ∼1200 req/sec depending on ts. For 256KB chunks it varies
in only ∼70 to∼190 req/sec. The evaluation for 32KB chunks
enables us to roughly predict the load on the server in a swarm
that consists of 8 times more clients but uses 256KB chunks

In Figure 4, we observe that the load on the server decreases
as ts increases. In particular, under our network configuration
the decryption key request load decreases by approximately
40% when the system usests= 16 instead ofts= 0. At the
same time, the swarm-wide performance degrades only by 9 to
13%, depending on chunk size. Settingts= 0 corresponds to
using only credit-based exchange as was originally proposed
in [11], while ts> 0 allows clients that are mutually interested
in each others content to exchange chunks without involving
the server. This result demonstrates the effectiveness of our
hybrid incentive scheme in improving scalability by reducing
the servers decryption key request load.

As expected, the server load also decreases as the chunk size
increases. The decryption key request load for 32KB chunks
varies in∼600 to∼1200 req/sec depending onts. For 256KB
chunks it varies in only∼70 to∼190 req/sec. The evaluation
for 32KB chunks enables us to roughly predict the load on
the server in a swarm that consists of∼8 times more clients
but uses 256KB chunks

For this particular swarm configuration, the content provider
may determine that a 256KB chunk andts=4 is a good configu-
ration. It yields a low download completion time (893sec) and
a relatively low server load (132req/sec). Unless mentioned
otherwise, in the rest of this evaluation we use these values.

2) Impact of Seeders

Dandelions credit-based exchange mechanism strongly in-
centivizes clients to remain online after download completion,
increasing the number of seeders in a swarm. With this
series of experiments, we motivate our credit-based exchange
mechanism by demonstrating the performance gains by the
existence of additional seeders.

Intuitively, since typical P2P clients reside behind asym-
metric links, content distribution swarms are expected to
benefit by the existence of additional seeders. Seeders com-
plement the swarm’s uplink bandwidth without expending its
downlink bandwidth. We demonstrate the impact of seeders
in BitTorrent-like swarms by varying the probability that a
leecher remains online to seed a file after it completes its
download. Upon completion of its download, each leecher
stays in the swarm and seeds with probabilitya, which
varies in 0% to 100%. Leechers start downloading the file
immediately upon arriving in the swarm. The duration of each
experiment is 2200 sec.
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Figure 5: Swarm-wide mean download completion times of∼400
leechers as a function of file size for varying portion of leechers that
become seeders. Clients arrive almost simultaneously.
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Figure 6: Swarm-wide mean download completion times of∼400
leechers as a function of the client Poisson arrival rateλ for varying
portion of leechers that become seeders. Clients download a100MB file.

Figure 5 depicts the mean download completion time over
∼400 leechers as a function of the file size, for varyinga. All
clients join the swarm almost simultaneously. We vary the file
size to demonstrate that the impact of seeding depends on the
duration of the download, and to demonstrate the behavior
of the system under different workloads. Our results show
the beneficial impact of seeders. For example, for a 100MB
file, we observe a swarm-wide mean download completion
time of 893 sec and 1250 sec whena = 100% anda = 0%,
respectively. If we express the impact of seeders as the ratio of
the mean download time fora=100% over the mean download
time for a=25% or a=0%, we observe that the impact is
reduced as the file size increases. We observe that as the
file size decreases, the decrease ofa causes a more dramatic
increase of download completion times. The larger the file
is, the longer leechers remain online to download it, thus
they upload to their peers for longer periods. For smaller files
however, peers have to rely heavily on leechers that become
seeders.

We also evaluate the system under varying peer arrival
patterns. We vary the Poisson parameterλ under which new
clients join the swarm. Depending on the arrival pattern,
seeders may play a more or a less beneficial role. For example,
during a flash crowd (highλ) many peers finish their download
at approximately the same time and therefore do not benefit
each other when they remain online as seeders. Asλ decreases,
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new peers can benefit by more older peers that finish their
download and remained seeding. Figure 6 depicts the mean
download completion time over all∼400 leechers as a function
of the client Poisson arrival rateλ, for varyinga and a 100MB
file. The results show that seeders substantially benefit swarms
with low arrival rates, as new peers take advantage of the
additional uplink capacity of peers that arrived earlier and
became seeders. For example, forλ = 0.25, we observe a
swarm-wide mean download completion time of 689 sec and
1125 sec whena = 100% anda = 0%, respectively.

3) Comparison with BitTorrent

Unlike BitTorrent, Dandelions incentive mechanism re-
quires the involvement of a centralized component, uses opti-
mistic fair-exchange of content uploads, employs a modified
downloader selection algorithm and does not employ subpiec-
ing [3]. In this section, we show that these differences do not
have a negative impact on download completion time.

To this end, we compare the performance of a swarm of
Dandelion clients with a swarm of BitTorrent (CTorrent DNH-
3.2) clients. In both swarms, there are∼400 leechers and one
initial seeder, and leechers stay online to seed after download
completion. Dandelion clients employ both the credit-based
and TFT-based exchange protocols.

Figure 7 presents the CDF of the download completion
times for both BitTorrent and Dandelion clients for a 100MB
file. This illustration shows that a Dandelion swarm can
attain performance comparable to a BitTorrent one, when
both swarms have the same number of seeders. Although our
Dandelion implementation appears to outperform BitTorrent,
we do not claim that a Dandelion-based static content distri-
bution system is better-performing. The performance of both
protocols is highly dependent on numerous parameters, which
we have not exhaustively analyzed. To name a few, such are
the chunk size, the number of peers, the number of unchoked
peers, the interval between unchoked peer set updates, number
of pending chunk requests and the TCP sender and receiver
buffer size. These parameters need to be fine-tuned according
to factors such as swarm size, client bandwidth or expected
RTT. For Dandelion, we have empirically fine-tuned these
parameters, however for CTorrent, barring TCP sender and
receiver buffer size, we have not tuned any other parameter.

C. Free-riding in BitTorrent-like Swarms
In this section, we provide additional motivation for the use

of non-manipulable cryptographic fair-exchange incentives.
We demonstrate that under BitTorrent-like incentives, free-
riding is beneficial for free-riders and harmful for cooperative
clients.

For all experiments we use a Dandelion implementation in
which we disable the cryptographic fair-exchange protocols.
With disabled fair-exchange protocols, Dandelion’s imple-
mentation is almost identical to BitTorrent’s. We use this
implementation because it includes a trade-surplus mechanism
and we have also validated it against BitTorrent (§ VI-B3).
That is, it employs rate-based tit-for-tat and random-rarest-first
chunk scheduling. We deploy∼400 leechers and one initial
seeder. All clients join the swarm simultaneously to download
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Figure 7: CDF of download completion times of∼ 400 BitTorrent and
Dandelion clients that download a 100MB file. Dandelion and BitTorrent
clients have average download completion time equal to 893 sec and 937
sec, respectively.

a 100MB file divided in 256KB chunks. The duration of each
experiment is 2200 sec. Free-riders never upload, nor do they
expend credit. Cooperative clients always respond to chunk
requests from their selected downloaders.

In each experiment, the swarm includes a group of 20 free-
riders and a group of 20 cooperative clients all of which
have upload and download rate-limits equal to 100KB/sec
and 350KB/sec, respectively. In the rest of this evaluation
we call the groups of the 20 free-rider and 20 cooperative
clients, the free-rider and the reference cooperativegroup,
respectively. The rest of the leechers are rate-limited according
to the distribution used in § VI-B. Unless mentioned otherwise,
cooperative and free-rider clients connect to roughly 50 and
350 peers at a time, respectively.

For each configuration we repeat the experiment 10 times
and we extract mean values and 95% confidence intervals of
client download rates. If the client completes its download
during the experiment (not always true for free-riders), its
download rate is equal to the size of downloaded content
divided by the download completion time. Otherwise, its
download rate is the size of downloaded content divided by
the experiment duration.

Figure 8(a) compares the two groups when the portion of
leechers that remain online to seed varies from 0 to 100%.
With this measurement we show that the “large view” exploit
(§ II-B) enables free-riders to tap into scarce system resources
and harm compliant clients by monopolizing the seeders and
exploiting optimistic unchoking. For comparison purposes, for
each percentage of leechers that become seeders we also depict
the download rate of the cooperative group in the absence of
free-riders.

We observe that free-riders obtain almost equal download
rates with their cooperative counterparts in under-provisioned
swarms with 0% to 25% seeders. Compliant clients suffer a
performance hit of approximately 15%, comparing to their
performance in the absence of free-riders. When the swarm has
50% to 100% leechers that become seeders, free-rider clients
achieve 5% to 10% higher download rates than cooperative
ones. This result confirms the potential for wide adoption of
free-riding. In well-provisioned swarms, the download rate of
cooperative clients degrades by roughly 10% comparing to
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Figure 8: Swarm-wide mean download rates of a group of 20 free-riders and a group of 20 cooperative clients that join a swarm of∼350 leechers
to download a 100MB file. (a) Download rates for varying percentage of peers that remain online seeding after download completion. We also depict
the download rate of cooperative clients in the absence of free-riders (“No free-riders”); (b) Download rates for varyi ng number of free-riders; (c)
Download rates of free-riders when they cannot download from seeders, for varying number of peers that they connect to.

their rate in the absence of free-riders.

In Figure 8(b), we compare the average performance of the
free-rider and the 20-client reference cooperative group as the
number of free-riders ranges from 0 to 100 clients. All leechers
become seeders upon download completion. This measure-
ment shows that the wide adoption of free-rider clients causes
substantial performance degradation in BitTorrent swarms.
When the number of free-riders varies in 50 to 100, the
reference cooperative group attains approximately 20% to 30%
worse performance than in a swarm with no free-riders. We
also observe that as the number of free-riders increases, free-
riders do not fare as well comparing to compliant clients.
When there are 50 free-riders, free-riders have 20% worse
performance than their cooperative counterparts.

Figure 8(c) depicts the performance of the free-rider group
when free-riders do not download from seeders and cooper-
ative clients employ a chunk-level TFT scheme. Under this
scheme, leechers upload plaintext chunks to their selected
downloaders as long as the trade surplus does not exceed 1.
BitTorrent does not currently prevent free-riders from down-
loading from seeders. On the other hand, Dandelion seeders
are motivated to upload only encrypted content, for which they
are rewarded. No leechers become seeders. The number of
peers to which free-riders connect to varies in 50 to 350 to
illustrate the impact of the “large view” exploit.

As can be seen in Figure 8(c), when free-riders connect
to 350 peers, they can attain up to 33KB/sec. Although this
is not a good download rate by itself, recall that any gains
of a Dandelion free-rider translate to monetary losses for its
peers. With this measurement, we show that the credit-based
exchange substantially reduces the free-rider download rates.
We also motivate Dandelion’s TFT-based exchange. We show
that even if we employ credit-based exchange and enforce
strict chunk-level tit-for-tat, free-riders that employ the “large
view” exploit are able to download non-negligible amounts of
content without expending credit or uplink bandwidth.

We note here that under Dandelion, free-riders may expend
credit to download content and upload in exchange for credit,
while they use “large view” to exploit the initial plaintext
offers of their peers. In this way, free-riders achieve good
download rates while saving on credit.

Our results show that the large view exploit is very effective
under a flashcrowd if the client is able to connect to many
hundreds of peers, especially if the swarm is well-provisioned
with seeders. This indicates that BitTorrent not only lacks
incentives for seeding but its rate-based tit-for-tat incentives
are also manipulable. Our results also indicate that the exploit
affects the performance of compliant clients, regardless of
whether the swarm is well-provisioned; in all cases compliant
clients incur performance degradation in the presence of free-
riders. In addition, we demonstrate that without the crypto-
graphic TFT-based exchange, the large view exploit allows
Dandelion free-riders to download a substantial amount of
content without expending resources.

VII. Related Work
In this section we discuss previous work on incentives for

cooperation in peer-to-peer content distribution systemsas
well as previous work on cryptographic fair exchange.

A. Pairwise Currency as Incentives

In P2P content distribution protocols that employ pairwise
virtual currency (credit) as incentives, clients maintaincredit
balances with each of their peers. In this context, credit refers
to any metric of a peer’s cooperativeness.

An eMule [17] client rewards cooperative peers by reducing
the time the peers have to wait until they are served by the
client. Swift [52] introduces a pairwise credit-based trading
mechanism for peer-to-peer file sharing networks and exam-
ines the available peer strategies. In [7], the authors suggest
tackling free-riding in BitTorrent by employing chunk-level tit-
for-tat, which is similar to pairwise credit incentives. Keidar
et al. [53] present the design of a P2P multicast protocol in
which a client tracks the difference between the amount of
data the peer has sent to the client so far and the expected
per-link throughput. They formally prove that their scheme
fosters cooperation among selfish peers. These pairwise credit-
based incentive mechanisms bear weaknesses that are similar
to the ones of rate-based tit-for-tat: a) they provide no explicit
incentives for seeding; and b) they can be manipulated by free-
riders that obtain a “large view” of the network, and initiate
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short-lived sessions with numerous peers to exploit the initial
offers in pairwise transactions.

Scrivener [54] combines pairwise credit balances with a
transitive trading mechanism. OneHop [50] employs a one
hop transitive reputation mechanism to incent cooperation
in BitTorrent. These incentive mechanisms are based on the
premise that a client remains perpetually interested in ex-
changing his earned credit or reputation for content downloads
from the same network. Unlike Scrivener or OneHop, credit
earned by Dandelion clients can be converted into monetary
rewards, providing strong and immediate incentives for clients
to upload, even if the network ceases to offer content that
interests the client.

BAR Gossip [13] is suitable for P2P streaming of live
content. Owing to its public-key-based cryptographic fair
exchange mechanism it is robust to clients that attempt to free-
ride. However, clients that receive initial optimistic offers from
their peers need to expend bandwidth in order to reciprocate
with invalid or old and irrelevant chunk transmissions. Its
verifiable peer selection prevents clients from selecting many
and specific victim peers to DoS attack. However, its verifiable
peer selection technique assumes that no client can join the
network after the streaming session starts. A consequence of
verifiable peer selection is that BAR Gossip is resilient to
the large view exploit. Since BAR Gossip is designed for
P2P streaming, it does not need to provide incentives for
seeding. Therefore, it ensures the fair exchange of content
uploads between clients that are interested in the same live
broadcast. On the other hand, Dandelion, which needs to
incentivize seeding for static content distribution or video
on demand, guarantees fair exchange of content uploads for
virtual currency enabling two peers to trade even if they arenot
mutually interested in each other’s content. In this work, we
describe the specifics of combining Dandelion’s credit-based
exchange with BAR Gossip’s balanced-exchange using trade
surplus limiting and downloader selection.

B. Global Currency as Incentives

It has been widely proposed to use global virtual currency
to provide incentives in P2P content distribution systems.
This is the basis of the incentive mechanism employed by
Dandelion: for each client, the system maintains a credit
balance, which is used to track the bandwidth that the client
has contributed to the network.

Karma [55] employs a global virtual currency bank and
certified-mail-based [56] fair exchange of content for reception
proofs. It distributes credit management among multiple nodes.
Karma’s distributed credit management improves scalability.
However, it does not guarantee the integrity of the global
currency when the majority of the nodes that comprise the
distributed credit bank are malicious or in a highly dynamic
network. Furthermore, Karma relies on a secure DHT to
ensure that credit queries are resolved by appropriate nodes.
In contrast, Dandelion’s centrally maintained global currency
is non-manipulable by clients, enabling a commercial content
provider to incentivize client cooperation by offering monetary
rewards. Furthermore, Dandelion employs real currency cir-

cumventing the monetary regulation issues that Karma needs
to address.

Horne et al. [57] proposed an encryption- and erasure-
code-based fair exchange scheme for exchange of content
for proofs of service, but did not provide an experimental
evaluation. Their scheme detects cheating with probabilistic
guarantees, whereas Dandelion deterministically detectsand
punishes cheaters.

Li et al. [38] proposed a scheme for incentives in P2P
environments that uses fair exchange of proof of service with
chunks of content. The selfish client encrypts a chunk and
sends it to its peer, the peer responds with a public-key
cryptographic proof of service, and the client completes the
transaction by sending the decryption key. A trusted third
party (TTP) is involved only in the following cases: a) the
selfish client presents the proofs of service to obtain credit;
b) the peer complains for receiving an invalid chunk; and c)
the peer complains for not receiving the decryption key from
the selfish client. However, unless the server incurs the high
cost of frequently renewing the public key certificates of each
client, the credit system is vulnerable to clients that obtain
content from selfish peers, despite those clients not having
sufficient credit. In contrast, in Dandelion, the TTP mediates
every cryptographic fair exchange of chunk uploads for credit,
effectively preventing a client from obtaining any chunks from
selfish peers without having sufficient credit.

PPay [58], WhoPay [59] and more recently [43] are micro-
payment proposals that employ public key cryptography and
are designed for the P2P content distribution case. WhoPay
has a distributed double-spending detection system based on
a distributed DHT-based database, but it is vulnerable to peer
collusions, and routing attacks on the DHT. MojoNation [60]
used a combination of pairwise balances and tokens that can
be cashed in a central broker. When the debt during pairwise
transactions exceeds a specified threshold, the side with the
negative balance transfers a credit token to the other by con-
tacting a broker. PeerImpact [46] provides monetary rewards
for cooperative behavior. However, the exact mechanism with
which the system exchanges service for credit is not publicly
available and it appears not to offer our cryptographic non-
manipulability guarantees.

A very recent BitTorrent extension [61] exchanges cryp-
tographically signed proofs of service for content uploads.
The above schemes do not guarantee fair exchange of content
for payment. Free-riders may establish short-lived sessions to
many peers, and download small portions of content or obtain
payments from without paying or uploading. In addition, free-
riders may send to the uploaders proofs of payment that do not
reflect real credit value. As a result, free-riders may acquire
substantial amount of content without uploading or paying
credit, respectively. In addition, free-riders may send payments
that do not reflect real credit value, also known as double-
spending. WhoPay employs a decentralized double-spending
detection mechanism that is based on a distributed DHT-based
database, but this mechanism is vulnerable to peer collusions,
and attacks on DHT routing.

Similar to Kazaa, Maze [62] users are rewarded points
for uploading, and expend points for successful downloads.
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Users that obtain more points than a specified threshold are
assigned high bandwidth quotas. However, the system relieson
users faithfully reporting the amount of content they exchange
and it does not guarantee strong identities. Thus, as reported
in [62], it is vulnerable to Sybil attacks. Furthermore, since
uploads result in more credit gains than downloads result in
charges, the system is susceptible to peer collusions. It is
also vulnerable to source code modifications similar to the
ones experienced in Kazaa [19]. Furthermore, credit in Maze
does not correspond to real monetary value. Therefore, it does
not incent peers that are no longer interested in downloading
content from the network and special care must be taken to
prevent starvation, inflation and deflation issues.

In Sharp [63] peers exchange signed tickets for basic
resources such as computing, storage and network capacity.
System participants can issue, subdivide, trade and use the
tickets to allocate resources. However, it does not providea
reliable complaint resolution mechanism in case clients refuse
to honor valid tickets for their resources. In contrast, because
Dandelion is content-resource-oriented, the server is always
able to resolve complaints by verifying the validity of the
transferred content.

C. Reputation Mechanisms

Reputation mechanisms, e.g. [25, 64, 65], may allow seeders
to rank their leechers based on the rate with which the leechers
upload to their peers. By employing these mechanisms, the
system can in theory prevent free-riders from downloading
from seeders. As proposed in [66], the peers of leechers would
report to the seeders, with which the leechers are connected,
information about the rates with which the leechers uploads
to their peers, and the reputation mechanism would be used
to rank the truthfulness of the peer reports and the coop-
erativeness of the leechers. However, reputation systems are
vulnerable to the Sybil attack [32] and collisions, especially
in swarms with small populations, and in the best case offer
probabilistic guarantees of reputation correctness.

Furthermore, reputation-based incentive mechanisms offer
coarse-grained evaluation of a peer’s level of cooperation, thus
they are unsuitable for schemes that employ monetary rewards.

D. Double-spending Prevention

Osipkov et al. [67] propose a scheme to prevent double-
spending in a micropayment-based market, under which clients
purchase service from web servers. The following issues
set obstacles in deploying their solution in the P2P content
distribution setting. First, it requires a relatively static set
of entities (e.g. peers) that act as witnesses/trackers of coin
transactions, thus it is not suitable for a highly dynamic P2P
environment. Second, this solution addresses witnesses that
wrongfully claim that a coin has been double-spent, but in
our setting this is not a compelling problem. We are mostly
concerned with witnesses that collude with peers by lying that
a coin has not been double-spent. Their solution assumes that
witnesses don’t have incentives to collude with clients under
their web-server/client setting, but this assumption doesnot
hold under our setting. Last, their scheme employs complex

cryptography, making its correct implementation a difficult
task.

E. Cryptographic Fair-Exchange
There are two main classes of solutions for the classic

cryptographic fair exchange problem. One uses simultaneous
exchange by interleaving the sending of the message with the
sending of the receipt [68–72]. These protocols rely on the
assumption of equal computational and bandwidth capacity,
which does not suit the heterogeneous P2P setting.

The other class relies on the use of a trusted [14, 15,
73, 74] or semi-trusted [75, 76] third party (TTP). The main
differences of these solutions with our scheme are as follows:
1) In the optimistic fair-exchange schemes proposed in [14,
15, 73] the TTP is involved only when a party does not
complete the transaction to carry out the transaction itself
or issue affidavits on what happened during the transaction.
This mechanism can be combined with micropayments to
ensure the fair exchange of content for credit. However, unlike
Dandelion’s cryptographic protocol for credit-based exchange,
such scheme would not prevent double-spending. Although
the schemes in [14, 15] can determine whether a message
originates from a party and whether it is the message that the
originator initially intended to send, they cannot determine
whether the message itself is valid, i.e. the integrity of a
chunk. Our TFT-based exchange employs a public-key-based
optimistic fair-exchange scheme similar to [15]. Our scheme
however, similar to BAR Gossip, can determine whether the
transmitted chunks are valid, uniquely identifying a dishonest
peer;

2) Unlike [75], [77] and [76], our scheme does not rely
on untrusted clients to become semi-TTP; 3) Unlike [74],
our credit-based exchange scheme does not use public key
cryptography for encryption and for committing to messages,
and only requires one client rather than two to contact the
TTP for each transaction. The technique they use to determine
whether a message originates from a party is similar to the
one used by our complaint mechanism, but our work also
addresses the specifics of determining the validity of the
message. 4) Unlike in [14] and [77]’s setting, in Dandelion
the transfer of the encrypted chunk itself is the expensive
resource being exchanged. In case the sender misbehaves,
the server would have to send the decrypted chunk himself.
The server’s resources would be exhausted in case senders
or receivers misbehaved.One approach could be to distribute
the TTP tasks among the peers, similar to how TRICERT
[77] distributes the tasks among ”postal agents”. However,we
cannot assume that the Dandelion peers can act as semi trusted
third parties, because they would not have incentive to perform
the expensive TTP task of uploading the decrypted chunk in
case of complaints.

VIII. Conclusion
This paper describes Dandelion: an incentive scheme for

cooperative (P2P) distribution of paid content. Its primary
function is to enable a content provider to motivate its clients
to contribute their uplink bandwidth.



22

Our scheme rewards cooperative clients with credit or with
reciprocal uploads from their peers. Since it employs non-
manipulable cryptographic schemes for the fair exchange of
resources, the content provider can redeem a client’s credit for
monetary rewards. Thus, our design provides strong incentives
for clients to seed content and eliminates free-riding.

Our experimental results show that a Dandelion server
running on commodity hardware and with moderate bandwidth
can scale to a few thousand clients. Dandelion’s deploymentin
medium size swarms demonstrates that seeding substantially
improves swarm-wide performance and that a Dandelion-
based content distribution system can attain performance com-
parable to BitTorrent. It also demonstrates that the proposed
hybrid incentive scheme significantly reduces the load on
the server when compared to our previously fully centralized
incentives. These facts illustrate the plausibility of ourdesign
choice: centralizing the incentive mechanism in order to in-
crease resource availability in P2P content distribution.
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