
Performance Modelingof Parallel Systemsproefschriftter verkrijging van de graad van doctoraan de Technische Universiteit Delft,op gezag van de Rector Magni�cus Prof.ir. K.F. Wakker,in het openbaar te verdedigen ten overstaan van een commissie,door het College van Dekanen aangewezen,op dinsdag 23 april 1996 te 16.00 uurdoor
Arie Jan Cornelis VAN GEMUNDinformatica ingenieurgeboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotor:Prof.ir. G.L. ReijnsSamenstelling promotiecommissie:Rector Magni�cus (voorzitter) Technische Universiteit DelftProf.ir. G.L. Reijns (promotor) Technische Universiteit DelftProf.dr. G. Haring Universit�at Wien, OostenrijkProf.dr.ir. L. Dekker Technische Universiteit DelftProf.dr.ir. J. van Katwijk Technische Universiteit DelftProf.dr.ir. H.J. Sips Universiteit van AmsterdamProf.dr. S. Vassiliadis Technische Universiteit DelftDr. E.M.R.M. Paalvast Bakkenist Management Consultants B.V., DiemenPublished and distributed by:Delft University PressStevinweg 12628 CN DelftThe NetherlandsCIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAGGemund, Arie Jan Cornelis vanPerformance modeling of parallel systems /Arie Jan Cornelis van Gemund. - [S.1. : s.n.]. - I11.Proefschrift Technische Universiteit Delft. -Met lit. opg. - Met samenvatting in het Nederlands.ISBN 90-407-1326-XTrefw.: prestatie-analyse / computersystemen /computernetwerken.Copyright c
 1996 by A.J.C. van GemundAll rights reserved. No part of the material protected by this copyright notice may bereproduced or utilized in any form or by any means, electronic or mechanical, includingphotocopying, recording or by any information storage and retrieval system, without theprior permission of the author.Printed in The Netherlands

To Karen

ContentsAcknowledgments vSummary vii1 Introduction 11.1 The Challenge : 31.2 Parallel Computing : 41.3 Approach : 91.4 Outline : 112 Performance Modeling 132.1 Introduction : 132.2 Queuing Networks : 172.3 Petri Nets : 192.4 Languages : 202.5 Stochastic Graphs : 212.6 Deterministic Graphs : 232.7 Summary : 263 PAMELA 293.1 Introduction : 293.2 Language : 313.2.1 Control Flow : 323.2.2 Condition Synchronization : 333.2.3 Mutual Exclusion : 343.3 Paradigm : 393.4 Analysis : 433.4.1 Introduction : 433.4.2 Critical Path Analysis : 453.4.3 Lower Bound Analysis : 493.5 Examples : 523.6 Extensions : 583.6.1 Skewing E�ect : 583.6.2 Simultaneous Resource Possession : : : : : : : : : : : : : : : : : : : 593.7 Summary : 62

ii CONTENTS4 Modeling Technique 654.1 Introduction : 654.2 Machine Modeling : 694.2.1 Principles : 694.2.2 Processor Modeling : 714.3 Shared-Memory Systems : 724.3.1 Introduction : 724.3.2 Cache : 744.3.3 Switch : 744.3.4 Networks : 774.3.5 Examples : 794.4 Distributed-Memory Systems : 854.4.1 Introduction : 854.4.2 Basic Communication : 874.4.3 Non-blocking Communication : 894.4.4 Examples : 904.5 Summary : 965 Case Studies 995.1 Introduction : 995.2 Performance Compilation : 995.2.1 Introduction : 995.2.2 Preliminaries : 1005.2.3 Matrix Factorization : 1015.2.4 Matrix Multiplication : 1055.3 Macro Data Flow Computation : 1105.3.1 Introduction : 1105.3.2 Computation Model : 1125.3.3 Communication Model : 1155.3.4 Results : 1165.4 Simulation Revisited : 1185.4.1 Introduction : 1185.4.2 Alternative Techniques : 1215.4.3 Virtual Barrier : 1245.5 System Optimization : 1265.5.1 Introduction : 1265.5.2 Optimization Calculus : 1285.5.3 Line Relaxation : 1315.6 Summary : 1356 Accuracy 1376.1 Introduction : 1376.2 Absolute Accuracy : 1386.2.1 Introduction : 1386.2.2 General Bound : 1416.2.3 Adding Knowledge : 143

CONTENTS iii6.2.4 General Conjecture : 1466.2.5 Applications : 1496.3 Average Accuracy : 1516.3.1 Introduction : 1516.3.2 Experiments : 1526.3.3 Applications : 1556.4 Summary : 1587 Conclusion 1637.1 Contributions : 1637.2 Improvements : 166A PAMELA Language Semantics 169A.1 Introduction : 169A.2 Time : 170A.3 Control Flow : 170A.4 Condition Synchronization : 171A.5 Mutual Exclusion : 171B Partitioning Index Spaces 173B.1 Introduction : 173B.2 Block Partitioning : 173B.3 Cyclic Partitioning : 174B.4 General Results : 175C Reduction of Summation Terms 177D Bounds for Random Parallel Sections 179D.1 Introduction : 179D.2 The Upper Bound : 179D.3 The Lower Bound : 180E PAMELA Run-time Library 183E.1 Introduction : 183E.2 System Architecture : 184E.3 Library Functions : 186E.4 Programming Example : 188E.5 Debugging : 190Bibliography 194Samenvatting 207Curriculum Vitae 211

iv CONTENTS

AcknowledgmentsPerhaps even more than parallel computing itself, performance modeling of parallel com-puter systems is a relatively new and challenging �eld. This thesis is an account of myresearch in this area in which I have had the great pleasure to study existing work, developan alternative modeling technique, and, last but not least, study its adequacy.First of all, I am deeply grateful to my advisor Professor Gerard L. Reijns for givingme the opportunity to do this research while joining up with his group as an assistantprofessor in 1992. The four years that I worked with him have been a most enjoyablestart of my academic career.Although Pamela came to birth after I was given the above opportunity, many of thefoundations were laid earlier during my involvement in the ParTool project, a nationallyfunded parallel processing research project, initiated by Henk Sips, Edwin Paalvast, andMaarten van Steen. Thanks are due to Henk Sips, who got me involved in parallelcomputing in the �rst place, Maarten van Steen, with whom I have had many stimulatingdiscussions on concurrency (and planning), and, last but not least, Edwin Paalvast, my�rst comrade-in-research, later on head of our research group, who has always supportedme during my research. It pleases me that the four of us are still in touch.I consider it a privilege to have a graduation committee, apart from Gerard Reijnsand the Rector Magni�cus consisting of the distinguished members Len Dekker, G�unterHaring, Jan van Katwijk, Edwin Paalvast, Henk Sips, and Stamatis Vassiliadis. I grate-fully acknowledge their e�orts.It is a pleasure to express my gratitude to former graduate student and room mateHenk Jonkers, with whom I had many stimulating discussions on the subject of parallelsystems performance modeling, both at Delft University as well as during our enjoyableconference trips to Grenoble and Maui. Thanks are also due to former under-graduatestudents Solechoel Ari�n, Azzedine Benchellal, Marcel Bontekoe, M'hammed Farahi,Januar Himantono, Alexander van Lomwel, and Arun Persad for providing valuable feed-back on the application of the modeling methodology. In particular, credit goes to MarcNijweide, Ronald Pulleman, and Mark Roest who have actively contributed in the tooldevelopment. Also the pleasant association with my (former) colleagues Andr�e Bos, Hai-Xiang Lin, Teus Vogel, and Pieter van der Wolf is gratefully acknowledged.The number of people from whom I learned so much through the years, is simply toolarge to permit a listing. Many of them are mentioned in the bibliography. Without theirknowledge I would not have come this far.This especially applies to my dear wife Karen. Of all the valuable things I have learned,she has de�nitively taught me most. Arjan van Gemund

vi ACKNOWLEDGEMENTS

SummaryPerformance modeling plays a fundamental role in the design of computer systems. Thisapplies especially to parallel systems where high performance is of key interest. While per-formance modeling of sequential computer systems already poses a number of importantproblems, the problem involved with performance modeling of parallel systems is evenmore fundamental. This is essentially due to the prominent role synchronization plays inparallel computing. Apart from the inevitable overhead introduced by parallelization, es-pecially for badly designed systems the additional synchronization delays can easily causea tremendous loss of performance.In parallel systems synchronization can be distinguished into a static and a dynamicform. The static form, called condition synchronization, corresponds to precedence rela-tions between tasks that are predetermined as a result of the parallelization. The alter-native form, called mutual exclusion, applies to the dynamic resolvement of precedenceorder during contention for a limited number of software or hardware resources. Whilethe performance analysis of condition synchronization entails quite some computationalcosts, an accurate analysis of mutual exclusion can be extremely computation-intensivedue to the inherent non-determinism involved.There exists a wide variety of approaches to the performance modeling of parallelsystems, each representing a di�erent trade-o� between the accuracy of the analysis andthe computational cost involved. On the one hand, there exist performance modelingapproaches based on representation formalisms such as (stochastic) Petri nets that aimfor high modeling power such that every synchronization structure can be described witha high level of accuracy. The computational cost of the associated state space analysis,however, is exponential in the problem size. On the other hand, there are performancemodeling approaches, based on simple task graph representations, that only account forcondition synchronization. In turn, they entail only a linear analysis complexity. However,as the performance loss due to mutual exclusion is ignored the accuracy of such methodsis inherently limited.In this dissertation a new approach to the performance modeling of parallel systemsis described. Similar to some of the existing techniques, the approach is primarily aimedto support the initial phases in the design of parallel systems where the emphasis is onextremely low solution cost, rather than on high accuracy. Unlike current low-cost ap-proaches, however, a minimum degree of accuracy is sustained by introducing an approx-imate analysis of mutual exclusion, next to condition synchronization, without sacri�cingthe low solution cost. Furthermore, the analysis technique yields explicit, analytic per-formance models, such that program and machine parameters are symbolically retainedin the resulting performance model. Apart from providing low solution cost, in this way,

viii SUMMARYparameter studies or possibly automated parameter optimization procedures can be con-ducted without remodeling e�ort. Next to the low solution cost, this feature is essentialto an optimal design e�ciency.The approach is based on the use of a new simulation formalism, called Pamela (Per-formAnce ModEling LAnguage). Although the language features synchronization con-structs necessary to avoid a priori limitations with regard to modeling accuracy, Pamelaalso features structured operators, especially for the description of mutual exclusion. Usedwithin a material-oriented modeling paradigm important information concerning the syn-chronization patterns involved can be retained in the model. As a consequence, apartfrom simulation, Pamela can be used as a source language for an automatic, compile-time analysis technique that yields an explicit, analytic performance model. The modelapproximately accounts for the performance loss due to mutual exclusion in terms of alower bound on the execution time. The novelty of the approach is that it integrates alanguage approach, a material-oriented modeling paradigm, and the compile-time analysismethod within one methodology.While Chapter 1 presents a problem analysis and formulates the goals of the research,Chapter 2 presents a survey of related work on performance modeling of parallel systemsin order to put the approach into perspective. The work discussed includes approachesbased on representation formalisms such as task graphs, queuing networks, Petri nets,simulation languages, and process algebras.Chapter 3 presents Pamela, essentially comprising the concurrent modeling languageand the underlying analysis technique. It is shown that the explicit, and highly structuredway in which the material-oriented modeling method describes condition synchronizationand mutual exclusion, o�ers great advantages with respect to model analyzability. Theanalysis technique is described as well as a number of typical examples.Chapter 4 describes the principles underlying the application of Pamela to parallelcomputer systems modeling. The methodology towards modeling shared-memory anddistributed-memory programs and machines are presented through a large variety of ex-amples. It is shown that the restricted modeling formalism allows to capture the dominantperformance aspects that are relevant in the context of the approximate analysis.Chapter 5 presents various applications of the Pamelamethodology. The case studiesaddress performance compilation, showing how Pamela models are compiled into ana-lytic models, synthetic applications on a distributed-memory system, demonstrating theaccuracy of the modeling approach compared to actual measurements, a comparison be-tween the analytic technique and simulation, and, a case study showing how Pamela isapplied to program optimization.Chapter 6 investigates the accuracy of the analysis method. By studying the relationbetween the analytic estimate and the simulation result it is shown that the approximationbased on a lower bound provides a good estimator. In addition it is shown that for anysystem in which resource usage is random, the average estimation error due to contentione�ects is limited to 50 % worst case regardless of the system parameters involved. In viewof the highly parameterized, low-cost models that are compiled, this prediction robustnessforms an essential justi�cation of the approach.Finally, Chapter 7 recapitulates the work, and presents a number of recommendationsfor future improvements.

Chapter 1IntroductionThis dissertation presents a methodology to predict the performance of parallel computersystems. In this de�nition, a parallel computer system constitutes an imperative parallelprogram (application) and the parallel von Neumann machine on which it is executed.With respect to parallel programs we restrict ourselves to explicit parallel programs thatare native to the machine. Thus we avoid the problem of dealing with the semantical gapbetween implicitly parallel, possibly declarative, problem descriptions and their explicitlyparallel, imperative implementations, as well as the complex optimization properties ofcompilers in general. With respect to parallel machines we consider any computer sys-tem that involves some form of concurrency. As such, the methodology also applies tosequential computers, that, while providing a sequential programming model, exhibit par-allelism at the hardware level. The focus of this work, however, are shared-memory anddistributed-memory (vector) computers that provide explicit concurrency at the program-ming level. Although we will discuss performance modeling in the context of parallel (anddistributed1) computer systems its scope is much wider. In fact, any concurrent systemlike tra�c systems, production plants, or o�ce environments are essentially a collectionof concurrent (man or machine-executed) processes, jointly involved in synchronizationeither due to work partitioning or due to the use of common resources. In this respect, a(parallel) computer is just another (data) processing system.In the design of concurrent systems, performance engineering is often conducted as anafterthought. Often systems (prototypes) are already built and functionally tested beforetheir performance is evaluated, in many cases with disappointing results. This especiallyapplies to parallel computing where the performance awareness of program (and, to a lessextent machine) designers is minimal, whereas the performance implications of codingdecisions can be profound. As a result of this, there is a growing interest in performanceprediction techniques that provide the programmer some feedback in the design (or selec-tion) process as illustrated by Fig. 1.1. Given a computational problem, the applicationdesign process starts with some initial choice (in the �gure denoted \synthesis") of a pro-gram (algorithm) and machine (architecture), partially characterized by various programand machine parameters (denoted �i and �i, respectively). A program parameter mightbe the problem size or the way in which the problem is mapped onto logical processors.1In this dissertation a distributed computer system is treated as a parallel system, the distinctionbeing a matter of architecture.

2 CHAPTER 1. INTRODUCTION
(µ1,µ 2 ,...)
machinesynthesis

analysis

1 2 ,...)(π ,π
program

T

problem +

Figure 1.1: Application design loopAn obvious machine parameter is the number of physical processors. In order to deriveoptimum performance (typically, minimum execution time), the design is analyzed (inthe �gure denoted \analysis") in order to obtain performance feedback on the parameterchoices (in the �gure denoted T , the estimated execution time of the application).As in any feedback system, the ultimate design result is determined by the predictionaccuracy of the analysis. In contrast to sequential systems, performance prediction ofparallel systems is far from trivial given the large amount of academic work spent inthis area. In particular, there exists a large trade-o� between solution cost and solutionaccuracy, as can be seen from the large variety of approaches that have been undertaken.Typically, performance feedback is organized in terms of a prediction hierarchy, providingdi�erent types of performance feedback, each with a di�erent quality and cost. At thelow end detailed techniques such as simulation are used that provide realistic predictions,yet at high computational cost. At the high end, crude techniques such as compile-timeprediction provide much faster performance feedback, however, at the inherent expenseof prediction accuracy. Despite this accuracy sacri�ce, this alternative is quite attractiveduring the initial phase where the design space is still large.As shown in the above �gure, performance modeling aims to map a (parallel) programin conjunction with a (parallel) machine onto some computable model, ranging from asimple expression to some complex algorithm, either which can be evaluated numerically.For instance, consider the sequential computation of the 3rd-order polynomialy = a0 + a1x+ a2x2 + a3x3 (1.1)For the purpose of the example we will assume a traditional computer architecture ca-pable of executing
oating point multiply and add operations that take �m time, and �atime, respectively (neglecting other instructions). Then the performance model of thepolynomial computation is given by the simple algebraic expression2T = 5�m + 3�a (1.2)2For the purpose of the example this analysis is based on a naive algorithm comprising a sequence of5 multiplications and 3 addition operations. Thus, Horner's scheme is not applied, the reason being thata parallelization of the naive algorithm will be considered later on.

1.1. THE CHALLENGE 3As this model is analytic, subsequent analysis immediately reveals the (linear) dependencyof the above design's performance on the parameters of the
oating point unit. Of course,deriving a performance model of a complicated parallel computation is by far less trivial.1.1 The ChallengeAs in any area there exist numerous approaches, yielding performance models that arespeci�c, either for the program, or machine, or both. In the worst case, all system param-eters are (numerically) hard-wired into the model. Clearly, an ideal performance modelingtechnique would map a program and machine combination into a symbolic performancemodel where all the system parameters of interest are still retained, rather than beingnumerically instantiated prior to the modeling e�ort. Figure 1.2 shows the performance
1 2

... P

N

N1

N2

f(N,1)
T

P

T = f(N,P)?Figure 1.2: Performance modeling processmodeling process involving (only) two parallel application parameters, i.e., the programparameter N (e.g., problem size) and the machine parameter P (number of processors).The performance modeling process (in the �gure denoted \?") yields an estimate of theexecution time T that is a function f of both parameters (of course, f will also re
ectthe other properties of the program and machine). Once the symbolic model is derived,various parameter studies may be conducted (without remodeling e�ort) in order to ana-lyze the application's performance characteristics, possibly using standard mathematicaltools. The parameter study is illustrated in the �gure by the graph in which the speedup3is plotted as a function of P for two values of N .Of course, in terms of our de�nition mentioned earlier, a symbolic performance modelis any formal description that computes a number (T). Consequently, a fully parameter-ized simulation model would also qualify as a symbolic performance model. However, theideal performance model has the lowest solution complexity possible without loss of pre-diction accuracy. Although a simulation model may be accurate, its solution (i.e., mean3The speedup is the relative gain in execution speed when more processors are added. Usually,speedup is de�ned as the ratio between uniprocessor execution time (T = f(N; 1) in the �gure) andparallel execution time (T = f(N;P)). Ideally, the speedup is linear in P . In practice, however, speedupis much lower. Adding too many processors eventually results in slow down, as illustrated by the plot.

4 CHAPTER 1. INTRODUCTIONvalue) requires many simulation runs because of the model's inherent non-determinism.Preferably, the model should be analytic (computes a deterministic time domain result)and should have the form of an explicit equation (such as Eq. (1.2)). Apart from its lowsolution cost, standard calculus can be used that provides a well-established frameworkfor the use of symbolic techniques rather than just numeric evaluation. Examples are theuse of model reduction (thus decreasing evaluation complexity) and/or gradient analysis(cf. Eq. (1.2)). An interesting possibility o�ered by symbolic models is the applicationof optimization techniques such as linear programming (provided the model, or targetfunction, is linear). In terms of Fig. 1.1, the analysis is strongly coupled with the synthe-sis (parameter optimization) component. In fact, this approach exempli�es the ultimatepurpose of performance modeling, namely, to transform the design problem in the parallelcomputation domain into a \regular" optimization problem in the mathematical domain.(This problem reformulation in terms of applied mathematics is essentially what makescomputer science to become a mature exact science such as physics.) Within our sym-bolic approach towards performance modeling, the actual challenge lies in developing atechnique that strikes an optimal balance between modeling accuracy and solution cost.Before we develop our approach in more detail, we �rst analyze the performance aspectsinvolved with parallel computing.1.2 Parallel ComputingIn order to describe the speci�c aspects of parallel systems performance we discuss a simpleexample in which we consider a parallelization of the 3rd-order polynomial computation,presented earlier. The example is also used to introduce some basic terminology that isused throughout the dissertation.Recall the 3rd-order polynomial, given by Eq. (1.1). In order to assess the opportunitiesfor parallelism, we consider the (directed, acyclic) task graph representation of Eq. (1.1),shown in Fig. 1.3. Like in the analysis of the sequential case, only 5 multiplicationtasks (t1; t2; t3; t4; t6) and 3 addition tasks (t5; t7; t8) are distinguished. The executionmodel of the task graph is based on full task concurrency only restricted by conditionsynchronization [8], as designated by the precedence arcs. The condition upon each task�res is that all predecessor tasks must have �nished (i.e., all data dependencies must havebeen obeyed). Let each (multiply and add) task take 1 unit time. If an unboundednumber of processors were available the execution time would be T = 4 as can be seenfrom the execution trace shown in Fig 1.4. In this case, execution time is only limited bythe inherent problem characteristics and is determined by the critical path in the graph.In practice, however, the potential parallelism in the problem can not always be realizeddue to an unsu�cient number of processing resources. For instance, let P = 2. One of theoptimal schedules is shown in Fig. 1.5. Due to the limited number of resources, the actualparallelism is reduced, resulting in T = 5. Note that the limited number of resourcesinduces additional condition synchronizations on the task graph, forcing tasks, originallyconcurrent, to be serialized.Thus far, in the analysis of the computation's properties we only considered the
oatingpoint operations, which implies an abstract parallel machine architecture simply compris-ing a collection of P (
oating point) processors. As a �rst-order approximation, restricting

1.2. PARALLEL COMPUTING 5
*

*

+

+*

*

+

a0a2

a1

a3

*

xx

x

y

1 2

3 4 5

6 7

8Figure 1.3: Task graph representation of Eq. (1.1)
T = 4

4

5

6

7

8

3

1

2

t

t

t

t

t

t

t

tFigure 1.4: Inherent parallelism of Fig. 1.3the analysis to the algorithm's most dominant operation is quite common as illustratedby the large body of work in PRAM-based [45] complexity analysis. In a more detailedperformance analysis, however, the fact that the necessary data transfers may also takeconsiderable time, must be accounted for. At this point, we assume the existence of Pprocessors that are capable of moving data as well as executing
oating point operationson that data. For the purpose of this example, we just consider a simple shared-memoryarchitecture, comprising P = 2 processors, connected to a shared memory through someidealized interconnection network. Throughout the example we will assume the scheduleas given in Fig. 1.5. Apart from executing multiply and add instructions, each processorcan load from shared memory and store to shared-memory. We also assume the presenceof local registers that have a much lower access time than the global shared memory. Wewill explicitly account for this memory hierarchy, by neglecting local data moves and onlyaccounting for the global loads and stores. Consequently, we introduce two extra tasktypes, i.e., a load task and a store task. For instance, the intermediate result of task t1 is

6 CHAPTER 1. INTRODUCTION
1

2

3

4

5

6

7

8p
1

p

2

T = 5Figure 1.5: Performance loss for P = 2directly available for task t3, since t3 is mapped onto the same processor. However, withregard to t4, the intermediate result must �rst be stored by p1 to shared memory, andloaded by p2, before t4 may commence. The introduction of the load and store tasks isrepresented by the task graph given in Fig. 1.6 where the mapping of each load and storetask directly follows from the original mapping of the
oating point operations (Fig 1.5).For ease of interpretation, each task is annotated by brackets delimiting the (processing)resource it is mapped onto. Let both a load and store task represent a work load of halfa unit time4. The corresponding schedule is given in Fig. 1.7, that shows the dramaticimpact of data transfer overhead on performance (T = 9:5 compared to T = 5 in Fig. 1.5).For P = 1 we would have T = 11 (5 loads, 8
ops, and 1 store). Thus, even for a modestvalue of P hardly any speedup is obtained, a result that is typical for many practicalsituations.Thus far, compared to the potential task graph performance, we have encountered twosources of performance loss, i.e., the introduction of additional condition synchronizationas a result of the static schedule (insu�cient number of processors), and the introductionof additional (data transfer) work load as a result of the underlying machine. Apartfrom performance loss due to condition synchronization, we will now introduce a secondform of synchronization loss, that results from mutual exclusion [8]. Again, consider thepolynomial example. We will now account for the fact that, in reality, a shared memorylocation can not be accessed simultaneously by more than one processor. Let us assume,that the shared memory system, in fact, comprises only one physical memory modulewith one access port. Then all memory locations used to load and store (intermediate)results can only be accessed sequentially. Thus, the shared memory is to be regarded asone memory resource, providing exclusive service to each processor. Unlike the case ofthe (limited) processing resources, we can not resolve the problem by a static schedule asthe necessary condition synchronizations would typically involve shared memory as well.Instead, a typical implementation of the shared-memory is by dynamically schedulingcontending load and store requests at run-time by hardware. If the memory resource isoccupied, all other requesting processors face a memory con
ict and are blocked for theduration of the current memory access (hence, the performance loss). Due to the dynamiccontention model, this phenomenon is usually referred to as resource contention.As memory contention is handled at run-time, the static schedule of Fig. 1.7 still ap-plies. However, the actual execution trace (or dynamic schedule) will now correspondto Fig. 1.8, in which each load and store task are serialized according to how the con-tention is resolved (i.e., the particular con
ict arbitration). Due to the additional mutualexclusion the execution time has increased even further to T = 11:5. Like condition4Thus, global memory latency is assumed to be quite considerable compared to
oating point opera-tions. This is not unrealistic for many parallel systems.

1.2. PARALLEL COMPUTING 7
3 [1]

7 [1]

4 [2]

1 [1]

9 [1]

8 [2]

5 [1]

[1]16

2 [2]

10 [2] 11 [2]

a1

a0

6 [2]

a3

a2

15 [2]

12 [1] 13 [2]

17 [1]

14 [2]

18 [2]

[1]19

[2]20

[2]21

[1]22

23 [1]

24 [2]

[2]25

x

y

x

1, 2, 3, 4, 6: mult

5, 7, 8: add

9, 10, 11, 13, 14, 16, 17, 18, 20, 22, 24: load

12, 15, 19, 21, 23, 25: storeFigure 1.6: Annotated task graph including load/store taskssynchronization, mutual exclusion (\contention") can easily dominate performance loss.For instance, consider a parallel computation in which a large number of processors areinvolved, all addressing a single memory resource. Due to the request serialization insteadof parallelization, the performance result may be quite dramatic as is shown later on.In general, the problems involved in performance analysis are related to four aspects,� Condition synchronizationThis form of synchronization is induced either by data dependencies within parallelcomputations or by resource limitations, either at program level or machine level.In contrast to mutual exclusion, the precedence relation enforced by condition syn-chronization is static. Consequently, the analysis of the associated delays can beperformed simply by determining the longest path in the task graph which, for de-terministic task times, has polynomial solution complexity. Note that, althoughthe task precedence relation is static, the actual tasks to which the synchroniza-tion applies may not be determined until run-time. Nevertheless, the same analysistechnique can be used.

8 CHAPTER 1. INTRODUCTION
9

210 11

1 12 3

1315 14 4 21

51716 19 22 7

18

23

620 24 8 25

T = 9.5

p
1

p

2 Figure 1.7: Performance loss due to memory work load
9 1 12 3 16

210 11 15 13

517 19

14 4 18 6 24 8 25

T = 11.5

21

23722

20p
1

p

2 Figure 1.8: Performance loss due to memory contention (P = 2)� Mutual exclusionAs shown in the example, mutual exclusion is often associated with contentionfor resources, either at machine level (e.g., CPU, memory) or program level (e.g.,critical sections). Mutual exclusion can be regarded as a dynamic form of conditionsynchronization in which the actual precedence relation is not determined until run-time. Due to the fact that con
ict resolution is typically approached as being non-deterministic5 the analysis essentially involves considering all the execution tracespossible which potentially implies exponential solution complexity. Because of this,the analysis of mutual exclusion poses a far greater challenge than the analysis ofcondition synchronization.� Conditional control
owWhile conditional control
ow is typically associated with program-level branching,machine-level examples include caching and communication routing. As exempli�edby the Halting Problem, the undecidability that arises with conditional control
owis already a fundamental problem in sequential programs. There has been a long-standing interest in performance modeling of programs in which branches that arenot compile-time deducible are modeled in terms of branching probabilities, typi-cally based on auxiliary pro�le information on some representative data set (e.g.,see [126, 136, 153]). Unlike both synchronization factors, the problems posed byconditional control
ow are not fundamentally di�erent for parallel systems, nor arethe solutions (e.g., see [13, 41, 133]).� Basic calibrationEssential for any performance model is the work load calibration of its basic modelcomponents (e.g., the basic instruction timings in the previous example). Althoughat the basic component level the work loads may be largely deterministic (e.g.,�xed number of clock cycles), for models in which the basic components are de�nedat a higher (aggregate) level, the work loads are often expressed using stochastic5Either by de�nition or as a result of modeling abstraction. For instance, an arbitration that isessentially deterministic (e.g., round robin) at clock cycle level, is often modeled as non-deterministic athigher abstraction level.

1.3. APPROACH 9variables to account for the non-determinism at lower level induced by conditionalcontrol
ow and/or both forms of synchronization. Similar to mutual exclusion,the introduction of non-determinism in combination with condition synchronizationintroduces a potentially exponential analysis complexity. An equally important issuerelated to aggregate components is the determination of the parameters themselves(e.g., mean and variance). Because of the problems just mentioned the parametersare typically measured, rather than computed in terms of their constituent parts.While the latter two performance aspects apply to both sequential and parallel systems,the speci�c challenge associated with performance modeling of parallel systems is theanalysis of both forms of synchronization delays.1.3 ApproachAs stated earlier, our major aim is to develop a methodology to derive performancemodels with a high level of parametrization. As also mentioned, however, there arevarious representation formalisms in terms of which the model can be described, suchas a simulation model or a low-cost explicit analytical model. Consequently, a centraltheme in the development of a methodology is an investigation of the trade-o� betweenanalysis accuracy and cost. Although the accuracy needed will depend on the applicationcontext, especially in the case of a parametric model, its accuracy must be sustained acrossthe entire parameter space as the design process may involve many (possibly erratic)parameter settings.As discussed in the previous section, the challenge that is speci�c to performance mod-eling of parallel systems is the analysis of synchronization. The other two factors are notspeci�c to parallel systems, neither do they present fundamentally di�erent complicationscompared to the sequential domain (although they pose a formidable challenge in theirown right). Hence, in our performance modeling approach we focus on the analysis ofsynchronization delays in terms of the accuracy/cost trade-o� mentioned earlier. Withrespect to their performance impact, condition synchronization and mutual exclusion areequally important. Which one actually dominates performance depends on the particularsystem. Although in the polynomial example demonstrates the impact of condition syn-chronization (critical path, the sequential task schedule per processor), mutual exclusioncan be just as damaging. This applies especially to simple analytic techniques that arebased on a simple critical path analysis only. For example, consider a parallelization ofthe following algorithm8i 2 f1; : : : ; Ng : yi = f(xi)in which some computation f is applied to each of the N vector elements xi, the resultbeing stored in yi. Again, we assume an abstract, P processor shared-memory machinearchitecture similar to the one discussed earlier. For each element this implies executinga shared-memory load (xi, taking �m units time), executing f (taking �f units time), andexecuting a shared-memory store (yi, taking �m units time). Figure 1.9 shows the speedupS for a simple data parallel scheme based on a regular block decomposition where eachprocessor is responsible for processing at most dN=P e elements (N = 100, �f = 10�m).

10 CHAPTER 1. INTRODUCTION
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P

S

CS only

CS + ME

Figure 1.9: The impact of mutual exclusion (ME) on performanceThe �gure shows two plots (obtained through simulation). The upper plot (\CS only").denotes the speedup based on ignoring the e�ect of memory contention and accounting forcondition synchronization (CS) only (the discontinuities are caused by the load imbalancein cases when P does not divide N). The lower plot (\CS + ME") shows the \actual"speedup where the e�ect of mutual exclusion (ME) is included. For large P memorycontention delay (queuing) dominates performance. Thus, any prediction technique thatignores the e�ects of mutual exclusion (such as conventional critical path techniques) mayseriously under-estimate the execution time by orders of magnitude.As mentioned earlier, mutual exclusion introduces a major analysis complication com-pared to condition synchronization as a result of the inherent non-determinism involved.Therefore, an investigation of the trade-o� between analysis accuracy and analysis costspeci�cally applies to the analysis of mutual exclusion. From this perspective we approachthe problem of symbolic performance modeling of parallel systems.We present a novel performance modeling formalism, called Pamela (PerformAnceModEling LAnguage) that serves as a vehicle to express our approach. The formalismhas basically two purposes. First, it serves as a concurrent performance simulation lan-guage, thus allowing a model to be described dynamically without introducing a priorilimitations with regard to modeling accuracy. At the same time, however, it serves asa source language for a second, static performance modeling technique that yields ananalytic (compile-time) model. More speci�cally, the nature of our contribution can becharacterized as follows.� description formalism.Pamela presents a new departure for performance modeling that combines a num-ber of existing modeling techniques in terms of one framework. Due to the use ofhighly structured language operations to describe synchronization important infor-mation on the problem's structure with respect to both types of synchronizationcan be retained in the model.

1.4. OUTLINE 11� modeling methodology.In contrast to usual practice, the approach to modeling parallel systems is material-oriented [89], in which system components are modeled as subroutines rather thanas processes. Combined with the structured synchronization operators, mentionedearlier, a model description is derived that is amenable to a low-cost analytic solutiontechnique.� analysis technique.The above choice of modeling formalism and paradigm allows for the application ofa low-cost static technique enabling Pamela models to be automatically compiledinto analytic models. Unlike traditional approaches to static analysis, this noveltechnique approximately accounts for resource contention. The analytical modelapproximates the simulation result in terms of a lower bound.The philosophy behind our contribution is to optimize the trade-o� between modelingpower and the yield in terms of analysis cost by a careful choice of constraints with re-spect to the modeling paradigm. The novelty of our approach is that it uniquely integratesand extends a number of existing concepts (performance simulation, material-oriented pro-gram/machine modeling, compile-time analysis) within one methodology. The underlyingthesis is that the vast majority of parallel computer systems can be expressed in termsof our structured formalism, and that the accuracy of the generated analytical modelsis acceptable across the entire parameter range. In this dissertation we will substantiatethese claims.1.4 OutlineBefore presenting the Pamela methodology, in Chapter 2 we present a survey of relatedwork on performance modeling of parallel systems in order to put our approach intoperspective. The work discussed includes approaches based on representation formalismssuch as task graphs, queuing networks, Petri nets, simulation languages, and processalgebras. In the survey we introduce a new categorization scheme in order to comparethe various approaches in terms of one framework.In Chapter 3 we present our performance modeling formalism, essentially comprisingthe concurrent modeling language and the underlying analysis technique. It is shown thatthe explicit, and highly structured way in which the material-oriented modeling methodexpresses condition synchronization as well as mutual exclusion o�ers great advantageswith respect to model analyzability. The analysis technique is described as well as anumber of typical examples.While Chapter 3 presents Pamela from the perspective of concurrent models ingeneral, in Chapter 4 we present the application of Pamela to parallel computer sys-tems modeling. The principles of the modeling methodology towards shared-memoryand distributed-memory programs and machines are described through a large varietyof examples. It is shown that the use of our restricted modeling formalism still allowsus to capture the dominant performance aspects that are relevant in the context of ourapproximate analysis.

12 CHAPTER 1. INTRODUCTIONIn Chapter 5 we present a number of case studies that demonstrate various applicationsof the Pamela methodology. The subjects addressed include performance compilation,showing how Pamela models are compiled into analytic models, a macro data
ow ap-plication on a distributed-memory system, demonstrating the accuracy of the modelingapproach compared to actual measurements, a discussion on the relation between our ana-lytic technique and simulation, and, last but not least, \optimization modeling", showinghow the Pamela calculus is applied to program optimization, one of the ultimate appli-cations of the methodology.After this presentation of the utility of the methodology, in Chapter 6 we revisit theanalysis technique by explicitly studying the accuracy of the analysis method compared tosimulation. By studying the relation between our analytic estimate and the simulation re-sult it is shown why the approximation based on a lower bound provides a good estimator.In addition it is shown that for any system in which resource usage is random, the averageestimation error due to contention e�ects is limited to 50 % worst case, throughout theentire range of the model parameters.In Chapter 7 we summarize our work, and present a number of recommendations forfuture improvement.

Chapter 2Performance Modeling2.1 IntroductionIn this chapter we discuss the main approaches to performance modeling of parallel sys-tems, based on representation formalisms such as task graphs, queuing networks, stochas-tic Petri nets, stochastic process algebras, and simulation languages. Apart from beingan account in its own right of the many and very inspiring concepts that have been putforward in this area, it provides the background needed in order to present the ratio-nale for our methodology. For the purpose of comparison, we will introduce a taxonomicframework in terms of which each approach will be described. In this survey we assumea basic understanding of the techniques and formalisms. In cases where the techniquesoverlap with our approach a more detailed description is given.Formally, a performance modeling approach deals with evaluating a concurrent systemS 2 S comprising a program and machine according toS = P �Mthat eventually leads to a numeric result. The system is modeled in terms of some rep-resentation formalism R 2 R. The set of representation formalism includes deterministicgraphs (DG, ordinary task graphs with deterministic time delays), stochastic graphs (SG,task graphs with stochastic time delays), queuing networks (QN), (stochastic) Petri nets(PN), Markov chains (MC), but also analytical models, generally expressed in terms of asystem of equations1 (SE). ThusR � fDG;SG;QN;PN;MC; : : : ; SEgSince we are primarily interested in execution timewe will denote the set of possible perfor-mance results by T 2 T that include temporal representations like a simple deterministicscalar, a full distribution function, or just a mean-variance tuple.In most performance modeling approaches a number of intermediate, symbolic trans-formations can be distinguished between the original system and the eventual, numericperformance result. The choice for some intermediate stage is characteristic for a speci�c1This includes implicit systems, such as an MVA recurrence or a (Markov) matrix equation, but alsoexplicit models, such as a linear pipeline model (each explained later on). Each analytical modelingtechnique eventually yields an SE representation.

14 CHAPTER 2. PERFORMANCE MODELINGanalysis technique. Note that each intermediate transformation may involve a furtherabstraction from the original system. In general, a performance modeling approach canbe characterized in terms ofS ! R(1) ! . . .! R(n)# # #T T (1) T (n)in which each ! represents an intermediate transformation and in which each # standsfor the ultimate numeric evaluation. Thus the �rst # corresponds to actual executiontiming. The other evaluations yield predictions T (i) that may become less accurate withincreasing superscript.The terms modeling and analysis are often used loosely. Modeling is the process oftransforming a system into a performance model. This model can be an analytical timeexpression (SE) or a timed Petri net (PN). Analyzing a model may yield another model(with higher superscript) and the ultimate numeric evaluation (e.g., simulation result).Thus the steps that can be called modeling cover S ! : : : ! R(n) while analysis coversthe steps R(1) ! : : : ! T (n). In our terminology modeling refers to the step S ! R(1).Subsequent transformations, possibly including the ultimate numerical evaluation will becalled (model) analysis.As an example of the use of this reference framework, we demonstrate the procedurefollowed in static analysis, a compile-time prediction technique based on critical path anal-ysis of a deterministic task graph representation of the parallel computation. The reasonto choose this particular approach is because of the fact that our approach originates fromthis technique. Recall the polynomialy = a0 + a1x+ a2x2 + a3x3Let S denote the parallel computation. The �rst step is the transformation from S to atask graph representation R(1) = G 2 DG. For the ease of this discussion we only consideran ideal abstract machine (i.e., unlimited number of processors, no work loads due toshared-memory load/stores, nor memory contention). ConsequentlyG is shown in Fig 2.1.in which each task gi represents a deterministic time delay (hence, the deterministicgraph) given by �i (either �m or �a). The domain in terms of which G is expressed isstill a concurrent execution domain, i.e., G expresses a concurrent process in terms oftime delays and condition synchronizations. Consequently, the execution semantics arebased on the notion of a concurrent machine in which evaluation of G (yielding T (1))corresponds to performance simulation in which each task execution and synchronizationis executed by a simulator (of course, a practical performance simulation approach wouldinvolve more factors than covered by just a static task graph representation, but that isbeside the point).In static analysis, however, a next transformation R(1) ! R(2) is performed from theconcurrent execution domain to the time domain, i.e., the domain of real numbers thatrepresent execution time. The transformation is based on following the interpretation ofthe execution semantics of R(1). Let ri denote the time at which task gi �nishes (thus,T (1) = r8). Realizing that a task may only commence once all predecessors have �nished,

2.1. INTRODUCTION 15
2gg1

g3 4g g5

g6 g7

g8Figure 2.1: Task computation graph of polynomial examplewe directly obtain the following set of equations.r1 = �1r2 = �2r3 = r1 + �3r4 = r1 + �4r5 = r2 + �5r6 = r3 + �6r7 = max(r4; r5) + �7r8 = max(r6; r7) + �8Note that for series-parallel (SP) graphs2, the above equations would immediately reduceto a single expression. The above equations, in fact, specify a second (deterministic)graph R(2) = H 2 DG of the static analysis computation, that is isomorphic to R(1). Thetransformation is based on the following mapping. Let gi be a task with predecessor tasksgp(i;j), j = 1 : : : P (i) (P (i) is the task fanin). Then each task gi in G maps to a task hi inH that represents the following computationhi = fri = �i + maxj=1:::P (i) rp(i;j)gApplication of the transformation to G yields the task graph H for the computation3 ofT (2) (T (2) = T (1)), as shown in Fig. 2.2. Thus, R(2) is isomorphic to R(1). The evalua-2An SP graph (also called \simple graph" [131]) is a possibly nested sequence of parallel fork/joinsections. An SP graph can be reduced to a single node by applying a sequence of series reductions (i.e.,reducing a sequence of two nodes to one node) or parallel reductions (i.e., reducing a parallel section oftwo nodes to one node).3Note that in this context H is only used to express the analysis computation, rather than to investigatethe opportunities for parallel processing. Of course, performance analysis can be parallelized as well, butthis is not the point of this discussion.

16 CHAPTER 2. PERFORMANCE MODELING
1h 2h

3h 4h 5h

6h 7h

8hFigure 2.2: Critical path computation graph R(2) of polynomial exampletion of R(2) (i.e., T (2), T (2) = T (1)) is commonly known as critical path analysis as theexecution time of the graph is determined (bounded) by the critical path. (In generalgraph analysis terminology, the technique is also known as \longest path algorithm" [56]).Thus, static analysis involves an intermediate task graph representation, followed by crit-ical path analysis based on the evaluation of a second, isomorphic computation graph. Ofcourse, the representation R(2) is usually not generated, but merely exists in terms of theabove set of equations (or in general in terms of a generic longest path algorithm thatdynamically determines the partial order in which the equations (hi) are to be evaluated(order induced by the data dependencies).In summary, static analysis can be characterized by the processS ! DG! DG ! SEin which the ultimate scalar evaluation (T (3)) has been ignored for simplicity. The reasonfor explicitly including R(2) = DG (i.e., two DG representations) in the above process isto distinguish the graph analysis method from techniques used in the analysis of stochasticgraphs (having stochastic task times) that may also involve state analysis (thus using anMC representation) instead of a critical path method (represented by the second DG, notethat the �rst DG represents the original computation whereas the second DG representsthe computation of T).The crucial abstraction (and consequent loss of accuracy4) is performed in the �rstmodeling step. After that, given the deterministic graph, the analysis is exact. Theexample also illustrates the cost reduction that is generally involved in a transformation.In the simulation approach (R(1)), a state machine is simulated that involves the updatingof an event list (in case of a discrete event simulator). In the critical path analysis (R(2) orR(3)) also a global time variable is updated, essentially involving the same '+' and 'max'operations as in the maintenance of the event list, however, with potentially less overheadas the set of equations may be compiled in contrast to the interpretor-based simulator(i.e., a compiled machine interpretor).4Data communication and memory contention are both ignored.

2.2. QUEUING NETWORKS 17In the following we present a survey of modeling techniques in which we refer to theabove reference model in order to characterize the particular approach used. Consequently,we will only consider on generic techniques, i.e., techniques that apply to any program ormachine due to the use of a general representation formalism such as QN, PN, DG, etc.Despite the importance of system-speci�c techniques, the proposed taxonomy providesample room to accommodate practically all of the well-known approaches.As discussed earlier, the accuracy as well as the cost of parallel systems performancemodeling is greatly determined by four factors� Condition synchronization� Mutual exclusion� Conditional control
ow� Basic Calibrationof which the synchronization factors are of particular interest in parallel systemsmodeling.Consequently, while discussing each particular approach we will focus on the above factorsto determine the merit of each approach, especially in terms of accuracy and cost.2.2 Queuing NetworksTraditionally, performance modeling of concurrent systems is based on queuing theory(see, e.g., [93]). The fact that a resource (or service in this context) is mutually exclusivebetween contending clients is symbolized by the queuing center, the basic model elementin queuing networks. Conditional control
ow is accounted for by calculating the meanservice demand on each center based on the branching probabilities that can be assignedto each branch. When the service times are exponentially distributed queuing networkscan be mapped to Markov chains due to the memory-less property of the exponentialdistribution. The Markov chain is solved either using transient or steady-state analysisyielding all state probabilities. Due to the state space explosion this method has expo-nential complexity. For the class of separable networks [15] the mean value of the systemvariables can be computed, based on less computation-intensive techniques. A well-knownrecursive technique is Mean Value Analysis [129] that yields an exact solution for exponen-tial distributions in polynomial time. Bard [14] and Schweitzer [138] describe an iterativeapproximation. An other approximate method is the use of bounding analysis [93] (forbalanced systems see [160]).Although queuing networks are appropriate for the modeling of systems with indepen-dent jobs (or tasks), the formalism has not been intended to account for the conditionsynchronization between tasks. Hence, traditional queuing networks cannot be used forthe performance modeling of parallel systems other than those equivalent to a singleparallel task section. Although traditional queuing theory can be applied to the estima-tion of communication and/or memory delay during various regular phases of a parallelcomputation5, aimed towards a more fundamental solution, alternative approaches have5Typically employing a �xed point iteration in which contention delay predicted by, e.g., an M/D/1-likequeuing model is used to estimate processor request rate [110, 64].

18 CHAPTER 2. PERFORMANCE MODELINGbeen described that are based on a hybrid representation. In order to capture the tasksynchronizations at program level a task graph representation is used while a queuingnetwork is used to model the non-determinism due to conditional control
ow and con-tention for machine resources (i.e., processors, switches, memories). Compared to a fullMarkov model of the total system, i.e., task graph and queuing model, the techniquemay be viewed as an e�cient approximation through the separation into two submodels(a.k.a. hierarchical decomposition) resulting in a considerable reduction in (exponential)complexity [65]. The trade-o� is an abstraction from reality as discussed later on.Thomasian and Bay [150] describe a method that computes the mean execution timebased on analyzing the Markov chain derived from the task graph using steady-stateanalysis as discussed earlier. The transition rates follow from the throughput analysis ofthe queuing network based on the task load corresponding to the current task composition(Markov state). A comparable approach has been described by Kapelnikov et al. [81] inwhich the solution complexity is decreased by using an aggregation technique in whichthe throughputs of submodels (\segments") are approximated (based on Markov analysis).The method is especially advantageous for program loops. The above approaches can becharacterized by the processS ! HQ!MC ! SEwhere the tuple HQ = (DG;QN) denotes the hybrid representation.Although applying hierarchical decomposition, the above approaches still su�er fromthe state space explosion. In order to decrease the state space analysis complexity, Makand Lundstrom [98] describe a method that is optimized for SP graphs. Instead of usingMarkov analysis an approximate form of SP reduction6 is applied at task level in whichthe task times are assumed to be exponentially distributed (thus mean and varianceare analytic expressions). From the resulting task residence times the queuing delay iscomputed using the underlying queuing network. The queuing delays are fed back to thereduction mechanism, that, accounting for the additional queuing delay, closes the loop.Thus an overall polynomial complexity is achieved. Recently, an extension of the abovepath analysis approach to general task graphs is presented by Adve [1] and by Jonkers etal. [78]. The technique is based on critical path analysis in which for each task activity setthe proportional contribution of the queuing delay is calculated. A critical but realisticassumption in this approach is the fact that the service accesses for each task are uniformlydistributed over the task residence time. For the critical path analysis deterministic tasktimes are used. The underlying premise is that the actual variance at task level doesnot always necessitate a high-variance distribution like the exponential distribution, asmentioned earlier [3]. Both approaches are characterized by the processS ! HQ! DG! SEAs mentioned earlier, the hybrid approach not only features an approximate analysismethod, but also only partially alleviates the problem of modeling task synchronization.For instance, neither condition synchronization at machine level, nor mutual exclusion atprogram level can be expressed in this approach.6An e�cient implementation of critical path analysis for SP graphs.

2.3. PETRI NETS 192.3 Petri NetsPetri nets are an e�ective modeling formalism for the description and analysis of con-current systems. Since their introduction [118, 119], PN have been deeply investigated,yielding a well-developed theory (see, e.g., [107, 117, 130]). Following [117], we will con-sider (standard) PN to be Condition Event nets. PN with inhibitor arcs or high-level PNsuch as Colored PN [77] are considered extended PN.Especially designed for concurrent systems, Petri nets express both CS and ME. Unlikequeuing systems the description of ME includes simultaneous resource possession, i.e., theability to describe atomic access involving several resources. Consequently, the modelingpower of Petri nets is larger than of queuing networks or P/V systems7. For performancemodeling one considers timed Petri nets in which a time delay is associated with eachtransition. Conditional control
ow is modeled by a con
ict using the relative �ringrate of each of the consuming transitions to determine the mean control
ow over thebranch. Furthermore, to allow for a meaningful analysis the net is assumed to be live andbounded, such that it is cyclic. As a result of the high modeling power of Petri nets theirdecision power [117] is low. Hence, for general cyclic nets only verifying a certain boundon performance is already shown to be NP-complete [127].In the context of real-time system analysis Ramamoorthy [127] has investigated netswith deterministic time delays. It is shown that for (cyclic)marked graphs (or decision-freenets8) a polynomial time analysis is possible. The vast majority of the approaches, how-ever, is based on using nets with exponentially distributed �ring delays, called StochasticPetri Nets (SPN). Based on their reachability tree, the nets can be mapped onto a Markovchain as shown by Molloy [104]. The Markov chain is subsequently solved using steadystate analysis. Thus the predominant approach can be characterized by the processS ! PN !MC ! SEwhere PN denotes the (stochastic) Petri net representation. An extension to SPN, calledStochastic Activity Networks, including mechanisms to control transition �ring based onany function of the markings is described in [103, 135]. Due to the exponential growthof the transition matrix in the size of the problem, analysis complexity of SPN quicklybecomes prohibitive9. Aimed to reduce the analysis complexity, Ajmone-Marsan et al. [4]describe an extension called \Generalized Stochastic Petri Nets" with immediate tran-sitions to model control
ow or activities with negligible time delays. As the analysiscomplexity of GSPN is e�ectively dominated only by the number of timed transitions,the distinction of immediate transitions may reduce analysis costs by orders of magni-tude. Di�erent approaches to realize state space reduction are described by Plateau [121],Buchholz [22], and Siegle [141]. Although a signi�cant computational reduction can beachieved, the analysis complexity of Petri net approaches is essentially exponential. Analternative approach to reduce complexity is described by Wabnig and Haring [152] which7The increase in modeling power is illustrated by e.g., the Dining Philosopher problem [37] or theSigarette Smoker's problem [116]. A simple P/V solution entails the risk of deadlock (see Peterson [117]on the issue of modeling power).8In a marked graph each place has one input and one output (i.e., the dual of the state machine).9Even in the case where replication can be exploited by the use of folding [5] (in which the net isreduced while maintaining equivalence).

20 CHAPTER 2. PERFORMANCE MODELINGis based on using a hybrid modeling approach. While the machine is modeled in termsof a Petri net, the program is modeled in terms of a task graph. Unlike hybrid queu-ing networks, the combined model is analyzed using simulation, thus completely avoidingthe combinatorial explosion inherent to Petri net analysis at the expense of a somewhatstochastic result. The interesting trade-o� between analytic techniques and simulationwill be further discussed in Section 5.4.2.4 LanguagesWhile the above representation formalisms are essentially di�erent from the computationalsystems under study, in this section we review concurrent imperative languages, that areto a large degree similar. Like in the case of Petri nets, we speci�cally focus on simulationlanguages (SL) and timed process algebras (PA) that incorporate the notion of time.Based on the use of either message-passing constructs (message-oriented paradigm [8])or semaphore-type constructs (procedure-oriented paradigm [8]), simulation languagesnaturally account for condition synchronization as well as mutual exclusion. Unlike theother formalisms, data dependent control
ow is naturally supported10, although in aperformance simulation context, the usual probabilistic abstraction is applied.One of the natural advantages of languages is that they provide simple compositionalconstructs for building large and parametric models. Usually, a message-oriented modelingparadigm is used that corresponds to the object-oriented modeling approach taken bymostmodelers in which the concepts of inheritance and information hiding are useful for modelengineering. Characteristic examples are SIMULA [33] and, more recently, the CSIM17library described by Schwetman [139] and the language Pearl described by Muller [105].As the modeling detail of simulation can be chosen to be arbitrary high, this formof dynamic performance evaluation is most near to actual system execution. Even whenthe actual system is available (i.e., does not need to be predicted) simulation is oftenchosen above actual execution because the data measurement and collection processes donot perturb the system's dynamic behavior (in terms of virtual time). Due to the aboveadvantages a vast number of prediction approaches based on simulation modeling havebeen described (e.g., [108, 146, 101, 120, 128, 142]), including the simulators within theprogram cost estimation tools of Van Halderen [62] and Qin et al. [125].Unlike the earlier approaches, simulation languages typically lack an explicit analytictradition. Hence, their characterization is simplyS ! SLIn contrast, stochastic process algebras, a temporal extension to classical process algebras(e.g., ACP [11], CSP [69]) do have an underlying calculus. Typical examples of thisapproach are the work described by G�otz et al. [57], and Hillston [67]. Both approachesare based on the introduction of exponentially distributed delays associated with theactions (as in stochastic Petri nets). Similar to other stochastic approaches the model is10Despite the higher modeling power of Petri nets in terms of synchronization compared to, e.g.,simple P/V languages (concerning simultaneous resource possession) it would take an extended Petri net(featuring inhibitor arcs) to achieve Turing power. Any simulation language, in contrast, can determineconditional control
ow as a result of its inherent capability to compute numbers.

2.5. STOCHASTIC GRAPHS 21subsequently transformed into a Markov chain, that is solved using standard techniques.Consequently the approach can be characterized by the processS ! PA!MC ! SEAlthough there are many di�erences between simulation languages and process algebras,there are similarities. Process algebras are much like message-oriented performance simu-lation languages. Synchronization is based on cooperation or communication, that impliesthat mutual exclusion is based on the fact that a process can only engage in a rendez-vouswith one partner (typically selected non-deterministically through the '+' or '2' operator)at the same time.2.5 Stochastic GraphsAs mentioned in the introduction, task graphs are a popular representation form for theanalysis of parallel computation structures (algorithms) in which task precedence relationsare of primary interest. Due to their static structure, task graphs cannot model mutualexclusion, nor can they model conditional control
ow (unless by weighting all the workloads of conditional tasks in a branch with all the associated branching probabilities, e.g.,like in queuing networks). Due to the fact that mutual exclusion is not accounted for(unless explicitly modeled in terms of additional delay nodes [99]), the predictive value oftask graphs is limited. The trade-o�, of course is the potential for a cost-e�ective analysis.Because of the relevance of task graph analysis for our approach in the following we willtreat task graph approaches in somewhat more detail.Because of the static nature of task graphs in many modeling approaches the tasktimes are often chosen to be stochastic in order to still enable some sort of representationof the non-deterministic e�ect of conditional control
ow and/or contention at the subtasklevel. In this case the task graphs are commonly termed stochastic graphs (SG).As illustrated in the earlier example, in task graphs the analysis procedure is based onevaluating the e�ect of task precedence relations on time. While for deterministic graphsthe procedure is known as critical path analysis, in the general case of stochastic graphsthis procedure involves a more elaborate analysis in order to compute the distribution ofT . Still, the approach can be characterized by the processS ! SG! DG ! SEwhere DG denotes the deterministic (critical path) analysis method. Let G 2 SG denotea task graph comprising N tasks g1 : : : gN where g1; gN denote, the top and bottom task,respectively. Let Ti denote the distribution of the execution time of gi, i.e., the time thatgi �nishes. Consequently, T = TN . Let Fi(t) denote the task delay time distributionof gi. Let �i denote the set of predecessors of gi. Let Si(t) denote the distribution ofthe task start time, i.e., the time when all predecessors are �nished. Due to the barriersynchronization at gi it holdsSi(t) = Yj2�i Tj(t) (2.1)

22 CHAPTER 2. PERFORMANCE MODELINGwhere it is assumed that the Fi are mutually independent. The distribution of Ti isdetermined by Si(t) and the local task delay distribution Fi(t) according to the convolutionTi(t) = (Si � Fi)(t) = Z t0 Si(�)fi(t� �)d� (2.2)where fi(t) denotes the probability density function of the task delay time.As illustrated in the introduction, the analysis computation can be described by acomputation graph that is isomorphic with G. For general graphs the number of distribu-tion products and convolutions is given by O(N2). For SP graphs the complexity reducesto O(N).While for deterministic graphs path analysis entails O(N2) scalar operations at worst,for stochastic graphs of any practical size the calculation of T based on path analysis isprohibitive unless restrictions are introduced. Basically, two approaches can be distin-guished, i.e., (1) by limiting the distribution functions representation, and (2) by limitingthe scope of graph structures. The �rst restriction entails a reduction of the complexity ofEqs. (2.1) and (2.2). The use of deterministic task times is, of course, the most extremeexample in which the above equations reduce to a scalar 'max' and '+', respectively (interms of f , that is). The second restriction limits the number of computation steps nec-essary to compute the result. The prominent subclass are the SP graphs, in which casecritical path analysis reduces to SP reduction. Another reason for the popularity of thisapproach is that many computations can be expressed in terms of SP graphs, or can beapproximated in terms of SP graphs11. Both approaches may be combined, of course.An example of the �rst approach is the work by Lester [95] who uses the geometrictransform of f (a.k.a. z-transform or generating function) in terms of which Eq. (2.1) isa product of polynomials and Eq. (2.2) is called \join product". One of the motivationsfor this approach is that non-deterministic conditional control
ow is naturally accountedfor in terms of this discrete transform. An example of the second approach is the workby Gelenbe et al. [47] in which a closed form expression is derived for the execution timedistribution of a class of random SP graphs that obey certain stochastical rules concerningtheir construction. An example of the combined approach is the work by Sahner andTrivedi [134] who describe a method to compute this function for task time distributionsthat have an exponential polynomial form (i.e., fi = Pk aktlkebkt). Since exponentialpolynomials are closed under the SP reduction operations T will also be an exponentialpolynomial. Thus, unlike the geometric transform this (intermediate) representation doesnot necessarily grow during the analysis.Without the above restrictions, for practical graphs the analysis cost of the distributionof T is prohibitive. As a result, many approaches restrict to the characterization of theexecution time in terms of scalarmetrics only, such as the mean and variance, or lower andupper bounds. One example is the bound approach that is described by Yazici-Pekerginand Vincent [159] who compute stochastic bounds on the mean completion time for generalgraphs. The basic idea is that a deterministic version of the graph produces a lower boundwhile the upper bound is provided by a version that assumes independence of all paths inthe task graph. A related approach is described by Lester [95] that applies SP reduction11For instance, Hartleb and Mertsiotakis [63] describe a bounding analysis by deriving SP approxima-tions with the use of heuristics.

2.6. DETERMINISTIC GRAPHS 23for mean values based on the reduction rules for deterministic values. While appropriatefor series reduction and conditional control constructs, parallel reduction based on a simplemax function (i.e., without using order statistics) yields an underestimation for stochasticvariables (i.e., for which � > 0). Consequently, the result is a lower bound for T . In orderto account for task variance an enhanced scheme is also described in which both meanand variance are propagated in the course of the SP reduction. Parallel reduction is basedon an approximation of order statistics assuming a normal distribution. A comparableapproach including the use of order statistics is described by Robinson [131] in which theSP graphs are called \simple graphs". Sarkar [136] describes a comparable technique forsequential control graphs in order to determine the e�ect of conditional control
ow.Another popular approach to computing the mean execution time is based on re-stricting the task distributions to the exponential type. Thus, a Markov chain can beconstructed of all the (O(2N)) activity states of the graph. Typically, a transition isadded corresponding to a cycle from tN to t1 in order to allow for steady state analysis.Unlike most Petri nets and queuing networks the task graph itself has no internal cycles.Consequently, the transition matrix is triangular in which case the direct solution com-plexity is approximately O(2N) instead of the usual O(23N) for full matrices [150]. Theapproach is characterized by the processS ! SG!MC ! SEAlthough the use of exponential distributions is quite popular due to the Markov property,this distribution is not particularly realistic for the time behavior of tasks exhibiting low-level non-determinism (control
ow, queuing). Usually such tasks have much less varianceas observed by Adve and Vernon [3] (Lester [95] reports that unconditional loops witheven a few iterations can be approximated by normal distributions within a few percentsaccuracy). The use of Erlang-k distributions with a high number of phases in orderto decrease variance, however, results in a signi�cant increase in complexity. Hence,approximations are used. An example is the approach used by S�otz [144] in which heapproximates low-variance task distributions by a series combination of a deterministicand exponential task term such that the �rst two moments are equal to the Erlang-k distribution. As the memory-less property of the exponential distribution is lost anapproximate method is used to solve the Markov chain.2.6 Deterministic GraphsAs mentioned earlier for deterministic graphs the analysis is based on critical path analysis.In terms of the stochastic graph analysis the product and convolution formulae reduce toa scalar addition and maximum, respectively. As our symbolic approach is based on theuse of deterministic graphs we present a more elaborate treatment of the related workthat employs this representation type. As discussed in the introduction, the approach ischaracterized by the processS ! DG! DG ! SEAlmost every approach is restricted to SP reduction (SE is one expression) that yields thefastest analysis possible (O(N) complexity) which partly explains why all compile-time

24 CHAPTER 2. PERFORMANCE MODELINGprediction approaches are based on this technique. Since most reductions are stated interms of an (intermediate) language, the actual process is even linear in the size of theprogram as can be seen as follows. Due to the predominant procedure-oriented style inparallel programming (either a fork/join style in the case of an explicitly parallel dialect,or a data parallel style in case of implicit parallelism), programs can be represented byan SP task graph that is amenable to SP reduction. Expressed in terms of the sourcelanguage itself, the program is consequently termed an SP program. In program termsSP reduction is implemented by the following function that is recursively applied to a(compound) statement S (initially, S is the program).� if S = S1; .. Sn; then T (S) = T (S1) + ::+ T (Sn)� if S = for i = 1 .. n do S(i) then T (S) =Pni=1 T (S(i))� if S = forall i = 1 .. n do S(i) then T (S) = maxi=1:::n T (S(i))� else T (S) represents time cost of the basic instruction.The use of a language enables the conditional control
ow analysis to be included withinthis scheme according to� if S = if c then S1 then T (S) = pT (S1)where p denotes the probability that c evaluates true. This is equivalent to weighting allthe work loads of tasks within a branch with all the associated branching probabilities(note that like in e.g., queuing networks, in this \mean value" approach, all the branchingprobabilities involved are assumed independent).In terms of the above SP reduction, all the deterministic approaches are practicallysimilar. In contrast to the use of stochastic task times, in compile-time techniques ad hocapproaches are typically followed in order to account for mutual exclusion (if accountedfor at all). In view of the importance to account for resource limitations (contention)in parallel systems, we will discuss the various reduction techniques with respect to thisparticular aspect. In the estimation approaches for shared-memory systems describedby Allen et al. [7], Sarkar [137], and So et al. [143], the e�ect of dynamically schedulingthe task graph given a limited number of processor resources is approximated in termsof bounds by applying Graham's result for list scheduling [58]. Also Polychronopoulosand Banerjee [122] describe bounds on the speedup for doacross loops (a generalizationover do and doall due to Cytron [32]) when cyclically scheduled on a limited numberof processors. The method presented by Wang [155] includes an approximation of cacheperformance and hot spot contention for memory resources. Targeted at real-time systems,Shaw [140] presents an estimation scheme that computes both a lower and upper boundon the execution time. The scheme approximately accounts for contention, be it for non-preemptive resource sharing only (e.g., critical sections). The approach does not considerpreemptive processor sharing and memory sharing.While for shared-memory machines resource limitations primarily relate to (dynamic)processor scheduling and memory contention, in distributed-memory machines, the con-tention issues relates to network contention as the processor mapping is typically static.In the approach by Balasundaram et al. [13] the underlying distributed-memory machine

2.6. DETERMINISTIC GRAPHS 25is characterized in terms of its collective message-passing interface, thus automaticallyaccounting for network contention. The above approaches are more or less based on re-duction down to a single estimate (or derivative). Clearly, however, one single numberdoes not provide the diagnostic information that enables an e�cient optimization process.Based on this argument, Fahringer and Zima [41] present a number of speci�c diagnosticsfor distributed-memory systems, such as processor load balance, communication volume,cache performance, as well as an indicator for network contention.A number of approaches have been described in which the prediction is still expressedin terms of certain symbolic parameters, thus providing another form of diagnostic in-formation (suitable for, e.g., scalability analysis). Atapattu and Gannon [10] describe apartially symbolic estimation approach for shared-memory systems that includes an an-alytical approximation of memory contention (based on a queuing model) and of cachebehavior (i.e., conditional control
ow) for a speci�c architecture. The shared-memoryprogram performance estimation tool of Qin et al. [125] also generates a partially symbolicoutput in terms of the simulation model source text. The e�ect of (dynamic) processorsharing between tasks is accounted by computing the available processing bandwidth whiletraversing the computation graph. The analysis of non-preemptive memory contentionhowever is approached by accounting (enumerating) for all the paths that are possible, thusleading to exponential complexity. Wang [156] describes a symbolic prediction techniquethat is used for super-scalar based processor design. Aim to enable e�cient scalabilityanalysis, Mendes, Wang and Reed [102] describe a method to derive a symbolic model interms of the problem size, the number of processors and a number of system parametersthat are derived by �tting the model on execution time measurements for di�erent prob-lem sizes and processor numbers. In the symbolic approach by Clement and Quinn [29]the system parameters are also determined from measured run times. However, they arecomputed from instruction counts as actually pro�led, rather than predicted as with themodel of Mendes et al.. Both approaches do not account for contention.Essentially all static approaches have the same \mean value" approach towards condi-tional control
ow in which the actual work load is weighted in terms of the (appropriate)branching probabilities. The approach is basically similar to sequential system analy-sis [136, 153]. In cases where the branching probability can not be deduced at compile-time, either a default is assigned (e.g., [13]) or the probability is based on statistics gath-ered during pro�ling. An underlying assumption is that program level conditional control
ow is characteristic of the program and, consequently, is independent of other systemparameters. Evidence to suggest this have been produced by Fahringer and Zima [41])who successfully uses control
ow statistics based on sequential pro�le runs. Unlike pro-gram level, at machine level, conditional control
ow (e.g., caches), is usually dependenton system parameters. Again, when the hit ratio can not be deduced at compile-time(typically based on a loop model [10, 41, 155]), pro�le statistics (possibly obtained bysimulation [38]) must be used.Some of the analytic approaches feature calibration methods in which certain programparameters are determined by direct measurement (e.g., [30, 73]), or where aggregatesubmodels are timed as a whole. A typical example is the deduction of the startupand bandwidth parameters of vector instructions by �tting measurement data to theunderlying linear (pipeline) model [70] for various vector lengths and for various access

26 CHAPTER 2. PERFORMANCE MODELINGstrides. In this way the e�ects of low level memory hierarchy and memory bank contentionare automatically accounted for. One of the �rst approaches in this direction was takenby Gallivanet al. [46], in which program performance was predicted by characterizingprogram workload in terms of a kernel of basic (vector) routines (including associatedmemory tra�c). A comparable approach is taken by Balasundaram et al. [13], in which the(distributed-memory) machine is characterized (i.e., measured) in terms of its collectivecommunication interface. Again, the e�ect of message pipelining, link contention, etc.is automatically accounted for. Clearly, modeling the machine in terms of (judiciouslychosen) aggregate submodels instead of at a more basic instruction level has a bene�t interms of modeling e�ciency. Another approach in which communication cost is estimatedin terms of an MPI-like abstract kernel instead of the actual code (as would be generatedby the compiler) is described by Gupta and Banerjee [61]. In general, the trade-o� inthese approaches is the cost (and accuracy) of workload characterization at program levelas now the program must be decomposed in terms of a (usually less orthogonal) high-levelkernel instead of basic instructions. A detailed study into the feasibility of automaticallyrecognizing kernel operations in parallel programs is described by Ke�ler [84]. Other staticapproaches feature calibration methods in which the basic model parameters are inferredrather than directly measured, based on the use of statistical techniques. Two approachesthat have been discussed are those by Clement and Quinn [29] and by Mendes et al. [102].An more phenomenological approach is taken by Candlin [27] in which the in
uence ofseveral program statistics (e.g., granularity, task time variance) on system performanceare studied using a (two-level) factorial analysis method.2.7 SummaryWe conclude this chapter with a short summary of the techniques considered in thisreview. The various approaches, along with their primary characteristics are listed inTable 2.1. The columns 'CS', 'ME', and 'CF' signify whether the approach accounts forcondition synchronization, mutual exclusion, and, conditional control
ow, respectively.The complexity column lists the solution complexity in terms of the characterization poly-nomial ('pol', ranging from high complexity to the quadratic or even linear complexityof the DG approach), or exponential ('exp'). Note that a less favorable \mark" (i.e., '-'or '2') should be strictly interpreted in the sense of generic applicability. Sometimes aformalism is not intended to be used in a system-level generic way. For instance, stochasticgraphs are quite useful for the analysis of task systems once the underlying machine hasbeen chosen. In this approach extending the model in order to include the machine wouldonly entail a needless increase in analysis complexity. Thus, depending on the speci�cpurpose, any of the above techniques may be an optimal choice. From the perspectiveof a generic, system-level modeling formalism, however, the above table holds. We willbrie
y summarize the approaches in terms of the basic properties of interest as we havede�ned earlier.� Modeling (R(1)):All the approaches inherently account for condition synchronization except tradi-tional queuing networks. Note, however, that the hybrid approaches only account

2.7. SUMMARY 27for condition synchronization at program level. All the approaches inherently ac-count for mutual exclusion, except for the techniques based on task graphs. The'2' sign for stochastic graphs denotes their (small) ability to account for the non-determinism associated with contention. Note that hybrid queuing techniques onlyaccount for mutual exclusion at the machine level. The only technique that is fullycapable to model conditional control
ow is simulation. All other techniques arebased on a probabilistic abstraction (branching probabilities).� Analysis (R(2)):Most solution techniques are based on a numeric process such as simulation, therecursive/iterative solvers for (hybrid) queuing networks (SE12), as well as the directsolvers for Markov chains (MC). Only the techniques of which the solution canbe expressed in terms of deterministic graphs are eligible for a symbolic process(except HQ due to the underlying network solver) as exempli�ed by the compile-time symbolic techniques. Associated with each type of analysis process is a trade-o� between information and cost. Simulation is a computation-intensive solutiontechnique partly since it yields only one sample of the execution time distributionfor each run (i.e., a stochastic model). Analytic techniques, on the other hand,provide the solution in only one process run (i.e., a deterministic model). However,the cost may become prohibitively high. Methods based on Markov analysis yieldprobability information on each individual state, however, at exponential costs asthe state space is exponential in the system size. Under certain conditions, solutiontechniques for (hybrid) queuing networks can be used that only provide mean valuesbut which have costs that are only polynomial. Deterministic graph analysis hasthe lowest complexity (quadratic for general graphs, linear for SP graphs). Thetrade-o� is a limited accuracy due to the fact that task delay distributions as wellas mutual exclusion are ignored.R(1) CS ME CF R(2) compl.QN - + 2 MC expQN - + 2 SE polHQ 2 2 2 MC expHQ 2 2 2 DG polPN + + 2 MC expSL + + + - polPA + + 2 MC expSG + 2 2 DG polSG + 2 2 MC expDG + - 2 DG polTable 2.1: Approaches to performance modeling of parallel systems12The only occurence of SE in the table is due to the MVA technique, which simply maps QN onto a(recursive) set of equations, without using a second, intermediate representation formalism.

28 CHAPTER 2. PERFORMANCE MODELINGAs mentioned before, due to the choice to survey performance modeling in terms of the(intermediate) representation formalism used, not every approach has been accounted for.An obvious example are the system-speci�c approaches that map some (sub)system intoa (usually optimized) analytical model. The best way to characterize these approacheswould be the default processS ! SEFor instance, the derivation of the linear, symbolic performance model for vector process-ing (either arithmetic processing, or data movement) is based on an immediate, manual,derivation process, rather than through some intermediate representation (using, e.g., aPetri net will not yield the symbolic solution13).Returning to the criteria mentioned in Chapter 1, none of the above modeling ap-proaches adequately pairs accuracy with an analytic method that comes with su�cientlylow solution cost. On the one hand, QN, HQ, SG, and DG do not always provide su�cientmodeling accuracy. On the other hand, PN, and PA entail exponential costs. AlthoughSL pairs accuracy with polynomial costs, they merely provide a stochastic result (a singledraw) rather than an analytical model. Our approach aims to combine an analytical tech-nique with su�cient accuracy. In terms of the earlier table, our approach can be describedas given in Table 2.2. R(1) CS ME CF R(2) compl.DG + + 2 DG polTable 2.2: The Pamela approach to performance modeling of parallel systems
13When using Pamela the automatic derivation of a symbolic model is indeed possible, as is shown inthe next chapter.

Chapter 3PAMELA3.1 IntroductionIn this chapter we present our approach to the performance modeling of parallel systems.The methodology we propose is based on the use of a performance modeling formalism,called Pamela (PerformAnce ModEling LAnguage), that,� with respect to modeling provides a concise, procedure-oriented performance simula-tion interface. Unlike most abstract representation formalisms, the language allowsthe description of models without forcing signi�cant a priori loss of accuracy. Pri-marily intended as a description formalism for subsequent analysis, the languagefeatures operators to express structured forms of condition synchronization and,most notably, mutual exclusion.� with respect to analysis introduces a novel static technique that, due to a procedure-oriented and structured synchronization paradigm, allows simulation models to becompiled into an analytic (parameterized) model that trades accuracy for cost. Un-like traditional compile-time analysis the method introduces an approximate analysisof mutual exclusion within the critical path analysis, thus yielding a lower boundestimation T l of the simulation result T that is much tighter than conventionalpredictions, yet at the same cost.In terms of the previous chapter, the approach can be characterized by the processS ! SL! DG! SE ! : : :! SE# # #T (1) T (2) T (n)In the Pamela methodology (see Fig. 3.1) both parallel program and parallel machineare converted into their Pamela model counterparts. After substitution of the machinemodel into the program model the combined model is either compiled into a simulationobject returning a result T (T (1)) or compiled into an analytical model that yields the lowerbound estimate T l (T (2)) at much less cost. Based on the analytical model, subsequentreductions are possible (see �gure), again possibly trading accuracy for cost (T (n)). Thus,the approach o�ers a
exible trade-o� between prediction accuracy and cost. In a typical

30 CHAPTER 3. PAMELA
1 2,...)(π ,π

program

modeling

modeling

(µ1,µ 2,...)
machine

analysis
serialization

ΣΣΣ Σ

simulation

reduction

Time DomainPAMELA DomainAppl. Domain

Σ

T

T

T ll

Figure 3.1: Modeling methodologyapplication environment, program model generation, machine model substitution, as wellas subsequent model compilation are performed on line, whereas the machine model hasbeen programmed in advance.The rationale for the choice of a procedure-oriented simulation language combinedwith a symbolic compile-time calculus is the following.� symbolic modelingUnlike other representation formalisms, languages provide a natural means to ex-press parameterization, as well as a convenient set of constructors to easily expresscomposition, replication, etc. Due to the procedure-oriented modeling paradigm apath analysis method can be used that yields a time domain model that is also com-pletely symbolic, whereas the message-oriented paradigm of traditional languagesand process algebras as well as the choice of other representation formalisms (queu-ing networks, Petri nets) entails a numerical solution process (with the exception ofanalytic solutions that are manually derived).� modeling powerWith its ability to express condition synchronization, mutual exclusion, as wellas (data dependent) conditional control
ow, the language provides high modelingpower to capture the performance behavior of parallel computer systems. Even whenconditional control
ow is modeled probabilistically, the language still combinesthe modeling power of task graphs, (hybrid) queuing networks, as well as processalgebras and Petri nets as a result of its capability to express simultaneous resourcepossession.

3.2. LANGUAGE 31� analyzabilityThe choice for a structured, procedure-oriented paradigm, combined with structuredoperators to express mutual exclusion o�ers the possibility of a compile-time pathanalysis technique that approximately accounts for mutual exclusion. Hence, theresulting time domain model has the minimum robustness that is needed in viewof the very large parameter space covered by the analytic model. The choice fora low-cost, deterministic path analysis technique is motivated by the fact that inmany cases task time variance is limited [3]. Hence the analysis error due to thethe assumption of deterministic task times (mean values) instead of accounting fortask variance is acceptable in view of the overall approximation (indeed the use ofa deterministic scheme is suggested in [3]).Thus our methodology distinguishes itself from the other approaches by the combination ofa procedure-oriented language, structured operators to describe mutual exclusion, and the(consequent) compile-time calculus that allows for the automatic compilation of symbolicperformance models.In the remainder of this chapter, the language and underlying calculus are presented.Rather than providing a formal language description, in Section 3.2 an informal intro-duction is given of the language as well as many examples. A rationale for the material-oriented modeling paradigm that is adopted inPamela is given in Section 3.3. Section 3.4presents the underlying calculus as well as a number of examples. Parts of this chapterhave been presented in [49, 51].3.2 LanguageBeing a research vehicle for the formalization of concurrent computations the syntax andsemantics are not (yet) rigorously de�ned. Consequently, we will refrain from a formallanguage de�nition and loosely describe its syntax and semantics in an informal wayusing examples. A semantics description of the most important language constructs,expressed in terms of Deterministic and Stochastic Petri Nets (DSPN [6]) can be foundin Appendix A.Basically, Pamela is an imperative, process-oriented simulation language. Thus, likeother simulation languages it is capable of functionally simulating concurrent computa-tions on von Neumann machines. Unlike most simulation formalisms, however, its designis tailored to facilitate a compile-time performance analysis. Of course, this compile-timeanalysis is strictly de�ned for performance simulation models, i.e., the subset of simulationmodels that exclude original data computations.Intended as a source language for compile-time analysis, the syntax of Pamela isreminiscent of that used in ordinary mathematics. Rather than de�ning a full
edgedprogramming language (including type declarations, etc.) we simply borrow the equationsyntax and substitution semantics as found in mathematical formalisms. Thus, much likein process algebra, a Pamela program or process (usually denoted by L) is written as aset of algebraic equations that describe the simulation model of the system under study.We will also often refer to a Pamela program as a Pamela model.

32 CHAPTER 3. PAMELALike any simulation language Pamela supports the notion of virtual execution timethat is the key (performance) result of the simulation. By convention, T denotes the(simulated) execution time of program L. By de�nition, the time of the empty program iszero. The basic operation that increments virtual time is the delay construct that takesa time increment as argument. For example, the execution time of the Pamela modelL = delay(�)is given byT = �The time interval � can be either deterministic or stochastic according to some speci�eddistribution.3.2.1 Control FlowTo enable basic model construction Pamela provides the following control
ow operators:� sequential operator: ;For example, the following Pamela program (or model) L = delay(�1) ; delay(�2)speci�es a strict sequence of two processes (or submodels) delay(�1) and delay(�2).Consequently, T = �1 + �2. Clearly, ';' is associative.� parallel operator: kFor example, the following Pamela model L = delay(�1) k delay(�2) speci�estwo processes running in parallel without any intermediate form of synchronization.Similar to the well-known parallel constructs like forall, the par construct has animplicit barrier semantics. Consequently, T = max(�1; �2) due to the additionalsynchronization delay. Clearly, 'k' is associative and commutative.� conditional operator: ifFor example, the following Pamela program L = if (r < p) L1 where r is a randomvariable uniformly distributed over [0; 1], implements a branch with average branch-ing probability p (0 � p � 1). For programming convenience an else construct isincluded.In order to specify sequential as well as parallel replication Pamela provides reductionoperators de�ned byseq (i = a; b) Li = La ; : : : ; Lbpar (i = a; b) Li = La k : : : k LbThe simple lower/upper bound syntax is inspired by corresponding reduction functions inthe time domain such as the P operator. A more detailed discussion on the semantics ofsequential and parallel composition is given in Section 3.4.

3.2. LANGUAGE 33As a simple example, the following set of equationsL = L1 k L2L1 = delay(�1) ; delay(�2)L2 = delay(�3) ; L3L3 = delay(�4) k delay(�5)constitute a legal Pamela SP model that is equivalent toL = fdelay(�1) ; delay(�2)g k fdelay(�3) ; fdelay(�4) k delay(�5)ggAlthough the �rst 'f g' pair is super
uous (the ';' operator has a tighter binding than 'k'),in order to avoid confusion 'f g' or '()' pairs are used throughout the text.The above operators form the ingredients for a basic performance simulation kernel.In order to enable functional simulation as well this kernel is extended with� iteration operator while (c) L� usual computational data types including assignment in order to enable full datacomputation. Consider the sequence L = delay(1); x = 2; if (x2 < 4) delay(1).It follows T = 1.The while operator is required for simulation purposes only (where termination is notessential). In order to allow the analytical approach to be used as well, thewhile constructis typically replaced by a seq operator where the loop bound is speci�ed by some symbolicuser parameter. Although original data computations are typically left out of the model foranalytical reasons, in some cases the use of data computation cannot be avoided in orderto compute data-dependent (conditional) control
ow. For the compile-time analysis,however, these computations are typically accounted for by branching probabilities, thusyielding a model only in terms of the basic performance simulation kernel.3.2.2 Condition SynchronizationApart from the implicit condition synchronization inherent in the parallel (and sequential)composition constructs, Pamela o�ers explicit condition synchronization operators, i.e.,wait and signal in order to express inter-process precedence relations in a manner that iscompile-time deducible and e�ciently executable at run-time. Both operators take a set ofboolean conditions as argument. Let C = fc1; : : : ; cNg denote a set of N conditions. Theoperation wait(C) suspends a process until all conditions are true, i.e., c1^: : :^cN = true.The operation signal(C) assigns a true value on each of the member conditions. For singleconditions (jCj = 1) the set notation may be omitted. For example, the Pamela modelfdelay(1) wait(c) ; delay(5)g k fdelay(5) ; signal(c) ; delay(1)gyields T = 10. Note that subsequent wait or signal operations on the same variable haveno e�ect. E�ectively, the number of processes that is allowed to signal a condition isconstrained to be one.

34 CHAPTER 3. PAMELAWhile the implicit synchronization of the parallel (and sequential) operators discussedearlier enables the construction of SP graphs, the explicitwait/signal operators allow forthe expression of any task graph (like the above non-SP model). Note that a constructwhile (:c) < do nothing >instead of wait, in combination with a simple truth assignment c = true (i.e., substitutefor signal) does not implement a conditional synchronization in any simple discrete eventsimulator (like the Pamela Run-Time Library, see Appendix E) as the virtual time ofthe executing process would never advance. In other words, the construct would blockthe process inde�nitely. Thus, the wait construct should be used instead, in combinationwith signal.The choice forwait/signal operators with the above constraint instead of simply usingsemaphores is deliberate. A crucial di�erence between the above condition synchroniza-tion operators and semaphore operators (as discussed later on) is that the wait/signaloperations are assumed to be used only once, corresponding to satisfying the unique prece-dence between two synchronizing tasks. In contrast to a (counting) semaphore a conditionvariable implements no memory other than the state of the signaling task. Thus it isa single assignment variable, that allows for the application of the functional analysisapproach that is discussed in Section 3.4.Example 3.1 In this example we demonstrate the description of parallelism in conjunc-tion with condition synchronization. Recall the parallelization of the polynomial computa-tion (cf. Fig. 1.3) in which we assume an idealized machine model. Let each multiplicationand addition correspond to a work load of �m and �a time units, respectively. The Pamelamodel is given byL = par (i = 1; 8) LiL1 = delay(�m) ; signal(fc13; c14g)L2 = delay(�m) ; signal(c25)L3 = wait(c13) ; delay(�m) ; signal(c36)L4 = wait(c14) ; delay(�m) ; signal(c47)L5 = wait(c25) ; delay(�a) ; signal(c57)L6 = wait(c36) ; delay(�m) ; signal(c68)L7 = wait(fc47; c57g) ; delay(�a) ; signal(c78)L8 = wait(fc68; c78g) ; delay(�a)Each task is expressed as executing in parallel while the wait/signal pairs express thedata dependencies between them, thus constraining the actual parallelism. 23.2.3 Mutual ExclusionBeing a procedure-oriented language, the basic mechanism to implement mutual exclusionare counting semaphores [37], in conjunction with the simultaneous semaphore operators Pand V [97]. Like process parallelism, the notion of mutual exclusion is central in Pamela

3.2. LANGUAGE 35as it stands for the (exclusive) use of resources. Given their full-empty semantics thesemaphore abstract data type is a natural mechanism to model the use of resources.Consequently, in the following we will often denote a (counting) semaphore by the termresource that can take any integer value greater than or equal to zero.Let R = fr1; : : : ; rMg denote a �nite set of M integer variables (resources). LetU = f: : : ; ri; : : :g, U 2 R1, denote a multiset [117] of resources. Let # : R � R1 ! Ndenote the multiplicity function such that #(ri; U) returns the number of occurrences ofri in the multiset U . The processP(U)is suspended until in holds 8i : ri � #(ri; U), after which it unblocks and it instantaneouslyholds 8i : ri = ri �#(ri; U). Conversely, the processV(U)restores R according to the post condition 8i : ri = ri+#(ri; U). For example, let r1 = 1and r2 = 2. While the operation P(fr1; r2; r2g) will acquire all resources, the operationP(fr1; r1; r2g) would block until the occurrence of a V operation that returns at least oneunit r1. Notice that the above de�nitions allow for the expression of both simultaneousresource possession as well as instantaneous consumption and production multiplicity dueto the multiset de�nition of the argument1. For a single resource the above set notationis omitted in which case the above operations have the usual syntax of simple semaphoreoperations.Example 3.2 In this example we present a typical application of counting semaphores.Consider a producer-consumer scheme around a bounded bu�er with B storage cells thatis initially zero. Let the production time and consumption time be �p and �c, respec-tively. Let N denote the number of items being produced, bu�ered, and consumed. Theperformance simulation model is given byL = producer k consumerproducer = seq (i = 1; N) fdelay(�p) ; putgconsumer = seq (i = 1; N) fget ; delay(�c)gput = P(room) ; < store in bu�er > ; V(data)get = P(data) ; < load from bu�er > ; V(room)where the actual bu�er access is assumed to be mutually exclusive (discussed below). Theinitial value of the resources room and data are B (available empty cells) and 0 (availablefull cells), respectively. 2The above example shows a case where resources are acquired and released by di�erentprocesses. In most cases, however, resource acquisition and release is associated with the1The multiset approach is similar to the approach used by Peterson to describe multiplicity in Petrinets [117].

36 CHAPTER 3. PAMELAsame process in order to temporarily obtain exclusive access. For instance, a simple modelof the shared bu�er access in the above example is given byP(b) ; < update bu�er variables > ; V(b)where b models the bu�er resource (initially, b = 1) that needs to be accessed exclusivelyin order to maintain data integrity. Apart from the fact that resource access is oftenperformed in the context of the one process, the essential performance aspect is thatmutual exclusion is associated with time delay (otherwise, there would not be any reasonto include mutual exclusion in performance models, except for maintaining data integrity).Thus, the principal model of resource access is given by the following \template"access = P(r) ; delay(�) ; V(r)where � accounts for the total time spent using resource r. For example, for r = 1 themodel L = access k access k access yields T = 3� due to mutual exclusion of the threeaccesses. The frequent occurrence of the above template corresponds to the fact that eachtime delay can be associated with the use of some resource (multiset), like, e.g., a CPU,a memory (disk), a communication link, or simply some critical software section (e.g., �leserver). This is re
ected in terms of Pamela by the use construct. Let U be de�ned asearlier. The Pamela modelL = use(U; �)speci�es a process that exclusively (and instantaneously) acquires the multiset of resourcesspeci�ed by U for � time units. Note that the use concept is similar to the (modular)server concept used in queuing networks. In the sequel we will often refer to resources asservers and vice versa.In its basic de�nition, the use construct is equivalent touse(U; �) = P(U) ; delay(�) ; V(U)Hence, the scheduling discipline is FCFS (FIFO semaphores) with non-deterministic (fair)con
ict arbitration. Note, however, that other disciplines can be modeled by explicitlymodeling resource queues with some user-de�ned ordering in conjunction with the basicmutual exclusion mechanism provided by the P and V operators.Let s denote an FCFS resource. Thus far, a use(s; �) operation is assumed to be asso-ciated with one service visit, i.e., the duration � equals the basic service time. However,in many situations (i.e., at aggregate modeling level) the service demand will be a largemultiple of the service time. Let �s denote the service time. Although this situation canbe easily expressed byseq (i = 1; �=�s) use(s; �s)(where �sj�), it is more convenient to be able to associate a service time with each resourcesuch as, for instance, in queuing theory. In that way, without loss of information we canstill writeuse(s; �)

3.2. LANGUAGE 37By default, the operation will be interpreted as pure FCFS with �s = � . However, ifa service time �s < � is associated with s, the semantics of the operation is equal tothe above use(s; �s) sequence. Although, from a modeling perspective the de�nition of aservice time is merely a matter of convenience, during the analysis in Section 3.4 for caseswhere the resource multiplicity is larger than 1, it is advantageous to have informationon the actual number of visit counts, rather than just the total service amount. However,in the sequel we will always assume a non-preemptive FCFS interpretation, unless notedotherwise.One particular discipline next to FCFS that we will explicitly consider is processorsharing (PS), that is e�ectively an application of the FCFS model with associated servicetime de�nition �s ! 0. Let s be a PS type resource and let � denote the service demand.Based on the convention for resources with de�ned service time as described earlier, wecan writeuse(s; �)instead of having to specify an (in�nite) sequence. While the additional de�nition of abasic service time covers the whole spectrum, in typical modeling practice, we will onlyconsider resources in terms of a default FCFS discipline (non-preemptive, �s = �) and aPS discipline (�s ! 0). Both types of resource usage are conveniently addressed by thesame use operation that simply speci�es the (aggregate) service demand. Although inthe basic lower bound analysis technique we introduce in Section 3.4 the speci�c resourcetype is not of much in
uence, there are situations in which knowledge of the fact thatresource access is \sliced" (large visit counts) rather than non-preemptive (one visit), canconsiderably improve the analysis accuracy that can be obtained. This subject will betreated in Section 5.4.Example 3.3 In this example we show how the use operator is applied. Consider thedining philosophers problem [37]. Let N denote the number of think/eat cycles eachphilosopher performs. The Pamela solution is given byL = par (p = 1; 5) philosopher(p)philosopher(p) = seq (i = 1; N) fthink(p) ; eat(p)gthink(p) = delay(�t)eat(p) = use(fcp; c(p+1)mod5g; �e)where the (FCFS-type) resources c1; : : : c5 represents the �ve chopsticks. Note that theabove model introduces the notion of time in contrast to the classical problem that onlyaddresses the issue of concurrency and process synchronization. 2Considering the fundamental role of the use operation in modeling time delays as dis-cussed earlier, like in queuing networks, it is appropriate to (re)de�ne the delay operationin terms of an in�nite-server � where � =1 according todelay(�) = use(�; �)Thus, every time delay can be expressed in terms of a use operation.

38 CHAPTER 3. PAMELAWhile the use operator provides a basic mutual exclusion mechanism, in order tomodel systems in which resource usage is nested Pamela o�ers a generalization of theuse operation in the form of the using construct according tousing (s) LIts syntax resembles the Pascalwith construct in the sense that all statements within itsscope (i.e., L) are executed under the condition that the speci�ed resource (s) is acquired.In order to avoid various interpretation problems, the construct is only de�ned (and used)for FCFS scheduling according tousing (s) L = P(s) ; L ; V(s)where s is of FCFS type. It follows use(U; �) = using (U) delay(�). Note that nestingresource usage is di�erent (and less powerful) than simultaneous resource possession. Forexample, using (r1) using (r2) delay(�) is not equal to using (fr1; r2g delay(�), that,in turn, is equivalent to use(fr1; r2g; �).Apart from its evident modeling convenience, the important reason to express mutualexclusion in terms of use (and using) constructs instead of the underlying P and Voperations is that the additional structure in the model as imposed by the constructsallows us to de�ne a simple calculus that approximates the e�ects of mutual exclusion.The use of P and V operators would necessitate the (compile-time) recognition of use-like access templates in order to deduce the work loads in terms of the resources involved.A similar point with respect to procedure-oriented modeling instead of message-orientedmodeling is made in Section 3.3. Furthermore, as explained in Section 3.2, providingwait/signal operators rather than using semaphores is also motivated by analytic reasons.While a language de�nition without P/V operators would yield a too serious limitationwith regard to modeling power, one of the underlying theses of this work is that their needin performance modeling of parallel computer systems, and the consequent loss of modelanalyzability that they introduce, is limited to a small class of problems. This point willbe further addressed in Section 3.4.We end this section by an example that forms a typical demonstration of the modelingapproach in Pamela.Example 3.4 A classical example in performance modeling is a machine repair model(MRM) [91] in which P clients either spend a mean time �l on local processing, or requestservice from a server s (s = 1), with mean service time �s, with a total cycle count of Niterations (unlike the steady-state analysis of e.g., queuing systems or Petri nets, in ourapproach we require models to terminate). Both times are assumed to be exponentiallydistributed (the implementation through a call to some random generator function isignored for simplicity). The Pamela model of the MRM is given byL = par (p = 1; P)seq (i = 1; N) fdelay(�l);use(s; �s)g

3.3. PARADIGM 39in which the exclusive service is expressed by the use operation applied to the passiveresource s that represents the server. Note that the above mathematical expression Lis displayed in program format, including the usual indentation. Figure 3.2 shows thetask graph as well as the execution trace of the MRM. In the �gure deterministic timesare assumed. Furthermore, the processes are sorted according to ascending rank (roundrobin scheduling is assumed). The (use) tasks that are mutually exclusive are shaded
1

P

T

P1

τl

τs

τl

τs

τl

τs

τl

τs

Figure 3.2: MRM graph and execution trace (deterministic time version)(recall that task graphs cannot express mutual exclusion). Note that T is dominated bythe contention for s (in fact, T = O(PN)). The static analysis we present accounts forthis e�ect whereas traditional static analysis only accounts for the critical path due to thetask precedences (T = O(N)). 23.3 ParadigmIn this section we provide a rationale for the choice of a procedure-oriented languageparadigm in Pamela. In systems modeling two basic modeling approaches may be dis-tinguished, i.e., material-oriented and machine-oriented modeling [89]. The terminologyoriginates from modeling and simulation in the industrial environment where material isprocessed by several machines in sequence according to some manufacturing process. Inmaterial-oriented modeling each material is associated a (\client") process (i.e., the man-ufacturing process) that describes the propagation of the material along the various ma-chines, whereas in machine-oriented modeling each machine is associated a (\server") pro-cess, that accepts, processes, and delivers material within a chain formed by all machines.In terms of concurrent programming paradigms, material-oriented modeling has a naturalcorrespondence to procedure-oriented programming [8], whereas machine-oriented mod-eling has a natural correspondence to the message-oriented programming paradigm [8].Note, however, that either concurrent programming paradigm can be used to implementeither modeling approach.In order to enable compile-time analysis, the natural approach to performance mod-eling chosen in the Pamela methodology is material-oriented, hence the choice for a

40 CHAPTER 3. PAMELAprocedure-oriented language de�nition. This approach is demonstrated in Example 3.4(MRM), in which the server is modeled as a passive resource S, to be held for duration�s by each client process. In a machine-oriented approach, the server would be mod-eled by a separate process that would communicate with the client processes throughmessage-passing.The choice between both modeling paradigms touches upon the fundamental issue ofease of modeling versus ease of (subsequent) analysis. For example consider the MRM.In a machine-oriented paradigm, both clients and server would map to processes thatwould communicate (and synchronize) using message-passing constructs. Let us assumea message-oriented version of Pamela based on the use of a CSP-like scheme using syn-chronous send and receive operators combined with a selective communication state-ment. Let Cp, p = 1; : : : ; P denote the P client processes and let S denote the server.The MRM is modeled according toL = S k par (p = 1; P) CpCp = seq (i = 1; N) fdelay(�l);send(S);receive(S)gS = while (true) freceive(L1) ! delay(�s); send(L1) 2receive(L2) ! delay(�s); send(L2) 2: : :receive(LP) ! delay(�s); send(LP)gBy the way, note that in this model the mutual exclusion (implicitly) results from thesingle thread of control within the server while the non-determinism results from the '2'operator.From a simulation software engineering point of view it might be advantageous toadopt the machine-oriented paradigm because of its similarity with the object-oriented(machine-oriented) approach taken by most model builders. However, the above ap-proach is less amenable to compile-time analysis, both with respect to the analysis ofcondition synchronization as well as to the analysis of mutual exclusion. Unlike thematerial-oriented model the analysis of condition synchronization is complicated becauseof the non-determinism introduced by the message-passing mechanism (as a result of themutual exclusion involved). For instance, a critical path analysis technique is impossibleas the condition synchronization in above machine-oriented model cannot be expressed interms of a task graph (it is unknown in which order the tasks actually synchronize). Inother words, it may be impossible to deduce the \thread of condition synchronization"that now dynamically passes between di�erent processes, whereas in a material-orientedmodel this thread would coincide with the process's own thread of control, thus enabling amuch more simple, symbolic analysis scheme (a striking example of this important aspectis discussed in Section 5.5). In fact, by localizing information (comparable to \information

3.3. PARADIGM 41hiding" as proposed in software engineering) the information on the global synchronizationstructure has been lost2 (demonstrated in Example 3.6 later on).While the above applies to condition synchronization the material-oriented paradigmalso provides better analyzability with regard to mutual exclusion. In fact, unlike message-passing, the use construct forces the user to model according to a structured (operation-oriented [8]) paradigm that would be characterized by the templateuse(s; �) = send(s) ; receive(s)where s is given by the above server process. Note that a similar observation has alreadybeen made earlier with regard to the basic \asynchronous message-passing" operators Pand V. In some sense the situation is comparable with the use of unstructured gotos insequential languages and the resulting problems with respect to program analyzability.In summary, the global as well as the structured approach to describing synchroniza-tion in the material-oriented paradigm o�ers the possibility of a symbolic analysis scheme.As it is highly doubtful that recognition of a machine-oriented model in terms of an equiv-alent material-oriented model (reverse engineering) can be entirely mechanized, we adoptthe material-oriented approach, that, at the possible expense of somewhat more model-ing e�ort, retains the possibility of applying an automated mapping scheme yielding asymbolic performance model in the time domain.Perhaps even more than the MRM, a pipeline is a typical example to demonstrate themerit of the material-oriented modeling approach.Example 3.5 Consider the pipelined processing of N data sets involving an M unitpipeline (e.g., vector unit, packet-switched communication pipeline, software pipeline). Ina machine-oriented paradigm, each unit would map to a process that would synchronouslyreceive a data set, process it, and send it to the next unit. In our material-orientedapproach, the entire computational process (involving M stages) is expressed for eachdata set. The result is a contention model in which each data process is executed inparallel and contends for each unit in its course. The Pamela model is given byL = par (i = 1; N) seq (m = 1;M) use(um; �m)where um denotes the resource that represents unit m, and �m denotes the associatedprocessing time. The above model correctly predicts both startup delay as well as thebandwidth of the pipelined system. Note that, although the absolute order in which datais processed is left undetermined, the performance prediction is valid.Note that the material-oriented approach in which the pipeline is expressed in termsof a contention model yields an SP model that is amenable to the symbolic analysismethod as will be described later on. If a task graph formalism would be used theprocessing of each data element by each unit would have to be expressed at the expenseof a non-SP, N �M task graph as shown in Fig. 3.3, that, unlike the SP graph, is notamenable to the symbolic mapping process. Although the non-SP model can be mappedto a numeric time domain computation (in Pamela terms, wait/signal operators can be2The problem is more or less comparable to the parallelism detection problem with sequential pro-gramming languages, that, in general, cannot be solved at compile-time due to the irreversible loss ofinformation.

42 CHAPTER 3. PAMELAused instead of send/receive operators, see, e.g., Example 5.1), the generated process isstill essentially numeric in contrast to the symbolic model that results from the material-oriented approach.
N

u1

u2

u3

1 1 N

u1

u2

u3Conventional task graph

Pamela contention modelFigure 3.3: Traditional DG of a 3-stage pipeline compared to Pamela graph.Compared to a machine-oriented solution, a consequence of the material-oriented ap-proach is that more processes may be involved than absolutely necessary as in a typicalpipeline N �M . In fact, contention models express potential parallelism (N) instead ofthe actual parallelism (min(N;M)). Note, however, that given our analytical approachthe use of a possibly huge number of processes does not induce actual (simulation) costs.For instance, there is no reason not to specify a 106-element vector operation using 106\virtual" processes. 2At �rst glance, the use of the material-oriented paradigm with its structured syn-chronization operators (which we coin contention modeling) may seem to be restricted tosystems that perform simple, and highly structured synchronizations. Consequently, atypically \message-oriented" problem such as the producer-consumer problem (cf. Exam-ple 3.2) might seem less amenable to a description in terms of a contention model. Yetagain, a material-oriented description is possible, as shown in the next example.Example 3.6 Recall the producer-consumer scheme shown in Example 3.2. In contrastto the machine-oriented
avor of the �rst solution3 we now describe the propagationprocess of the data. In order to obtain a terminating system we de�ne N to be thenumber of data elements that are processed. If we de�ne the result to be the executiontime it takes for the combined system to terminate, it followsL = par (i = 1; N) fproduced ; bu�ered ; consumedgproduced = use(producer; �p)consumed = use(consumer; �c)bu�ered = use(bu�er; �b)3Of course, a pure machine-oriented solution would involve three processes, i.e., producer, consumer,and bu�er that would communicate using send=receive primitives. Nevertheless, although expressedin terms of our procedure-oriented formalism (\P/V"), the modeling paradigm was (largely) machine-oriented.

3.4. ANALYSIS 43where �b accounts for the time delay involved with the bu�er storage and retrieval of eachdata element (not speci�ed in the earlier example). 2As in the pipeline example, the contention model accurately accounts for the overall timebehavior of the process, while the model can be easily mapped into a symbolic time domainmodel, unlike the machine-oriented model. Again, the sacri�ce is \under-speci�cation",namely the abstraction of the order with respect to the actual data being processed, aswell as the exact location where the data resides. Assuming the bandwidths of the variousprocess stages di�er, due to the in�nite resource queues, all virtual processes will be queuedat the slowest resource, instead of being spread across the total system due to the boundedstorage capacity of each stage as in reality (e.g., the bounded bu�er). Thus, contentionmodeling is a good example of the trade-o� between obtaining precise knowledge of thetiming and location of each individual element with the associated analysis cost, versusobtaining global, system-level timing information only, yet at a much lower expense.3.4 Analysis3.4.1 IntroductionIn this section we present a basic calculus that enables us to reason about the temporalbehavior of Pamela models. As mentioned earlier, the approach towards the analysisof Pamela models is based on the application of critical path analysis, extended with abounding analysis to approximate the e�ects of mutual exclusion. As the latter approach isbased on identifying potential serialization of contending model components, the analysishas been coined serialization analysis.Apart from providing transformation rules from the Pamela domain to the timedomain, the calculus enables model optimizations based on equivalence relations betweenmodels in the Pamela domain that have the same time solution. Some very simpleexamples have already been presented during the description of the Pamela language.Recall the modelL = delay(�1) ; delay(�2)where �1 and �2 are deterministic variables. Clearly, it follows T = �1 + �2. On the otherhand, it also holdsdelay(�1) ; delay(�2) = delay(�1 + �2)of which the right hand side also yields T = �1 + �2. Likewise the modelL = delay(�1) k delay(�2)immediately yields T = max(�1; �2) due to the implicit barrier synchronization. Conse-quently,delay(�1) k delay(�2) = delay(�1max �2)Consequently, the calculus comprises a mixture of mapping descriptions from the Pameladomain to the time domain as well as transformations within the Pamela domain. As

44 CHAPTER 3. PAMELAPamelamodels, based on delays only, can be expressed in terms of task graphs, a criticalpath analysis scheme can be de�ned that maps a so-called contention-free (delay) modelinto a deterministic time domain computation. This will be described in the next section.As an introduction to the mechanics of contention analysis, consider the PamelamodelL = use(r; �1) k use(r; �2)where r is FCFS-type (initially, r = 1). In contrast to the above parallel composition thismodel yields T = �1 + �2 due to the serialization of both use statements. Even thoughthe outcome of the above model can still be expressed in terms of a single solution, theintroduction of mutual exclusion next to condition synchronization entails a new analysisproblem due to the inherent non-determinism of the con
ict arbitration. For instance,the analysis of the modelL = L1 k L2L1 = use(r; �1) ; delay(�2)L2 = use(r; �3) ; delay(�4)is much less trivial. Depending on which process is given priority the outcome is eitherT = �1 +max(�3+ �4; �2) or T = �3+max(�1 + �2; �4). The non-deterministic direction ofthe implicit precedence arc between both use statements introduces the uncertainty in theprediction. Recall that we assume for every FCFS resource that the service time equalsthe service demand argument of each use operation unless stated otherwise. Hence, thevariance of T for the above model can be quite large (up to a factor 2 as will be discussed inChapter 6). On the other extreme, for PS-type resources (service time! 0) the varianceof the result would go to zero in which case a deterministic result is obtained. (It holds T =2min(�1; �3)+max(�2+ �1� �3; �2; �4+ �3� �1; �4) as explained in Section 5.4.) In general,however, the result is essentially non-deterministic. The analysis of PS-type resourceusage is discussed in Section 3.6. While this analysis involves additional transformationsthat apply to PS-type resources only, the basic calculus we present in this chapter coversany scheduling discipline. Hence, in the following we tacitly assume FCFS-type resourcesunless speci�cally noted.In general, large models comprise many use statements involving many resources.Even worse, for aggregate and possibly dynamic models, the exact relative order of thevarious use statements is typically unknown at compile-time. Clearly, unlike critical pathanalysis, there is no simple mechanical process through which L can be mapped onto Tother than through enumeration of all possible critical paths, depending on the actual �values and priority schemes. In general, the execution time T of a Pamelamodel may beanywhere between a lower bound T l and some upper bound T u. Note that this uncertaintyis entirely due to the presence (or potential) of contention. At this point we do not (yet)consider conditional control
ow which, of course, forms an additional complication.The characteristic approach in probabilistic models like queuing networks, Petri nets,or process algebras is to analyze the entire (state) distribution or, for e�ciency reasons,merely to consider the mean value of T . The approach we will take is to select T l as anestimate for T . The reason for this choice is as follows. First, the analysis of a (tight)lower bound is trivial and, equally importantly, it is amenable to a mechanical, symbolic,

3.4. ANALYSIS 45scheme like conventional critical path analysis. Second, as will be shown in Section 6.2,the analysis of an upper bound that is tight (i.e., has any practical value) is extremelycomplex. Third, as will be shown in Section 6.3, for the vast majority of systems withrandom resource usage (i.e., a typical system) the mean value of T is much closer to T lthan T u. The upper bound corresponds to extremely unlikely schedules (unfair resourcecon
ict arbitrations) whereas the vast majority of schedules entails execution times closeto T l. Hence, the lower bound is a much better estimate of T than T u.Our general approach towards the analysis of Pamela models is characterized byFigure 3.4. For the subset of contention-free models T can be computed based on the
Pamela Domain

par

using

use

P V

while

delay

seq if
ϕ,ω

l (analytic, approx)T

T (simulation, sample)

Time Domain

ϕ
T (analytic, exact)

sim

Figure 3.4: Pamela analysis approachisomorphism '. For a subset of contention models (i.e., those having structured ME andno data dependencies) the lower bound analysis technique applies (T l). For the supersetsimulation is the only solution, be it that parts of the model that are within the above sub-sets can be replaced by reduced versions using the appropriate analytic technique. Hence,signi�cant savings in simulation time can be achieved at small (or without) sacri�cingprediction accuracy. With respect to the if operator within the smallest set, note thatthis only applies to simple conditions that are static. For many applications, however,the if operator should be thought as being in one of the supersets. This point will bediscussed later on.In the following we �rst describe the critical path component of the calculus thatapplies for models that are contention-free. After that we will describe our approach tothe analysis of mutual exclusion and how it is integrated within the critical path analysis.3.4.2 Critical Path AnalysisIn the following we formalize critical path analysis in terms of Pamela. First we considermodels without conditional control
ow. As described in Chapter 2, for task graphs,

46 CHAPTER 3. PAMELAcritical path analysis is based on the isomorphism4 between the task graph in the originalcomputation domain and the task graph representing the time domain computation. Ascontention-free Pamela models can be represented by task graphs the isomorphism alsoapplies to Pamela models. Let ' denote the isomorphism between a computation Lin the Pamela domain and the corresponding (execution) computation T in the timedomain. Then T = '(L) denotes the estimated execution time of L. Based on the taskgraph isomorphism described in Chapter 2, T is constructed by applying the followingtransformations.Let gi denote a basic Pamela statement, i.e., a delay a wait or a signal statement.Let gp(i) denote its predecessor statement (except for the very �rst statement). Thefollowing time computations are generated:� identity:delay(�)! ri = rp(i) + � (3.1)� condition synchronization:signal(fc1; : : : ; cNg)! ri = rp(i) ; 8i = 1 : : : N : r0ci = ri (3.2)wait(fc1; : : : ; cNg)! ri = max(rp(i); maxi=1:::N r0ci)) (3.3)Note that each variable is assigned exactly once. Instead of implementing thewait/signaltime synchronization in terms of the wait task variable ri, a condition-speci�c variabler0c is used. The reason for using this modi�ed scheme is its practical value in that acomputable result is still achieved in cases where the name of the predecessor task isnot available in explicit form (see Example 5.1 that involves the critical path analysis ofconditional message-passing code).The transformation of a delay statement can also be expressed in terms of ' accordingto '(delay(�)) = � (3.4)The transformation of the sequential and parallel composition operators are given by� sequentialism:'(L1 ; L2) = '(L1) + '(L2) (3.5)� parallelism:'(L1 k L2) = '(L1)max'(L2) (3.6)4Although all static analysis techniques are based on this isomorphism a comparable algebraic de-scription has only been explicitly introduced in [106].

3.4. ANALYSIS 47These transformations generalize to the following reductions'(seq (i = 1; N) Li) = NXi=1 '(Li) (3.7)'(par (i = 1; N) Li) = maxi=1:::N '(Li) (3.8)For example, consider the Pamela model of the parallelized polynomial computationaccording to Example 3.1. Each equation of the Pamela model is compiled into thefollowing computations (after some simplifying local substitutions)T = max(r1; r2; : : : ; r8)r1 = 0 + �m ; r013 = r1 ; r014 = r1r2 = 0 + �m ; r025 = r2r3 = max(0; r013) + �m ; r036 = r3r4 = max(0; r014) + �m ; r047 = r4r5 = max(0; r025) + �a ; r057 = r5r6 = max(0; r036) + �m ; r068 = r6r7 = max(0; r047; r057) + �a ; r078 = r7r8 = max(0; r068; r078) + �aDue to the static precedence relations, the computation of T is straightforward. Theorder in which each equation is to be evaluated on a (presumably) sequential systemcan be determined using compile-time dependence analysis. For models in which the taskprecedence relations are dynamic the above compilation scheme also applies. In that case,the above equations must be embedded within an additional iterative loop structure thatevaluates the data dependencies at run-time5.Due to the isomorphism, by Eq. (3.4) through (3.6) the following transformations arede�ned as welldelay(�1) ; delay(�2) = delay(�1 + �2)delay(�1) k delay(�2) = delay(�1max �2)that form the basis for SP reduction. For example, consider the following SP modelL = L1 k L2L1 = delay(�1) ; delay(�2)L2 = delay(�3) ; delay(�4)Application of ' (Eqs. (3.4),through (3.6)) results inT = T1maxT2T1 = �1 + �2T2 = �3 + �45See Example 5.1. Note that this is similar to maintaininga discrete event list in a simulation approach.The relation between critical path analysis and simulation is elaborated in Section 5.4.

48 CHAPTER 3. PAMELAthat yields T = ((�1+ �2)max(�3+ �4)). On the other hand, SP reduction yields the sameresult, be it in the Pamela domain according to the derivationL1 = delay(�1 + �2)L2 = delay(�3 + �4)L = L1 k L2 = delay((�1 + �2)max(�3 + �4))As discussed in Chapter 2, conditional control
ow is usually handled by weighting theworkloads in the model by the (combined) branching probability associated with thebranch in which the statement resides. Formally, conditional statements can be incorpo-rated in the compilation scheme by simply transferring the condition to the time domainaccording to'(if (c) L) = [c]'(L) (3.9)where [: : :] : ftrue; falseg ! f0; 1g denotes Iverson's operator [75] de�ned by[c] = (1; c is true;0; c is false.Hence, the following transformation holdsif (c) delay(�) = delay([c]�)Clearly, the conditional construct(s) will eventually have to be reduced in order to avoida functional simulation. For some parameters of interest, however, Eq. (3.9) provides ameans of retaining them within the resulting performance model. For instance, considerL = seq (i = 1; N) if (i mod S) delay(�)is compiled intoT = NXi=1 [i mod S]�in which the value of S is clearly of interest to the model. Retaining parameters may alsohave a favorable e�ect on accuracy. In the above case, subsequent reduction of the P -[: : :] pair yieldsT = dNS e�However, in many cases, probabilistic reductions are used, which, in terms of our calculusis expressed as the following mean value expressionE(NXi=1[ci]T) = pTwhere ci denotes some, possibly i-dependent condition (e.g., resulting from a branch in aloop), and p denotes the average truth probability of c1; : : : cN (e.g., the average branchingprobability).

3.4. ANALYSIS 493.4.3 Lower Bound AnalysisIn this section we introduce the approximate analysis of mutual exclusion and describe itsintegration within the critical path compilation scheme as described earlier. The analysisis restricted to simple use models, i.e., models in terms of use(U; �) where jU j = 1. Theanalysis of simultaneous resource possession will be discussed in Section 3.6.Recall the modelL = L1 k L2L1 = use(r; �1) ; delay(�2)L2 = use(r; �3) ; delay(�4)where r = 1. As discussed before, in general the prediction for T is only known to liebetween a lower bound T l and an upper bound T u due to the non-determinism involvedwith the potential of resource contention. In the following we describe the analysis of thelower bound.On the one hand, the lower bound is determined by the fact that T cannot be lessthan the execution time of the same model L0 with r = � according toL01 = delay(�1) ; delay(�2)L02 = delay(�3) ; delay(�4)Consequently, T � '(L0) which yieldsT � max(�1 + �2; �3 + �4)as shown earlier.On the other hand, T cannot be less than the aggregate service demand �1 + �3 onthe resource r corresponding to the fact that the use statements cannot overlap (i.e., areserialized). ConsequentlyT l = max(�1 + �2; �3 + �4; �1 + �3)When more resources are involved the serialization argument simply applies to each re-source separately. Clearly, the above serialization analysis is amenable to a mechanized,symbolic scheme.We now present the analysis algorithm. Let ' now be de�ned for any Pamela modelincluding use statements according to Eqs. (3.1) through (3.9) including'(use(r; �)) = � (3.10)The e�ect of mutual exclusion is approximated by the following scheme. Let �(L) =(�1; : : : ; �M) denote the total service demand vector of L where M is the total number ofresources involved and �m denotes the total service demand on resource rm. For conve-nience we will write �m(L) to denote the m-th element of �(L). Clearly, the aggregatework load on each resource is given by�(L) = 8<: �(L1) + : : :+ �(LN); L = L1 ; : : : ; LN or L = L1 k : : : k LN ;�em; L = use(rm; �). (3.11)

50 CHAPTER 3. PAMELAwhere em = (0; : : : ; 0; 1; 0; : : : ; 0) is the M -dimensional unit vector in the m direction, andaddition and multiplication are de�ned element-wise. Let ! denote the lower bound onthe execution time of L due to the fact that each access to a resource is at least serialized.Assuming that the amount of request parallelism is larger than the appropriate resourcemultiplicity, for su�ciently large visit counts (e.g., PS-type resources) it follows!(L) = maxm=1:::M �m(L)rm (3.12)Eq. (3.12) follows from the fact that the execution time can never less than the maximumof the total time delay at each resource (i.e., the total service demand divided by theserver multiplicity). For cases where the number of visit counts is very low, when thebasic service time �m is known, a somewhat tighter bound is established by!(L) = maxm=1:::M &�m(L)rm ' �m; �m(L) = �m(L)�m (3.13)where �m denotes the aggregate visit count of resource m. For instance, when the totalservice demand only entails � = 3 visits involving a resource with multiplicity r = 2,the minimum delay corresponds to 2 units service (2�m), rather than 1.5 units serviceas would be computed by Eq. (3.12). When the ratio between the number of visits andresource multiplicity is large, Eq. (3.13) approaches Eq. (3.12).Combining the lower bound due to mutual exclusion (!) with the lower bound due tocondition synchronization ('), it follows that the lower bound on T is predicted byT l(L) = max('(L); !(L)) (3.14)While Eq. (3.14) applies to basic parallel sections, for general models the following recur-sion provides a sharper bound as will be illustrated in Example 3.10.T l(L) = 8>>>><>>>>: T l(L1) + : : :+ T l(LN); L = L1 ; : : : ; LN ;T l(L1)max : : : max T l(LN)max !(L); L = L1 k : : : k LN ;max('(L); !(L)); otherwise. (3.15)Note that conventional compile-time analysis disregards ! while conventional queuinganalysis (partially) disregards '. Serialization analysis combines both terms in an ap-proximation that sustains a minimum accuracy where the aforementioned approaches fail.Like conventional critical path analysis, serialization analysis has a quadratic complexityin the (symbolic) size of the model, while for SP models the complexity is linear.Similar to the critical path analysis, described earlier, the lower bound analysis canalso be expressed in terms of the Pamela domain, rather than the time domain. Unlikecontention-free models, however, some transformations are approximations, rather thanexact. This even applies to simple models. Consider a submodeluse(r; �1) ; use(r; �2)where r = 1. For FCFS-type resources the reductionuse(r; �1) ; use(r; �2) = use(r; �1 + �2)

3.4. ANALYSIS 51is not entirely correct (for PS-type resources the reduction holds). Although, in termsof T l both cases are equivalent, in terms of T a di�erent distribution will result due tothe fact that the state space has changed (in the original submodel a process can bepreempted after �1 time units). Similarly, the reductionuse(r; �1) k use(r; �2) = use(r; �1 + �2)entails the same problem. Nevertheless, when the lower bound analysis is applied theabove reductions hold. Even when T is considered, the errors that are introduced aretypically small except for small models with coarse grain FCFS resource usage. Therelated accuracy aspects are extensively discussed in Chapter 6.As the above reductions are correct within the lower bound analysis, we now presentthe remaining transformations needed to apply serialization analysis within the Pameladomain. Like in the case of contention-free models, conditional control
ow is formallytransferred to the time domain according toif (c) use(r; �) = use(r; [c]�)After all conditional constructs are rewritten accordingly, a static model results that isamenable to the application of Eq. (3.15). In the Pamela domain, Eq. (3.14) correspondsto the following transformation, denoted F .Transformation 3.1 LetL(r) = par (p = 1 : : : P) Lp(r)model a parallel section where Lp(r) involves mutual exclusive access to some resource rup to a total service demand �p. Then its lower bound transformation F (L) is given byF (L) = use(r; !) k L(�) ; ! = PPp=1 �prm2Note that, instead of the isomorphism with respect to contention-free models, this trans-formation does not imply an equality. It denotes an approximation. In case of multipleresources the lower bound transformation successively applies to each resource, based onthe fact that the contributions to T l are independent.The transformation factors out the serialization part from within the parallel section.The use statements within the original section are subsequently replaced with delays(hence the � term) to avoid the introduction of redundant contention terms. For instanceconsider the exampleL = fuse(r; �1) ; delay(�2)g k fuse(r; �3) ; delay(�4)gApplication of Transformation 3.1 yieldsL0 = fuse(r; �1) ; use(r; �3)g k fdelay(�1) ; delay(�2)g k fdelay(�3) ; delay(�4)gthat introduces the extra term in the lower bound formula derived earlier.Corresponding to the recursive process of Eq. (3.15) the above transformation is em-bedded in the following algorithm.

52 CHAPTER 3. PAMELAAlgorithm 3.1 Let L be a contention model. The following serialization algorithm Atransforms L into a contention-free model L0 = A(L) while preserving the lower bound onexecution time as de�ned by serialization analysis.A(L)f let L = seq (s = 1; S) Lsif (S > 1)for (s = 1 : : : S)A(Ls)let L = par (p = 1; P) Lpif (P > 1) ffor (p = 1 : : : P)A(Lp)F (L)gg23.5 ExamplesIn this section we present a number of examples that demonstrate how the analysis tech-nique is applied.Example 3.7 In this example we derive T l for the MRM and compare it with resultsobtained through queuing theory. Recall the MRM in Example 3.4. It follows' = maxp=1:::P NXi=1(�l + �s) = N(�l + �s)! = PXp=1 NXi=1 �s = PN�sHence, by Eq. (3.14) (or Eq. (3.15)) it follows T l = N max(�l + �s; P �s). Unlike con-ventional compile-time analysis T l accounts for the additional queuing delay when s issaturated. The above analysis yields the same result as asymptotic bound analysis inqueuing theory [93]. Let R denote the response time and let Z = �l denote the thinktime. Then the mean cycle time R + Z equals '=N for P � P � and !=N for P � P �,where the saturation point P � = (�s+�l)=�s denotes the crossover between the asymptotes.For deterministic time delays T l provides a good estimation. However, even forstochastic time delays T l serves as a reasonable estimator. For example, assume that�l and �s are exponentially distributed. While the result for T l remains the same, theaccurate (simulation) result T can be computed analytically. Since the MRM maps to aseparable queuing network [15], Mean Value Analysis (MVA) [129] may be applied thatyields (for large N)T = N(R(P) + �l)

3.5. EXAMPLES 53where the response time R(n) of the server for n clients in the closed system is given bythe MVA recursion [93]R(0) = 0 ; R(n + 1) = "1 + PR(n)�l +R(n)# �sFigure 3.5 compares the predictions T l (dotted line) and T (straight line) as a functionof the number of clients P . The �gure shows that the lower bound essentially forms the
m
u
l

T

0
1

T
t

*P P

T l

T

ω
ϕFigure 3.5: Lower bound T l compared to MVA prediction Tasymptotes of the probabilistic prediction, with a limited deviation occurring at P = P �due to the small amount of contention that occurs in the stochastic system. Notice thedramatic error that traditional compile-time analysis (T t = ') entails for large P . Theutility of T l as an estimator for T is further discussed in Chapter 6. 2Example 3.8 In this example we derive T l for the pipeline model and compare it to T .Consider the pipeline model discussed in Example 3.5 given byL = par (i = 1; N) seq (m = 1;M) use(um; �m)Let a pipeline unit take �a on average, and let c denote the slowest pipeline unit. It follows' = M�a; ! = N�cThus Eq. (3.14) yields T l = max(M�a; N�c). Indeed, T l is a lower bound as the correctpipeline model is given by T = M�a + (N � 1)�c. However, the relative deviation is neg-ligible for cases where either ' dominates (startup term, M � N) or where ! dominates(bandwidth term, N � M). The maximum deviation occurs for a balanced system (i.e.,equal resource demands, �c = �a = �) when N = M . In this case, T l = N� whereasT = (2N �1)� . Hence, the worst case relative deviation is a factor 2. Note, however, thatthis can only occur for balanced systems that are precisely in the cut-o� region between nosaturation and full saturation. Notice how the contention model and its associated anal-ysis account for both pipeline startup (critical path term ') and bandwidth (contentionterm !). 2

54 CHAPTER 3. PAMELABoth the MRM and the pipeline are examples in which T l and T di�er (up to a factor2) due to the fact that the '-! analysis does not account for the transient skewing e�ectin which the processes incur a one-only delay as a result of the initial resource con
icts(see Fig. 3.2). An extension of the lower bound analysis method to accurately account forthis general phenomenon will be described in Section 3.6. Due to the extension a correctresult for the pipeline model can be achieved.Example 3.9 As an example of the recursive operation of Algorithm 3.1, interleavedwith SP reduction, consider the following SP modelL = t1 ; (L1 k L2) ; t16L1 = t2 ; ((t4 ; t7) k (t5 ; t8)) ; t11 ; t14L2 = t3 ; t6 ; ((t9 ; t12) k (t10 ; t13)) ; t15wheretf1;5;6;7;9;11;13;16g = delay(1); tf3;14g = delay(2)are delay tasks andt2 = use(r1; 1); tf10;12g = use(r1; 5); t15 = use(r2; 1); tf4;8g = use(r2; 5)contend for resource r1 or r2 (ri = 1). Figure 3.6 shows the initial task graph (annotated
1

1

6

3

6

3

1

1010

1

Mutex (r1)

Conflict-free

Mutex (r2)

1

1

5

1

1

1

1

5

1

15

1 5

2

2

1

10

10

(Trad: 16)

1

1

1

1

1

1

1

1

1

5

5

2

2

1

5

5

(Trad: 12)

(Trad: 16)

(S)

(R)

Figure 3.6: Serialization process at recursion depth 1with the individual workloads, the tasks are numbered row-wise), the graph after the �rsttwo applications of Transformation 3.1 (S: serialization) at recursion depth 1, and afterpartial reduction (R: reduction). Figure 3.7 shows the graph after application of Trans-formation 3.1 (S) at the top level, after replacing use operations by delays as there isno more potential for contention (�), and after �nal reduction (R). The numbers below

3.5. EXAMPLES 55
6

3

6

3

1

1

10

1

10

1

1111

(Trad: 16)

(R)

1

11

1

1411
(ρ)

Mutex (r1)

Conflict-free

Mutex (r2)

(R)
16

1

1

1411 11

(Trad: 16) (Trad: 16)Figure 3.7: Serialization process at recursion depth 0each graph denote the result of traditional analysis ('). The example demonstrates thatthe complete recursion needs to be performed, rather than simply applying Transforma-tion 3.1 just once, incorporating all par levels simultaneously. The latter would still yieldT l = 12, not accounting for the serialization e�ects that occur at par level 1. 2Example 3.10 In order to demonstrate the vital importance of recursively applyingEq. (3.14) (i.e., Eq. (3.15)), consider the following model, i.e.,L = seq (i = 1; N) par (p = 1; P) use(ri; �)in which resource usage is non-uniformly distributed over the length of the entire com-putation (see Fig. 3.8). While Eq. (3.14) yields T l = max(P�;N�), Eq. (3.15) yields
r1

rN

1 P

1

NFigure 3.8: Nonuniform resource accessT l = PNi=1max(P�; �) = NP� . Thus applying Eq. (3.15) (i.e., applying Eq. (3.14) toeach parallel section instead of only once) improves the bound by as much as a factor N .2

56 CHAPTER 3. PAMELATo conclude this section we present an example showing how (simple) algorithms areanalyzed. For the sake of modeling we must now assume the presence of a machine.However, we will not consider machine modeling in more detail than necessary as this isthe subject of Chapter 4. Furthermore, the example shows how conditional control
owis modeled.Example 3.11 Consider the following SPMD [82] program that scales a sparse N elementvector v using a simple (abstract) P -node scalar shared-memory machine, i.e.,for i = 0 .. B(p)-1if v[f(p,i)] != 0v[f(p,i)] = v[f(p,i)] * alpha;where p = 0 : : : P � 1 denotes the processor index and B(p) and f(p; i) denote local loopbound and index function, respectively (based on the speci�c partitioning scheme used).Let the machine (interface) be modeled in terms of the instructions move (shared memoryload/store) and flop (local
oating point operation, including register tra�c). Note thesimilarity to the abstract parallel machine introduced in Chapter 1. Given this machineinterface, the Pamela model of the parallel program is given by the expressionL = par (p = 0; P � 1)seq (i = 0; B(p)� 1) fmove(v+ f(p; i));if (v[f(p; i)] 6= 0) fflop;move(v+ f(p; i))ggwhere the par section accounts for the SPMD execution. Many details like multiprocessingoverhead are ignored for simplicity (alpha is assumed to be already loaded in register).For this example we only consider an abstract machine model where a
oating pointis represented by a delay and shared-memory access is mutually exclusive according toflop = delay(�f)move(a) = use(m; �m)where �f denotes the e�ective
oating point instruction time,m denotes the shared mem-ory resource, and �m denotes the e�ective memory load/store time. Note that in thisabstract architecture the actual memory address (a) is irrelevant (unlike many of thearchitectures we will discuss in the next chapter). Consequently, it followsL = par (p = 0; P � 1)seq (i = 0; B(p)� 1) fuse(�m);if (c(p; i)) fdelay(�f);use(�m)gg

3.5. EXAMPLES 57P T l=T '=T5 0.96 0.9610 0.87 0.8715 0.89 0.7220 0.92 0.5925 0.95 0.46Table 3.1: T l without reduction. P T l=T '=T5 0.89 0.8910 0.73 0.7315 0.89 0.6220 0.92 0.4625 0.95 0.38Table 3.2: T l (reduction to O(1)).where c(p; i) = (v[f(p; i)] 6= 0) denotes the data dependency.Serialization analysis yields' = maxp=0:::P�1 B(p)�1Xi=0 (�m + [c(p; i)](�m + �f))! = P�1Xp=0 B(p)�1Xi=0 (1 + [c(p; i)])�mwhich yields the prediction T l = max('; !).For vectors with N = 104 and uniform density d = 0:1 Table 3.1 shows some results fordi�erent numbers of processors (�f = 100�m). As in the other examples T l is reasonablyaccurate for cases with relatively high ' or !. For P � 15 contention starts to dominateas can be seen by the values of ' (second column).The above prediction has an O(N) complexity. In the interest of e�ciency we considertwo possible reductions of T l. First, let the density of v be uniform and measured to begiven by d. As a result of the reductionB(p)�1Xi=0 [c(p; i)] = dB(p)it follows' = maxp=0:::P�1 B(p) (�m + d(�m + �f))! = PB(1 + d)�m = N(1 + d)�mwhich reduces the complexity of T l from O(N) to O(P). Note that ' and ! now denotemean values. Furthermore, under the assumption of a standard block or cyclic partitioningscheme an O(1) complexity model results, i.e.,T l = max(�NP � (�m + d(�m + �f)); N(1 + d)�m)Note that the �rst reduction of ' to a mean value introduces an error as the real mean valuebe slightly higher due to the actual variance in the number of non-zeros that are processedby each node (the mean value o�set is logarithmically in P [90]). This phenomenon isre
ected by the lower '=T values in Table 3.2 compared to Table 3.1 (again, for parametervaluses N = 104; d = 0:1; �f = 100�m). However, the error is limited due the fact thatfor larger P the ! term will dominate (a correct mean value), which yields the correctasymptote as illustrated by Table 3.2. 2

58 CHAPTER 3. PAMELA3.6 ExtensionsIn this section we describe two simple extensions to the lower bound analysis method.The �rst extension applies to the introduction of a third term (next to ' and !) thataccounts for the transient skewing that occurs in a parallel system. The second extensiondeals with the approximation of the e�ects of simultaneous resource possession.3.6.1 Skewing E�ectInherent to our methodology, the models that are subject to our analysis method aretransient, i.e., they eventually terminate (as does the corresponding time domain model).Consequently, there are cases in which performance is dominated by an initial (and �nal)transient phase, rather than the steady state phase. This transient phenomenon speci�-cally occurs when multiple processes (initially) execute the same resource access sequencethat gives rise to a large number of initial con
icts. As a result the processes are skewedduring their subsequent steady state phase. Example models are the MRM (Example 3.4and 3.7, especially for small N , also see Fig. 3.2), and, most notably, the pipeline model(Example 3.5 and 3.8). This one-only phenomenon is not accounted for by ' as it is acontention e�ect, nor is it accounted for by ! since this initial serialization phenomenonis independent of the possible steady state serialization. In the following we will accountfor the skewing e�ect when we derive an exact solution for a simple model called the\generalized MRM" that generalizes over models like the MRM and the pipeline. Theresult represents an optimization over the general boundT l = max('; !)Let the generalized MRM be given byL = par (p = 1; P) seq (i = 1; N) fdelay(�l) ; seq (m = 1;M) use(um; �m)gFor M = 1 the model reduces to the MRM while for N = 1 and �l = 0 the model reducesto a pipeline. After each process has �nished its �rst iteration i = 1, the system entersa steady state in which each thread is delayed (skewed) with respect to its immediateresource access predecessor by an amount equal to the largest resource access delay (seeFig. 3.9). It holds
L1

L2

L3

L4

1 2 3

1

1

2

2

2

3

3

3

1

1

1

1

2

2

2

2

3

3

3

31

. . .

. . .

. . .

. . .

l

l

l

l

l

l

l

lFigure 3.9: Trace of a 3-stage generalized MRM (P = 4, �m deterministic)' = N �l + MXm=1 �m! ; ! = PN maxm=1:::M �m

3.6. EXTENSIONS 59Let � � = maxm=1:::M �mdenote the largest resource access delay (� � = �2 in the example). From Fig. 3.9 it is easilyseen that when contention only entails skewing it holds T = '+(P�1)� � (critical path plusskewing). When contention does dominate the entire process it holds T = ! + '=N � � �(contention chain embedded within slightly longer trace). Consequently, for generalizedMRMs the optimization of Eq. (3.14) is given byT = max('+ P� �; ! + '=N) � � � (3.16)Note that for deterministic time delays the above result is exact, i.e., T l = T as is easilyseen from the example in Fig. 3.9.For the standard pipeline Eq. (3.16) reduces toT = '+ ! � � �For equal stages (i.e., balanced pipeline) it followsT = (M + P � 1)�mwhich is the well-known linear startup-bandwidth model [72]. Note that for large P andM it holdsT � '+ !instead ofT l = max('; !)that explains the worst case deviation of a factor two between T l and T as mentioned inExample 3.8.3.6.2 Simultaneous Resource PossessionThe analysis presented thus far has been restricted to models with single resource pos-session, i.e., to use(U; �) operations where jU j = 1. In this section we brie
y discussthe analysis of simultaneous resource possession. Note that this analysis is signi�cantlyharder than that for single resource usage as exempli�ed by the di�erence in complexitybetween, e.g., the analysis of queuing networks (single resource possession) and Petri nets(multiple resource possession) [117]. Consider the following modelL = par (p = 1; P) LpLp = seq (i = 1; N) f: : : ; t1 ; : : : ; t2 ; : : : ; t3 ; : : :gt1 = use(r1; �1)t2 = use(r2; �2)t3 = use(fr1; r2g; �3)where r1; r2 are FCFS-type resources and the : : : regions represent a �nite number ofarbitrary statements. Instead of only two types of mutual exclusion, i.e., the r1 accessesand the r2 accesses, there are �ve serialization mechanisms to be considered:

60 CHAPTER 3. PAMELA� t1 con
icts with t1� t2 con
icts with t2� t3 con
icts with t3� t3 con
icts with t1� t3 con
icts with t2Let the set fr1; r2g be represented by the \simultaneous resource" r12 and let �12 = �3. Interms of r12 it follows that the ! contribution of t1, t2, and t3 to the lower bound is givenby ! = NP max(�1; �2; �12; �1 + �12; �2 + �12) = NP (�12 +max(�1; �2))In general, the number of potential con
icts (i.e., intersections between sets of simultane-ous resources U1; U2; : : :) that need to be considered grows with the number and cardinalityof the sets.Like the approximate transformations, discussed earlier, that hold in terms of the lowerbound analysis, we introduce the following transformationuse(fr1; : : : ; rMg; �)! par (i = 1;M) use(ri; �) (3.17)Thus, the potential con
icts between the various resource sets are preserved. Conse-quently, in terms of the lower bound, the above transformation yields the same solutionas can easily be seen in the above example (if follows ! = NP max(�1 + �3; �2 + �3)).In terms of T , however, the transformation introduces an error since the original syn-chronization requirement is not present in the par statement. For example, consider thefollowing process (taken from the case study in Section 5.3)L = L1 k L2L1 = use(ff; xg; �x) ; use(f; �y)L2 = use(x; �x)where f; x are FCFS-type resources (see Fig. 3.10). When L1 is scheduled before L2 itfollows T = T l = �x +max(�x; �y). When L2 is scheduled before L1 it follows T = T u =�x + �x + �y. However, transformation (3.17) yieldsL = L1 k L2L1 = fuse(f; �x) k use(x; �x)g ; use(f; �y)L2 = use(x; �x)which results in T u = T l = �x +max(�x; �y). In this case, there are no synchronizationrestrictions with regard to the f resource, hence, the decrease in T u. Note, however, thatT l is equal for both models.

3.6. EXTENSIONS 61
L1

L2 x

L1

L2 x

f,x f f,x f

f

L2 x

L11

L12

f

x

f

L2

L11

L12

f

x

x

or

original:

approximation:

orFigure 3.10: The e�ect of applying Eq. (3.17)Example 3.12 In this example we demonstrate the application of the above approxima-tion. Recall the dining philosophers problem in Example 3.3. Application of transforma-tion (3.17) yields L = par (p = 1; P) philosopher(p)philosopher(p) = seq (i = 1; N) fthink(p) ; eat(p)gthink(p) = delay(�t)eat(p) = use(cp; �e) k use(c(p+1)modP ; �e)in which the problem has been generalized to P philosophers and where the originalin�nite loop has been replaced by a �nite loop in order to apply our transient analysismethod. Lower bound analysis yields' = N(�t + �e)! = NP (�e + �e) = 2NP�eAssuming �e is su�ciently large it follows T l = 2NP�e which (correctly) implies that atmost P=2 philosophers can be eating simultaneously. 2The above transformation can also be used for the lower bound analysis of modelswith nested resource usage. For example, consider the processusing (s1) fdelay(�s) ; using (s2) fdelay(�s) ; delay(�x)ggthat models circuit-switched communication involving 2 intermediate switches s1; s2 (�sis setup time, �x is the data transfer time, see Section 4.3). First, the usage nest isapproximated in terms of multiple resource possession, according to the transformationusing (r) L1 ; use(U) ; L2 ! using (r) L1 ; use(frg[U; �) ; using (r) L2(3.18)where L1; L2 are arbitrary submodels and U is a resource multiset as de�ned earlier. Thisyieldsuse(s1; �s) ; use(fs1; s2g; �s) ; use(fs1; s2g; �x)

62 CHAPTER 3. PAMELA
1s

2s

1s

2s

original:

approximation:

τ s τ s

τ s

τx

τx

τx

τx

τ s

τ s

τ sFigure 3.11: The e�ect of applying Eq. (3.18) and Eq. (3.17)which, in turn, is approximated by Eq. (3.17) touse(s1; �s) ; fuse(s1; �s) k use(s2; �s)g ; fuse(s1; �x) k use(s2; �x)gThe approximation process is depicted in Fig. 3.11. Again, note that the lower bound ispreserved.3.7 SummaryIn this chapter we have introduced Pamela as well as a basic calculus that yields symboliclower bound predictions for Pamela models that feature a structured use of resources.A key concept is the use of a procedure-oriented performance simulation formalism withstructured synchronization operators that enables a material-oriented modeling approachcoined contention modeling. As a result, many systems can be expressed in terms of an SPmodel that, unlike in a machine-oriented modeling approach, enables the application of anautomatic compilation scheme yielding analytical performance models. From the point ofview of typical mutual exclusion analysis techniques, such as conventional queuing theoryor complexity theory, the critical path analysis prevents the usual errors when parallelsystem performance is dominated by task precedence relations. On the other hand, fromthe viewpoint of critical path analysis techniques, the (approximate) analysis of mutualexclusion prevents the large errors that occur when system performance is dominated bycontention parameters. The integration of critical path analysis and contention analysisprovides the basic prediction robustness needed in view of the large parameter space thatis inherently covered by the analytic model.As the language has been de�ned to provide su�cient modeling power in order toavoid a priori loss of accuracy at the modeling stage, the subsequent analysis methodessentially breaks down in a number of categories as illustrated in Fig. 3.12. In termsof this taxonomy the speci�c contribution of the Pamela methodology pertains to thesubset of \use" models. The underlying thesis is that a large part of the parallel computersystems can be adequately expressed in terms of structured mutual exclusion. Next tothe examples discussed in this chapter, including inherently \message-oriented" problems(Example 3.6), the next chapter will substantiate this claim. Note that the appropriate

3.7. SUMMARY 63model category model structure analysis methodcontention-free SP (\par/seq") symbolic expression (')non-SP (\wait/signal") symbolic SE (')contention SP (\use") symbolic expression ('; !)non-SP (\use") symbolic SE ('; !)SP/non-SP (\P/V") simulationFigure 3.12: Performance modeling classi�cationanalysis technique can be easily deduced given anyPamelamodel. The situation for Petrinets or process algebras (next comparable in terms of modeling power) is not as attractivebecause of the lack of structured mutual exclusion operators. Of course, restricted Petrinets include syntactic classes such as state machines, and marked graphs that are deducibleat the transition or place level [117]. However, these restrictions yield a modeling powerthat is much less compared to the \use" subset of Pamela models.Apart from the related work in terms of other representation formalisms6 (as surveyedin Chapter 2), our language approach and associated symbolic analysis has clearly beenin
uenced by much existing work in the language area. Language approaches to perfor-mance modeling in conjunction with an associated analysis method include the work ofLester (PEL [95]), and Qin (TCAS [125] that compiles symbolic model output). Whilesymbolic model compilation originated in the sequential domain [44, 66, 157], in the par-allel processing domain, symbolic compilation approaches have been recently described byAtapattu and Gannon [10], Clement and Quinn [29], Mendes, Yang and Reed [102], Sah-ner and Trivedi [134] (for stochastic graphs), and Wang [156]. As discussed in Chapter 2,however, none of the above approaches integrate contention analysis within the symboliccompilation scheme.The lower bound approach to mutual exclusion analysis in static prediction techniquesfor parallel systems is not entirely new, be it that the underlying resource model is typ-ically restricted to work conserving processor pools, unlike our general approach (at thispoint we do not discuss bounding analysis techniques for, e.g., queuing networks as wespeci�cally focus on lower bound techniques for parallel systems including condition syn-chronizations). As mentioned in Chapter 2, a lower bound comparable to Eq. 3.14 has beenused by Allen et al. [7] to account for the limited number of (multi)processing resourcesin compile-time prediction of dynamically scheduled task graphs. Recently, a techniquehas been described by Jain and Rajaraman [76] to predict the lower bound for optimalmultiprocessor schedules that is tighter than the bounds obtained thus far in the multi-processing domain. Comparable to our recursive approach (Eq. 3.15) they improve thesharpness of the basic bound given by Eq. 3.14 by applying the analysis to separate taskgraph layers (cf. Example 3.10). However, both approaches apply to dynamic schedulingof M equal processors only (i.e., one resource cpu with cpu = M in terms of Pamela),whereas our generalized approach applies without any constraints on resource types ordemands. In particular, our approach does not assume a work conserving scheduling dis-6The attractiveness of a structured approach towards mutual exclusion, terms of both modeling andanalysis is an important reason for the success of queuing networks.

64 CHAPTER 3. PAMELAcipline. In fact, when considering all resources in a real system, be it physical (processors,switches, memories) or logical (i.e., software services, critical sections), unforced idlenessis quite common.The choice to account for contention in terms of a lower bound model is based on tworeasons. In contrast to the computation of a tight upper bound (discussed in Chapter 6),a tight lower bound can be computed at the same cost as conventional compile-timetechniques. Moreover, as illustrated by many of the examples, in the limit, the lowerbound model correctly predicts the average execution time of many systems that areeither contention-free or fully saturated. While the e�ciency of the presented analysis isoptimal (linear for SP models), an important question is the accuracy of T l compared toT . An elaborate discussion of this issue is presented in Chapter 6.Being an experimental formalism, the de�nition of Pamela may still be subject to(minor) changes. Especially the development of a compiler (currently under way) isexpected to yield valuable feedback on the language level as well as on the calculus.Currently all experiments have been conducted using a discrete-event simulation kernel(see Appendix E) that is to be used as the compiler run-time environment. Althoughexperimentation using this \Pamela-like" library interface has been invaluable in thedevelopment of Pamela and its associated analysis, a real language interface is expectedto accelerate this process.

Chapter 4Modeling Technique4.1 IntroductionThus far, we have discussed the application of Pamela using problems relating to con-currency in a general sense. In this chapter we discuss how parallel computer systemsare modeled (and subsequently analyzed). On the one hand, the discussion shows howPamela can be applied. On the other hand, it shows how the entire domain of (von Neu-mann) parallel system architecture (multiprocessing, multicomputing, vector processing)can be characterized in terms of one simple formalism. As our main purpose is to discussthe technique that we use in parallel systems modeling, we will only address the principlesinvolved with modeling parallel machines without going into much detail with respect tocontemporary parallel computer architecture.In the previous chapter we have shown the material-oriented way in which parallelcomputations are modeled. In this paradigm parallel programs are mapped to \active"parallel processes while parallel machines are mapped to a set of concurrently operating\re-active" subroutines. The formalization of this concept in terms of Pamela is byspecifying a subroutine model for each instruction. For example, consider the scalar
oating point computation y = x1x2. Let the machine program be given by the processmove(x1,r1); move(x2,r2); mult(r1,r2,r3); move(r3,y)thus assuming a traditional register architecture. Assuming that the register numberdoes not a�ect performance, for the purpose of modeling we de�ne the following abstractinstruction set mult, load(a), and store(a) where a is the memory address (thus wedistinguish memory loads and stores). Then the Pamela program model becomesL = load(x1) ; load(x2) ; mult ; store(y)where the instructions now represent models of the original instructions. The set of thesemodels is referred to as the machine model. In the most simple performance model eachinstruction maps to a simple time delay according tomult = delay(�m)load(a) = delay(�l)store(a) = delay(�s)

66 CHAPTER 4. MODELING TECHNIQUEAs discussed before, the total performance model L is given by the combination of all fourequations. By substitution it followsL = delay(�l) ; delay(�l) ; delay(�m) ; delay(�s)ConsequentlyT = 2�l + �m + �sThus a key step in performance modeling of parallel computer systems is its mathematicalformalization in terms of a program model and a machine model, both generally expressedas a set of Pamela equations. Note, that modeling practice does not necessarily involvemodeling applications at the instruction level. As shown by the above reduction of thefour delay statements e�ectively into one delay(2�l + �m + �s) model, in many casesthe modeling level can be increased to a macro instruction level (e.g., subroutine level)where the parameters of the aggregate model are determined in terms of the constituentsubmodels (as shown) and/or calibrated by measurements.In practice, the subject of parallel systems modeling mainly concerns the way howmachines are modeled rather than the programs. Being a simulation language, mod-eling imperative programs and algorithms in Pamela is relatively straightforward. Inview of the material-oriented modeling approach, this is particularly true in case of aprocedure-oriented (\shared-memory") source, that is typical for intermediate code gen-erated by compilers for high-level, global name-space programming languages such asthe data parallel languages (e.g., Hpf [86], Fortran-D [68], Vienna-Fortran [161],Booster [113], and Kali [87]), the language restructuring systems (e.g., Faust [59],Paraphrase 2 [123], ParaScope [25], PTRAN [7]), as well as the explicit parallel languageinterfaces such as VM/EPEX [34], the Force [80], and other dialects [83]. Even in thecase of programs expressed in terms of an explicit parallel message-passing interface (e.g.,PVM [148], MPI [154], or comparable interfaces [100]), the mapping to a Pamela modelis simple as will be shown by some of the examples in this chapter as well as in thesucceeding chapter.The simple nature of the above correspondence implies that (Pamela) performancemodels can be automatically extracted from a program source description as in mostparallel program performance prediction approaches discussed in Section 2.6 (e.g., [13,29, 41, 102]). Thus, the prediction technique can be integrated within a more generalparallel application engineering environment based on only one source speci�cation. Agood example of the advantages of integrating performance prediction within the softwareengineering process is shown by the N-MAP environment [43].Although, the transformation of a source program to a Pamela image can be assumedtrivial in many aspects, there remains the fundamental problem of undecidability due to(data-dependent) program parameters, such as branching conditions and loop boundswhen the analytic prediction technique is chosen rather than simulation. As discussedearlier, out of three common solution techniques are assumed to be implemented, i.e.,automatic compile-time reduction, or, if not compile-time deducible, symbolic parameter-ization (in which the problem parameters are carried over in the time domain), or the useof probabilistic abstractions based on either symbolic values, numeric defaults or numericpro�le data. Especially in the latter case, the underlying premise is that the program's

4.1. INTRODUCTION 67branching behavior largely depends on the given data set (problem size, input data, etc.).Thus the pro�le obtained is also valid for a di�erent parameter setting (e.g., di�erent tim-ing parameters or di�erent number of processors1. Evidence suggesting this is presentedin, e.g., [41]). As mentioned in Chapter 1, the issues involved in parameter calibration isoutside the scope of our research.To conclude the discussion on program modeling, we present a simple program model-ing example (more examples can be found in Chapter 5). Many approaches in performancemodeling are based on the notion that the program describes the processes with theirparallelism, only limited by inherent algorithmic properties such as sequential fractions(condition synchronization), whereas the machine represents the collection of resources,and, consequently, is the system part responsible for the main performance degradationdue to contention. Hybrid queuing networks are an example of a representation formalismthat is conceived according to this model. Although this is often a realistic assumption(e.g., when only a limited number of processors are considered), the notion of resourcelimitations (i.e., queuing) do play a role at program level as well, as is shown in the nextexample.Example 4.1 In this example we describe a case where mutual exclusion at the programlevel already dominates overall performance. Consider an SPMD shared-memory programthat computes the sum of a global N -element
oating point vector v. Instead of applying arecursive doubling scheme, in this example the vector is simply block-wise partitioned, i.e.,N=P consecutive elements are assigned to the same processor (for simplicity we assumeP jN). The SPMD program is given by the pseudo codefor i = 0 .. (N/P)-1local = local + v[p*(N/P)+i];set(lock);sum = sum + local;reset(lock);where p = 0 : : : P � 1 denotes the processor index, local denotes a local summationvariable (e.g., register), sum is the global result, its exclusive access ensured by the locksemaphore.Let the machine model interface be given by only two instructions models,� flop that models the
oating point addition instruction including all local registertra�c� move(a) that models the global data transfer to or from shared memory where adenotes the addressGiven the above instruction interface, the corresponding Pamela model is given by1Note that this only applies to branches and loop bounds that are not directly involved in the par-allelization itself. Clearly, there exist many (data parallel) loops that are inherently a�ected. However,these branching and loop bound dependencies are already accounted for in the model as they are explicitlypresent in the (compiled) program.

68 CHAPTER 4. MODELING TECHNIQUEL = par (p = 0; P � 1) fseq (i = 0; (N=P) � 1) fmove(v+ p(N=P) + i);flopg ;using (lock) fmove(sum);flop;move(sum)ggwhere the par construct models the SPMD parallelism. For simplicity, multiprocessingoverhead is ignored. The FCFS-type resource lock (lock = 1) implements the criticalsection (this is an example of a software resource, rather than a hardware resource).Note that the mapping between the program code and the Pamela program model isstraightforward.As we intend to illustrate the dominating in
uence of program-level contention, let,as a �rst-order approximation, the machine model be given by the contention-free modelflop = delay(�f)move(a) = delay(�m)It followsL = par (p = 0; P � 1) fseq (i = 0; (N=P) � 1) fdelay(�m);delay(�f)g ;using (lock) fdelay(�m);delay(�f);delay(�m)ggApplication of the basic calculus for delay and using operations yields the followingreductionL = par (p = 0; P � 1) fdelay((N=P)(�m + �f));use(lock; 2�m + �f)g

4.2. MACHINE MODELING 69Thus, the summation algorithm (or any arithmetic reduction) has a similar behavior asthe MRM. Simulation as well as our symbolic technique (Eq. (3.16)) correctly predictthe initial speedup for small P as well as the eventual slow down for large P when lockcontention dominates. 2Indeed many applications have three behavioral phases with respect to their scalability,i.e., initial speedup (O(P�1)), a maximum bound (O(1)) due to some sequential fraction,and an eventual slow down (O(P)) due to service demand that is inherently proportionalto the system size (P). In this example it is a numerical service. Another typical exampleis the data transfer part that is proportional to P (e.g., some shared I/O service).4.2 Machine Modeling4.2.1 PrinciplesThus far, we have seen a few small examples of how machines are modeled in the material-oriented paradigm. Usually, machine models have been considered in which the instruc-tions are simply modeled (abstracted) by single delay statements, or, in some cases, bya simple use statement in order to account for memory contention (Example 3.11). Ingeneral, however, machine models (especially those associated with data transfer instruc-tions) may become rather complicated subroutines, involving synchronization delays atvarious levels, which (like at program level) can easily dominate performance.While in program modeling, the level of detail is limited by the size of the programdescription itself, machines can be modeled to any level of detail, in principle up to, say,a gate-level hardware description. With respect to the performance prediction of parallelapplications however, such a high level of detail does not necessarily add to the predictionaccuracy (although it certainly does add to the prediction costs). Consequently, an im-portant issue is the maximum level of aggregation that is acceptable without sacri�cingpredictive power (due to loss of vital information concerning the internals of the aggregatecomponent). Essentially, the criterion regarding what to model or not to model explicitlyis the question whether the time behavior of a potential component (aggregate submodel)depends on its access history. A basic example is a cache where the access delay ex-perienced by a calling process depends on previous accesses. The mechanism involvedmust be explicitly modeled (in terms of conditional control
ow) as we will see later on.While this form of context dependency also arises in purely sequential systems, in parallelsystems there exists the additional potential for interference between di�erent processeswhile accessing machine components due to synchronization. The primary form of syn-chronization between services at machine level is mutual exclusion where a service call ofone program thread experiences (additional) queuing delay as a result of some other, pos-sibly non-related thread of control (condition synchronization in message-passing systemswill be discussed separately)2. If there is no potential for interference outside the range2Note that in this respect where to attribute the actual \history" as mentioned earlier depends onthe paradigm used. In a machine-oriented approach, the history indeed associates with the component interms of the current state of its mutual exclusion mechanism (e.g., request bu�er state). In the material-oriented approach, however, we tend to associate the concept of history with the current state of theconcurrently calling process.

70 CHAPTER 4. MODELING TECHNIQUEof the current caller, a component (and all within it) can simply be modeled by a singledelay that has a �xed duration, independent of the state of other program threads3. Forexample, local arithmetic operations within a CPU may, at the register level, involve alarge amount of internal concurrency. However, as the range of the operation is local tothe processor there is no potential of interference between the instruction and instruc-tions executed at other processors. Hence, from the viewpoint of the invoking programthread the operation (and therefore the entire subsystem involved with its execution)can be accounted for by a simple delay (note that we assume a synchronous instructionarchitecture where each instruction blocks until completion).While the same argument holds for local data transfers (i.e., register to register),global data transfers may involve contention between CPUs for switch links and (global)memories. Consequently, from the CPU point of view, machines need only be modeledas far as global data transfer operations are concerned. Hence, all machine instructionsinvolving local resources used in the context of a single CPU process are simply modeledby delays, whereas global load and store instructions refer to more complex machinemodels.Thus, from a parallel process point of view machines can be modeled as a collectionof processors providing CPU service to the process threads at program level, each CPUbeing connected to a shared memory subsystem comprising switches, and possibly caches,all of which provide memory (load and store) services based on a bottom layer of basicmemory devices as illustrated in Fig. 4.1. As a result of the above criterion by which
memories

switches, caches

CPUs

program model

machine model

shared-memory systemFigure 4.1: Machine modeling hierarchywe only focus on the components that may be responsible for interference experienced atprocess level, the level of modeling detail is e�ectively limited to the processor-memory-switch (PMS) level. In the following we �rst consider the computation service layer (i.e.,the CPU resources). The main part of this chapter, however, is devoted to modeling thememory subsystem as this part is by far characteristic for the machine architecture.3Note that this also applies for caching in which case the delay expression represents a mean valuebeing the result of a probabilistic reduction based on an average hit ratio.

4.2. MACHINE MODELING 714.2.2 Processor ModelingIn the SPMD examples presented so far, it has been assumed that each process executeson a unique processor. This implies that the e�ect of a limited number of processorsP has directly been translated into the workload description (e.g., the size of the indexspace per process) through some static partitioning scheme. In the interest of generality,however, in machine modeling we must assume a more general scheme in terms of whichthe earlier model is just a speci�c instance. While the other resources in the PMS schemewill be treated in detail later on, at this stage we explicitly consider the CPU as justanother resource capable of servicing multiple program-level processes through a (proces-sor sharing) scheduler. Examples include a uniprocessor (e.g., workstation or mainframe)scheduler as well as a multiprocessor kernel or a node microkernel on a multicomputer.For instance consider the following parallel program modelpar (i = 1; N) Liwhere Li denotes some sequence of instructions local to the CPU (e.g., flop) with atotal duration of �i. Consider a P processor parallel machine capable of running multipleprocesses per CPU according to a static process mapping. Let � denote the mappingof the N process parallel program onto the P processor parallel machine, such that �(i)denotes the processor resource onto which Li is mapped. Then the resulting Pamelamodel is given bypar (i = 1; N) use(cpu�(i); �i)where the resource cpu (cpu = 1, PS-type) represents the CPU service (note that at theinstruction level, cpu is FCFS-type). When multiple processes are mapped onto the sameCPU, serialization will occur corresponding to the fact that each process receives lesscomputation service (bandwidth). This is accounted for by the use construct (even to ahigh degree of accuracy as will be shown in Section 6.3).According to this general modeling approach each local instruction such as
op isformally modeled
op = use(cpu�(i); �f)thus signifying the resource responsible for its execution (note that formally, each oper-ation is associated with some resource). Thus, by explicitly accounting for the CPU asa resource (i.e., modeling all local instructions as use models rather than delay models)the e�ect of process mappings is naturally expressed in Pamela through functions (like�) that map logical resources to physical resources. In case of the SPMD examples dis-cussed earlier, each process maps onto a unique CPU. As this implies that there is nopotential interference between any of the flop operations, the flop model reduces to asimple delay.The above approach corresponds to a static process placement. While this is appro-priate for distributed-memory systems, in shared-memory systems, dynamic scheduling isoften used because of the absence of large data transfer overhead when successor tasks arescheduled on di�erent processors. Again, a processor sharing model can be used. Considera P processor machine running N processes. When the scheduler itself is of no interest, a

72 CHAPTER 4. MODELING TECHNIQUE�rst-order approach is based on modeling the multiprocessor as a resource pool cpu (i.e.,one resource instead of P separate resources), however, with cpu = P . Again local CPUinstructions are modeled like the
op modelflop = use(cpu; �f)Only when the amount of machine parallelism su�ces (P � N in the example) the flopmodel reduces to a delay.Also with respect to the processor layer note that the modeling approach is material-oriented in which the processor is modeled as a passive device, contended for by theprogram threads. Of course, this is in contrast to the typical implementation in whichprocessor scheduling is often performed by an operating system (process) on interrupt(e.g., I/O or full time slice), rather than based on atomic process tasks voluntarily re-linquishing control as in our instruction-level FCFS model. While the exact schedulingprocess at this level of detail may be of great interest for the evaluation of operating systemaspects (e.g., fairness), especially in our approximate analysis the precise slicing granular-ity and scheduling order in which the processor resource is used is of no consequence aslong as the total workload is the same. In Section 5.3 we will present measurements thatshow that a simple, coarse grain sharing model provides an accurate prediction.In the following we discuss the memory modeling technique in which we characterizethe machine architecture that is external with respect to the processor. Although frommethodological point of view there is no di�erence between modeling shared-memorymachines and distributed-memory machines in practice the architectures have di�erentfeatures as they re
ect di�erent design optimizations. Hence, we will discuss each archi-tecture separately.4.3 Shared-Memory Systems4.3.1 IntroductionAs mentioned earlier, apart from the computational services, an architectural descriptionin Pamela is e�ectively a speci�cation of the global memory resources and how they aremade available (i.e., \seen" by the CPU) through intermediate components like cachesand switching networks. (Note that the methodology equally applies to other forms ofstorage media like disks and intermediate software components like �le servers includingbu�er caches, etc. For simplicity, however, we will limit the discussion to central memorysystems.)Due to the material-oriented paradigm, we characterize the memory architecture interms of its access interface, i.e., the (global) load and store operations. Except whereit is essential, in the following we will simply consider a move model that generalizesthe data movement process we are basically interested in. Thus the general model of ashared-memory subsystem ismove(m;a)where m denotes the memory system (or device) that is addressed while a denotes thememory address. Note, that the actual data transfers associated with loading and storing

4.3. SHARED-MEMORY SYSTEMS 73are quite di�erent. For example, loading implies a return transfer next to sending therequest. However, from our abstract point of view we assume that all latencies andqueuing involved in both directions are accounted for in terms of the initial processor-to-memory path (typically one does not need to consider both the forward and returnnetwork separately).Clearly, the terminal device of a shared-memory system is the basic (single ported)memorymodule shown in Fig. 4.2. The arrow in the �gure denotes the interaction between
MpFigure 4.2: Basic memory modulethe active process (denoted p) and the reactive memory component. In a basic memorymodule (single port, no internal caching) the externally measurable timing behavior willonly depend on one internal state that is determined by previous requests, being thememory busy state. In contrast to the simple delay model often used at program-levelanalysis, in general, a memory resource m is modeled according tomove(m;a) = use(m; �a) (4.1)where �a denotes memory access time, that is de�ned to be the total time between startingthe (load or store) transaction at the memory and the moment a new transaction canbe started. In this general-purpose model, exclusive memory service is modeled by theresource m. Despite the fact that the basic memory unit is single-ported, this generalmodel does account for the fact that multiple processes may gain access within a memoryaccess time slot due to intermediate switching units (as we will discuss later on). If a delaymodel were used instead, this would allow multiple requests to be serviced simultaneously.Only when one process is to gain access, the above contention model may be reduced toa delay model as a result of the fact that the sequential access is synchronous (i.e., thememory will always be ready to service the next call). Note that con
ict arbitration doesnot need to be considered since simultaneous accesses (from di�erent clients) cannot occur(single port). Hence, a simple P operation su�ces.As discussed earlier, a memory system can be viewed as a layer of basic memoryunits with on top a layer that maps the basic memory service m0 into more sophisticated,shared, service m (e.g., faster, more parallelism) to the processor layer. In terms of thematerial-oriented approach the system is expressed asmove(m;a) = : : : ; move(m0; a0) ; : : :where the move(m;a) model calls upon a lower-levelmovemodel. In the following we willdiscuss the basic intermediate components that enhance the service provided by the basicmemory unit, i.e., the cache (\temporal" enhancement through faster access time), and theswitch that provides concurrent access (\spatial" enhancement through multi-port access).Especially switches will be discussed in more detail due to the prominent role played bycontention as well as the fact that interconnection networks are largely responsible for

74 CHAPTER 4. MODELING TECHNIQUEthe machine contribution to application performance. This fact is evidenced by the largebody of work on the performance modeling of (shared-memory) interconnection networks(e.g., see [17]).4.3.2 CacheA cache model simply maps its move call move(c; a) to its successor memory unit, whichmay be a basic memory unit as illustrated in Fig. 4.3, or may be some complex memorysubsystem on itself. For the purpose of merely illustrating the general modeling technique
C MpFigure 4.3: Cached memory systemwe only discuss a simple load model for a request-bu�ered cache.move(c; a) = using (c) fif (hit(a))delay(�c)else fmove(m;a);update(a)ggAgain, the mutual exclusion construct ensures access serialization. In case of a cachehit (abstracted through the data-dependent hit function), a relatively small cache accesstime �c is charged. In case of a cache miss the lower-level memory unit m is invokedentailing a call latency that is much larger than �c (data is returned to caller and cachein parallel). The cache directory update is modeled by the update function. Both hit andupdate do not involve simulated delays. Note that this simple scalar model ignores thefact that usually a cache line is loaded from memory. Also the possible existence of cachecoherence logic [145] has been ignored. The above example will be discussed further inExample 4.3.4.3.3 SwitchWhile caches upgrade memory service from a temporal point of view, the main purposeof (shared) memory systems is to provide the memory service to more than one client(i.e., a service upgrade from a spatial point of view) through the use of switches. Againin this section we only touch upon the main principles as far as performance modeling isconcerned.The basic component that maps (single-port) memory service onto multiple clients isthe n-to-1 switch illustrated by Fig. 4.4). As connecting multiple clients to a single succes-

4.3. SHARED-MEMORY SYSTEMS 75
S

Pp M
p 1Figure 4.4: Multiported memory systemsor unit inherently involves contention, the switch's basic function is to implement mutualexclusion between multiple requesters and providing some sort of arbitration in case mul-tiple requests arrive at exactly the same moment (i.e., at the same clock tick). Basically,two switching protocols can be distinguished, i.e., circuit-switching and packet-switching.Unlike the above, a more detailed move model is needed in order to describe both switch-ing protocols (note, that our only purpose is to illustrate the modeling technique used,not to model all possible protocols in great detail).In principle, a move model (or any service model) comprises the following protocol (inour material-oriented approach to be executed by the caller)� service request (acquiring necessary resources)� the actual service (data transfer)� end noti�cation (releasing resources)Similar to typical service terminology, we will adopt the names open and close to modelthe �rst and last phase, while we will denote the actual data transfer by xfer. For simplemodels like a memory module it holdsmove(m;a) = open(m) ; xfer(m;a) ; close(m)open(m) = P(m)xfer(m;a) = delay(�a)close(m) = V(m)that reduces to the use model described earlier.Let s denote a switch. Let m denote the downstream memory system to which sprovides concurrent access. For circuit-switching, the basic switch model is given by thefollowing modelmove(s; a) = open(s) ; xfer(s; a) ; close(s)open(s) = P(s) ; delay(�s) ; open(m)xfer(s; a) = delay(�x) ; xfer(m;a)close(s) = close(m) ; V(s)where �s denotes the startup time needed to setup the path through the switch, and�x denotes the time needed to propagate the datum through the switch. Thus, �rstall resources in the transfer path are acquired4 before the actual transfer is executed.4Apart from this so-called hold protocol, a second, so-called drop protocol exists in which a request issimply dropped (discarded) if during circuit establishment a contest is lost. The modeling of this protocolis discussed in Section 4.5.

76 CHAPTER 4. MODELING TECHNIQUENote, that because there is no intermediate bu�ering (like in packet-switching) �s and�x are compared to the downstream open and xfer parameters (especially for large datatransfers). In the above model con
ict arbitration is left undetermined for simplicity.In more detailed models more elaborate arbitration schemes are possible by inserting\user-de�ned" operators with explicit queue management using the basic P=V scheme asexplained in Chapter 3.For packet-switching, the basic switch model is given by the following modelmove(s; a) = open(s) ; xfer(s; a) ; close(s)open(s) = P(s)xfer(s; a) = delay(�x)close(s) = V(s) ; open(m) ; xfer(m;a) ; close(m)where any local setup time is accounted for by �x. In contrast to circuit-switching theswitch provides transfer service as soon as its output link is available, after which theprocess moves to the next device. Note that this simple model assumes an in�nite (packetbu�er) queue for requests (packets) that are temporary blocked (resource queues arein�nite). In terms of modeling the problem is comparable to the abstract, material-oriented solution to the producer-consumer problem (Example 3.2). In many practicalsituations, however, the fact that the actual \location" of each propagating process is leftindeterminate does not degrade the overall model accuracy. In a detailed study the use ofmore elaborate synchronization models may, again, be necessary in order to account for theinter-switch handshaking involved. As discussed before, however, the two-way (message-passing) synchronization that arises with the use of bounded bu�ers is not amenable toour analysis technique.Also note that in the case where a memory is connected through a packet-switchednetwork, the mutual exclusion construct in the memory model of Eq. (4.1) is indeednecessary in order to prevent multiple processes from (almost simultaneously) accessingthe module (assuming �x < �a). As mentioned earlier, the resource m symbolizes thequeue at the memory module that bu�ers access requests passed on by the switch.While the above models allow a reasonable description of circuit-switched and packet-switched communication, the use of the individual protocol phases introduces the explicituse of P/V operators which is unsuited for our calculus. Hence, we present versions ofboth models in terms of the structured templates we have introduced. Similar to theexample of the memory module, for packet-switching the above model can be simplywritten asmove(s; a) = use(s; �x); move(m;a)where each move service induces temporary resource usage followed by a service calldown stream. While for packet-switching the result is equivalent to the original model,for circuit-switching the solution is slightly di�erent because the switching workload isdivided across two phases. The following expressionmove(s; a) = using (s) fdelay(�s) ; move(m;a) ; delay(�x)gadequately models the process although, compared to the earlier model, the transfer delays�x are accounted for after the ultimate move call, rather than prior to the call. However,in terms of performance (resource usage) both models are identical.

4.3. SHARED-MEMORY SYSTEMS 774.3.4 NetworksWhile the basic n-to-1 switch, as introduced thus far, captures two important aspects ofswitching networks, i.e., delay and contention, practical interconnection systems switch nsources to m destinations, rather than providing concurrent access to just one resource.In order to describe interconnection networks, we therefore generalize the above switch-ing component by distinguishing m addressable output links. Consequently, the requestaddress a determines the routing inside the switch (assuming decentralized routing con-trol [17]). With the introduction of this decoding functionality, the n-to-m switch is simplyreferred to as an (n-to-m) crossbar of which a 2 � 2 version is shown in Fig. 4.5 in termsof its basic decoding and switching functionality (denoted D and S, respectively in the�gure). Let rout(a) denote the address decoding and routing function that determines
1m

p 2

p 1

2m

D

D S

S

XFigure 4.5: Crossbar switch model (2� 2)the output link index i = 1; : : :m and the address remainder a0, used as address for thenext stage5. Let di be the memory device at the output i of s. The crossbar model (again,ignoring arbitration, in�nite bu�ers) is given bymove(s; a) = f(i; a0) = rout(a); using (si) move(di; a0); gfor a circuit-switched protocol (setup propagation delay ignored), and bymove(s; a) = f(i; a0) = rout(a); use(si; �s); move(di; a0); gfor a packet-switched protocol. For m = 1 the decoding and routing function rout isimmaterial (i = 1, a0 = a). Thus, the above model generalizes over the former switchmodel.As discussed earlier, an interconnection network provides a connection between mul-tiple process clients and multiple memory servers, through a number of switching com-ponents. The most obvious IN is simply the above crossbar component that providesfull interconnectability between any input and output without any intermediate blockage.(Of course, contention may still occur at each output i but this is inherent to any n-to-mIN.) However, the absence of intermediate blocking comes at the expense of a quadraticcomplexity in terms of internal logic. As a result of the trade-o� between network cost5Destination tag routing is typically given by the low-order address interleaving function (i; a0) =(a modm; a=m)).

78 CHAPTER 4. MODELING TECHNIQUEand network performance, a large variety of network topologies exist of which we will onlydiscuss the most common classes6. In essence, all these networks are based on the useof multiple, crossbar-like switches with a much smaller capacity than the total networkcapacity. Hence, we will model interconnection networks in terms of the above cross-bar model, which we will adopt as a basic building block. Although this amounts to agraphical model representation, note that each crossbar represents the above Pamelamodel.An example on the opposite extreme of the interconnection network spectrum is the(single) bus, that is modeled according to Fig. 4.6. While the second crossbar merely rep-
X X

Pp m M

p m1 1Figure 4.6: Bus system)resents the decoding functionality of each of the M connected memory modules, the �rstP -to-1 crossbar (the output link resource s) accounts for the bus contention that occurswhen multiple processors access memory. In order to support the full memory bandwidthof the M parallel memory modules, the bus is typically packet-switched (\pended" [158],see Example 4.4).In terms of our generic crossbar model, a multiple-bus comprising B busses has thesame representation. However, s = B instead of s = 1. Hence, the e�ective bus bandwidthincreases by a factor B which directly follows from Eq. (3.12).Note that the con�guration modeled according to Fig. 4.7. represents another solution
X X

Pp m M

1p m1 1

BFigure 4.7: Multiple bus (static bus selection)because of the static routing assumption of the crossbar model as de�ned earlier (B singleservers vs. 1 multiple server).Given the basic crossbar model, the expression of multistage interconnection networksis straightforward (see [42]) as illustrated by the example Omega network [92], shown inFig. 4.8. Note that the resulting Pamela model accurately accounts for the possibilityof internal contention at each intermediate switch level7.6An extensive survey of multiprocessor interconnection techniques appears in [17]. A survey of theperformance aspects of some well-known multiprocessor architectures appears in [145].7For instance, consider the two con
icts that may arise when p0, p1, and p5 address m0, m3, and m2,respectively.

4.3. SHARED-MEMORY SYSTEMS 79
X X

X X

X X

X X

X

X

X

X

p 3

p 2

p 1

p 0

p 5

p 4

p 7

p 6

0

1

2

3

4

5

6

7

m

m

m

m

m

m

m

mFigure 4.8: Omega network4.3.5 ExamplesIn this section we describe a number of examples in which some of the machine modelingprinciples discussed so far are applied.Example 4.2 In this example we demonstrate the modeling of memory contention as wellas CPU contention in the case of the polynomial computation. Recall the parallelization ofthe polynomial computation for P = 2 in which we assume the machine model includingthe load/store overhead and memory contention (cf. Fig. 1.6 and 1.8). The Pamelamodel is given byL = L1 k L2L1 = t1 ; signal(c14) ; t3 ; signal(c36) ; wait(c25) ;t5 ; wait(c47) ; t7 ; signal(c78)L2 = t2 ; signal(c25) ; wait(c14) ; t4 ; signal(c47) ; wait(c36) ; t6 ; t8wheret1 = load ; flop ; storet2 = load ; load ; flop ; storet3 = flop ; storet4 = load ; load ; flop ; storet5 = load ; load ; flopt6 = load ; load ; flopt7 = load ; load ; flop ; storet8 = load ; flop ; store

80 CHAPTER 4. MODELING TECHNIQUEThe abstract machine model is given byflop = delay(1)load = use(m; 0:5)store = use(m; 0:5)It follows' = 9:5 ; ! = 8:5which yields T l = 9:5. From Fig. 1.8 it follows that T = 11:5.In the following we demonstrate the use of CPU contention modeling in order toassess the performance of an implementation in which the actual order of tasks on eachprocessor is scheduled dynamically. Under the same task mapping for P = 2, a dynamictask scheduling implementation is expressed by the original, fully parallel task model (cf.Example 3.1), i.e.,L = par (i = 1; 8) LiL1 = t1 ; signal(fc13; c14g)L2 = t2 ; signal(c25)L3 = wait(c13) ; t3 ; signal(c36)L4 = wait(c14) ; t4 ; signal(c47)L5 = wait(c25) ; t5 ; signal(c57)L6 = wait(c36) ; t6 ; signal(c68)L7 = wait(fc47; c57g) ; t7 ; signal(c78)L8 = wait(fc68; c78g) ; t8however, where ti is given as before in terms of load, flop, and store. However, now itholds flop = use(cpuimod2)where i denotes the task index (1; : : : ; 8). In this model each task \contends" for its(statically assigned) processor, one of the possible task schedules being the one accordingto the earlier, static model. It follows' = 5 ; ! = max(7:5; 9; 8:5) = 9where the max applies to cpu1, cpu2, and m, respectively. Consequently, T l = 9, which isnot far from the actual execution time corresponding to the static schedule (T = 11:5).2Example 4.3 In this example we illustrate how the cache load model discussed earliermay be reduced to a performance model that is amenable to our analytic technique.Consider the simple cached memory such as depicted in Fig. 4.3. Based on the memoryand cache models discussed earlier, the model equals

4.3. SHARED-MEMORY SYSTEMS 81move(c; a) = using (c) fif (hit(a))delay(�c)else fuse(m; �a);update(a)ggA number of model reductions are possible. First of all, as the memory module can notbe accessed concurrently (cache provides mutual exclusion) the use model reduces to adelay. Furthermore, let the hit ratio be known to equal the fraction h. As the hit andupdate models do not involve time delays it followsmove(c; a) = using (c) fif (r < h)delay(�c)elsedelay(�a)gwhich reduces tomove(c; a) = use(c; h�c + (1� h)�a)2Example 4.4 In this example we demonstrate a number of model reductions by dis-cussing the machine model of a bus-based multiprocessor with M (low-order) inter-leaved memory banks. As in earlier examples, we consider a simple instruction interface(flop;move). For the flop model it holdsflop = use(cpu�(p); �f)where � denotes the process mapping (see Section 4.2). With respect to the move model,we �rst consider a conventional bus that is blocked during memory access (cf. circuit-switching). Hence, the move model is given bymove(a) = using (b) fdelay(�b) ; use(mamodM ; �a)gwhere b denotes the bus resource and mi denotes the memory bank addressed accordingto the interleaved scheme (�a is the memory access time). For simplicity we assume allthe bus delay (�b) to be accounted for by the single delay statement. Due to the fact thatmi is always accessed under mutual exclusion due to b, the model can be reduced tomove(a) = using (b) fdelay(�b) ; delay(�a)g= using (b) delay(�b + �a)= use(b; �b + �a)= use(b; �m)

82 CHAPTER 4. MODELING TECHNIQUEwhere �m = �b + �a denotes the e�ective memory access time (b is of type FCFS). Notethat the actual address a is of no importance as the blocking bus prohibits any formof memory bank concurrency. The resulting model is exactly the same as the abstractmachine model in Example 3.11.If multiple processes were to run on a CPU (recall that the above delay is in fact ause(cpu�(p); �f)), the above model assumes that the CPU is not occupied during memorysystem access. Consequently, during memory access another process at p will have thepossibility to do computations. (Note that queuing approaches use the same assumptionby including both a CPU server as well as a memory server.) When memory access cannot be overlapped with computations, i.e., the access call is synchronous, the move modelwould be given bymove(a) = using (cpu�(p)) using(b) fdelay(�b) ; use(mamodM ; �a)gwhich is an example of nested resource possession. Note that at higher software level (e.g.,operating systems) the access call would be based on simultaneous resource possession inorder to avoid wasting CPU cycles waiting for service (e.g., disk I/O). In most CPU threadkernels, however, instruction execution is non-preemptive. Hence, when a thread executesa memory instruction that blocks, the entire CPU becomes blocked which is essentiallycaptured by the above nesting. Again, since mamodM is always accessed under mutualexclusion (due to b, note that this does not hold for cpu�(p)) the model reduces tomove(a) = using (cpu�(p)) using(b) fdelay(�b + �a)g = using (cpu�(p)) use(b; �m)Note that this model can not be reduced further because of the need to account forbus contention as well as for sharing cpu�(p) with another process simultaneously doingcomputations.Next we consider a pended bus that does not block during memory access (cf. packet-switching). The move model is given bymove(a) = use(b; �b) ; use(mamodM ; �a)Thus, bus access and memory access occur concurrently instead of sequentially whichallows the e�ect of the M memory banks to become manifest. Serialization analysisquickly reveals that depending on �b, �m and M , for large P the bottleneck is eitherthe bus of the memory bank system (see next example). Again, when the move call issynchronous, for multiple threads per CPU the model becomesmove(a) = using (cpu�(p)) fuse(b; �b) ; use(mamodM ; �a)g2Example 4.5 In this example we derive some familiar performance models of a multi-banked memory system for vectorized access. Consider a memory bank system comprisingM memory banks organized according to a low-order interleaved addressing scheme. Amemory vector access is based on a sequence of individual requests issued by an accessport with a cycle time �c. Let each memory bank have an access time given by �m. Thevector access pattern is given by the address sequence f(1); : : : ; f(N). A simple Pamelamodel of the vector move vmove is given by

4.3. SHARED-MEMORY SYSTEMS 83vmove = par (p = 1; N) fuse(port; �c);use(mf(i)modM ; �m)gwhere mf(i)modM models the memory bank. Again, note the material-oriented approach inwhich the port, that issues the addresses, is modeled as a passive resource that e�ectivelyserializes N parallel requests at the port request rate 1=�c (cf. pipeline model). Therequests are passed asynchronously, i.e., the port is only occupied during �c after whichthe request is processed (and perhaps queued) at the memory bank. Note that in a realsystem, the port may block until a memory bank is able to process another request (i.e.,the memory banks have no request queue). However, as far as the performance of theentire vector operation is concerned, the above performance model is equivalent (againnote the discussion in Section 3.3 on material-oriented modeling).When M is su�ciently large (depending on the access pattern f(i)), memory con-tention will not occur and the above model reduces to the familiar \memory pipeline"characterized by startup time �m and bandwidth 1=�c (see, e.g., [71, 94]). In practice,however, memory bandwidth is often determined by the limited number of memory banksM , that, under ideal circumstances boosts memory system bandwidth by a factor Mcompared to a single memory bank. However, in situations where the access pattern issuch that the bank reference rate exceeds the memory bank service time, performancedecreases sharply due to the occurrence of memory contention. The situation becomeseven worse when multiple vector access streams occur in parallel. For regular vector ac-cesses (i.e., f is a�ne), the e�ect of simultaneous access, start address, and stride on thee�ective memory bandwidth has been subject of much work [12, 21, 20, 24, 28, 40, 112].In the following we apply our analysis method to derive the e�ect of the access stride onthe e�ective memory bandwidth. Serialization analysis on the above move model yieldsT = max(�c + �m; !)where! = max(N�c; maxm=1:::M NXi=1 [f(i) mod M = m]�m)Let f(i) = Si where S denotes the access stride. Since the following reduction holds(De�nition 5.2, discussed in Section 5.2)NXi=1 [(Si) mod M = m] = Ngcd(M;S)it followsT = max(�c + �m; N�c; Ngcd(M;S)�m)When performance is limited by memory, the e�ective memory bandwidth B is given byB = gcd(M;S)�mwhich is similar to the results mentioned in the work cited above. 2

84 CHAPTER 4. MODELING TECHNIQUEExample 4.6 As a �nal demonstration of our approach to machinemodeling, we describea model of the Cray X/MP memory system. The memory system has been extensivelydescribed in, e.g., [23, 28, 112]. However, these models usually re
ect a hardware view ofthe underlying system rather than being based on a methodological performance model-ing point of view. For instance, the memory bank sections are usually expressed in termsof the multiported memory banks as shown in Fig. 4.9. Although correct, the way the

Processor 1

P1

P1

P1

P1
P2

P2

P2

P2

PP

PP

PP

PP

BankBankBank

BankBankBank

BankBankBank

Bank
Section #0

BankBank

Section #1

Section #2

Section #3

3 x 4 Xbar

0 4

1 5

2 6

3 7

N-

N-

N-

N-

4

3

2

1

Figure 4.9: Cray X/MP memory system (taken from [23]).architecture is modeled is not entirely conducive to revealing the actual locations wherecontention may occur (i.e., line con
icts, simultaneous bank con
icts, and bank busy con-
icts). A Pamela model of the memory system, on the other hand, turns out to besimple while providing more insight at the same time. Let B denote the number of banksper section, S denote the number of sections, T the number of vector ports per processor,and P the number of processors. Expressed in terms of our crossbar representation, thecomplete system is given by the multistage representation in Fig. 4.10. In the �gure Xand M denote crossbar and memory device, respectively. Both crossbar stages are inter-connected through a simple permutation (a 2-D transposition). The multiport capabilityof the section memory banks is explicitly modeled by the second crossbar stage X1 : : :XS ,that is typically omitted in traditional diagrams. From the model the three potential con-tention points are now easily identi�ed (i.e., each crossbar output link and each memorybank, respectively corresponding to the three con
ict types mentioned earlier). 2

4.4. DISTRIBUTED-MEMORY SYSTEMS 85
1

P

Port

Port

Port

Port
S

S

1

1

1

S

T

1

T

1
1

P

1

P
Processor

Processor Section

Section

X 1 X 1

P X S

M 1,1

M 1,B

M S,1

M S,B

XFigure 4.10: Pamela model of the Cray X/MP memory system.4.4 Distributed-Memory Systems4.4.1 IntroductionThe global memory modeling approach taken in Pamela in which processes use process-ing and/or memory services, in e�ect, implies a uni�cation with respect to parallel ma-chine modeling. While most machine description taxonomies make a distinction betweenshared-memory and distributed-memory architectures (e.g., dynamic vs. static point-to-point topologies [42]), in thePamela approach, a distributed-memorymachine is basicallyjust another global memory system but with a message-passing interface on top. The cor-responding modeling hierarchy is shown in Fig. 4.11. To illustrate the principle, consider
CPUs

program model

MP layer

memories

switches, caches

message-passing system

shared-memory system

machine model

Figure 4.11: Modeling hierarchy for message-passing machines.the shared-memory architecture depicted in Fig. 4.12 based on a 2-crossbar network. De-spite its appearance however, the architecture corresponds to a 2-node distributed-memorymachine with the PEs communicating through what is now usually referred to as a bi-directional link. (In a multiprocessor architecture a single, symmetric crossbar would, of

86 CHAPTER 4. MODELING TECHNIQUEcourse, su�ce8.) Note that the network invites the exploitation of memory locality dueto its form (multiple hops for non-local loads and stores) and di�erent timing parameters(the much longer links between PEs require much slower access speeds). The message-
P1 M 1

P2 2M

bi-directional
link

X

X

PE 1

PE 2Figure 4.12: Shared memory hardware of distributed-memory machine.passing layer on top of the above memory layer simply maps the send/recv calls onto theload/store (move) functions of the underlying global memory, incorporating some con-dition synchronization protocol. For instance, in the above architecture a simple (scalar)memory access model is given byload(a) = store(a) = fq = f(a); delay([p 6= q]�s); use(mq)gwherem denotes the memory (and associated switch link), p denotes the processor index ofthe caller, and q denotes the processor index to which the target memorymodule is \local"(f(a), determined by memory address a). The delay term accounts for the additionalswitching delay �s for a non-local transfer (in fact, a reduced model since at an outboundswitch link no contention will occur). Note that in general �s is large which is why themodel penalizes non-local memory access. A simple message-passing interface, organizedaround a scalar bu�er at address a, would be modeled by the producer-consumer scheme(cf. Example 3.2, room = 1, data = 0)send(a) = P(room); store(a) ; V(data)recv(a) = P(data) ; load(a) ; V(room)where a is either in m1 or m2. Thus, all performance aspects of the message-passing layer(i.e., condition synchronization protocol) and underlying network layer (i.e., latencies,bandwidth, mutual exclusion on links and bu�ers, etc.) are accounted for (for simplicity,protocol stack overhead has been ignored in the example). Note that the physical im-plementation of the message-passing layer (handshaking tra�c) is completely abstracted.Only the condition synchronization, i.e., its e�ective result, is modeled. The overhead ofthe synchronization protocol is assumed to be accounted for by the startup cost of themessage-passing calls (discussed later on).8Note that a multicomputer topology like the hypercube is, in fact, related to the Omega type multi-stage network known in the multiprocessing domain [114]. For busses, the similarity is obvious.

4.4. DISTRIBUTED-MEMORY SYSTEMS 874.4.2 Basic CommunicationIn the above example, the actual interprocessor communication could be through a mem-ory location at either sender or receiver. In typical message-passing systems, however,the target (or intermediate bu�er) address resides at the receiver which implies that theactual interprocessor data transfer is initiated by the store operation, rather than theload operation. Furthermore, typical interfaces explicitly refer to a source, destination, aswell as intermediate data location involved in the data transfer. An example in which theaddressing scheme is associated with both the processors involved are the calls send(r,x)that stores local (user) address x to some remote address designated by the receiver r,and recv(s,y) that loads data from sender s from some intermediate bu�er into (user)address y.As in general a data transfer involves much more than just a scalar operation, wewill introduce the block move model bmove(a; b; l) to denote the actual global transferof l (contiguous) data elements between address a and b. Consequently, a synchronousmessage-passing model is modeled assend(r; x; l) = P(room) ; bmove(x; b; l) ; V(data)recv(s; y; l) = V(room) ; P(data) ; bmove(b; y; l)where b denotes the local bu�er address for data from s, with room = 0 and data = 0 (infact, a \rotated" version of the producer-consumer model in Example 3.2 with regard tothe receiver).The asynchronous message-passing scheme can be conveniently expressed in termsof the same model with room = C where C denote the initial capacity of the bu�er(mailbox). Note that typical implementations of asynchronous sends will never blockwhich is modeled by C = 1. As in practice C is certainly not in�nite this implies thatover
owing messages may have to be discarded. When in�nite bu�ers are assumed theabove model reduces tosend(r; x; l) = bmove(x; b; l) ; V(data)recv(s; y; l) = P(data) ; bmove(b; y; l)Another consequence is that when the pair of tasks that are to communicate is determinedat application level (e.g., in terms of some task index i and j), the model can be writtenin terms ofsend(r; x; l) = bmove(x; b; l) ; signal(cij)recv(s; y; l) = wait(cij) ; bmove(b; y; l)as a result of the fact that the memory property of the P=V operators is not used. Clearly,the implications for the analyzability of message-passing programs are considerable (seeExample 4.7 and also Example 5.1).With respect to the move model we use the same modeling principles as described forinterconnection networks for shared-memory systems. For example, the interconnectionnetwork of the iPSC/2 hypercube [111] (P nodes) can be modeled by P (log2 P + 1) �(log2 P + 1) crossbars (like the earlier example, an extra link is needed to connect with

88 CHAPTER 4. MODELING TECHNIQUE
0mp 0

p 7 7m

x

y

z

x

y

z

X 0
x

y

z

x

y

z

X 7

x

z
y

2 3

0

6 7

54

1

Crossbar
Connection
Diagram:

1 1

2 2

4 4

6 6

5 5

3 3Figure 4.13: Pamela model of Intel iPSC/2 distributed memory system.local tra�c, see Fig. 4.13). Compared to the hypercube (omega) network discussed earlierthis network is clearly optimized for memory access locality (0 hops for local access, upto logarithmic number of hops for remote access). Let nk = s : : : r denote the index ofthe K nodes involved in the path between processors s and r where n1 = s and nK = r.In the following we will ignore the forwarding delay through the pipeline of switches. Letci denote the switch link (channel) responsible for transferring data from ni to ni+1. Forcircuit-switched systems (like the iPSC/2) the bmove model can be roughly expressed by(ignoring circuit setup overhead)bmove(x; b; l) = using (c1) fusing (c2) f: : :using f(cK�1) xfer(x; b; l)g : : :g gand the data transfer is modeled byxfer(x; b; l) = seq (i = 1; l) delay(�c) = delay(l�c)where �c denotes the transfer time per unit data. Note that the initial link resource c1would always seem available as the outbound link is used only by local senders. However,in order to account for multiple threads sending concurrently (in non-blocking send mode),the cs term must be included.Also for packet-switched interconnection systems the situation is comparable to theshared-memory model. (In Example 4.9 a message-passing model will be described for amesh topology.) The fact that in distributed-memory networks message vectors are trans-ferred instead of unit data implies that a pipelining model must be used. However, dueto the material-oriented approach, the basic propagation model stays the same. Considera vector of l data elements. Let the packet size be W . For simplicity we assume paddingsuch that the last packet has the same length W (although l may not be a multiple ofW). Again the forwarding nodes are denoted by channels c1 : : : cK�1. Note that in thisrespect a channel resource may represent a node's CPU (older generation systems) as well

4.4. DISTRIBUTED-MEMORY SYSTEMS 89as dedicated switching hardware (current generation systems). For one packet a coarsemodel for bmove is given bybmove(x; b;W) = seq (k = 1;K � 1) using (ck) xfer(bk; bk+1;W)where bk denotes the address of the intermediate packet bu�ers. Unlike the shared-memoryswitching model, however, the multiple packet transfer is pipelined which is modeled asbmove(x; b; l) = par (i = 1; dl=W e) seq (k = 1;K � 1) using (ck) xfer(bk; bk+1;W)according to the material-oriented approach (cf. pipelining example). Note that the abovemodel accounts for startup time, bandwidth, as well as the e�ect of link contention withsimultaneous communications that use mutual channels (forwarding services). This isa signi�cant improvement over conventional models (the linear delay model accountingfor startup and bandwidth [9, 18, 70]) that only predict communication performance forisolated point-to-point communications. The above model will be used to describe themessage-passing interface of a transputer mesh (Example 4.9).4.4.3 Non-blocking CommunicationThe basic message-passing systems discussed thus far are blocking in the sense that theactual message transfer (the bmove call) is synchronous with respect to the sending pro-cess. Especially when dedicated transfer hardware is installed (e.g., ci is implementedby switches or DMA devices), even an asynchronous send will entail many lost cycles forthe calling process. In order to provide additional scheduling freedom current interfacesfeature a non-blocking version of the (a)synchronous send and receive call. The typicaluse of such a call is to exploit the additional concurrency for overlapping communicationand computation, or to execute concurrent communications under the assumption thatthe underlying system actually supports this form of parallelism.The implementation of a non-blocking call typically involves a separate, dedicatedprocess that takes care of the actual (blocking) call. Consider a non-blocking send callnbsend. The call communicates the actual send request (by process s) to a dedicated(kernel) process S according to the (blocking) schemenbsend(r; x; l) = send(S; a; 2)in which both parameters a = (r; x) are passed to S (hence the parameter '2' in the abovemodel). The send and recv models are de�ned as earlier and S executes the servicewhile (true) frecv(s; a; 2); send(r; x; l)gThus, the intermediate process insulates the program-level process from the blocking call.Note that the intermediate communication may involve an asynchronous request bu�eringscheme.Like the earlier model, the above model is essentially a message-passing model. Al-though the model is a legal Pamela model, the message-passing paradigm used to modelthe call (featuring the kernel process) makes it hard to apply serialization analysis (as

90 CHAPTER 4. MODELING TECHNIQUEdiscussed in Chapter 3). In order to allow the call to be modeled in terms of a material-oriented Pamela model one must consider the call in combination with its formal coun-terpart, i.e., the nbtest, that tests if the transfer has actually �nished. (This is especiallyappropriate for nbrecv, however, note that a non-blocking scheme that never blocks mustalways include a test function or must eventually block when out of resources.) In fact, thisproblem is an example of the general idea that the fork-join structuredness of Pamela's 'k'operator somehow forces the system under study to have structure as well (thus enablingcompile-time analyzability). Assuming that nbsend is always used in conjunction withthe nbtest. The semantics of the blocking nbtest are such that the following equalityholds send(r; x; l) = nbsend(r; x; l) ; nbtest(r)In modeling nbsend we use the following (structured) templatenbsend(r; x; l) ; L ; nbtest(r)where L is program code that is executed between nbsend and nbtest. Note that theabove template is a fork-join template. A procedure-oriented model of this template isgiven bynbsend(r; x; l) ; L ; nbtest(r) = L k send(r; x; l)This model is amenable to serialization analysis. Even when the nbtest is not present(in the program) at modeling-time always an appropriate location can be found at whichpoint the processes are joined (e.g., the end of the parallel section of which L is part of).Depending on the nature of the forwarding hardware, the communication proceeds eitherfully or partially in parallel (see Example 4.8).4.4.4 ExamplesIn this section we describe a number of examples that show some of the principles under-lying the modeling of distributed-memory systems.Example 4.7 In this example we demonstrate the (performance) equality between sim-ple message-passing implementations and shared-memory implementations. Consider animplementation of the polynomial computation statically scheduled for P = 2 on adistributed-memory machine with asynchronous send=recv instructions. The Pamelamodel would be given by (ignoring the actual data)L = L1 k L2L1 = t1 ; send(cpu2) ; t3 ; send(cpu2) ; recv(cpu2) ;t5 ; recv(cpu2) ; t7 ; send(cpu2)L2 = t2 ; send(cpu1) ; recv(cpu1) ; t4 ; send(cpu1) ; recv(cpu1) ; t6 ; t8

4.4. DISTRIBUTED-MEMORY SYSTEMS 91where each task ti is given byt1 = load ; flopt2 = load ; load ; flopt3 = flopt4 = load ; flopt5 = flopt6 = load ; flopt7 = flopt8 = flopNote that the local load instructions account for the initial loading of variables x, a0; : : : a3in order to achieve a comparable situation with respect to the original shared-memory im-plementation. When we consider a simple (memory-less) implementation of the message-passing interface according tosend(r) = store ; signal(cij)recv(s) = wait(cij) ; loadthe model automatically reduces to the original shared-memorymodel described in Exam-ple 4.2. Thus, in terms of the Pamelamodels, the actual di�erence between applicationsprogrammed in a shared-memory paradigm or in a (simple) distributed-memory paradigmis merely a matter of choice between instruction interface abstraction levels. 2Example 4.8 In this example we analyze the e�ective performance yield of non-blockingcommunication. In earlier systems, the e�ective overlap of computation and commu-nication can be disappointing. For example, consider a non-blocking nearest-neighborcommunication of l data units in which cpu acts as sender. For simplicity assume that thereceiver has already posted its recv call such that the e�ect of condition synchronizationcan be ignored. Let the blocking send be modeled bysend(l) = use(cpu; �s) ; par (i = 1; dl=W e) using (cpu) xfer(W)where �s represents software (call) overhead. For simplicity in this model we only con-sider the l parameter. Due to the absence of (multi-hop) pipelining (nearest-neighborcommunication), the model simply reduces tosend(l) = use(cpu; �s) ; seq (i = 1; dl=W e) using (cpu) xfer(W)= use(cpu; �s) ; use(cpu; dl=W eW�c)as a result of serialization, where �c is the transfer time per data element. Thus all thecommunication workload is attributed to the CPU.Let L represent local computation modeled byL = use(cpu; �f)

92 CHAPTER 4. MODELING TECHNIQUEIn this case, attempting to overlap the computation with communication yields no speedupat all asnbsend(l) ; L ; nbtest = L k send(l)= use(cpu; �f) k send= use(cpu; �f) k use(cpu; �s) ; use(cpu; dl=W eW�c)= use(cpu; �f + �s + dl=W eW�c)Note that cpu is PS type.On the other hand, consider a transputer architecture where the actual data transferis performed through DMA. The send model is given bysend(l) = use(cpu; �s) ; use(dma; dl=W eW�c)where dma represents the link DMA device (dma = 1, PS type at multipacket level). Itfollowsnbsend(l) ; L ; nbtest = use(cpu; �f) k use(cpu; �s) ; use(dma; dl=W eW�c)= use(cpu; �f + �s) k use(dma; dl=W eW�c)Serialization analysis yieldsW = max(�f + �s; dl=W e�c)Provided software startup overhead is small, computation can indeed be overlapped withcommunication. 2Example 4.9 In this example we develop a communication bandwidth model for aParsytec T800 transputer mesh9. In contrast to the earlier examples this study involvesmodeling and measurement of actual machine hardware in which most of the principlesdescribed earlier are demonstrated. The model provides a good �rst-order performanceapproximation of large data transfers in the presence of simultaneous communications.The bandwidth model will be used in a case study in which the execution times of anumber of applications running on the T800 mesh are compared with our predictions.Although the model is based on a number of (simplifying) assumptions the predictionsprove to be quite accurate as is shown later on. The message-passing interface consideredis based on the \virtual link" service, that provides a dedicated logical channel betweena sender and receiver task. Since the virtual link topology needed to connect senders andreceivers is setup in the prologue of the actual application discussed above, link setuptimes need not to be considered. The communication mode selected is \asynchronous" interms of the machine interface, which, in reality however, implies a non-blocking mode inour modeling terminology (sender unblocks before transfer has completed). The commu-nication mode selected does not involve bu�er copying at the sender, nor at the receiver(direct copy from user address x to y as described previously). In terms of the message-passing interface the communication functions correspond to ARecv, and ASend calls,9Kindly made available by the Interdisciplinary Center for Computer-based Complex systems researchAmsterdam (IC3A).

4.4. DISTRIBUTED-MEMORY SYSTEMS 93respectively [115]. In contrast to the address parameters used earlier, in the following wewill consider bmove(s; r; l) where s and r denote sender and receiver node, respectively.The virtual link service of the transputer system is based on a multiplexing schemein which each 120 bytes of the message is packetized. Each packet is statically routedthrough the mesh in a pipelined fashion. Unlike the T9000, the virtual link service is stillemulated by the T800 node kernel. Consequently, each transfer not only induces workloadat all the hardware links in the circuit but also at software level on each forwardingnode. Traditional communication models only characterize communication performancein terms of a point-to-point model that typically accounts for latency and bandwidthonly [9, 18, 70]. In terms of Pamela this implies a linear delay model according tobmove(s; r; l) = delay(�s + l�c)where �s denotes the startup time (typically including a dependency on the number ofhops between s and r) and �c denotes the inverse bandwidth. For a 4� 4 mesh partitionFig. 4.14 shows the execution time as measured on the mesh. Note, that in the abovelinear model the e�ects of packetization are ignored (the small increments per 120 bytesshown in the �gure).
l (bytes)

(us)
T

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

0 hops

1 hop

2 hops

5 hops

Figure 4.14: Point-to-point communication time of the T800 transputer meshIn contrast to this delay construct we express the additional knowledge concerningthe potential contention delay in terms of use constructs referring to the limited numberof services available. With each physical link between neighboring transputers we willassociate a service complex comprising a subsystem of physical (e.g., DMAs at both linkends) and/or semi-logical (software servers at both ends) resources. Without any loss ofgenerality, we project the service complex at the receiving node of each link, as shownin Fig. 4.15. In the following we consider the communication system at the packet level

94 CHAPTER 4. MODELING TECHNIQUEwhich is the smallest level of granularity with respect to resource sharing. Although theservice complex at each link comprises several software/hardware components, it can bemodeled as to provide two services at the packet level that are subsequently denoted eand f (see Fig. 4.15).The �rst service e represents the reception service at the packet destination involvingthe exclusive transfer of one packet across the link, including the software overhead at bothends (e.g., moving, handshaking). The second service f represents the forwarding service(including intermediate storage and protocol overhead) required for a packet destined fora di�erent node. Consequently, compared to e, f includes additional routing/forwardingworkload. In general, a packet transfer from node s = n1 to r = nK will require for-warding at n2 : : : nK�1 (according to static x-y routing10) and one reception service atnK . Both services are based on an underlying service, represented by the resource x thatrepresents the basic link service that has to be shared. Consequently, e and f are logicalresources (kernel servers) sharing the underlying link service. Apart from sharing linktransfer service x supplied by the sending and receiving DMA resources for each channel,e and f are mapped onto the CPU resources as well since receiving a packet, and, mostnotably, forwarding a packet involves a number of CPU cycles. However, the e�ectiveCPU bandwidth as available for regular computation is hardly a�ected by the occurrenceof data transfers (up to approximately 20 % CPU bandwidth degradation when all fourreception or forwarding services are simultaneously active). Furthermore, communicationbandwidth is also not a�ected by the number of links that are simultaneously active.Consequently, in our approximate model we simply ignore the impact of e and f on theCPU performance (and therefore on neighboring e and f services as well11). Thus, themodel is expressed in terms of the logical services e and f (as if supported by independentphysical servers) and a physical link (DMA) service x. Typical for the Pamela method-
0e

0fx0

f 3

e3x3

e1 x1

f 1

x2f 2

e2

0e
0fx0

f 3

e3x3

e1 x1

f 1

x2f 2

e2Figure 4.15: Message-passing service model of the T800 transputer mesh10First, j(s=4) � (r=4)j nodes in the sender column are traversed after which j(s mod 4) � (r mod 4)jnodes in the receiver row are traversed (in terms of row-major node numbers).11A possible explanation for this relative absence of CPU interference is that the (high-priority) CPUkernel involved with supporting e and f is based on a (busy waiting) scheme such that a number ofcycles are spent anyway, regardless of the presence of (useful) service activity (e and f). The e�ectiveCPU bandwidth as experienced by user threads is therefore a relatively constant fraction of the total CPUpower available. As no information on the kernel was available the exact reason could not be investigated.

4.4. DISTRIBUTED-MEMORY SYSTEMS 95s r Tm T T t(0) (1) 0.9 0.9 0.9(0) (2) 1.5 1.5 1.5(0,0) (1,1) 1.8 1.8 0.9(0,0) (2,2) 3.0 3.0 1.5(0,0) (1,2) 1.8 1.8 1.5(0,0,0) (1,1,2) 2.7 2.7 1.5(0,0,0) (1,2,2) 3.3 3.3 1.5(0,0,0,0,0,0) (1,1,1,2,2,2) 6.0 5.4 1.5Table 4.1: Results for 106 byte concurrent communications (s)ology, we use a material-oriented approach to model packet propagation, as this approachis conducive to our analytic method. In the following we model the transfers on a packetlevel rather than on a byte level. However, the error is negligible in view of the large datatransfers we will consider in the case study.In order to model the pipelined packet propagation we model the entire transfer as aparallel operation (cf. Example 3.5.). Let nk = s : : : r denote the index of the K nodesinvolved in the pipeline route. Then the Pamela model is given bybmove(s; r; l) = par (i = 1; l=120) fseq (k = 2;K � 1) fuse(ffnk ; xnkg; �x);use(fnk ; �y)g ;use(fer; xrg; �x)gNote that this model ignores startup delay and the fact that l mod 120 represents ahalf packet on average. However, for large data communications this model su�ces toaccurately capture the e�ective bandwidth degradation when many virtual links are si-multaneously active.The contention model has been validated for many types of concurrent communications(equal message lengths) as well as random patterns (as discussed later on). From thepoint-to-point measurements as well as from the bandwidth measurements for concurrentcommunications it follows that �x = 108 �s (link transfer) and �y = 73 �s (intermediateforwarding). Table 4.1 shows a few typical results for (106 byte) data transfers involvingonly the �rst row of the mesh (nodes 0, 1, 2, and 3). In the table only the most signi�cantdigits are displayed for the ease of interpretation. The nodes that are simultaneouslysending are expressed by the s vector, while the receivers are expressed by the r vector.Each pair (sn; rn) corresponds to one communication. Apart from the measured value Tmand the simulation result T the traditional static prediction T t is listed to demonstratethe prediction errors that may occur. The results for T show that the bmove modelis quite accurate for a �rst-order approximation. Only in a very few situations a limiteddeviation is measured (cf. last row). This optimistic prediction is due to the precise packet

96 CHAPTER 4. MODELING TECHNIQUEscheduling that is left undetermined in the Pamela model. In contrast to practice, thisnon-determinism sometimes leads to assuming a more e�cient schedule than the actualimplementation.As mentioned earlier, the above model is merely intended as a �rst-order approximationof realistic communication bandwidth. Hence, many phenomena are not accounted for,such as the in
uence of concurrent communication in reverse direction on the (duplex) linkperformance, as well as the communication overhead on the CPU. Both phenomena mayintroduce errors in the order of 20 % as shown by measurements. The second phenomenonin
uences the computation performance, rather than communication performance (com-munication tasks by the CPU are run at high priority while computation threads havelow priority). The �rst phenomenon, however, directly relates to communication perfor-mance. Duplex communication essentially degrades communication performance. Eachdata transfer on a link induces acknowledgement tra�c on the reverse link (2 bits per11 bit datum [74]). Consequently, when data transfers are performed concurrently inboth directions, e�ective link bandwidth drops with approximately 18 %. For instance, aconcurrent communication (0; 1) ! (1; 0) of 106 bytes is indeed measured to take about1.06 s instead of 0.9 s. 24.5 SummaryIn this chapter we have presented the approach to modeling parallel computer systemsusing Pamela. A key concept is the use of a material-oriented paradigm in combinationwith structured mutual exclusion operators because of the advantages in analytical senseas explained in the previous chapter. The constraints imposed by this modeling approachwith respect to the ability to accurately model parallel computer systems are quite ac-ceptable, a fact that may be illustrated by the longstanding use of queuing networks (i.e.,structured mutual exclusion) in this area. As shown by the examples for most instructionmodels this approach does not introduce inherent limitations as long as the resource pos-session across the system components is perfectly nested and the synchronization protocolsbetween the components can be expressed in terms of one thread of control. While the�rst requirement is typically met, the second one requires that components (i.e., di�erentprocesses acquiring di�erent components) cannot engage in a two-way synchronization asrequired when �nite bu�ers are involved. The problem has already been introduced inthe pipeline and producer-consumer example (Section 3.3) and has been discussed in thecontext of modeling switches with �nite bu�ers. Of course, a (message-oriented) solutionis to use individual P=V operators that provides the additional modeling power, at theexpense of analyzability (i.e., appropriate for simulation). A solution more in the
avor ofthe Pamela methodology, however, is to accept the \under-speci�cation" in view of theoverall analysis technique (see Section 3.3). As mentioned earlier, only the principles havebeen outlined. In actual systems more detailed models may be necessary than the simplememory, cache, and switching models discussed thus far. However, our modeling examplesdo account for the most important behavioral aspects in terms of delay and contentionat a level of abstraction as typically found in modeling approaches based on queuing net-works. Indeed, Example 4.9 shows that even with simple models good accuracy can beobtained (also when used in actual applications as we shall see in Section 5.3).

4.5. SUMMARY 97The material-oriented approach to parallel systems modeling implies that a paral-lel program and machine are viewed in the same way in terms of a chain of re-activesubroutines that are called by some root process that represents the algorithm. Eachsubroutine involves the use of resources and, possibly, the use of additional processes inorder to express some form of asynchronous behavior (e.g., non-blocking communication).However, similar to resource usage, the use of subordinate processes is structured due tothe par construct. This approach to machine modeling in terms of service layers (e.g.,processors, switches, memories) has lead to the uni�cation of distributed-memory andshared-memory machine modeling. While at software level the distributed-memory archi-tecture is accounted for by an additional message-passing layer, at machine \load/store"level both machines only di�er in terms of the processor-memory interconnection net-work. Note that this implies somewhat a departure from the \traditional" perspective oninterconnection networks that distinguishes between shared-memory machine networksand distributed-memory machine networks. A representative example is the terminol-ogy due to Feng [42] in which a distinction is made between \dynamic" topologies, i.e.,shared-memory machine networks where link paths are dynamic, and \static" topologies,i.e., distributed-memory machine networks where the (point-to-point) links cannot be re-con�gured for direct connection between other processors. From our perspective, bothcategories are dynamic, the only di�erence being that for distributed-memory machinesthe number of network switches equals the number of processors, the uni�cation beingthe overall non-uniform memory access (NUMA) model. A framework for the uni�eddescription and analysis of machine networks is presented in [19].In this chapter we have shown how the various networks can be expressed in terms ofthe same (load/store) modeling concepts. From a taxonomic perspective this material-oriented approach o�ers an interesting alternative to the description of parallel com-puter architectures which is traditionally \structure-oriented" (e.g., [35] and the referencestherein). Consider a cache connected to a memory. In terms of our \behavior-oriented"modeling approach we describe the architecture in terms of its (load/store) behavior. LetC, and M denote the Pamela models. Let M 0 denote the cached memory system. Asshown in this chapter we can characterize the model in terms of some functional de-scription formalism M 0 = C(M) where C is a higher-order function that maps memoryfunctionality between various layers in the memory hierarchy (same applies to switches).Such a description not only represents the structural link between the components but alsodescribes its behavior. If we tacitly assume this \higher-order Pamela script" languageto include operators for replication, selection, etc. (e.g.,DP represents P data processors),a machine could be represented in a concise (hierarchic) format, analogous to the graph-ical representation technique used in this chapter. This formalism would o�er the abilityto automatically compile performance models from the description, rather than derivingperformance behavior through human-like inference only.

98 CHAPTER 4. MODELING TECHNIQUE

Chapter 5Case Studies5.1 IntroductionIn contrast to the small examples presented thus far, in this chapter we shall discuss anumber of more elaborate case studies in which we touch upon various aspects of thePamela methodology. In Section 5.2 we will demonstrate the application of the calculusin automatically compiling Pamela models into analytic performance models using twocase studies. While in these cases the Pamelamodels themselves are not based on actualimplementations, in Section 5.3 we will describe the modeling of a real application ona distributed-memory machine. in which we show that actual application performancecan be modeled with relatively simple Pamela models. Thus far, we have distinguishedsimulation modeling (numeric) and analytic modeling (symbolic). In Section 5.4 we ex-plore alternative approaches to numeric performance prediction. Being a performanceprediction technique, an important application of Pamela is system optimization. InSection 5.5 we show how the Pamela calculus can be used in parallel program synthesis.Finally, in Section 5.6 the main points are summarized.5.2 Performance Compilation5.2.1 IntroductionIn Chapter 3 we have de�ned the analysis through which Pamela models can be trans-formed into symbolic time domain models. In fact, the transformation process can beperceived as compiling time domain models from Pamela models, which is a purely me-chanical process. In order to show that the compilation procedure and the inherent reduc-tion that can be applied in the process is not only feasible for toy problems only, we presenttwo case studies. The �rst case study involves a matrix factorization on a multiple-bankshared-memory system. The second case study involves a matrix-vector multiplication ona distributed-memory machine. Parts of this work have appeared in [50, 51].From an automated point of view some of the model reductions that will be applied inthe course of the analysis may not be immediately obvious, in particular those that relateto the partitioning of the index space (see the next section). The information needed for

100 CHAPTER 5. CASE STUDIESthe recognition of these few situations, however, can safely be assumed available as partof the knowledge of the (index) partitioning process.5.2.2 PreliminariesIn many cases we consider a computation that is partitioned over M identical resourcesm = 0 : : :M � 1 (e.g., processors). Let S be a statement called for i = a : : : b. Letf(i) = ci+ d be some linear index generated by S that references a resource m accordingto the partitioning function m = �(i). Then the visit count on resource m is given byVm = bXi=a [�(ci+ d) = m]In the following we give reductions for block and cyclic partitioning functions. Somebackground is given in Appendix B.De�nition 5.1 Let�(i) = b iB cdenote the block partitioning function whereB = db� a+ 1M edenotes the block size. ThenVm = �m � �m + 1where�m = max(a; dBm� dc e); �m = min(b; dB(m+ 1) � dc e � 1)2De�nition 5.2 Let�(i) = i mod Mbe a cyclic partitioning function. ThenVm = (0; (m� d) mod gcd(c;M) = 0;�m � �m + 1; otherwise.where�m = da� �m� e; �m = db+ 1 � �m� e � 1; � = Mgcd(c;M)and �m is the smallest solution of the diophantine equation ci + kM = m � d such that�m � a. 2

5.2. PERFORMANCE COMPILATION 1015.2.3 Matrix FactorizationIn this case study we consider the factorization of an N�N matrix (aij) without pivoting,parallelized for a P processor shared-memory machine. The parallelization is based ona column-wise cyclic partitioning of the column updates over processors p = 0 : : : P � 1.The implementation is characterized by the following C-style pseudo code, i.e.,for k = 0 .. N-2 {scale pivot column k;forall p = 0 .. P-1update columns k+1 .. N-1 assigned to p;}Let the underlying machine interface be de�ned in terms of just the following two instruc-tions, i.e.,� flop, that symbolizes all
oating point operations, including possible local registertra�c,� move(i; j), that represents a global memory load or store of the data word associatedwith the matrix element aij.When (multiprocessing) overhead is ignored, the Pamela model is given byL = seq (k = 0; N � 2) fmove(k; k); flop;seq (i = k + 1; N � 1) f ! scalemove(i; k);flop;move(i; k)g ;par (p = 0; P � 1)seq (t = t�; t�) f ! updatej = p+ tP ;move(k; j);seq (i = k + 1; N � 1) fmove(i; j);move(i; k);flop; flop;move(i; j)gggwhere t�, t� are given byt� = dk + 1 � pP e; t� = dN � pP e � 1

102 CHAPTER 5. CASE STUDIESas a result of De�nition 5.2 (t� = �p; t� = �p). Let the multiprocessor's global memoryconsist of M interleaved memory banks bm;m = 0 : : :M � 1 (bm = 1). Without loss ofgenerality, the interconnection is assumed ideal1. Then the machine model is given byflop = delay(�f)move(i; j) = use(bm; �m)where �f and �m represent delays due to
oating point and memory access instructions,respectively, and m = (i + Nj) modM , thus taking a column-wise storage scheme intoaccount.First, we consider the application of Eq. (3.14) to the parallel section which we willdenote Lk. With respect to '(Lk) by Eqs. (3.1) through (3.10) it holds'(Lk) = maxp=0:::P�1 t�Xt=t�(�m + N�1Xi=k+1(3�m + 2�f))From De�nition 5.2, it follows that the maximum number of columns assigned to a pro-cessor is given bymaxp=0:::P�1(t� � t� + 1) = d nP ein which n = N � k � 1. Hence '(Lk) reduces to'(Lk) = d nP e(�m + n(3�m + 2�f))For the analysis of !(Lk) (Eq. (3.12)) we must consider M resources bm with workload�m;m = 0 : : :M�1 according to the cyclic distribution. For the purpose of explaining theanalysis of �m, we will treat each move statement separately. The work load on memorybank bm generated by the move(k; j) statement in the t loop is given by�(k;j)m = P�1Xp=0 t�Xt=t� [(k +Nj) modM = m] �mwhere j = p+ tP . By de�nition of t� and t�, this immediately reduces to�(k;j)m = N�1Xj=k+1 [(k +Nj) modM = m] �mBy De�nition 5.2, this form reduces corresponding to the parametersa = k + 1; b = N � 1; c = N; d = k; � = Mgcd(N;M)to the subtraction�(k;j)m = (dN � �m� e � dk + 1 � �m� e+ 1)[(r � k) mod gcd(N;M) 6= 0] �m1The above model characterizes many practical system con�gurations. The case M = 1 also appliesto a single (circuit-switched) bus system.

5.2. PERFORMANCE COMPILATION 103The work load due to both move(i; j) statements is given by�(i;j)m = 2 P�1Xp=0 t�Xt=t� N�1Xi=k+1 [(i+Nj) modM = m] �mwhich, by de�nition of t� and t�, immediately reduces to�(i;j)m = 2 N�1Xj=k+1 N�1Xi=k+1 [(i+Nj) modM = m] �mBy De�nition 5.2, the i loop is reduced corresponding to the parametersa = k + 1; b = N � 1; c = 1; d = Nj; �m = m�Nj; � = Mto the form�(i;j)m = 2 N�1Xj=k+1(dN +Nj �mM e � dk + 1 +Nj �mM e+ 1)�mSimilarly, the work load due to the move(i; k) statement is given by�(i;k)m = N�1Xj=k+1(dN +Nk �mM e � dk + 1 +Nk �mM e+ 1)�mSince bm = 1 it follows!(Lk) = maxm=0:::M�1(�(k;j)m + �(i;j)m + �(i;k)m)Including the sequential fraction as well as the outer k loop, by Eq. (3.15) it followsT l = N�2Xk=0 (�m + �f + N�1Xi=k+1(2�m + �f) + max('(Lk); !(Lk)))that reduces toT l = (N � 1)(�m + �f) + N(N � 1)(2�m + �f)2 + N�2Xk=0 max('(Lk); !(Lk))E�ectively, the computation complexity of T l is O(N2M) due to the ! term. Inthe spirit of the approximative nature of serialization analysis as well as in the interestof e�ciency we investigate the quality of a less complicated approximation that resultsfrom assuming equal memory load balance due to the interleaving scheme. Formally, thiscorresponds to rede�ning the move model in terms of one single memory resource b withb = M according tomove(i; j) = use(b; �m)As a result of this simpli�cation it immediately follows!(Lk) = PP�1p=0 Pt�t=t�(�m +PN�1i=k+1 3�m)M

104 CHAPTER 5. CASE STUDIESwhich, by de�nition of t� and t� immediately reduces to!(Lk) = (n + 3n2)�mMin which n = N � k � 1. HenceT l = (N � 1)(�m + �f) + N(N � 1)(2�m + �f)2 +N�1Xn=1 max(d nP e f�m + n(3�m + 2�f)g ; (n+ 3n2)�mM)Furthermore, if, at this stage, we neglect the dependency on n (i.e., approximatingPmaxby maxP) we obtain the following expression2, i.e.,T l = (N � 1)(�m + �f) + N(N � 1)(2�m + �f)2 +max(N�1Xn=1d nP ef�m + n(3�m + 2�f)g;N�1Xn=1 (n+ 3n2)�mM)Without loss of precision, this O(N) expression can be further reduced to an O(1) ex-pression using standard discrete mathematics. The reductions of the expressionsN�1Xn=1d nP e and N�1Xn=1d nP enare described in Appendix C.Figures 5.1 and 5.2 each show three speedup results,S = TP=1TP�1 ; St = T tP=1T tP�1 ; Sl = T lP=1T lP�1based on the predictions T (simulation), T t (traditional prediction, based on ' only), andour lower bound prediction T l, respectively. Figure 5.1 shows the speedup for M = 2while Fig. 5.2 shows the speedup for M = 4. In both cases �f = 10�m. The resultsclearly illustrate the added value of serialization analysis compared to the traditionalapproach, that yields far too optimistic predictions for large values of P . The M valueshave deliberately been chosen small to demonstrate the e�ects contention may have onperformance (forM = 1, T l and T practically coincide). For increasingM values the plotsmore or less blow up as a result of the simple scaling laws that can be directly derived byour approach to contention analysis. Let P � denote the saturation point. For P = P �,the total memory work load in the parallel loop equals the traditional execution time. Fornot too small problems this implies3�mM = 3�m + 2�fP �Hence,P � = (2�f3�m + 1)M � 7:7Mwhich implies that (memory) performance degradation is determined by the ratio of Pand M as can be seen from the �gures.2This establishes a lower bound of somewhat less quality. Results show, however, that the dependenceon n is indeed negligible, resulting in a deviation that is less than a few percents over the total range.

5.2. PERFORMANCE COMPILATION 105
1
5

10

20

30

50

1 10 20 50 100

m
t
l

M = 2

P

S

S

S l

S
t

Figure 5.1: Speedup for N = 100; M = 2 1
5

10

20

30

50

1 10 20 50 100

m
t
l

P

S

S

M = 4

S l
S

t

Figure 5.2: Speedup for N = 100; M = 45.2.4 Matrix MultiplicationIn this case study we consider an N � N matrix vector update y = y + Ax on a Pnode multicomputer according to simple block partitioning in which we assume P jN . Inorder to emphasize the role of interprocessor communication (contention), an intentionallysuboptimal column-wise partitioning is chosen, while x is evenly distributed over all nodes.Moreover, the implementation is based on a naive application of the \owner-computes"convention [26] to the result vector y (note, that less communication-intensive schemesexist for column-wise partitioning but, again, this is not the issue here). The resultis characterized by the following C-style SPMD pseudo code (p is the node id), whereb = N=P , and the indexing is kept in terms of the (original) global data space, forsimplicity.for i = 0 .. b*p-1for j = b*p .. b*(p+1)-1send(i/b,A[i][j]);for i = b*(p+1) .. N-1for j = b*p .. b*(p+1)-1send(i/b,A[i][j]);for i = b*p .. b*(p+1)-1 {for j = b*p .. b*(p+1)-1y[i] = y[i] + A[i][j] * x[j];for j = 0 .. b*p-1y[i] = y[i] + recv(j/b) * x[j];for j = b*(p+1) .. N-1y[i] = y[i] + recv(j/b) * x[j];}In this code, send(q) moves a datum from node p to node q, while recv(q) returns adatum sent by node q.

106 CHAPTER 5. CASE STUDIESWith respect to the communication of data we assume an asynchronous model. Also,we only model the send statement, assuming that the recv operation only accountsfor synchronization and local data transfers. Furthermore, we assume that the datatransfers are �nished at the time the recv operations are executed, thus allowing conditionsynchronization to be ignored. (Note that this simpli�cation is only made for the purposeof this example. Formally, we should take into account that the data transfers may notbe �nished in time.) Consequently, we can use a send model to completely account forthe work load associated with the communication. Thus the Pamela model becomesL = par (p = 0; P � 1) fseq (i = 0; bp � 1)seq (j = bp; b(p+ 1) � 1)send(i=b);seq (i = b(p+ 1); N � 1)seq (j = bp; b(p+ 1) � 1)send(i=b);seq (i = bp; b(p+ 1) � 1) fseq (j = bp; b(p+ 1) � 1) fflop;flopg ;seq (j = 0; bp� 1) fflop;flopg ;seq (j = b(p+ 1); N � 1) fflop;flopgggwhich immediately reduces toL = par (p = 0; P � 1) fseq (i = 0; bp � 1)seq (j = bp; b(p+ 1) � 1)send(i=b);seq (i = b(p+ 1); N � 1)seq (j = bp; b(p+ 1) � 1)send(i=b);seq (i = 0; 2bN)flopgWith respect to the message-passing interface we assume a unidirectional ring of P point-to-point link resources l0 : : : lP�1. In this arbitrary, simple model each scalar transmission

5.2. PERFORMANCE COMPILATION 107involves a forwarding copy by each link processor in the path between sender and receiver.Hence we assume the following simple machine model:flop = delay(�f)send(q) = seq (k = 0;K � 1) use(l(p+k)modP ; �l)where K = (P +(q� p)) mod P denotes the number of links involved in the transmission(in this case study, forwarding costs at CPU level are ignored).Since the parallel section is located on the outermost loop level we simply applyEq. (3.14). Critical path analysis yields' = maxp=0:::P�1(bp�1Xi=0 b(p+1)�1Xj=bp K�1Xk=0 �l + N�1Xi=b(p+1) b(p+1)�1Xj=bp K�1Xk=0 �l) + 2bNXi=0 �fwhereK = (P + b ibc � p) mod PSince it follows from De�nition 5.1 that for any fbp�1Xi=0 f(b ibc) = b p�1Xp0=0 f(p0)' reduces to' = b2 maxp=0:::P�1(p�1Xp0=0(P + p0 � p) mod P + P�1Xp0=p+1(P + p0 � p) mod P)�l + 2bN�fwhich equals' = b2 maxp=0:::P�1(P�1Xp0=0(P + p0 � p) mod P)�l + 2bN�fFinally, sinceP�1Xp0=0(P + p0 � p) mod P = P�1Xp0=0 p0 = P (P � 1)2' reduces to' = b2P (P � 1)2 �l + 2bN�fIn order to derive ! we compute the work loads on links l0 : : : lP�1. From the structureof L and send it immediately follows�l = P�1Xp=0 0@bp�1Xi=0 b�1Xj=0K�1Xk=0 [(p+ k) mod P = l] + N�1Xi=b(p+1) b�1Xj=0K�1Xk=0 [(p+ k) mod P = l]1A �l

108 CHAPTER 5. CASE STUDIESwhereK = (P + b ibc � p) mod PAgain, sincebp�1Xi=0 f(b ibc) = b p�1Xp0=0 f(p0)�l eventually reduces to�l = b2 P�1Xp=0 P�1Xp0=0K0�1Xk=0 [(p+ k) mod P = l] �lwhereK 0 = (P + p0 � p) mod PGiven the fact that K 0 is cyclic with respect to p0, it holdsP�1Xp0=0 f(K 0) = P�1+pXp0=p f(K 0)Hence,�l = b2 P�1Xp=0 P�1+pXp0=p K0�1Xk=0 [(p+ k) mod P = l] �lLet p00 = p0 � p. ThenK 0 = (P + p00) mod P = p00and �l = b2 P�1Xp=0 P�1Xp00=0 p00�1Xk=0 [(p+ k) mod P = l] �lNow, we exploit the cyclic nature of the term (p + k) mod P = l with respect to p. ByDe�nition 5.2,P�1Xp=0 [(p+ k) mod P = l] = dP � l + kP e � d0� l + kP e = 1and it follows�l = b2 P�1Xp00=0 p00�l = b2P (P � 1)2 �lAs a result! = b2P (P � 1)2 �l

5.2. PERFORMANCE COMPILATION 109which is independent of l. This, of course, agrees with the communication symmetry(note, however, that this knowledge has not been used in the above mechanical derivation).HenceT l = max(b2P (P � 1)2 �l + 2bN�f ; b2P (P � 1)2 �l)which impliesT l = ' = N2(P � 12P �l + 2P �f)At �rst glance, the fact that T l = ' irrespective of P may be surprising. It is explained,however, if one realizes that the number of (link) resources scales linearly with the numberof processors, thus maintaining balance.The two plots in Fig. 5.3 each show two speedup results, i.e.,S = TP=1TP�1 ; Sl = T lP=1T lP�1where T is the simulation value. The communication-to-computation ratio is parameter-ized according to� = �l�fwhere � is chosen 0.1 and 0.5 in both �gures, respectively. The results show a consider-
1

15

30

1 8 16 32 64

m
t

1

15

30

1 8 16 32 64

m
t

P

S S

P

λ = 0.5λ = 0.1

S

S

S
l

S
lFigure 5.3: Simulation vs. predicted speedup for N = 64able deviation between simulated and predicted speedup. This illustrates the fact thatserialization analysis yields a lower bound that may still deviate considerably from T .For small P the deviation is small as the e�ect of contention is limited. For large P thecommunication dominates (O(1) versus O(P�1) computation) which implies T l = ' = !.As in earlier examples for cases where ' � ! the deviation between T and T l can besigni�cant. This point will be elaborated further in Chapter 6. The fact that serialization

110 CHAPTER 5. CASE STUDIESanalysis does not introduce an extra order term, like in the factorization case (O(N3) inaddition to the traditional O(N3=P) +O(N2)), indicates the problem's potential to runrelatively contention-free on the given machine architecture. Indeed, it turns out thatwhen the communication schedule of the algorithm is modi�ed by simply reversing thedirection in which the i loops are executed, yields completely con
ict-free execution3.Although the analyses in both case studies somewhat re
ect a human touch, the initialcompilation procedure (i.e., compiling the raw, unreduced T l model) can be mechanized.While compiling the visit count expressions is straightforward, the subsequent processof reducing them involves the repeated application of discrete calculus as shown in theworkload analysis of the processor, memory, and link resources. In this reduction phasesometimes a judicious approximation (e.g., memory workload balance) can be helpful inthe derivation of cheaper expressions, especially when the emphasis lies on asymptoticanalysis. To which extent this reduction process can be mechanized is, of course, a di�er-ent matter that lies outside the scope of this work. However, it is clear that the need for\reduction engines" in discrete mathematics is as general an issue as the need for reduc-tion tools in standard calculus, something which is illustrated by the rapid developmentsin mathematical tooling. With respect to the implementation of the Pamela compila-tion process this implies that Pamela provides the tool to derive raw time expressions,intended to be reduced using separate mathematical tools.5.3 Macro Data Flow Computation5.3.1 IntroductionIn order to validate our methodology in terms of actual measurements we present a casestudy in which the measured execution times of 15 synthetic programs on a distributed-memory machine are compared with our predictions based on both simulation and ouranalytic technique. One of the aims of the case study is (once again) to demonstrate thenecessity of accounting for contention. It will be shown that traditional static techniquesyield severe prediction errors. Parts of this section has appeared in [53].The programs involve a macro data
ow-style execution of random computation taskgraphs that are mapped on a 4� 4 mesh partition of the Parsytec GCel T800 transputersystemmentioned earlier in Example 4.9. The computation task graphs, that represent theuser application, are SP graphs generated by a random generator that will be describedin Chapter 6. For each graph the number of computation tasks is given by N = 100.Each task ti, i = 1; : : : ; N is statically mapped onto a random processor pi according to auniform distribution between 1 and P = 16 (p denotes the task mapping vector). Thus,on average, 100/16 tasks are mapped onto the same processor. Each task is executed by aseparate (lightweight) thread that is scheduled dynamically by the node's run-time kernel.In order to enable true data
ow execution, after each task has been executed, the (same)produced data set is asynchronously broadcasted (non-blocking communication) to eachsuccessor task (thread) except when a successor resides locally. The dynamic resource3In terms of the original pseudo code this implies the sequence i = bp � 1; : : : ; 0, etc. Consequently,the successive resource access sequences of the send calls do no longer con
ict. This phenomenon was�rst observed by Jonkers [79].

5.3. MACRO DATA FLOW COMPUTATION 111sharing approach is partly inspired by the fact that recent technological developments inthe use of lightweight threads makes it increasingly justi�ed4 to use dynamic schedulingat the processor level, both for computation and communication tasks (i.e., data
ow,using non-blocking send/recv calls) while the overall mapping is static. Furthermore, theparallel slackness (multiple concurrent tasks per processor, cf. Valiant's BSP model [151])increases the average utilization of the processing and communication resources. A typicalexample of the proposed approach is described in [96] where task graphs representing �niteelement computations are statically mapped (based on a domain decomposition) such thatthe number of tasks per node is much larger than one.Due to the dynamic approach towards task computation and communication, the casestudy (intentionally) provides an excellent example of the added value of serializationanalysis compared to conventional static prediction techniques. While static analysis in-herently ignores the additional delay incurred by tasks sharing the same processor, ourapproach naturally accounts for this delay by modeling task execution in terms of \proces-sor contention". Apart from processor contention, the use of non-blocking communicationintroduces the possibility of link contention as multiple task communications may sharethe same communication links. Again, conventional static analysis makes no provisionto account for the additional queuing delay, that may easily dominate performance (aswill be shown, later on). In our aim just to demonstrate the impact contention analy-sis may have, we simply consider coarse grain task execution where each task entails alarge amount of computation (O(106)
oating point operations) as well as communication(O(106) byte transfers). As will be shown, without loss of accuracy we can thereforeconcentrate on computational and communication bandwidths rather than startup times(and other sources of overhead), which simpli�es the modeling discussion.In order to allow for the execution of arbitrary task graphs a simple, generic SPMDinterpreter program is developed that accepts a task graph description �le, executes thetask graph, and records the execution time. Thus, the 15 random programs that aremodeled is essentially the SPMD program, instantiated with each of the 15 random taskgraphs. The execution time recorded from the SPMD program is compared to our pre-dictions. The task graph description is based on a simple abstract data type. For eachtask i = 1; : : : ; N the data type speci�es� pred(i,k): predecessors (k = 1 .. fanin(i))� succ(i,k): successors (k = 1 .. fanout(i))� node(i): processor it is mapped onto (pi)� work(i): amount of computation (wi)� size(i): amount of data produced (li)After each task has executed, the (same) produced data set is broadcasted to each suc-cessor except in case the successor resides locally. In the following, we sketch the globalarchitecture of the SPMD application where p denotes the node index.4Note that our only interest is just a reasonably realistic case study, not to prove any point withrespect to the interesting issue of task graph mapping or scheduling.

112 CHAPTER 5. CASE STUDIESspmd(p):for i = 1 .. Nif node(i) = pcreate task(i);task(i):for k = 1 .. fanin(i)j = pred(i,k);nrecv(j,size(j));for k = 1 .. fanin(i)j = pred(i,k);await(j);comp(i);for k = 1 .. fanout(i)j = succ(i,k);nsend(j,size(i));The data
ow style implementation assumes a non-blocking message-passing interfacebased on individual (logical) channels (links) between each task pair (i; j). The nrecv loopenables concurrent reception of input data, while the await loop implements the task'ssynchronization barrier. The nsend loop yields a concurrent broadcast of the task's outputdata. Apart from programming convenience this approach retains maximum potentialparallelism in the communication structure (whether or not actually supported is machine-dependent). Thus unnecessary sequentialization at the task level is avoided (analogous tothe dynamic task scheduling approach). When, as usual, the implementation is based onmultiplexing logical links on a smaller number of physical links, the e�ective bandwidthreduction is naturally accounted for in terms of a link contention model.The message-passing interface used for the implementation is based on the \virtuallink" service, that provides a dedicated logical channel between a sender and receiver task.The virtual link topology needed to connect predecessor and successor tasks is setup in theprologue of the actual program. (Thus link setup times are not measured.) The communi-cation mode selected is \asynchronous" in terms of the machine interface which, in reality,implies a non-blocking mode5. The communication mode selected does not involve bu�ercopying. In terms of the message-passing system interface the above three communicationfunctions are implemented by ARecv, ASync, and ASend calls, respectively [115].5.3.2 Computation ModelLet G denote the task graph to be executed, consisting of tasks ti; i = 1; : : : ; N . From theSPMD program it follows that the execution of G is modeled byL = par (p = 1; P) par (i = 1; N) if (pi = p) task(i)in which task(i) models the task thread. The �rst parallel section is due to the SPMDparallelism while the second parallel section is due to the simultaneous creation of the5The di�erence between asynchronous and non-blocking sends has been discussed in Chapter 4.

5.3. MACRO DATA FLOW COMPUTATION 113task threads at initialization time. Clearly, we may also writeL = par (i = 1; N) task(i)We do not account for the overhead involved with the creation of threads or virtual linkssince the measurement only involves the actual task execution times.Based on the fact that each nrecv and nsend call is implemented by a separatethread [115] (also see Example 4.8), the task model is given bytask(i) = par (k = 1; fanin(i)) fj = pred(i; k);recv(j; lj)g ;comp(pi);par (k = 1; fanout(i)) fj = succ(i; k);send(j; li)gwhere send and recv represent the actual (synchronous) communication tasks (addressedin terms of task indices), and comp denotes the computation model in terms of the ap-propriate processor. Note that the implicit barrier in the �rst par construct accounts forthe explicit barrier in the program code (the await loop). The parallel send and recvsections express the concurrency involved in the non-blocking communications. Note thatwhile a non-blocking send essentially involves a separate thread of control, a non-blockingreceive actually may just involve a simple subroutine (e.g., some initialization for the fu-ture communication). Consequently, it would seem that the above parallel model for thenrecv loop might not always re
ect the actual implementation. In reality, however, theapproach does cover the complete spectrum of thread-based as well as subroutine-basedimplementations. In case of a subroutine, the work involved is simply charged to a singleresource (processor). Consequently, the parallel loop will automatically be serialized (bothin terms of simulation and serialization analysis) as if the calls were made in sequence.Hence, the performance result is essentially the same.Because all the receives are already posted during task initialization, the data transfersinitiated by the send calls e�ectively execute asynchronously (i.e., do not incur any ad-ditional condition synchronization delay), corresponding to the philosophy of macro data
ow. Hence, the communication interface model is e�ectively given bysend(j; l) = bmove(pi; pj ; l) ; signal(cij)recv(j; l) = wait(cij)that corresponds to the model for one-only (unbounded bu�er) communication (Sec-tion 4.3) in which cij corresponds to the speci�c communication channel (\virtual link")between task i and j. The bmove model represents the actual data transfer activity.Consequently, the task model is given by

114 CHAPTER 5. CASE STUDIEStask(i) = par (k = 1; fanin(i)) fj = pred(i; k);wait(cij)g ;comp(pi);par (k = 1; fanout(i)) fj = succ(i; k);bmove(pi; pj ; lj);signal(cij)gDue to the message-passing synchronization, at the task level, L is topologically similarto G. (This, of course, corresponds to the fact that the SPMD program correctly executesG.) The only di�erence is that it is expressed in a message-oriented style rather than aprocedure-oriented style, as described earlier. For the purpose of analysis, however, it ismore attractive to use G as the basis for a model for the SPMD message-passing program6rather than the message-passing version of L. For instance, consider the simple task graphG = t1 ; t2. According to the message-passing approach it followsL = fcomp(p1) ; bmove(p1; p2; l1) ; signal(c12)g k fwait(c12); comp(p2)gHowever, as G is an SP graph, a material-oriented approach simply yieldsL = comp(p1) ; bmove(p1; p2; l1) ; comp(p2)Thus in the procedure-oriented approach L is constructed by simply expanding every arcin G with a bmove model. Consequently, L can be directly compiled into an analyticperformance model based on the application of Eq. (3.15).The comp model represents the actual task computation. For the purpose of the casestudy each task just executes a meaningless computation according to tofor i = 1 .. work(i)r = 1.0 * A[i mod 1000];that generates integer and
oating point computations as well as memory access, the totalwork load parameterized by wi. In our aim to evaluate the prediction accuracy in theface of processor and network contention, we refrain from modeling the above code indetail and simply measure it as a whole. For the amount of work we consider (104 : : :106loops) the execution time increases linearly with wi according to 6.1 �s per iteration7. Theexecution time including queuing delay due to processor sharing is accurately expressedby the following simple model (expressed in �s)comp(pi) = use(cpupi; 6:1wi)6Note that it might seem obvious to use G for the performance model in the �rst place. Formally,however, we must deal with the fact, that L must represent the SPMD program of which the performanceis measured, not its data input. Hence, we must adopt this line of reasoning.7Without any form of (compile-time) optimization. In the coe�cient, the (small) e�ect of multithread-ing overhead is automatically accounted for since during the measurement the above code is run as athread.

5.3. MACRO DATA FLOW COMPUTATION 115where cpupi is of PS-type. As an example, consider the following 6-tasks graphG = t1 ; par (i = 2; 5) ti ; t6with a task mapping given by p = (p1; : : : ; p6). According to the procedure-orientedmodeling procedure, the Pamela model of the SPMD program is given byL = comp(p1);par (i = 2; 5) fbmove(p1; pi; l1);comp(pi; �i);bmove(pi; p6; li)g ;comp(p6; �6)Note that any SP graph G always maps to an SP model L. Let p = (0; 0; 1; 0; 1; 0). Whenthe bmove model is ignored (discussed in the next section) Eq. (3.15) yieldsT l = 6:1(w1 +max(w2; w3; w4; w5; w2 + w4; w3 + w5) + w6)Indeed, for large computations and zero communication, the above prediction not onlyequals T (i.e., the simulation result) but also closely matches the actual execution timemeasured (within a few percents, as shown later on). Note that even for this simpleexample conventional static analysis may already yield an error up to 100 %.5.3.3 Communication ModelAs discussed in Example 4.9 the bmove model is given by (expressed in �s)bmove(s; r; l) = par (i = 1; l=120) fseq (k = 2;K � 1) fuse(ffnk ; xnkg; 108);use(fnk ; 73)g ;use(fer; xrg; 108)gwhere s and r denote sender and receiver, respectively.Because of the simultaneous resource usage, the above model (and hence L) is notamenable to the application of Eq. (3.15). Thus, we consider an approximation usingtransformation Eq. (3.17) discussed in Section 3.6 (see Fig. 3.10). It followsuse(ffnk ; xnkg; 108) ; use(fnk ; 73)! use(fnk ; 108) k use(xnk ; 108) ; use(fnk ; 73)while the second use term immediately reduces touse(fer; xrg; 108)! use(xr; 108)

116 CHAPTER 5. CASE STUDIESs r T T l T t(0) (1) 0.9 0.9 0.9(0) (2) 1.5 1.5 1.5(0,0) (1,1) 1.8 1.8 0.9(0,0) (2,2) 3.0 3.0 1.5(0,0) (1,2) 1.8 1.8 1.5(0,0,0) (1,1,2) 2.7 2.7 1.5(0,0,0) (1,2,2) 3.3 3.0 1.5(0,0,0,0,0,0) (1,1,1,2,2,2) 5.4 5.4 1.5Table 5.1: Results for 106 byte concurrent communications (s)since er is not used anywhere else in the par expression. After applying the additional(lower bound) reductionuse(fnk ; 108) k use(xnk ; 108) ; use(fnk ; 73)! use(fnk ; 181) k use(xnk ; 108)the bmove model is approximated bybmove(s; r; l) = par (i = 1; l=120) fseq (k = 2;K � 1) fuse(fnk ; 181) kuse(xnk ; 108)g ;use(xr; 108)gE�ectively, this model accounts for the fact that T cannot be less than the largest workload on either an f or x (or e) server. Note that this leads to a somewhat less tight boundbecause the approximate model involves less synchronization constraints than the earliermodel. For the experiments described in Example 4.9 (cf. Table 4.1) Table 5.1 shows acomparison of T (based on the above model) and T l that is based on the approximation.The static prediction T t is added for reference. The table shows that, the approximation isquite acceptable, especially in view of the overall modeling approximation in which variouscommunication aspects have been ignored (see Example 4.9). Hence, the approximationis used for the overall prediction experiment.5.3.4 ResultsIn this section we present the measurement results for the execution of the 15 randomSP graphs G1 : : :G15 on the 4 � 4 transputer mesh. As mentioned earlier, each graphcomprises N = 100 tasks that are randomly i.i.d. (independent identically distributed)uniformly over the 16 processors. The computational work load wi is i.i.d. uniformly over[104; 106] which corresponds to an average total problem size of 305 s in terms of the compcode presented earlier. In order for the communication to have a signi�cant impact, thedata size sent by each task to its successors is also i.i.d. uniformly over [104; 106] which

5.3. MACRO DATA FLOW COMPUTATION 117G Tm T T l T tG1 118.7 114.7 83.7 25.9G2 93.9 92.5 57.4 21.2G3 95.6 92.8 63.1 25.8G4 94.1 87.4 61.2 31.5G5 73.4 70.9 46.8 30.3G6 105.8 103.9 58.3 58.3G7 98.4 87.0 52.2 47.4G8 89.2 87.1 59.2 52.5G9 87.6 84.4 65.8 65.7G10 109.5 106.4 79.8 79.5G11 141.2 138.4 120.5 107.6G12 149.5 144.8 126.0 125.0G13 165.9 163.2 140.4 140.2G14 172.3 171.0 165.4 165.4G15 188.6 186.8 173.4 174.3Table 5.2: Tm vs. predictions
G Tmf Tf T tf Tmc Tc T tcG1 38.7 38.9 21.3 94.7 88.7 5.3G2 46.3 46.5 17.2 67.3 61.9 4.3G3 36.1 36.2 22.8 77.6 69.8 4.2G4 48.3 48.1 27.4 73.2 64.4 5.8G5 54.9 55.3 25.4 32.3 30.0 4.8G6 79.1 79.4 47.6 42.5 39.4 10.6G7 58.2 58.4 39.7 49.2 42.7 9.8G8 63.7 64.0 44.2 36.2 34.0 11.2G9 75.7 76.2 56.4 19.5 17.5 10.2G10 82.6 82.8 65.4 49.3 45.6 16.4G11 114.8 115.4 91.2 37.3 33.2 19.6G12 113.0 113.5 103.3 44.8 42.7 22.2G13 130.8 131.1 119.3 41.2 38.5 23.5G14 138.2 139.1 136.3 44.2 42.5 28.9G15 145.8 146.5 145.0 47.5 46.1 33.2Table 5.3: Results for f -mode and c-modecorresponds to an average communication delay between 450 ms and 750 ms per isolatedtransfer. The 15 graphs are generated such that they cover the entire spectrum fromrelatively parallel graphs (corresponding to low G indices) to relatively sequential graphs(corresponding to high G indices). Table 5.2 summarizes the main results for each of the 15programs. Tm denotes the measured execution time (s). T denotes the simulation result(s) of thePamelamodel L. T l denotes the result (s) of applying Eq. (3.15) to thePamelamodel version based on the approximate bmove model (in terms of simulation, the overalldi�erence with the exact model is practically negligible). The total number of resourcesinvolved in the simulation and analysis is M = 144 (p = P = 16; f = x = 4P = 64).The T t value (i.e., ') has been included to demonstrate the (severe) prediction error oftraditional static analysis.The results show that the performance of the SPMD program is indeed captured bythe Pamela model with reasonably good accuracy. On average, T under-estimates Tmby about 4 % which is entirely due to the fact that the communication model ignoresthe e�ects of reverse communication and the additional CPU load (as discussed in Exam-ple 4.9; this will also be shown in the next table). The results for T l follow the generaltrend as discussed earlier in the MRM, pipeline, matrix factorization and multiplicationcase studies. For ! � ' (low G indices) as well as for ! � ' (high G indices) T l ap-proaches T , while the deviation is maximal when both terms are of the same order. Anextensive discussion of this important phenomenon will be presented in the next chapter.In order to evaluate the Pamela model in more detail, each of the 15 graphs is alsoexecuted under a mode f in which all communication (except task synchronization) isswitched o� (l = 0), and a mode c, in which all computation has been disabled (w = 0).Thus each original measurement Tm is complemented by a communication-less versionTmf and a computation-less version Tmc , representing both ends of the communication

118 CHAPTER 5. CASE STUDIESspectrum. Table 5.3 shows a comparison of Tm, T , and T t for both execution modes.The results show that the inaccuracy of T is indeed due to the bmove model as explainedbefore. The average accuracy of the Pamela model for f -mode execution lies well within1 % (indicating the correctness of the comp model), whereas the c-mode model under-estimates communication delay by 8 % on average. Note that the results automaticallydemonstrate the general validity of the (approximate) communication model for variousrandom concurrent communication patterns (in addition to the test patterns shown inExample 4.9). Finally, note that for a high communication density the error in T tc becomesquite spectacular.5.4 Simulation Revisited5.4.1 IntroductionThus far, a distinction has been made between simulation and the lower bound analytictechnique. As mentioned in Chapters 2 and 3, simulation relates to direct model evalu-ation in the Pamela domain while the analytic technique is based on evaluation in thetime domain model that is compiled from the Pamela model. While both modes areequivalent for contention-free models in terms of the evaluation result (T = '), in thepresence of contention both techniques di�er in the way mutual exclusion is approached(T � T l). Although, especially for contention models, simulation is generally much moretime-consuming than the analytic technique (highly iterative procedure, process over-head), there exist cases in which the actual computation time involved with simulationis comparable (in big-O terms) with the lower bound technique while the result (T) isessentially better. This coincides with the fact that there are models that are amenableto an alternative, numeric technique rather than just the lower bound approach. Like inthe case of simple critical path analysis, whether the evaluation mode should be coinedsimulation or analytic has become more or less a technical matter. In this section we shallexplore the di�erence between the analytic technique and simulation in somewhat moredetail.As an introduction to the problem we start with an application of our analytic tech-nique by compiling a performance model from a dynamic message-passing program.Example 5.1 Consider a simple data parallel operation on an N element vector x ac-cording to the pseudo codeforall i = 0 .. N-1y[i] = comp(x[f(i)]);where comp denotes some unary computation and f denotes some index function. Considera simple SPMD parallelization of the above program on a P processor distributed-memorymachine using a cyclic partitioning scheme (x and y are aligned). In the following we willderive a simple performance model of the SPMD code.For the purpose of the example, we assume a naive SPMD code generation model foran asynchronous communication interface according to the following pseudo code

5.4. SIMULATION REVISITED 119for i = 0 .. N-1 {s = f(i) mod P;r = i mod P;if r != p and s = psend(r,y[f(i)]);if r = p and s != py[i] = comp(recv(r));if r = p and s = py[i] = comp(y[f(i)]);}where p denotes the processor index (\owner-computes" model), the computation andcommunication are still expressed in terms of the global data (index) space (cf. matrixmultiplication in Section 5.2). Furthermore, note that various optimizations have been(intentionally) neglected (e.g., index space partitioning, message vectorization) given theobjective of the example.Let the asynchronous message-passing interface be given by the following simple model(unbounded bu�er, see Section 4.2)send(r; a) = signal(csi)recv(s; a) = wait(csi)where csi represents the communication channel between sending processor s and receiverr during iteration i (the address a is immaterial). Thus the processor network is thoughtideal. Let the computation model be simply given bycomp = delay(�c)Consequently (ignoring various overhead terms as usual) the Pamelamodel of the SPMDprogram is given byL = par (p = 0; P � 1)seq (i = 0; N � 1) fs = f(i) mod P ;r = i mod P ;if (r 6= p ^ s = p)signal(cpr);if (r = p ^ s 6= p) fwait(csp);delay(�c)g ;if (r = p ^ s = p)delay(�c)gNote that the above model is not an SP model. Hence, we cannot simply apply Eqs. (3.4)through (3.10). However, since the model is amenable to our functional analysis approach(as a result of the absence of P/V operators), we can use the basic mapping rules as given

120 CHAPTER 5. CASE STUDIESin Eq. (3.1) through Eq. (3.3). By associating a (single assigned) variable with each task(if) statement, the following set of (conditional) equations is derived.T = maxp=0:::P�1 rp8p : rp = rp;N�18p; i : rp;i;0 = (0; i = 0;rp;i�1;2; otherwise.8p; i : csi = rp;i;08p; i : rp;i;1 = (max(rp;i;0; csi) + �c; r = p ^ s 6= p;rp;i;0; otherwise.8p; i : rp;i;2 = (rp;i;1 + �c; r = p ^ s = p;rp;i;1; otherwise.where s = f(i) mod P and r = i mod P . 2While, the above system of equations can be evaluated by obeying their data depen-dencies (rearranging some equations), it is clear that the above model is not amenable toa straightforward computation on a sequential machine. The following algorithm showsa simple technique that dynamically evaluates the data dependencies between the aboveequations while evaluating the equations where possible.while (true) ffor (p = 1 : : : P � 1) ffor (i = 1 : : : N � 1) fif (:ep;i) fif (r 6= p ^ s = p)csi = rp;if (r = p ^ s 6= p) fif (csi 6= �1) frp = max(rp; csi);rp = rp + �c;gbreak;gif (r = p ^ s = p)rp = rp + �c;ep;i = true;e = e+ 1;done = (e = PN);ggggfor (p = 1 : : : P � 1)T = max(T; rp);

5.4. SIMULATION REVISITED 121The algorithm scans each equation according to the above p and i loop and tests whetherthe equations corresponding to loop instance (p; i) (i.e., rp;i;0; : : : ; rp;i;2) can be evaluated(using the condition ep;i corresponding to the equations rp;i;0; : : : rp;i;2). The primary timevariable is rp. All variables are assumed initially zero, except the csi that have an initialvalue of -1 to encode their de�nition status (task completion). When a loop instance (p; i)cannot be completed, the algorithm switches context (using the break construct that hassimilar semantics as the construct in C) to another instance of the higher level loop (inthis case the p loop). The top level while loop guarantees that all equations are evaluated.Note that the above computation is guaranteed to terminate since the SPMD programmay be assumed deadlock-free (i.e., the program is assumed correct). The above algorithmhas been veri�ed to produce the same results as those obtained by direct simulation ofthe Pamela model.Clearly the resemblance between the structure of the analysis algorithm and the orig-inal Pamela model is obvious. In fact, the sequential computation can be compiled fromthe Pamelamodel using a mechanical scheme where (apart from the extra variables) eachpar maps to a for loop along with a while-break mechanism in order to correctly resolvethe data dependencies between each (task) equation. Consequently, in this example theanalysis method may well be thought of as simulation, although the sequential computa-tion is formally an implementation of the (intermediate) analytic model on a sequentialcomputer. It may therefore seem that the above analytical processSL! DG! SE ! SCwhere we now explicitly include the �nal sequential computation SC (SL denotes theoriginal Pamela model), is a somewhat elaborate way of describing the processSL! SCwhich is quite comparable to a simulation approach. However, unlike real simulation,everything is now directly compiled into the time domain instead of interpreted by somerun-time state machine for the ultimate time domain evaluation. Of course, there aremore di�erences. The \analytical" route only applies to the subset of models that do notinclude the notion of state (as discussed in Chapter 3). Furthermore, because of this, amuchmore optimized computation can be generated than the general simulation approachthat uses an interpreter. The most signi�cant example is the compilation of SP modelsinto just one single expression.5.4.2 Alternative TechniquesAs mentioned earlier, the major di�erences between the \analytic" and \simulation" tech-nique are determined by� evaluation domainWhile simulation corresponds to interpretation in the Pamela domain using somestate machine (e.g., a discrete-event simulator), the analytic method corresponds tointerpretation (evaluation) in the time domain based on a (symbolic) model that iscompiled from a Pamela domain model.

122 CHAPTER 5. CASE STUDIES� determinismWhile the numerical simulation result typically represents a mere draw from theresult distribution due to model non-determinism of time and control
ow (e.g.,mutual exclusion), the analytical method yields a deterministic result (e.g., for non-deterministic models a mean value).As shown above, in practice the di�erences with respect to the evaluation domain tend tobe less rigid as, like simulation, the analytic approach typically gives rise to the compilationof an \interpretation" system that controls the evaluation order.In this section we will simply unify the notion of analytic technique and simulation byassuming a run-time system that maintains a list of (Pamela) processes of which the nexttime domain equation (i.e., Pamela statement) can be executed. By introducing the listas an abstract data type, the distinction between the analysis algorithm and simulatorhas practically disappeared (note that many analytic methods or \algorithms" are basedon lists, e.g., task event lists).In the following, we will simply refer to the technique as \simulation", whether or notthe actual evaluation takes place in the Pamela domain or not. In general, it is tacitlyassumed that the run-time system is compiled as a part of the model rather than linkedbased on a Pamela domain interpreter (i.e., the classical simulator). Although from thisperspective the choice of terminology has become arbitrary, we use the term simulationrather than analytic because of the fact that, given the above criteria, simulation admitsa possibly non-deterministic result although in many cases the outcome is (practically)exact as we shall see.Up until now, we have considered contention-free models where a comparison betweensimulation mode and analytic mode is appropriate due to the fact that in both cases Tis computed. In the following we will consider more general cases involving contention.As in this dissertation we concentrate on the problem of analyzing mutual exclusion, wewill (again) assume that non-determinism due to task variance and/or conditional control
ow is negligible.Although, from a static (symbolic) analysis point of view, contention models do inducenon-determinism with respect to the symbolic compilation, from a numeric (simulation)point of view, for many contention models, the actual non-determinism is non-existent.Hence, for these models a single simulation run su�ces to provide T (the matrix factor-ization model is an example of this). Consider the following modelL = L1 k L2L1 = delay(�1) ; use(r; �2)L2 = delay(�3) ; use(r; �4)where r is an FCFS-type resource. In order to compile a symbolic time domain model forT we must evaluate the precedence order between both contending tasks which dependson the actual value of �1 and �3 (unless, of course, we were willing to accept a conditionalmodel for T , which, in general, is not a practical option). On the other hand, simulation,essentially being a numeric evaluation technique, simply evaluates the precedence relationdynamically in the course of its evaluation algorithm. For instance, the following model

5.4. SIMULATION REVISITED 123L = L1 k L2L1 = delay(1) ; use(r; 2)L2 = delay(2) ; use(r; 1)yields the deterministic result T = 4. Note that the evaluation algorithm can equallybe called analytic as the algorithm only manipulates a simple event list and yields adeterministic result at basically the same time complexity as a critical path algorithm (infact, it is an enhancement to the CP algorithm that accounts for tasks being blocked byuse operations as well as by delay operations). Thus in terms of the ultimate numericresult, the analysis algorithm performs better than the lower bound algorithm. WhileEq. (3.14) yields T l = 3 the numeric algorithm yields T = 4 at comparable cost (ofcourse, T l is a symbolic result with all the associated advantages).While in many cases simulation provides a deterministic result, there are cases that in-volve \true" non-determinism, e.g., as a result of the generally non-deterministic outcomeof a con
ict arbitration. For example, consider the following modelL = L1 k L2L1 = use(r; 1) ; delay(2)L2 = use(r; 2) ; delay(1)Depending on the con
ict arbitration it follows either T = 4 (L1 scheduled prior to L2), orT = 5 (L2 scheduled prior to L1). However, for many systems, the actual non-determinismis relatively small compared to the total amount of contention, especially for larger systemswhere the average in
uence of �ne grain non-determinism is negligible compared to theoverall (partly mutually exclusive) workload. Typical examples include models such as themacro data
ow example where the variance in T is in the order of percents. Althoughnon-deterministic, in such cases it is worthwhile to consider the outcome T of a singlenumeric pass instead of just using T l, especially in an approximative application context.In fact, the extremely small variance of the simulation results in the macro data
owexample has lead us to introduce an important optimization in the simulation model thatyields signi�cant speedup. In the model the granularity in terms of individual contentionsis extremely high compared to the aggregate service demand. For instance, the unit ofcomputational contention (service time) is the scheduling time slice (O(10�6) s) whereaseach (macro) task corresponds to a service demand of O(1) s. The same applies to thecommunication grain size as one transfer involvesO(103) individual packet transmissions.Consequently, the variance in T is negligible. As there is no point in deriving high-qualitysimulation results with practically no variance, based on a model of which the accuracy isinherently limited, the service time associated with the individual contentions is increasedsuch that the number of contentions per macro task drops to O(102). While the variancein T increases to O(1) % (with no appreciable di�erence in terms of the mean value ofT), the simulation time decreases by orders of magnitude. An important side e�ect ofthis optimization is that the simulation cost becomes independent of the total work loadinvolved in the application.Due to the �ne granularity involved the macro data
ow model serves as a goodexample to demonstrate the advantages of models based on PS-type resources rather thanFCFS-type resources. While FCFS-type contention may introduce a large variance (cf.

124 CHAPTER 5. CASE STUDIESdi�erence between lower bound and upper bound on T in the 4-tasks example mentionedearlier), for PS-type contention the variance becomes zero. Again, considerL = L1 k L2L1 = use(r; 1) ; delay(2)L2 = use(r; 2) ; delay(1)If r is PS-type it follows T = 4 regardless of the non-deterministic con
ict arbitration asshown in Fig. 5.4 (light shaded area denotes sharing, dark shared area denotes exclusiveaccess). For applications like the macro data
ow example this approach yields excellent
L1

L2

T = 4

2

2 1 1

2Figure 5.4: Trace of L for PS-type resourceresults. First of all, due to the high granularity of computation and communication (asdiscussed above) modeling in terms of PS-type resources is appropriate. Furthermore, thecost of the above technique (\coarse grain PS") is much smaller than simulation basedon \�ne-grain FCFS". Thus, apart from the optimization discussed earlier, this techniqueo�ers an alternative optimization that yields a deterministic result at less computationtime. The analysis algorithm simply involves updating the projected �nish time for allcurrent (PS) resource accesses for the event of either a new access or the event of �nishingan ongoing access. The integration of the update algorithm in the critical path (simu-lation) algorithm is straightforward. A description in terms of the Pamela Run-TimeLibrary call pam_use() has appeared in [109]. Table 5.4 shows a comparison betweenthe result T (1) based on simulating the original, �ne grain FCFS model (the unoptimizedoriginal), T (2) based on the �rst optimization in which the service times are increased,and T (3) based on simulating the coarse grain PS model. The actual measurements (Tm)have been included for reference. On average, the evaluation of T (1) takes O(103) s (ona Sun IPX workstation) while the standard deviation is given by � � 10�2. Both theapproximations T (2) and T (3) are within a few percents of T (1). On average, the evalu-ation of T (2) takes O(10) s while � � 1. On average, the evaluation of T (3) takes O(1)s while, of course, � = 0. Consequently, PS-type models o�er signi�cant possibilities foralternative algorithms for the numerical estimation of T that are highly e�cient comparedto traditional approaches to simulation. Note, of course, that the limited accuracy of thesimulation model itself is an important justi�cation of the use of such an approximatetechnique.5.4.3 Virtual BarrierAn interesting property of the analysis of PS-type models is that it can be expressed interms of a symbolic technique. Assuming fair scheduling (as usual) the fact that multipleprocesses access to a PS-type resource implies that the processes are (in�nitely) closely

5.4. SIMULATION REVISITED 125G Tm T (1) T (2) T (3)G1 118.7 116.8 114.7 115.8G2 93.9 95.4 92.5 93.9G3 95.6 93.4 92.8 93.4G4 94.1 89.2 87.4 88.7G5 73.4 72.2 70.9 71.4G6 105.8 104.9 103.9 104.7G7 98.4 89.3 87.0 87.7G8 89.2 86.6 87.1 86.6G9 87.6 87.0 84.4 87.0G10 109.5 108.4 106.4 107.6G11 141.2 139.4 138.4 139.0G12 149.5 147.5 144.8 145.5G13 165.9 164.3 163.2 163.7G14 172.3 171.7 171.0 171.3G15 188.6 187.2 186.8 187.8Table 5.4: Three di�erent simulation techniques compared (taken from [109])synchronized. This additional knowledge can be exploited as can be seen in the 4-tasksexample. Again, considerL = L1 k L2L1 = use(r; �1) ; delay(�2)L2 = use(r; �3) ; delay(�4)However, the service demands are not known numerically. Currently, our only method tocompile the model to a symbolic expression is by applying Eq. (3.14) that yieldsT l = max(�1 + �2; �3 + �4; �1 + �3)However, the fact that under the PS discipline the service bandwidth of r is exactly halvedduring the time L1 and L2 share access (i.e., min(�1; �3)), we can transform L into thefollowing modelL = L1 k L2L1 = use(r; �s) ; use(r;max(�1 � �s; 0)) ; delay(�2)L2 = use(r; �s) ; use(r;max(�3 � �s; 0)) ; delay(�4)where both original use tasks are divided into a phase in which r is shared (duration�s = min(�1; �3)) and a phase in which r is owned exclusively. Due to the fact that bothuse(r; �s) tasks �nish at the same time we may writeL = (use(r; �s) k use(r; �s)) ; (L1 k L2)L1 = use(r;max(�1 � �s; 0)) ; delay(�2)L2 = use(r;max(�3 � �s; 0)) ; delay(�4)

126 CHAPTER 5. CASE STUDIESwhere this phenomenon is expressed by including the explicit barrier synchronizationbetween both phases. Clearly the model reduces toL = use(r; 2�s) ; (L1 k L2)L1 = use(r;max(�1 � �s; 0)) ; delay(�2)L2 = use(r;max(�3 � �s; 0)) ; delay(�4)Although the model is equivalent, lower bound analysis now yields a tighter bound. Forthe numeric model instance mentioned earlier it now holds T l = T = 4 whereas for theoriginal model T l = 3. The additional barrier is called a virtual barrier because it doesnot exist as a result of explicit synchronization in the model but as a result of the inter-process synchronization due to the intimate (fair) resource sharing between the threads.The above analysis technique is, of course, similar to the numeric algorithm mentionedearlier. In many practical cases the analysis technique used will be numeric rather thansymbolic in order to avoid the delayed evaluation of the extra 'min' and 'max' terms thatneed to be generated in the course of the transformation. Nevertheless, the inclusionof virtual barriers in models where there exists signi�cant resource sharing is a valuableextension of our symbolic analysis approach, especially with respect to its robustness interms of worst case accuracy. This property will be further discussed in Chapter 6.5.5 System Optimization5.5.1 IntroductionIn this section we will discuss how our performance modeling method can be applied toprogram optimization decisions such as the vectorization of computations or communi-cations, or the choice between various data partitioning strategies. When the programinvolved is (su�ciently) static these optimization decisions can be made at compile-time.However, even when the parameters involved are not numerically known at compile-time,still a symbolic decision can be compiled given our low-cost, symbolic approach to per-formance modeling.In order to illustrate our methodology we start with a simple example that shows howthe optimization problem is addressed in the case of vectorization.Example 5.2 Consider the following vector operationforall i = 1 .. Nx[i] = a * x[i];The vectorization decision typically depends on whether N is large enough to su�cientlyamortize the startup overhead of the vector operation. If we ignore memory tra�c forsimplicity, the operation can be modeled byL = par (i = 1; N) flopwhere flop denotes the scalar multiplication. Execution on a scalar processor would bemodeled byflop = use(s; �f)

5.5. SYSTEM OPTIMIZATION 127where �f denotes the instruction delay of the scalar
oating point unit s. It followsLs = par (i = 1; N) use(s; �f)which, by Eq. (3.14), yields Ts = N�f . On the other hand, execution on a vector processorwould be modeled by using an S stage pipeline (cf. Example 3.5)flop = seq (j = 1; S) use(uj; �c)where uj denotes stage j of the vector unit and �c denotes the cycle time. Note that inreality the startup time will be determined by more factors than just the pipeline hardwarestages, e.g., call overhead, memory latency (cf. Example 4.5). However, the above modeldoes account for the startup and bandwidth parameters as measured in practice simplyby (re)de�ning the pipeline as a combined software/hardware pipeline such that S and �csatisfy (�t) the performance measurements. It followsLv = par (i = 1; N) seq (j = 1; S) use(uj; �c)which, by Eq. (3.16), yields Tv = (S +N � 1)�c = �s +N�c where �s = (S � 1)�c denotesthe startup overhead. Consequently, the (boolean) vectorization decision v becomesTv < Ts�s +N�c < N�fN � & �s�f � �c'N � Nv2The example shows two aspects. First, it demonstrates the abstract approach towardsthe two choices of mapping the (inherently) parallel algorithm onto the scalar or vectormachine while merely by discussing alternative flop models using the same algorithmicdescription. (Note that the typically sequential implementation of the algorithm in thescalar case has not been modeled explicitly.) The advantages of the abstract modelingmethod will become clear later on. Second, it shows how the optimization problem isaddressed in terms of applied Pamela calculus. If N is known at compile-time, v can beevaluated. Even when N is only known symbolically the above expression can be compiledand evaluated at run-time. The compile-time decision then reduces to the question if itis worth while to generate the integer test N � Nv considering the additional cost.Formally, the above optimization problem can be expressed by the following 0-1 integerprogramming problemT = [v]Tv + (1� [v])Tswhere T is to be minimized, v is the boolean variable and Tv and Ts denote the perfor-mance models of the alternatives described earlier. As shown above, this simple optimiza-tion problem can be solved symbolically yielding v = (N � Nv). In general, however,optimization will involve many decisions (e.g., various loop transformations, remapping)

128 CHAPTER 5. CASE STUDIESall of which are not independent, i.e., cannot be evaluated locally. Hence, the optimiza-tion problem needs to be expressed by an integrated performance model at global levelin terms of which the dependency of the various optimizations can be expressed. Aninteresting example of the approach is presented by Kremer [88] in which the remappingdecisions that can be taken between various phases of a program are expressed in terms ofa 0-1 integer programming problem (note that each remapping decision a�ects remappingdecisions between later program phases). In the following we will describe the principlesinvolved in applying the Pamela approach to program optimization. Based on our per-formance calculus, we will also refer to this speci�c application by the term \optimizationcalculus".5.5.2 Optimization CalculusIn this section we will discuss the speci�c modeling approach that is most appropri-ate for the purpose of performance optimization. Note that performance modeling forobtaining (accurate) execution time predictions and modeling for the sole purpose ofoptimization do not necessarily imply the same approach. In many of the examples pre-sented thus far performance prediction feedback has been based on modeling the codethat is e�ectively generated by the compiler in the course of the translation process,i.e., usually in terms of optimized (partitioned) index loops and possibly explicit syn-chronizations (shared-memory systems, cf. matrix factorization in Section 5.2) or explicitmessage-passing instructions (distributed-memory systems, cf. matrix multiplication inSection 5.2). Although many optimization aspects are thus captured in the feedback loopthe examples show that predictions are not always easily compiled, especially when thecode generation paradigm is (i.e., has become) message-oriented, instead of the originalprocedure-oriented style in which the algorithm is typically expressed.We will illustrate the problem with respect to analyzability (and subsequent optimiz-ability) by a simple example. Consider a (simpli�ed) line relaxation algorithm fragment [2]applied to an N �N matrix A according tofor i = 1 .. N-2forall j = 0 .. N-1A[i][j] = A[i-1][j] + A[i+1][j];that constitutes the phase in which the relaxation sweep direction is in the i direction(typically followed by a sweep in the j direction but which is not considered now). Inthe parallelization for a P processor distributed-memory machine we consider the choicebetween two regular block partitioning strategies, i.e., either along the i axis or along thej axis (a choice, by the way, that is clearly trivial).Of course, we could model the corresponding (SPMD) code in order to determinewhich alternative has the lowest execution time. For the j axis partitioning the codewould be characterized byfor i = 1 .. N-2for j = L(p) .. U(p)A[i][j] = A[i-1][j] + A[i+1][j];

5.5. SYSTEM OPTIMIZATION 129where p denotes the processor index and L and U denote the processor-speci�c indexbounds (U(p) � L(p) = O(N=P)). Although the above code clearly reveals the speedupgain, this does not apply to the alternative partitioning. For the i axis partitioning lessstraightforward code is generated (again, following the \owner-computes" convention)according to the following SPMD code (only shown for processors p = 1; : : : ; P � 2), i.e.,send(p-1,A[L(p)][:]);recv(p-1,tempvec_l); ! recv A[L(p)-1][:]recv(p+1,tempvec_u); ! recv A[U(p)+1][:]for i = L(p) .. U(p) {if i = L(p)for j = 0 .. N-1A[i][j] = tempvec_l[j] + A[i+1][j];if i > L(p) and i < U(p)for j = 0 .. N-1A[i][j] = A[i-1][j] + A[i+1][j];if i = U(p)for j = 0 .. N-1A[i][j] = A[i-1][j] + tempvec_u[j];}send(p+1,A[U(p)][:]);Like in earlier examples, the code is expressed in terms of the original (shared) datastructure for simplicity. Note that the j loops are vectorizable.While the �rst code can be easily compiled into a symbolic performance model, thesecond code illustrates the potential di�culties involved when compiling generated SPMDcode into a performance model. Especially in the case of the above code, symbolic com-pilation is typically impossible as discussed earlier. Although the local bounds on the iloop are reduced by a factor P compared to the original algorithm, the message-passingscheme still serializes the entire computation. As discussed in Section 3.3 the \threadof condition synchronization" that determines the critical path now runs through eachprocess that makes it hard to detect this in terms of a symbolic expression. However,this critical path is nothing but the result of the explicit sequential i loop at algorithmlevel. Consequently, it is much more advantageous to consider a modeling approach atalgorithm level (i.e., procedure-oriented level) rather than at implementation level (i.e.,message-oriented level).In order to abstract from the actual partitioning implementation (either for shared-memory or distributed-memory systems) we will model the original computation with itsfull (potential) parallelism while each mapping decision is expressed in terms of a con-tention model. In fact, this is the same material-oriented \contention modeling" approachas in the vectorization example where the potential parallelism of the vector operation isexpressed while the machine resources determine the actual parallelism. The performancemodel of the relaxation algorithm is expressed according toseq (i = 1; N � 2) par (j = 0; N � 1) flop(i; j)

130 CHAPTER 5. CASE STUDIESwhere flop(i; j) denotes the update of element Aij (ignoring data transfers for the mo-ment). Let the mapping function �(i; j) denote the processor resource responsible for theupdate of Aij. Then the machine model is given byflop(i; j) = use(cpu�(i;j); �f)where �f denotes the computation time associated with the update of Aij.For the j axis partitioning it holds �(i; j) = j=B where B = N=P denotes the blocksize (for simplicity assume P jN). It followsseq (i = 1; N � 2) par (j = 0; N � 1) use(cpuj=B; �f)For each parallel section (instance i) Eq. (3.14) yields (m = p denotes the resource index)' = maxj=0:::N�1 �f ; ! = maxm=0:::P�1 N�1Xj=0 [j=B = m]�fNote that in contention models ! is typicallymuch larger than '. Consequently, Eq. (3.15)yieldsT l = N�2Xi=1 maxm=0:::P�1N�1Xj=0 [j=B = m]�f = (N � 2)NP �fcorresponding to the speedup found earlier. For the i axis partitioning it holds �(i; j) =i=B. It followsseq (i = 1; N � 2) par (j = 0; N � 1) use(cpui=B; �f)which directly reveals the algorithm's sequential nature. Indeed, by Eq. (3.15) (and allthe equations called within) it followsT l = N�2Xi=1 maxm=0:::P�1N�1Xj=0 [i=B = m]�f = (N � 2)N�fThus by exploiting the knowledge of the algorithm's inherent sequentialism as still presentin the algorithm description, from simple serialization analysis it directly follows that ani axis partitioning will not yield any speedup8. In contrast to the SPMD implementa-tion, the inherent sequentialism is still easily detectable. Note that the entire analysis issymbolic, whereas a comparison of predictions at implementation level would practicallyinvolve simulation (the relation between analytical models and simulation models is dis-cussed in Section 5.4). Although many optimization decisions will have to be evaluatednumerically (at run time), this implies that the expressions that need to be evaluated arehighly optimized themselves, possibly to the extent that it becomes feasible to compilethe optimization decision as a part of the run-time code (cf. Example 5.2).8This property only holds for the current algorithm. Later on, we will consider a modi�ed version ofthe algorithm in which i axis partitioning does yield speedup.

5.5. SYSTEM OPTIMIZATION 1315.5.3 Line RelaxationThe choice of material-oriented modeling at the algorithmic level for the purpose of opti-mization makes it easy to reason about much more optimizations than just the choice ofpartitioning and/or vectorization. As an example we will discuss the line relaxation al-gorithm in somewhat more detail. We will consider a two-phase algorithm correspondingto the example discussed in [2]. In the �rst phase the line relaxation is swept along the iaxis, after which the relaxation is swept along the j axis. The algorithm is given byfor i = 1 .. N-2 ! sweep verticalforall j = 0 .. N-1A[i][j] = A[i-1][j] + A[i+1][j];for j = 1 .. N-2 ! sweep horizontalforall i = 0 .. N-1A[i][j] = A[i][j-1] + A[i][j+1];Let Lv and Lh denote the Pamela models of the vertical and horizontal phase, respec-tively. Let �(i; j) = j=B denote the initial data layout. Let r denote the decision to remapafter the vertical phase, and let �0(i; j) = i=B denote the resulting map. Let Lr denotethe Pamela model of the remapping. In terms of Pamela optimal system performanceis given byLv(�) ; if (r) Lr ; if (r) Lh(�0) else Lh(�)Given optimal designs for Lv(�), Lh(�), and Lh(�0), the mapping decision follows fromthe solution of the minimization problemTv(�) + [r](Tr + Th(�0)) + [:r]Th(�)where Tx denotes the lower bound time estimate of Lx, x 2 fv; h; rg. In the followingwe will investigate the various lower bound estimates. In order to avoid unnecessarycomplicated expressions we will use order terms only.We start with Lv. In terms of Pamela the vertical sweep phase is given byLv = seq (i = 1; N � 2)par (j = 0; N � 1) fmove(�(i� 1; j); �(i; j));move(�(i+ 1; j); �(i; j));flop(�(i; j))gin which we now explicitly account for data accesses that (especially for distributed-memory machines) may involve data movement between processors (according to the\owner-computes" model). We will only account for non-local data transfers in which weassume that any associated condition synchronization (e.g., due to some message-passingimplementation) is negligible (as in previous case studies). Letflop(p) = use(cpup; �f)

132 CHAPTER 5. CASE STUDIESas before, and letmove(p; q) = use(lp; [p 6= q]�m) k use(lq; [p 6= q]�m)which accounts for both work load at sender and receiver. Note, that this is just anabstract model. However, it does account for the fact that a node can neither send norreceive data in parallel without (proportionally) increasing the associated time complexity(cf. the macro data
ow example). Since �(i; j) = j=B by straight-forward substitutionit followsLv = seq (i = 1; N � 2)par (j = 0; N � 1) ffuse(lj=B; [j=B 6= j=B]�m) k use(lj=B; [j=B 6= j=B]�m)g;fuse(lj=B; [j=B 6= j=B]�m) k use(lj=B; [j=B 6= j=B]�m)g;use(cpuj=B; �f)gwhich yieldsTv = N�2Xi=1 maxm=0:::P�1 N�1Xj=0 [j=B = m]�f = O(N2P)�fThe horizontal phase is given byLh = seq (j = 1; N � 2)par (i = 0; N � 1) fmove(�(i; j � 1); �(i; j));move(�(i; j + 1); �(i; j));flop(�(i; j))gwhich equalsLh = seq (j = 1; N � 2)par (i = 0; N � 1) ff use(l(j�1)=B; [(j � 1)=B 6= j=B]�m) kuse(lj=B; [(j � 1)=B 6= j=B]�m)g ;f use(l(j+1)=B; [(j + 1)=B 6= j=B]�m) kuse(lj=B; [(j + 1)=B 6= j=B]�m)g ;use(cpuj=B; �f)gwhich yields (after a few reductions)Th = O(PN)�m +O(N2)�f

5.5. SYSTEM OPTIMIZATION 133Clearly, it is interesting to evaluate the remapping cost. Remapping A implies a transpo-sition according toLr = par (i = 0; N � 1) par (j = 0; N � 1) move(�(i; j); �(j; i))Given the mapping �(i; j) = j=B it followsLr = par (i = 0; N � 1)par (j = 0; N � 1)fuse(lj=B; [j=B 6= i=B]�m) k use(li=B; [j=B 6= i=B]�m)gwhich yieldsTr = maxm=0:::P�1 N�1Xi=0 N�1Xj=0 ([j=B = m][j=B 6= i=B] + [i=B = m][j=B 6= i=B])�m= O(N2P)�mAs Th(�0) = Tv(�), the combined performance model becomesO(N2P)�f + [r](O(N2P)�m +O(N2P)�f) + [:r](O(PN)�m +O(N2)�f)The solution for r is given byr = O(N2P)�m +O(N2P)�f < O(PN)�m +O(N2)�fClearly there exists a value for P for which remapping is justi�ed (depending on �f and�m).Thus far, we have considered remapping while assuming that the same algorithm wouldhave to be used for the horizontal phase. However, for the horizontal phase the algorithmcan be optimized that puts the whole issue of remapping in a di�erent perspective. Theoptimization we consider is based on pipelining the computation across the processorswhich is explained at length in [2]. Recall the original algorithm for the horizontal phase,i.e., for j = 1 .. N-2forall i = 0 .. N-1A[i][j] = A[i][j-1] + A[i][j+1];that corresponds toseq (j = 1; N � 2) par (i = 0; N � 1) use(cpuj=B; �f)where we ignore moves for simplicity. By reversing the i and j loop the algorithm can beexpressed asforall i = 0 .. N-1for j = 1 .. N-2A[i][j] = A[i][j-1] + A[i][j+1];

134 CHAPTER 5. CASE STUDIESInstead of running sequential, each i loop is pipelined such that the next processor executesa di�erent i loop instance concurrently, yet obeying the j sequence [2]. Thus we assumea schedule such that the next i loop is executed when the previous j loop has traversedexactly one processor (a block of B indices). Note, that the above algorithm does notinclude this additional scheduling constraint which is hard to express without resortingto an explicit (and complicated) synchronization scheme if expressed in a conventionalparadigm (see Section 3.3). However, the pipelining behavior is easily captured in termsof a Pamela model due to our contention modeling approach. The following Pamelamodel essentially expresses the intended pipelining optimization, i.e.,Lh0 = par (i = 0; N � 1) seq (p = 0; P � 1) use(cpup; B�f)The j loop is stripmined in terms of a p loop such that all B individual j accesses localto processor p are expressed by the same use statement (i.e., the lower level j loop localto p is reduced to a single use statement). The reason for this modi�cation is that thismodel does express the intended schedule whereas the modelpar (i = 0; N � 1) seq (j = 1; N � 2) use(cpuj=B; �f)would not represent the pipelining behavior at all because of the virtual barrier e�ect9.The loop reversal according to Lh0 potentially has a great e�ect on performance as it holdsTh0 = maxm=0:::P�1 N�1Xi=0 P�1Xp=0 [p = m]B�f = O(N2P)Thus, by loop reversal, the same (order) of performance can be achieved as in the �rstphase, without remapping the data. Of course, Lh0 ignores the additional pipeline startupdelay as well the additional communication overhead as the need for communication is stillpresent. Especially when multiple sweeps are performed in both phases remapping canstill be appropriate. Let s denote the pipelining optimization (swap loops). In general,the optimization problem is given byTv(�) + [r](Tr + ([:s]Th(�0) + [s]Th0(�0)) + [:r]([:s]Th(�) + [s]Th0(�))which expresses the mutual dependency between the remapping decision r and the pipelin-ing decision s. Clearly, for single sweeps in the vertical and horizontal phase the solutionis given by (r; s) = (0; 1). Note, that in this particular problem it holds r = :s.The discussion of the line relaxation example illustrates the advantage of the material-oriented modeling approach when applied at algorithmic level in order to express compile-time (i.e., symbolic) optimizations. The symbolic analysis permits the optimizations tobe expressed in terms of an overall symbolic expression that is subject to minimization,e.g., by 0-1 integer programming. In many cases (like in the above examples) low-costsolutions can be derived which implies that the optimization decisions can be compiledand evaluated at run-time.9Because of the general assumption of fair scheduling the (i; j) accesses would still be selected accordingto a column-major scheme rather than the intended row-major scheme. All parallel i loops experiencemutual synchronization that causes P virtual barriers. Thus, the model would e�ectively behave thesame as the original (without loop reversal).

5.6. SUMMARY 135Of course, there are cases where the choice to abstract from the actual code mayinduce a considerable error as the code generation model (i.e., compiler) is not includedin the prediction. This applies in particular to the generation of message-passing codefor distributed-memory machines. For instance, a naive message-passing code generationmodel can completely sequentialize an inherently parallel operation10. Clearly, the aboveprediction method will not take this into account (note that inherent sequentializationsat algorithmic level are accounted for, though). However, a code generation model maybe assumed that does not introduce pathological schedules (a simple inspector/executormodel already solves the problem) which implies that the algorithmic level abstractionwill not introduce an error larger than the inherent error of the lower bound technique.Of course, the lower bound technique itself introduces a certain inaccuracy with respectto which optimization will actually yield better performance. On the other hand, thelimitation on the inaccuracy (discussed at length in the next chapter) guarantees that if awrong optimization is applied, the performance decrease is also limited. This is acceptableif one realizes that compile-time optimization must cover a large search space where(�rst-order) comparisons must be made in extremely short time rather than extremelyaccurately.5.6 SummaryIn this chapter we have presented an elaborate discussion on various aspects of thePamela methodology, involving applications of the analytic technique, modeling an ac-tual application, a discussion of alternative analytic techniques, and applications of ourmethodology in the �eld of system optimization.In the �rst case study, we have discussed the application of our analytic predictiontechnique to a matrix factorization algorithm on a shared-memory machine and a matrix-vector multiplication on a distributed-memory machine, thus involving somewhat morecomplex models than the small examples discussed before. Rather than demonstrating themodeling technique itself we have concentrated on the mechanics of compiling thePamelamodels into analytical performance models. It is shown that the greatest challenge inthis process is not the transformation into the time domain model itself but rather thesubsequent reduction into low-cost versions without (additional) loss of accuracy.In the second case study, we have presented a performance model of macro data
ow applications running on a distributed-memory machine that is compared with themeasured execution times. Through this case study we have demonstrated the Pamelaapproach towards modeling real applications as well as the high accuracy of the Pamelamodels that is achieved in practice. As in the previous case study the analytical predictionsT l are typically within 50 % of T whereas conventional static techniques entail severeerrors. Once again, the case study demonstrates the necessity of integrating contentionanalysis within analytical techniques. Especially now that multi-threaded computationand communication are becoming common place there is an increasing need for machine10For example, consider a simple computation yi = f(xi�1) where each element of x and y are mappedonto a separate processor (x and y aligned). A naive, scalar \owner-computes" scheme in which eachprocessor (sequentially) traverses the entire index space in the positive i direction (cf. Example 5.1) willcompletely sequentialize the computation.

136 CHAPTER 5. CASE STUDIEScontention models, useful in an analytic context, that account for the limited number ofresources actually available. Our modeling approach delivers the accuracy needed whereconventional static models fail.In the third case study we have explored alternative solution techniques for Pamelamodels based on a numeric process rather than a symbolic process. While simulation in thesense as introduced in earlier chapters only serves as the default technique, especially whenPamela models are relatively deterministic this numeric approach provides a simple,solution technique that outperforms T l at comparable cost. The fact that for many (�negrain) models the variance in T is very small o�ers the opportunity of signi�cant modelreduction, yet retaining accuracy. Furthermore, it has been shown that approximationsin terms of PS-type resource models also yield considerable speedup. Another advantageof PS-type models is the applicability of a symbolic preprocessing phase that improvesthe robustness of the lower bound technique by the detection of so-called virtual barriersin the model.In the last case study we have demonstrated the use of the Pamela methodology insystem optimization, which, as mentioned in Chapter 1, is an essential motivation forour work. We have shown that, in order to enable optimization in an analytical, low-cost framework, the system must be modeled at algorithmic level rather than at imple-mentation level. This requirement especially applies to message-passing implementationsbecause of the loss of analyzability associated with the transformation from the procedure-oriented to the message-oriented paradigm as also discussed in Chapter 3. Apart fromincreased analyzability another reason for the abstraction is the fundamental problemsassociated with the performance modeling of the compiler-speci�c code generation as wellas the unpredictable in
uence of the run-time environment. Although both aspects mayintroduce considerable variance, they are of no consequence as long as performances areonly compared. We have illustrated the use of our optimization calculus by consideringoptimizations such as vectorization, choosing data mappings, as well as other algorithmictransformations. It is shown, that our symbolic approach delivers extremely low cost aswell as su�cient discriminatory power needed to serve as an appropriate tool for systemoptimization.

Chapter 6Accuracy6.1 IntroductionIn some of the previous examples such as the MRM, pipeline, matrix-vectormultiplication,and the macro data
ow computation, it has been shown that the di�erence between T land T can be as much as 50%. In general, the question that arises with the introduction ofthe approximate lower bound technique is how tight T l is compared to T . In this chapterwe will investigate some of the properties of T l in relation to T . We will show that theprediction error of T l is limited and predictable. These properties of T l are an essentialjusti�cation of our approximate, analytical approach to performance modeling. Parts ofthis work have been presented in [54, 55].As mentioned earlier, in general the execution time of a Pamela model is stochasticwith a �nite distribution between a lower bound T l and an upper bound T u. For modelswith coarse grain contention the likelihood of T being close to T l or T u is relatively high.Hence, for these models the absolute range of T relative to T l is an important measurewith respect to the accuracy of T l. For �ne grain models, on the other hand, the varianceof T is much more limited. As the typical probability of T being near to T u is extremelysmall (as we will show), the di�erence between the mean value of T relative to T l is amuch more appropriate measure to characterize the accuracy of T l.In this chapter we will investigate the accuracy of T l for both coarse grain and �negrain models. First, we investigate the properties of T u which, in turn, yields informationon the maximum absolute deviation between T l and T that may be anticipated. Theoryand experiments suggest that for a large class of systems the maximum deviation betweenT and T l is limited by a constant. Next, we investigate the properties of the mean valueof T through a number of simulation experiments which show that the average deviationbetween T l and T for large systems is quite limited (a factor 2 in the worst case).It serves to note that earlier results on the bounds of T by Graham [58], and laterby Sarkar [137], and Eager, Zahorjan, and Lazowska [39] do not apply to our problem.Their results1 apply to parallel systems where resources are allocated according to a workconserving scheduling discipline [85]. This implies that there is no unforced idleness,very much unlike the statically mapped systems we consider (we assume no resourcemultiplicity) where many resources need not be used although tasks are ready.1It has been shown that T u < 2T l for any schedule as long as there is no unforced idleness.

138 CHAPTER 6. ACCURACYHence, our work is relatively new. While the results on the average deviation of T l canbe interpreted in terms of results known from queuing theory (and, in a sense, in terms ofthe scheduling results just mentioned above), this particularly applies to the research intothe absolute accuracy of T l. As the analysis into the properties of T u is quite complicated(especially for the derivation of a tight bound, in contrast to T l), we only present a numberof conjectures and associated experiments. The motivations for including this introductorywork are threefold. First, for coarse grain models the probability for T being close to T uare simply quite real (as will be shown). A second motivation is that knowledge on T u,rather than T l, is a requirement when time constraints need to be veri�ed (e.g., in real-time designs). A third motivation is that this introduction may inspire more work to beperformed in what appears to be an interesting �eld.6.2 Absolute Accuracy6.2.1 IntroductionWhile the in
uence of �ne grain contention (at the subtask-level) can be accounted forin terms of probabilistic models (next section), for cases with coarse grain (task-level)contention the likelihood of T reaching values in the neighborhood of the upper boundT u can not be ignored. Examples are statically (and poorly) scheduled/programmedsystems that may exhibit quite disappointing execution time results when compared withpredictions based on an average or a lower bound. An example of this phenomenonhas been shown in the matrix-vector case study in which a simple (communication) loopreversal reduced communication time by as much as a factor 2 due to the elimination oflink contention. Similar observations are reported by Culler et al. [31]. As an example ofthe e�ect of non-determinism at the task level due to contention, consider the coarse-grainmodel L = L1 k L2L1 = use(r1; 1); use(r2; 99)L2 = use(r1; 99); use(r2; 1)where r1 = r2 = 1. As ' = ! = 100 it follows T l = 100. This prediction is accurate aslong as L1 takes priority over L2 with respect to r1. However, if the inverse were true, Twould nearly double (T u = 199). In this section we investigate T u in order to assess theabsolute deviation between T and T l.Because of the exponential complexity involved with deriving T u (i.e., identifying theworst schedule possible) for any model, in the following we will only consider a parallelsection L that cannot be further decomposed into a straight sequence of subsections (i.e.,Eq. (3.14) applies). Furthermore, we only consider a section without any precedencerelations between the P parallel processes within the section. Thus L can be written asL = par (i = 1 : : : P) LpWe also assume that no knowledge is available (or practically useful at compile-time) onthe precise structure of each parallel process Lp other than that it involves accesses to

6.2. ABSOLUTE ACCURACY 139maximally M resources r1; : : : ; rM (rj = 1, j = 1; : : : ;M). Let � = (�ij) denote theP � M demand matrix where �ij denotes the service demand of process i on resourcej. First, we study the behavior of parallel sections in which each process accesses eachresource exactly once. Consequently, if we de�ne the access permutation in terms of theP �M schedule matrix S, the parallel section can be expressed byL = par (i = 1 : : : P) seq (j = 1 : : :M) use(rsi;j ; �i;si;j)Clearly, there are schedules that realize T = T l, and there are schedules that realizeT = T u. In order to characterize the range between T l and T u, we introduce the ratio� = T u=T l for which we derive a number of properties. As in general a sharp upper boundcannot be computed, we consider a number of speci�c cases that allow for computationaltractability as well as provides an interpretation for practical situations.In general, the analysis on the ratio of T l and T u can be stated as a problem, solelycharacterized by the demand matrix (including its dimension) or, more practically, by atuple (P;M), where P denotes the number of concurrent processes, and M denotes themaximum number of resources involved in any of the processes. Thus, the above exampleis denoted the (2; 2) problem for which it will be proven that�(2;2) < 2The general (P;M) problem, given �, can be solved by �nding the permutations Sl andSu that minimizes T l and maximizes T u, yielding the upper bound on �(P;M).Before discussing the (P;M) problem, we revisit the (2; 2) problem, for which we derivea lower and upper bound as a function of � and subsequently prove that �(2;2) < 2. Wewill present two proof versions. In the �rst proof we derive the expressions for T l and T ufor arbitrary �, from which we infer the conditions for which �! 2. In the second proofwe simply introduce the optimum value of � and the related schedules, which we show tobe optimal. The second proof style will be used frequently in the sequel.First ProofConsider a (2; 2) problem, with a given resource demand matrix �. Clearly,Sl = k ll k !will produce a lower bound schedule, where k; l are given byk 2 f1; 2g; l = (1; k = 2;2; k = 1:The result for k = 1 is represented by Fig. 6.1, which illustrates that, in general, the �elements need not be equal. As can be seen from the trace, it immediately followsT l = max(�1k; �2l) + max(�1l; �2k)that implies that T l is independent of k. On the other hand,Su = k lk l !

140 CHAPTER 6. ACCURACY
L1

L2

1 2

2 1Figure 6.1: Lower bound schedule tracewill produce an upper bound schedule. Letm 2 f1; 2g; n = (1; m = 2;2; m = 1:The upper bound schedule is determined by values of m;n where the overlap of usingresources rn (by L1) and rm (by L2) is minimized (m encodes the order by which theinitial con
ict is resolved). The result for k = 1 is illustrated by Fig. 6.2, corresponding
L1

L2

1 2

1 2Figure 6.2: Upper bound schedule traceto the assumption that min(�12; �21) � min(�11; �22) (i.e., m = 1). It is easily seen, thatthe choice for m is independent of k. Hence, without loss of generality, letSu = 1 21 2 !Let m be chosen such that min(�1n; �2m) is minimal. ThenT u = �1m +max(�1n; �2m) + �2nwhich, given the choice of m, is maximal. We now derive an solution for �, based on theanalysis of T u. Since T l is independent of k, in summary, we haveT u = �1m + �2n +max(�1n; �2m)T l = max(�1m; �2n) + max(�1n; �2m)Hence, � has the form�(2;2) = a+ c+ bmax(a; c) + b < 2reaching its upper bound when a = c and b ! 0, the latter implying that the conditionfor m is indeed necessary.

6.2. ABSOLUTE ACCURACY 141Second ProofWhile in the above proof expressions were derived for T l and T u as a function of arbitrarydemand matrices, in the second proof we directly derive the bound on �(2;2). As suggestedby the above result, the demand matrix, for which the maximum value of � is obtained,is given by� = limb!0 �b; �b = a bb a ! ; a > 0For a more practical value of a, the lower bound trace is given in Fig. 6.3, while the
L1

L2

1 2

2 1Figure 6.3: Lower bound schedule tracecorresponding upper bound trace is given in Fig. 6.4. From the traces it can be seen that
L1

L2

1 2

1 2Figure 6.4: Upper bound schedule trace� indeed produces the extreme schedules since, in the limit, the lower bound scheduleexhibits 0 idleness (i.e., 100 % utilization), and the upper bound schedule exhibits 0overlap (i.e., 100 % serialization). Hence, �(2;2) < 2.6.2.2 General BoundIn this section we derive a general bound on � when no information is available other thanP and M .Theorem 6.1 Let L = par (i = 1 : : : P) Li denote a parallel section involving M re-sources. Then� < min(P;M)Proof: We prove the theorem by presenting the solution for �, and the lower and upperbound schedules that generate this bound on �. Subsequently, we show that the solutionis optimal. First, we consider the case M = P . The optimal, diagonal-dominant demandmatrix is given by� = limb!0 �b; �b = 0BBBBBBB@ a b : : : b bb a : : : b b...b b : : : a bb b : : : b a 1CCCCCCCA ; a > 0

142 CHAPTER 6. ACCURACYFigure 6.5 shows both lower bound and upper bound schedules for (P;M) = (3; 3). Eachshaded box denotes the resource index involved in the access. It is easily seen that these
L1

L2

1 2

L3

3

2

1

13

23

T l

L1

L2

1 2

1 2

L3 1 2

3

3

3

T uFigure 6.5: Lower (Sl) and upper bound (Su) schedules for (P;M) = (3; 3)schedules are optimal since Sl minimizes process idle time, while Su minimizes processoverlap when b! 0. Thus, � is maximal. As, for b! 0, T u = Pa and T l = ' = ! = a, itholds � � P . Next, we show that in order to attain this maximum ratio, � must indeedbe \balanced", which in this sense means that8i : MXj=1 �i;j = '; 8j : PXi=1 �i;j = !Thus both the row sums and column sums must be equal which, for M = P , implies' = !. We show the optimality as follows. If any of the service demands �i;j were to beincreased with an amount �, under the balanced condition T l will also increase by �. Since,T u cannot increase more than �, � will decrease. Next, we consider the case M > P . Fromthe above argument, it is easily seen that adding resources will not improve � but ratherdecrease the ratio unless the associated demands are equal to b. Hence, the above boundalso holds for M > P . Finally, we consider the case M < P . While it can be shown,that an upper bound schedule is still possible in which process overlap approaches zero,i.e., T u = Pa, the lower bound now increases as access con
icts between processes can nolonger be avoided. As ! = d PM ea, it follows � < M . Hence, it holds � < min(P;M) whichconcludes the proof. 2The above theorem states the intuitive fact that, without additional knowledge on theparallel section, its execution may range from fully sequential to fully parallel. In thelatter case, the actual parallelism is either limited by the number of resources or by thenumber of processes. Again, note that the result of Theorem 6.1 illustrates the di�erencebetween statically mapped systems and work conserving systems where it would hold� < 2, regardless of P and M . When the number of accesses per resource is higherthan one, the theorem still holds, applying to the case when these multiple accesseswould be concatenated to a single, non-preempted access (note that this, of course, ishighly improbable for larger systems which is essentially the reason for the \mean value"approach discussed in Section 6.3).

6.2. ABSOLUTE ACCURACY 143Clearly, the above result does not tighten the upper bound on the range of possibleprediction outcomes. In the next section, however, we will analyze the situation for morepractical values of �.6.2.3 Adding KnowledgeIn the previous section it was shown, that, without any knowledge on � (and S) thereis no guarantee that the execution time is bounded, else than between the default range,i.e., from full parallelism to full sequentialism. In this section, we will study a number ofmore practical cases that involves additional knowledge on the nature of �.Many practical situations are far from being represented by demand matrices thatexhibit such a large number of near-zero entries. In the following we will assume that theratio between a and b is limited by a constant
. Using the construction method of theupper bound schedule discussed in the above theorem, we conjecture on the bound on �for this case, in which we also assume M = P since this has been shown to provide themaximum value for � (M > P is not interesting).Conjecture 6.1 Let L = par (i = 1 : : : P) Li denote a parallel section involving Presources. Let � be given as in the above theorem with the additional constraint that theratio between a and b is limited according to
 = a=b. Then for
 � 2 it is conjecturedthat �(P;P) � P (
 + 2)� 3
 + P � 1 (6.1)Argument: While T l = a + (P � 1)b = (
 + P � 1)b, we conjecture that an upperbound schedule is constructed as illustrated in Fig. 6.6 for P = 8. Consequently T u =Pa+(P � 2)2b+ b = (P (
+2)� 3)b, that leads to the conjectured result for �. For small
L1

L2

L3

L4

L5

3 52

1

4

1

1

1

6 7

1

1

L6

L7

81

3 8 76542

3

3

3

3

3

8 7 2

8

8

8

8

81 3

2

7

7

7

7

2

7

654

654

4 65

4

4

4

5 2 6

5

5

6 2

6 2L8 Figure 6.6: Upper bound schedule for P = 8 (conjectured)P the above bound on � has indeed been veri�ed for various values (integer and real) of
 by conducting simulation experiments in which all possible schedules are enumerated.Due to the exponential complexity of the exhaustive search, however, this computationalproof has only been obtained for P � 4. A partial search for P = 5 has shown exactlythe same phenomenon. For
 < 2 a slight increase of T u (b) has been observed. Hence,

144 CHAPTER 6. ACCURACYthe conjecture applies to
 � 2. Note that much more schedules apply than just theparticular one illustrated in Fig. 6.6, as shown by the experiments. However, in all casesthe value of T u proves to be the same. 2Essentially, the above conjecture suggests that for large P , � is limited by
. For largevalues of P and
 it holds � = min(P;
) (for
 ! 1 the conjecture corresponds toTheorem 6.1). Note that although the above conjecture applies to M = P , the generalbound given by Theorem 6.1 still holds. For example, consider a parallel section withM = P . Let P be large and
 = 2. According to the conjecture, � � 4. Now consideranother parallel section with equal T l in which
 is increased to P � 1 such that M = 2.From Theorem 6.1 it follows � < 2. Thus, � decreases, contrary to what the conjecturemight suggest.Although we have no rigid proof based on the construction of the schedule, an alter-native schedule shown in Fig. 6.7 constructed through a strategy that continuously aimsto maximize the length of the schedule constructed so far, performs even worse. Although
L1

L2

L3

L4

L5

L6

L7

8

L8

1 3 52 4 6 7 8

1

1

1

1

1

1

1

3 5 7

3

3

3

3

3

3

5

5

5

5

5

5

7

7

7

7

7

7

8

8

8

8

8

8

2 4 6

4

4

4

4

4

4

6

6

6

6

6

6

2

2

2

2

2

2Figure 6.7: Alternative upper bound schedule for P = 8for P < M , this algorithm clearly produces higher T u values, for P = M (i.e., the worstcase), this alternative method is still outperformed by the �rst one, due to integer e�ects.Going from top-left to bottom-right, each a-segment i, i = 1 : : : P is directly preceded bybP�1i c b-segments. Hence,�(P;P) � P
 + bP�11 c + bP�12 c+ : : :
 + P � 1which does equal the previous result, but only when P � 1 is a power of 2 (in fact, allalternatives based on the same approach but only di�ering in the relative location of thea-segment, only equal the previous result under certain conditions).So far, the analysis applies to parallel sections where in each process each resource isused only once. In general, however, the resource access pattern of many practical parallelsections is characterized by loops. The loop model on which the following analysis will bebased is a direct extension of the Pamela model described earlier, i.e.,L = par (i = 1; P) seq (n = 1; N) seq (j = 1;M) use(rsi;j ; �i;si;j)

6.2. ABSOLUTE ACCURACY 145where N denotes the number of loop iterations involved. Note, that this deterministicloop model still di�ers from the \random" model involving multiple, randomly permutedresource accesses, which will be discussed in Section 6.3. However, the bound on � isexpected to be somewhat lower than the previous case.Intuitively, it is clear that the upper bound schedule can not be constructed by amere concatenation of transient schedules without mutual overlap. Yet, a fully sequentialschedule appears to be achievable up to a high degree. For P = 2, the schedule, shownin Fig. 6.8, is conjectured to be optimal, illustrating the fact, that generating a chain ofa-segments at least involves 1 b-segment per a-segment. From the �gure, it is seen that,
L1

L2

1

1 2

1x

x

2

1

x

2 x

2 1

1

. . .
. . .Figure 6.8: Upper bound schedule for the (2; 3) problem (conjectured)unlike the transient schedule, in order to maintain periodicity, a third resource (denotedx) is required. A (3; 3) alternative to the above (3; 2) scheme does not produce a higher�, since this, in turn, would require yet another resource2. Hence, the schedule, shownin Fig. 6.9 for the (5; 5) problem, is conjectured to produce the upper bound. Again, the

L1

L2

L3

L4

1

1

1

1

32

2 3 4

4 1

1

1

1

5

2 5

5

5

4

4

1L5 1 54

2

2 3

3

3

. . .

. . .

. . .

. . .

. . .Figure 6.9: Upper bound schedule for P = 5 (conjectured)sequential chain is determined by the �rst 4 processes, while the �fth process does notadd to the upper bound (but neither to the lower bound). From the �gure, it is easilyseen, thatT u = (P � 1)(
 + 1)bThus we conjecture�(P;P) � (P � 1)(
 + 1)
 + P � 1 (6.2)Compared to Eq. (6.1), the introduction of the loop decreases � by only a fraction.From the above results, it would seem that the upper bound for deterministic loopsystems is not fundamentally di�erent from the case N = 1, apart from some parameterdecrements. The maximum di�erence is a factor 2, that results from the following case.2This essentially applies to the impossibility of inserting an extra a-segment. Even if some extrab-segments could still be inserted, in the limit, the P � 1 factor would still dominate.

146 CHAPTER 6. ACCURACY
L1

L2

L1

L2

1 2

1 2 1 2

1 2 1 2

1 2

1

2

2

1Figure 6.10: Loop vs. transient upper bound scheduleConsider the (P;P) loop system, where � is given by Eq. (6.2). If the loop enforcementwere to be lifted in favor of a transient alternative, Eq. (6.1) would apply. In this alter-native arrangement, all requests to the same resource would be concatenated together,rather than spread across the loops. It directly follows, that the ratio � between the upperbounds of this transient alternative and the original loop version is given by� = P (
 + 2) � 3(P � 1)(
 + 1)which reaches a maximum value for
 !1, and P = 2, i.e.,� � P(P � 1) � 2For
 = 6, both cases are shown in Fig. 6.10 for N = 3, which indeed suggests the abovephenomenon for large N .6.2.4 General ConjectureAlthough the derivations of the upper bound schedules have not been based upon rigorousproofs, there is experimental evidence to indicate that the results are at least close toreality. Apart from showing that the bound on � is limited by
 as well as P , the scheduleof Conjecture 6.1 also suggests that approximately 3(P �1) resource accesses are involvedin the determination of T u. Also in more general cases, it may be assumed that thelargest segments will be involved in the upper bound schedule. Note that this also appliesfor demand matrices that are not balanced. For example, consider a column-dominantdemand matrix in which j-th column dominates. Figure 6.11 shows an upper boundschedule for P = 5 (where j = 1). Although in this case only 2P � 1 segments are
L1

L2

L3

L4

L5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5Figure 6.11: An upper bound schedule in column-dominant case (P = 5)

6.2. ABSOLUTE ACCURACY 147Run T u k = 6 k = 7 k = 8 k = 9 k1 5.55 4.64 5.17 5.58 6.16 82 6.02 4.87 5.47 6.05 6.61 83 4.27 4.00 4.45 4.82 5.07 74 5.94 4.46 5.13 5.80 6.44 95 5.06 4.43 4.84 5.24 5.61 86 5.98 5.06 5.71 6.27 6.81 87 5.85 5.71 5.34 5.79 6.23 98 5.09 4.50 5.08 5.59 6.06 89 5.10 4.38 4.95 5.38 5.79 710 5.83 5.54 6.22 6.58 6.92 7Table 6.1: T u vs. Eq. (6.3) for k = 6 : : : 9 (P = 4), and the applicable k valueinvolved, Conjecture 6.1 essentially provides a sharp bound. Because the
 model usedthus far is much to restrictive for practical applications we will now generalize the resultsobtained in terms of the following general conjecture.Conjecture 6.2 Let L = par (i = 1 : : : P) Li denote a parallel section involving Presources. ThenT u < X(i;j)2�(k)�ij; k = 3(P � 1) (6.3)where �(k) denotes the set of k largest elements in �. 2Thus, the upper bound on � can be simply determined by the size and structure of �,without explicit knowledge of special metrics like
. Note that in general, the segmentsthat determine the critical path need not exactly be the k largest segments. However,practically all the largest will be involved. In cases where
 is large, the error will be-come negligible. For diagonal-dominant cases it follows T u = �T l where � is given byTheorem 6.1, while for column or row-dominant matrices T u simply approaches T l.In order to test the above conjecture, for P = 4 we have run a series of 10 experimentsbased on random, balanced (i.e., worst case) � matrices where each element �i;j is i.i.d.uniformly3 over the interval [0; 1]. Again, each experiment is based on exhaustive search.For all cases T l is measured in agreement with Eq. (3.14). The results for T u are shown inTable 6.1, compared to Eq. (6.3) for di�erent values of k. Conjecture 6.2 is indeed veri�edto produce an upper bound that is reasonably sharp (partial results for P = 5 also agreewith the conjecture).The fact that Eq. (6.3) provides a reasonable estimator for T u allows for a simple,�rst-order assessment of the average value of the upper bound of � in the above case ofa � matrix with uniformly distributed elements. In the analysis, for T u, we will assumethe worst case, i.e., k = 3P � 3, in order to guarantee a valid upper bound. The analysis3Note that the distribution applies to the overall demand matrix �, not to individual service times(which are deterministic). The choice for a uniform distribution is somewhat arbitrary. However, its lowimplementation cost is attractive considering the huge number of simulations involved.

148 CHAPTER 6. ACCURACYis based on results from order statistics [36]. In Appendix D, it is shown that the meanof the upper bound can be estimated byE(T u) = P 2(P 2 + 1)� (P 2 � 3P + 3)(P 2 � 3P + 4)2(P 2 + 1)while for large P it holds E(T u) � 3P .In the appendix it is also shown that the mean of the lower bound can be estimatedby E(T l) = P2 + 0:4qP logPSince for large P it holds E(T l) = P=2, a coarse approximation4 of the bound on � isgiven bylimP!1 �(P;P) � 6 (6.4)Thus, lifting the
 constraint by allowing elements to be uniformly distributed down toeven zero, results in a mere doubling of �, compared to the �xed case of
 = 1. Forsmall values of P the bound is much lower. For P = 4 the bound on � is predicted to be2:1 which agrees with the measurements of T l and T u of the above random matrix case(average bound 2.1). Figure 6.12 shows a histogram of the measured � values over the 10runs. Apart from the fact that � � 2, the �gure clearly demonstrates that the mean value
0

2

4

6

8

10

12

14

16

1 1.2 1.4 1.6 1.8 2

η

%

Figure 6.12: Distribution of �(4;4) for random � (uniform)of � is typically much less than the upper bound.4Of course, considering the division of the two mean values has no formal justi�cation. Hence the useof the word \coarse approximation".

6.2. ABSOLUTE ACCURACY 149As discussed earlier, for loop models, the situation slightly improves. As discussedin the previous section, the maximum number of largest segments involved in the upperbound schedule would be k = 2P � 2 per iteration. Hence, for large N we haveE(T u) = P 2(P 2 + 1)� (P 2 � 2P + 2)(P 2 � 2P + 3)2(P 2 + 1)while for large P it holds E(T u) � 2P . The mean lower bound remainsE(T l) = P2 + 0:4qP logPConsequentlylimP!1 �(P;P) � 4 (6.5)Again, for small values of P the bound is much lower. For P = 4, � is predicted to be1.6 which reasonably agrees with a series of 10 measurements (conducted for N = 100,average bound 1.42). Similar to the former (transient) case, the estimation for k appearsto be about 1 unit higher than observed in practice which indicates that Conjecture 6.2is quite reliable. Figure 6.13 shows the results which, again, illustrates that, on average,� is much smaller than the upper bound.
0

5

10

15

20

25

30

35

40

1 1.2 1.4 1.6 1.8 2

%

ηFigure 6.13: Distribution of �(4;4), for the loop model6.2.5 ApplicationsIn the following we show the use of the above results for an application to the matrixfactorization and the matrix-vector multiplication case studies presented in the previouschapter.

150 CHAPTER 6. ACCURACYFirst, recall the parallel LU factorization of an N�N matrix on a multiprocessor withP processors and M interleaved memory banks. Let � denote the P �M memory bankresource demand matrix. Let P � denote the saturation point, i.e., the value of P afterwhich memory bank saturation occurs. For small P , � is row-dominant, while for large P ,� is column-dominant. Hence for those cases � = 1 which agrees with the high accuracyof T l for these P values. For values of P close to P � the largest deviation occurs betweenT and T l. This corresponds with the fact that � is neither row-dominant, nor column-dominant. Because, due to the interleaving, � is neither diagonal-dominant, of the resultsderived in the previous section, Eq. (6.2) is the most characteristic for the above situationfor
 � 1. It follows (large P) � � 2 which agrees with the measurements. The measuredratio is smaller, partly due to the fact that the
oating point delays, scattered in betweenthe resource accesses, have not been accounted for5.Next, recall the parallel matrix-vector update of an N � N matrix on the P nodedistributed-memorymachine with a unidirectional ring of P point-to-point links l0 : : : lP�1.Let � denote the P � P link resource demand matrix. As mentioned in the case study,for large P the communication phase dominates the performance and it holds ' � !. ForP = N = 4, the resource access pattern is given byi = 0 : i = 1 : i = 2 : i = 3 :p = 0: { 0 0,1 0,1,2p = 1: 1,2,3 { 1 1,2p = 2: 2,3 2,3,0 { 2p = 3: 3 3,0 3,0,1 {A typical trace of the link resource usage in the message-passing phase is shown inFig. 6.14. In the following we only consider the case P = N . The communication phase
L1

L2

L3

L0 0 0 1 0

1

2

3

2 3 1

3

1

1 2

2

2 3 0 2

3 0 3 0 1Figure 6.14: Communication phase for P = N = 4is represented by the following P � P demand matrix, i.e.,� = 0BBBB@ P � 1 P � 2 : : : 00 P � 1 : : : 1...P � 2 P � 3 : : : P � 1 1CCCCA5An extension of the analysis in the previous sections through the involvement of delay terms is beyondthe scope of this initial study. However, it is clear that, inherently being inert operations, their e�ect isa decrease of �.

6.3. AVERAGE ACCURACY 151T P = 4 P = 8 P = 16 P = 32 P = 64Tu 9 49 225 961 3969T 9 43 207 900 3822T l 6 28 120 496 2016Table 6.2: Timing results of the message-passing phase for P = NAgain, � is balanced and, to a slight extent, diagonal-dominant. Yet, it is not unrealisticto assume
 � 1 which, by Eq. (6.2) for large P implies � � 2. For �l = 1, Table 6.2compares actual timing results T with T l given byT l = P (P � 1)2 �land T u based on Eq. (6.2) for
 = 1 given byT u = 2(P � 1)P T lFrom the table it would follow that T is near to T u. Note, however, that the assumption
 = 1 is a bit conservative considering the near-zero entries far from the diagonal of �.6.3 Average Accuracy6.3.1 IntroductionIn the previous section we have investigated T u in order to assess the absolute deviationbetween T and T l in the case of coarse-grain (task-level) contention. In this section, westudy the e�ects of �ne-grain (subtask-level) contention in terms of the average of T sincefor practical systems, typically featuring frequent, random resource access, the actual vari-ance in T is much less compared to the above situation (although the histograms alreadyprovide an indication to this e�ect). As in the previous section, we only consider taskgraphs that do not comprise a sequence of subgraphs (such that Eq. (3.14) applies ratherthan Eq (3.15)). In contrast, however, we now consider any model structure comprisingN tasks and M resources possibly involving parallel nestings.As illustrated by, e.g., Example 3.7 and Example 3.8, for models in which the resourcedemand is reasonably uniform during the entire computation (i.e., in contrast to modelssuch as in Example 3.10), T l approaches the mean value of T either when '� ! (criticalpath dominates) or when '� ! (queuing dominates). Thus, in many cases the averageerror of the analytic prediction may be assumed to be quite acceptable (as results willshow later on). As already mentioned in Example 3.7 the choice of the lower boundas a practical estimate is also inspired by similarities between the execution of L andinteractive queuing systems. Although, formally, the resemblance is extremely remote itis interesting to relate the lower bound approach to the asymptotic bound analysis of an(operationally) comparable interactive queuing system6 (see Fig. 6.15). If we de�ne Z as6Note that the comparison is purely intuitive as we disregard many details, e.g., the fact that eachtask should map to a unique job class; possible transient phases like startup and shutdown are ignored;the task graph should be cyclic in order to have steady state execution, etc.

152 CHAPTER 6. ACCURACY
m
u
l

T

0
1 *N N

D+Z

ϕ = D+Z
ω max= NDFigure 6.15: MRM cycle time interpretation in queuing theory and in Pamelathe think time [93], D as the total service demand and Dmax as the service demand at thebottleneck device, we can interpret ' as the horizontal cycle time asymptote D + Z (Zaccounts for task synchronization delay), while ! corresponds to the NDmax asymptote.The largest deviation occurs at the saturation point, where D + Z = NDmax.As a result of the above observations we propose to use an operational metric called\serialization index" or \contention index" that characterizes the degree of contentionwithin a system. The metric is de�ned by� = log !'! (6.6)The use of � is to characterize a model as to the likelihood of T l being an accurateprediction. For models with large j�j the average accuracy of T l is expected to be betterthan for models where j�j � 0. Note that � bears a direct relationship with � since itholds ' = maxi=1:::P MXj=1 �i;j; ! = maxj=1:::M PXi=1 �i;jThus a balanced or diagonal-dominant matrix (worst cases) indeed corresponds with � = 0.6.3.2 ExperimentsIn this section we report on an experiment involving 1000+ random SP models in whichthe predictions T l are compared to the simulation results T . The models are generatedsuch that the � values lie around the (worst case) region of interest (j�j � 0). Apartfrom the fact, that many computations of interest are SP structured7, the choice for SP7Note that the application range of Pamela SP models is essentially greater than just SP task graphs.For instance, pipelining is also expressed in terms of a parallel section of contending tasks (cf. Exam-ple 3.5).

6.3. AVERAGE ACCURACY 153models is also motivated by the fact that it enables an evaluation of the improvementof Eq. (3.15) on the accuracy compared to Eq. (3.14). Each model comprises N = 100tasks while the number of resources involved varies from M = 2 : : : 150. The graphs aregenerated by a simple algorithm that iteratively adds a new task ti to a random selectedtask tj within the graphs generated up to that moment (j is determined in each iteration).The probability that ti is placed in series or parallel with tj is determined by an inputparameter, denoted s. Each task ti is characterized by a unique service demand vector�i = (�i;1; : : : ; �i;M) in which each element is i.i.d. uniformly over [0; 1]. Thus, balancedsystems are generated (on average). Experiments have veri�ed that this choice indeedprovides the worst case with respect to the accuracy of T l. Each resource m is accessedmultiple times based on the existence of some deterministic service time � . Thus eachtask executes �i;m=� accesses to resource m. The order in which the resources are visitedis random. In order to minimize simulation time (many models are simulated), � is chosensuch that the mean of T does not deviate signi�cantly from results for � ! 0 (in practice,values in the order of 1 % of the largest service demand �i;m (i.e., � 100 visits) have beenfound to su�ce8). As N is �xed (N = 100), the parameters M and s determine the(mean) � value of the generated models. As ' is proportional to M , large values of M willgenerate models with a negative �. For low s, however, many parallel tasks are createdon average which has a positive in
uence on �.Figure 6.16 shows the ratio T l=T based on 1200 random models exhibiting � valuesranging from �2 < � < 2. Both the prediction ratios based on Eq. (3.14) and Eq. (3.15)are shown (� and �, respectively). Each data point of both series of 120 points representsan average value based on 10 random draws in order to reduce noise (for �xed generatorparameters 10 models are generated). The results clearly reveal a high correlation between(�; �) and � in which the deviation from unity is indeed maximal for models that exhibit� = 0. Thus, for random graphs the diagnostic value of the operational parameter �appears to be quite signi�cant, especially when considering the fact that two graphs withcomparable � values usually have quite a di�erent structure. While the essential necessityof Eq. (3.15) has already been demonstrated (cf. Example 3.10), even for the models withuniform resource demand (in time) as produced by the random generator, its applicationstill yields an improvement for models with highly parallel subsections (e.g., � > 0). Inthe following we will only consider �. In the above experiments the models are generatedfor s = 0:1 withM varying fromM = 2 (� � 2) to M = 150 (� � �2). Models with � � 0are generated for M = 20. For each value of M the variance of � is approximately 0.05which accounts for the reasonably continuous plot. Although no extensive experimentshave been performed for di�erent values of N , initial measurements indicate that the �curves tend to be more 'v'-shaped for small N , corresponding to the fact that the scaleof � is still somewhat dependent on the problem size. However, N = 100 also appears tobe quite representative for larger models9 as well. Additional measurements indicate thatthe minimum value of � at � = 0, i.e., ��, highly correlates with M . For instance, each8The justi�cation is that for large visit counts the change in task-level variance proves to be small. Thisphenomenon has been observed for both exponential and deterministic service times. This optimizationhas been introduced in Section 5.4.9For N = 10 the range of interest is �0:5 < � < 0:5, whereas for N � 1000 the range is still around�2 < � < 2.

154 CHAPTER 6. ACCURACY
α,β

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

θ

α
βFigure 6.16: T l accuracy (�; �) for 120 random SP models (N = 100)of the following set of parameter tuples, i.e.,(N;M; s) 2 f(30; 8; 0:1); (100; 8; 0:3); (300; 8; 0:5)ggenerates models with j�j � 0 that yield �� � :6 on average. The correlation is shown inFig. 6.17 that plots a series of �� values for various N , M , and s values. Each value isderived from an average of 20 random draws except for N = 1000 due to the computationalcosts involved. The results agree with the earlier observation that the � plot for N = 100is quite typical for larger systems. The �gure suggests the existence of a horizontalasymptote given by �� � 0:5. Again, it is tempting to compare this upper bound onthe (mean) deviation with the result from asymptotic bounding analysis of interactivequeuing systems. For instance, consider the MVA recursion for an M server balancedsystem [160] with total service demand D, given byR(N) = D + DM R(N � 1)R(N � 1) + Z (N � 1) (6.7)where R(N) denotes the response time as a function of the number of jobs in the system(N). Let C(N) = R(N)+Z denote the mean cycle time (comparable to T). From Eq. (6.7)it follows that for small N the slope of R(N) is less10 than the asymptotic value D=M forN !1. Consequently, at the saturation point N = N�, for which the deviation betweenC(N) and its lower bound C l = D + Z is the largest, it holds C(N�) < C l + (D=M)N�.With N� = (D+Z)=(D=M) it follows C(N�) < 2C l, that corresponds to the lower boundon ��. Generating models with large M also implies a large value for D. In terms of theanalogy this implies a relatively decreasing Z. Indeed, from Eq. (6.7) it is easily seen thatlimZ!0 C(N�) = 2C l.10An accurate analysis of the balanced upper bound is given by Zahorjan et al. [160]. However, for ourpurpose the above analysis su�ces.

6.3. AVERAGE ACCURACY 155
*α

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

MFigure 6.17: �� vs. M for N = 10 : : : 1000 and s = 0:1 : : : 0:56.3.3 ApplicationsIn the following we demonstrate the use of the above results by an application to the matrixfactorization and the matrix-vectormultiplication case studies presented previously as wellas the macro data
ow case study.As mentioned earlier, the diagnostic value of � is also re
ected in �. Like the MRMthe results of the factorization case study (in fact, an MRM-type model withM resources)are a good demonstration of the diagnostic value of �. For jP=P �j � 0 (j�j � 0) � (T l=T)is close to 1, whereas for P � P � (� � 0) the deviation is maximal (note that �� ismuch greater than 0.5 because of the few resources involved). The metric also predictsthe deviation of T l for the matrix-vector multiplication. For large P (i.e., � = 0 asthe communication phase dominates) �� approaches 0.5 as predicted by Fig. 6.17 (largenumber of link resources).Next, recall the macro data
ow case study that involved the discussion on the mea-surement results for the execution of 15 random SP graphs G1 : : :G15 on the 4� 4 trans-puter mesh. Table 6.3 shows the results of T l in terms of � (applying Eq. (3.14) and �(applying Eq. (3.15)) as well as � for the 15 graphs. The results for � and � indeed showthat the average prediction error of serialization analysis is limited to a factor 2 while formodels with j�j � 0 the predictions tend to approach the simulation results. However,the increase in accuracy for positive � appears to be less when compared to the simula-tion results in Section 6.3. This phenomenon will be discussed later on. As expected, forrelatively parallel graphs, the � values tend to be somewhat better than the � values.As shown by the measurement results (Table 5.2) the accuracy of T is such that it isindeed acceptable to evaluate the accuracy of T l by comparison to T only (as has beenthe basis for the previous correlation experiments). Since, simulation proves to be more

156 CHAPTER 6. ACCURACYG1 G2 G3 G4 G5� 0.66 0.53 0.60 0.53 0.56� 0.73 0.62 0.68 0.70 0.66� 1.08 0.85 0.76 0.37 0.27G6 G7 G8 G9 G10� 0.55 0.54 0.61 0.78 0.75� 0.55 0.60 0.68 0.78 0.75� -0.19 -0.28 -0.35 -0.73 -0.91G11 G12 G13 G14 G15� 0.80 0.87 0.86 0.96 0.94� 0.87 0.87 0.86 0.96 0.94� -1.23 -1.51 -1.62 -1.70 -1.74Table 6.3: Correlation between �, � and � for G1; : : : ; G15convenient than actually executing the graphs on the transputer mesh we have evaluatedthe accuracy of T l for an additional 150 graphs. The results are shown in Fig. 6.18 for �and Fig. 6.19 for �. Unlike the theoretical plot of Fig. 6.16 each point now represents
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

α

θFigure 6.18: T l accuracy (�) for 150 random SP models (N = 100)an individual measurement, hence the noisy plots. Unlike Table 6.3 the plots give agood impression of the practical accuracy of T l. Like in the original case study, each ofthe 150 graphs was also executed under a mode f in which all communication (excepttask synchronization) is switched o�, and a mode c, in which all computation has beendisabled. Figure 6.20 and Fig. 6.21 show the T l accuracy for the f -mode execution,while Fig. 6.22 and Fig. 6.23 show the T l accuracy for the c-mode execution. The results

6.3. AVERAGE ACCURACY 157
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

β

θFigure 6.19: T l accuracy (�) for 150 random SP models (N = 100)con�rm the simulation experiments which indicate that the average deviation between T land T is typically limited to �� � 0:5 in the worst case (� = 0, note that M = 144).From the plots it is clear that the limited increase in accuracy for positive � as men-tioned earlier is due to the communication. (The computation plots, in contrast, com-pletely agree with the correlation experiments.) Likewise, it are the communication modegraphs that exhibit quite some samples with � < 0:5. This is caused by the fact that par-allel communications involving the same resources may occur at relatively concentratedpoints in time, combined with the fact that the communication system interleaves packettransfers sharing the same links. The virtual barriers caused by this multiple interleavingacross the same resources are not accounted for by T l which yields a less tight boundthan might be expected. We show the mechanism involved through a simple example (seeSection 5.3 for modeling details). Consider the following task graphG = t0; par (i = 1; N) ti; tN+1where p = (0; 1; : : : ; 1; 0). Let l = (106; : : : ; 106; 0) and w = 0. Then L is e�ectively givenby L = par (i = 1; N) fbmove(0; 1; 106) ; bmove(1; 0; 106)gThe fanout phase (node 0! 1) involves service e1 while the subsequent fanin phase (node1 ! 0) involves service e0. The lower bound corresponds to a schedule in which servicerequests to e0 and e1 would be (partially) overlapped as a result of an initial skewingduring the fanout phase. It follows T l = 0:9N s. In reality, however, this overlap does notoccur due to the fact that the bmove(0; 1; : : :) tasks (as well as the bmove(1; 0; : : :) tasks)execute simultaneously as a result of the interleaving at packet level (fair scheduling).

158 CHAPTER 6. ACCURACY
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

α

θFigure 6.20: T l accuracy (�) for 150 random SP models (N = 100) in f -modeIndeed it holds T = 1:8N s which is also measured in practice. (The Pamela simulationmodel accounts for this phenomenon, of course.) Thus, while � is large (logN=2) the valueof � is still 0.5 (for w 6= 0 the situation becomes much better). E�ectively, the interleavedexecution of the bmove tasks can be approximated by a virtual barrier (see Section 5.4)according to the following modelL = par (i = 1; N) bmove(0; 1; 106) ; par (i = 1; N) bmove(1; 0; 106)It follows T l = T = 1:8N s. For the 15 test graphs as well as the 150 additional graphs wehave included the barrier synchronization at the end of the concurrent broadcast for eachtask as described above. Indeed the results for � greatly improved in accordance with thecorrelation experiments (�� = 0:7 instead of 0.45).6.4 SummaryIn this chapter we have studied the absolute accuracy as well as the mean accuracy ofT l relative to T . The results are based on theory, simulation studies, as well as actualmachine measurements.With regard to the absolute deviation between T l and T , for parallel sections, it isconjectured that the ratio � between the lower bound and the upper bound is alwaysless than a constant factor, depending on the total resource demand, characterized by thedemand matrix �. Thus, given a lower bound prediction, the bounded value of � indicateswithin what range the actual execution time might di�er from the prediction. Withoutspeci�c information on �, it is shown that � may range between 1 and min(P;M), i.e.,parallel sections may run fully sequential up to fully in parallel. However, given a ratio

6.4. SUMMARY 159
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

β

θFigure 6.21: T l accuracy (�) for 150 random SP models (N = 100) in f -mode
 between the largest and smallest resource demands, for large P;M , it is shown that� only scales linearly with
. All results have been veri�ed by measurements, up toP;M � 4, in view of the huge computation costs involved. Although the results are interms of �, they correspond to equivalent results on the upper bound T u, thus providinga rudimentary tool for real-time system constraint veri�cation. In order to obtain at leastsome insight for more \practical" cases, a simple statistical analysis is presented, assuminga � matrix with uniformly distributed elements, thus lifting the
 constraint. Again, theresults suggest that, in practice, � is bounded by a constant, irrespective of P and M .Based on these results for �, by Eq. (6.3), a general estimator for the upper bound T u isproposed, which, in particular, has been used in the above, statistical analysis. Althoughthe estimator is correct for all synthetic cases, in random cases the value of its parameter khas only been validated for P = 4. Although experiments for P > 4 would provide crucialevidence in support of the conjecture, that k � 3P for a generally valid upper bound,in the present workstation environment the associated computation costs proved to beprohibitive. If the estimator would indeed prove to be a reasonably tight upper boundthis might be an important step towards the derivation of an upper bound for generaltask graphs. The proof of upper bounds on � is also useful in order to justify variousreductions as described in the previous chapter. For instance, the (frequent) reduction ofN similar use statements into one single statement, is allowed because the di�erence inresulting execution time (corresponding to the di�erent schedule spaces) will be limited:both the lower bound and upper bound stay valid (the upper bound of the N statementcase equals the single statement case considering the possibility of a schedule that exactlyconcatenates the N statements). This initial study only derives some basic results in whatappears to be a very interesting area. Many more questions remain to be answered as the

160 CHAPTER 6. ACCURACY
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

α

θFigure 6.22: T l accuracy (�) for 150 random SP models (N = 100) in c-moderoad towards a � framework for arbitrary task graphs is clearly a long one.In this chapter we have also studied the average deviation between T l and T boththrough a simulation study involving 1000+ random SP graphs as well as through mea-surements of 15 random SP graphs executed on a 16 node transputer mesh. Results ofboth case studies, show that the worst-case penalty for large random task systems is amere 50 % under-estimation on average. Moreover, it is shown that for large random par-allel sections the error of T l compared to the average execution time can be predicted bythe serialization index �, that is symbolically compiled as a side result of T l. However, like�, this metric should be used judiciously. The simulation study shows that for su�cientlyrandom systems T l approaches T except when j�j is small. While this generally holds forlow contention levels, the communication experiments show that for high contention levelsT l may still deviate from T due to the \virtual barrier" e�ect. Nevertheless, its diagnosticvalue is shown to be considerable for systems in which the resource demand is more or lessdistributed across a parallel section. Especially for large systems (in terms of the numberof resource accesses) the shape of � can be interpreted in terms of the results of asymp-totic bound analysis in queuing theory. This implies that the task-level synchronizationsdo not dominate overall synchronization behavior. Consequently, the performance of alarge parallel task section with �ne grain contention can be approximated by a queuingmodel in which the task synchronizations are (necessarily) ignored. Also note, that forlarge random systems where the (�ne grain) resource accesses are uniformly distributedacross the entire computation the factor 2 di�erence between T l and T also has a remotecorrespondence with the factor 2 result from scheduling theory mentioned in the intro-duction. Because of the uniform distribution of the resource usage, for systems with � � 0there is relatively little unforced idleness in the utilization of each resource, which implies

6.4. SUMMARY 161
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

β

θFigure 6.23: T l accuracy (�) for 150 random SP models (N = 100) in c-modethat the actual schedules are e�ectively work conserving.

162 CHAPTER 6. ACCURACY

Chapter 7Conclusion7.1 ContributionsIn this dissertation we have discussed methods for the performance modeling of parallelcomputer systems. In order to resolve our con
icting goals that the model should havean explicit, analytical form, have an extremely low solution cost, and at the same timebe reasonably accurate, we have introduced a modeling approach based on a new rep-resentation formalism that features certain restrictions with respect to the modeling ofsynchronization. Because of these restrictions, a static analysis technique can be appliedyielding low-cost analytic models that are robust in terms of accuracy across the entireparameter space. Essentially, our approach is to emphasize the analyzability criterionrather than choosing for the appealing features of full modeling power. Throughout thisdissertation we have shown that the subset of parallel computer systems that can be ad-equately modeled using our restricted approach does not di�er substantially from thoseusing alternative methods. Consequently, the approach strikes a good balance betweenthe modeling power needed for a reasonable accuracy at Pamela level as well as thesubsequent analyzability needed for a reasonable accuracy of the resulting models in thetime domain.In summary, our major contributions can be stated as follows� FormalismThe introduction of the performance modeling language Pamela. Although featur-ing all constructs for full modeling power (for compatibility with alternative analysistechniques) the language is speci�cally designed towards supporting the structuredmodeling of synchronization. Examples are the fork/join construct for conditionsynchronization (par), and the structured form for mutual exclusion (use).� ParadigmThe introduction of a parallel computer systems modeling methodology that is basedon the use of a material-oriented paradigm in combination with highly structuredsynchronization operators, especially with regard to mutual exclusion. Results showthat the sacri�ce of modeling power due to the enforcement of structure is wellbalanced against the limited accuracy of the underlying analysis technique.

164 CHAPTER 7. CONCLUSION� AnalysisThe introduction of an analysis technique that integrates an approximate analysisof mutual exclusion within a conventional condition synchronization analysis tech-nique. As a result, Pamela models can be compiled into low-cost, analytic modelsthat have a sustained minimum prediction accuracy with respect to both forms ofsynchronization across the entire parameter range.The novelty of the approach is that it integrates the above concepts in a balanced waywithin one single methodology. As the language embodies these concepts by its program-ming paradigm and underlying compile-time calculus, we coin the overall approach thePamela methodology.Apart from presenting this mathematical framework for the description and perfor-mance analysis of parallel systems the following contributions have been made� Related workWe have presented a survey of the main approaches to performance modeling ofparallel systems, employing a taxonomy based on the various representation for-malisms that are used. An essential aspect of this taxonomy is the distinction ofthree forms of control
ow, i.e., condition synchronization, mutual exclusion, andconditional control
ow. We have shown that the alternative approaches either (1)have a solution cost which is too high (e.g., Petri nets, process algebras, hybridqueuing networks), or (2) have a modeling power that is too low (e.g., queuing net-works, task graphs), or (3) yield non-deterministic results (e.g., simulation). (Note,that each approach can be in more than one category.)� Modeling approachWe have presented our uni�ed, top-down approach toward modeling shared-memoryas well as distributed-memory (vector) programs and machines. Unlike many ap-proaches, all software and hardware resources are treated exactly the same in termsof a chain of concurrent subroutines called by some root process that representsthe algorithm. We have shown that the use of our restricted modeling paradigmallows us to capture the most important performance aspects that are relevant inthe context of our approximate analysis.� Case studiesWe have discussed a number of modeling case studies and small examples showingthe use of the analysis technique in compiling Pamela models into performancemodels. The data
ow application study has shown that application behavior asmeasured in practice can be captured with reasonable accuracy even by simplePamela models. While discussing the concept of simulation we have presentedextensions to our analytic technique as well as alternative (numeric) solution tech-niques.� System optimizationWe have demonstrated the use of the Pamelamethodology in system optimization.We have shown that our contention modeling approach provides su�cient predic-tion power and yields low-cost, symbolic optimization solutions that can be easily

7.1. CONTRIBUTIONS 165compiled and evaluated at run-time. In general, this implies that any intermediate(or even programming) language that is subject to automatic optimization proce-dures also be best de�ned in terms of a procedure-oriented paradigm with structuredsynchronization constructs.� AccuracyWe have investigated the accuracy of our static technique with respect to the ap-proximation of the e�ects of mutual exclusion. With regard to the absolute varianceof T (and hence, with regard to our lower bound T l) we have presented a numberof conjectures implying that the absolute variance can be computed as a functionof the system demand matrix. With regard to the typical average deviation of T lrelative to T we have shown that for systems with random resource access patternsthe worst-case deviation due to contention is limited to 50 %, throughout the entireparameter range. In view of the attractive cost features, this model robustness formsthe ultimate justi�cation of our approach.With respect to related techniques our approach can be distinguished as follows.� ModelingUnlike formalisms such as Petri nets and process algebras, the modeling power dueto the use operator in Pamela is limited. Both Petri nets and process algebrasassociate with a synchronization paradigm where mutual exclusion is expressed interms of the basic non-deterministic control
ow mechanism (con
icts in Petri nets,alternative composition in process algebras). While the choice for this low levelconstruct necessitates state space analysis, our higher-order construct allows theuse of our low-cost, symbolic analysis technique.Unlike approaches based on queuing networks or task graphs (stochastic or deter-ministic), Pamela o�ers operators to account for both types of synchronization.This provides the minimummodeling power needed to realistically capture parallelsystem performance. Unlike hybrid queuing approaches, Pamela does not distin-guish separate formalisms to model programs and machines. Our uni�ed approachallows the expression of both synchronization types for both programs and machines.Like process algebras and simulation languages Pamela features composition oper-ators that facilitate model construction. Unlike both formalisms, however, Pamelafeatures a symbolic analysis technique that really takes advantage of the possibilityto describe parameterized models.� analysisUnlike prediction techniques based on simulation languages, Pamela extends tra-ditional performance simulation approaches by o�ering a compile-time calculus thato�ers the opportunity of various forms of optimizations.Unlike stochastic approaches based on Petri nets, process algebras, queuing networksand stochastic task graphs, our analysis technique is not based on a state spaceanalysis that entails both a costly and essentially numeric process. While tradingexponential analysis complexity for a typically linear complexity, at the same time

166 CHAPTER 7. CONCLUSIONthe average relative prediction error due to mutual exclusion synchronization islimited to a small constant.The advantage of using structured mutual exclusion constructs has been recognizedin queuing theory as can be seen by the existence of alternative solution techniquesthat have polynomial complexity. Although our lower bound technique is reminis-cent of the bounding analysis in traditional queuing theory, our approach accountsfor the e�ect of condition synchronization as it incorporates a critical path analysis.Unlike the critical path analysis techniques associated with stochastic or determin-istic task graphs that account for the e�ects of condition synchronization, our ap-proach to static (compile-time) analysis incorporates an approximation of the e�ectof mutual exclusion, yet without entailing any increase in analysis complexity.In summary, Pamela combines many insights from related approaches to the perfor-mance modeling of parallel systems, i.e., simulation modeling approach, process algebraicdescription, providing su�cient, yet limited modeling power enabling a low-cost, symbolicperformance compilation technique inspired by static path analysis from task graphs andbounding analysis from queuing theory. The various ingredients are chosen in such a waythat analytical performance models can be compiled that evaluate at the lowest possiblecost, while the loss of accuracy due to the limited modeling power as well as the approx-imate analysis is kept to an acceptable level for �rst-order system design. To the best ofour knowledge, this speci�c blend has not yet been introduced.7.2 ImprovementsThe work we have described touches upon many �elds such as concurrency, languages,simulation, scheduling, compile-time analysis, probability, discrete mathematics, com-plexity theory. As the main purpose of this dissertation is to argue that our approach toperformance modeling of parallel systems satis�es the requirements as mentioned in theintroduction, none of the above aspects have been treated in great depth. Clearly, thepossible improvements to this work is numerous.Apart from the obvious necessity of performing much more validation studies basedon an extensive set of real-world applications modeling, some of the most importantimprovements of the current approach are the following.� Modeling technique{ Thus far, the trade-o� between the machine-oriented and the material-orientedparadigm with respect to analyzability has been discussed rather informally.Because of the potential implications of an increased analyzability with respectto system design, this issue warrants a much more fundamental treatment interms of concurrent formalisms in general, and models of parallel computationin particular.{ Also the implications of the use restriction with respect to modeling concurrentsystems that require a two-way synchronization (e.g., bounded bu�ers) hasonly been touched upon brie
y. Being the essential restriction upon which our

7.2. IMPROVEMENTS 167static analysis approach is based, its implications must be investigated morethoroughly.� Analysis accuracy{ Merely intended to show that there exists a correlation between � and � (�)the simulation experiments used to investigate the average accuracy of T l havebeen necessarily brief. More experiments are necessary including the use ofactual system measurements as well as extending the experiments to non-SPgraphs, possibly with conditional control
ow.{ Although in many cases, an analysis result in terms of a (�; �) tuple providessu�cient information, in speci�c cases the absolute range in which T lies can beof interest (e.g., real-time systems). While the conjectures with respect to T uas presented do provide insight in the basic properties of contention models,they only apply to simple parallel sections, and are supported by only fewexperiments. Clearly, the approach reveals an area where there is ample roomfor much improvement and where interesting results can be expected.� Analysis technique{ As a consequence of our focus on the e�ects of synchronization, one of themost important
aws of our approximate technique is the fact that task timevariance (due to conditional control
ow or mutual exclusion) is not accountedfor. Especially, the o�set of the mean value due to barrier synchronizationmay become quite large for high variance levels. By incorporating (symbolic)approximations for the o�set, a better version of the static analysis may bedeveloped where each task time parameter is represented by a (�; �) tuplerather than by a one (mean) value alone.{ As shown by a number of examples and case studies, the PS-like resource shar-ing at aggregate level may cause an inaccurate lower bound estimate since theextra \virtual barriers" are not considered by the (default) lower bound tech-nique. Hence, a preprocessing phase must be added to account for the synchro-nization e�ects that are essentially due to our assumption of fair scheduling.{ As discussed, there are many cases in which a simulation run of a Pamelacontention model yields a result with only a small variance (assuming negligibleconditional control
ow variance). For these cases, it is possible to formulatean \analytic" technique for any PamelaP=V model (i.e., not only use modelsas in the symbolic technique), based on manipulating resource queues. Whilethe solution complexity of the technique is comparable to T l (not consideringpossible reductions), the prediction accuracy is essentially better.{ While the above alternative analysis techniques are not speci�c to Pamela,neither are the techniques that are associated with alternative representationformalisms. For example, the above techniques could be complemented byde�ning a Markov analysis for Pamelamodels, or a mean value analysis tech-nique for the Pamela equivalent of separable queuing networks, or extending

168 CHAPTER 7. CONCLUSIONour static technique based on the analysis principles used in hybrid queuingnetworks. With its mixture of unstructured and structured synchronizationoperators, Pamela could host a large variety of analysis techniques, thus of-fering a more
exible trade-o� between cost and accuracy in the performancemodeling of parallel systems.Next to the above improvements, recommendations for future work clearly include thedevelopment of tools (e.g., Pamela compiler) in order to support the application of thePamela methodology.

Appendix APAMELA Language SemanticsA.1 IntroductionIn this appendix we will describe the semantics of the most important Pamela statementsin terms of Deterministic and Stochastic Petri Nets (DSPN [6]). The choice for thisformalism is motivated as follows. Because of the necessity to describe time as wellas synchronization, traditional concurrency formalisms (e.g., CSP) are not appropriate,unless some ad hoc enhancements were introduced. As explained in Chapter 2, neitherQN, SG, or DG have su�cient modeling power. In contrast, DSPN readily provides asimple means to express the semantics of the Pamela constructs as far as synchronizationand time are concerned.Because of the simple semantics of the language we will only model the most importantconstructs. The order of appearance of each construct is the same as in Chapter 3. Asusual, thin bars denote immediate transitions, whereas thick bars denote timed transitions(either stochastic or deterministic). The action associated with each Pamela construct isexpressed by one or more transitions. Each DSPN representation of a Pamela constructalways ends with a place. As a result, like the composition of Pamela constructs ina large model, each DSPN representation can be directly interconnected to form theDSPN representation of the Pamela composition. DSPN representations of compositemodels (representing, e.g., L1 or L2) are depicted by boxes. Corresponding to the aboveconvention, each box internally starts with a transition and ends with a place. Tokenseither represent the thread of control of each Pamela process, or represents the amountof resources that are available. For simplicity, in the DSPN models tokens have beenomitted, i.e., all resources are assumed to have a zero value (ri = 0). As each model startswith a transition, the transition is assumed to be enabled, without the presence of tokensbeing required.

170 APPENDIX A. PAMELA LANGUAGE SEMANTICSA.2 TimePamela construct DSPN representationdelay(�)
τA.3 Control FlowPamela construct DSPN representationL1 ; L2 L2L1Pamela construct DSPN representationL1 k L2 L1

L2Pamela construct DSPN representationif (c) L1 else L2 L1

L2

c

cWith respect to the if statement, c denotes a boolean computation which, in general,involves an extended PN (e.g., DSPN extended with inhibitors). Note that a stochasticchoice would be implemented using two immediate transitions only (i.e., without the csubnet) specifying the appropriate switching distribution [5].

A.4. CONDITION SYNCHRONIZATION 171A.4 Condition SynchronizationPamela construct DSPN representationwait(fc1; c2g) c2c1Pamela construct DSPN representationsignal(fc1; c2g) c1 c2

A.5 Mutual ExclusionPamela construct DSPN representationP(fr1; r1; r2g) r1 r2

2Pamela construct DSPN representationV(fr1; r1; r2g) r1 r2

2

172 APPENDIX A. PAMELA LANGUAGE SEMANTICSPamela construct DSPN representationuse(fr1; r1; r2g; �) r1 r2

τ

2

2

2

2Note, that the above use construct applies to (regular) FCFS resources. As de�nedin Chapter 3, for PS resources the number of sequential replications is in�nite while �approaches zero. Also the using construct is de�ned in terms of the above constructs, asde�ned in Chapter 3.

Appendix BPartitioning Index SpacesB.1 IntroductionIn this appendix we derive expressions pertaining to the block-wise and cyclic partitioningof an indexed computation over M resources m = 0 : : :M � 1. LetI = fi j a � i � bgbe an index set. Let f(i) = ci + d be an a�ne index function generating the referencesf(a); f(a + 1); : : : ; f(b) associated with the computation. Let � denote the partitioningfunction. Then the index partition associated with resource m is given byIm = fi j a � i � b ^ �(f(i)) = mgIn the following we will give some reductions of the above set enumeration to a lesscomplex form for block and cyclic partitioning.B.2 Block PartitioningLet �(i) = b iB cdenote the block partitioning function whereB = db� a+ 1M edenotes the block size. Then Im comprises the solution of the equationbci+ dB c = mThis impliesBm � bci+ dB c � B(m+ 1)� 1

174 APPENDIX B. PARTITIONING INDEX SPACESand it followsdBm� dc e � i � dB(m+ 1)� dc e � 1subject toa � i � bHence, in terms of a consecutive series j, Im is given byIm = fij �m � j � �mgwhere�m = max"a; dBm� dc e# ; �m = min"b; dB(m+ 1)� dc e � 1#B.3 Cyclic PartitioningLet �(i) = i mod Mdenote the cyclic partitioning function. Then Im is the solution of the diophantine equationci+ kM = m� d; a � i � bwhere k is some integer variable. If no solution in i exists, i.e.,(m� d) mod gcd(c;M) = 0then Im = �, else Im is given by the monotonic seriesIm = f�m; �m + �; �m + 2�; : : :gwhere �m � a denotes the smallest solution in i of the diophantine equation, and thesolution period is given by� = Mgcd(c;M)In terms of a consecutive series j, Im is given byIm = f�m + �j j �m � j � �mgwhere�m = da� �m� e; �m = db+ 1 � �m� e � 1

B.4. GENERAL RESULTS 175B.4 General ResultsSince I = M�1[m=0 Imit holdsM�1Xm=0 �m � �m + 1 = b� a+ 1An important measure is the maximum partition size, i.e.,S = maxm=0:::M�1�m � �m + 1For block partitions this simply reduces to S = B. For cyclic partitions, a situation inwhich the partition Im is a member of the larger power set occurs when �m = a (i.e., the�rst index is a direct hit). Let m0 be the solution to the above condition. ThenS = �m0 � �m0 + 1 = db� a+ 1� eFor the simple linear function f(i) = i a simple expression can be obtained for a cyclicpartitioning. It follows c = 1; d = 0 which implies �m = m� d = m, and � = M . Thus Imis given byIm = fm+Mj j �m � j � �min which�m = da�mM e; �m = db+ 1 �mM e � 1

176 APPENDIX B. PARTITIONING INDEX SPACES

Appendix CReduction of Summation TermsIn this appendix we derive reductions for the expressionsN�1Xn=1d nP eand N�1Xn=1d nP enWe proceed by subdividing the range n = 1; : : : ; N � 1 in subranges where the termd nP eis constant and larger than 0. LetJ = dN � 1P edenote the total number of full subranges, and letK = (N � 2) mod Pcorresponding to the highest index of the entries (0; : : : ;K) in the highest subrange inthe case the subrange does not contain P entries. With respect to the �rst expression, itfollowsN�1Xn=1d nP e = J�1Xj=0 jP + (K + 1)Jwhich reduces toN�1Xn=1d nP e = 12J(J � 1)P + J(1 +K)With respect to the second expression it followsN�1Xn=1d nP en = J�1Xj=1 P�1Xk=0 [j(1 + (j � 1)P) + jk] + KXk=0J(1 + (J � 1)P) + Jk

178 APPENDIX C. REDUCTION OF SUMMATION TERMSwhich reduces toN�1Xn=1d nP en = J(J � 1)(P � P 2 + P (P � 1)=2)2 + J(J � 1)(2J � 1)P 26 +(K + 1)J(1 + (J � 1)P) + K(K + 1)M2

Appendix DBounds for Random Parallel SectionsD.1 IntroductionIn this appendix we derive expressions for the mean of T u and T l for a P � P demandmatrix of which the elements are uniformly distributed over the interval (0,1). First, wede�ne some basic terminology from the �eld of order statistics [36]. LetX(1) � X(2) � : : : � X(n)denote n variates X1; : : : ;Xn, each with a cumulative distribution function P (x), arrangedin ascending order. ThenX(i) is called the ith order statistic. The cumulative distributionfunction Fr(x) of X(r) is given byFr(x) = nXi=r ni !P i(x)(1� P (x))n�iLet fr denote the probability density function of X(r). Then the mean of X(r) is given by�r = Z +1�1 xfr(x)dx = n n� 1r � 1 !Z +1�1 xP r�1(x)(1� P (x))n�rdP (x)D.2 The Upper BoundSince the upper bound is approximated byT u = X(i;j)2�(k)�ijwe will derive the mean s(k) of the sum of the �rst k order statistics for a sample of P 2from the uniform distribution.Let p(x) be uniform in (0,1). Then �r reduces to�r = n n� 1r � 1 !Z 10 xr(1� x)n�rdx = rn + 1

180 APPENDIX D. BOUNDS FOR RANDOM PARALLEL SECTIONSLet s(k) denote the sum of the k largest order statistics. Since the mean distributes oversums, we haveE(s(k)) = nXr=n�k+1 �r= 1n+ 1 " nXr=1 r � n�kXr=1 r#= n(n+ 1) � (n� k)(n� k + 1)2(n + 1)Taking n = P 2 and k = 3P � 3, it followsE(T u) = P 2(P 2 + 1)� (P 2 � 3P + 3)(P 2 � 3P + 4)2(P 2 + 1)Since n(n+ 1) � (n� k)(n� k + 1)2(n + 1) = 2nk � k2 + k2(n + 1)for large n and k � n it holdslimn!1 2nk � k2 + k2(n + 1) = kit follows that for large P it holdsE(T u) = 3P � 3D.3 The Lower BoundSince the lower bound is given byT l = max24 maxj=1:::M PXi=1 �ij; maxi=1:::P MXj=1 �ij35we will derive the mean �n of the highest order statistic for a sample of 2P row andcolumn sums of uniformly distributed elements.While for general distributions, the moments of order statistics can not be character-ized by simple expressions, a general upper bound on the extremal is given by�n � � + n� 1p2n � 1 �where � and �2 are mean and variance, respectively. In the case of a symmetric distribu-tion (like for the normal distribution) this limit can be narrowed down to�n � � + pn2 �

D.3. THE LOWER BOUND 181While for small n this limit proves to be a relatively accurate predictor for �n, for normaldistributions, an approximation [60] which yields better results for larger n is given by�n = �+q2 log 0:4n �Since the mean and variance distribute over sums, for the sum of P uniformly distributedelements we have � = P=2 and �2 = P=12. Taking n = 2P , for not too small P it followsE(T l) � P2 + 0:4qP logPin which it is tacitly assumed that for larger P the row sums and column sums of � maybe considered independent and normally distributed.

182 APPENDIX D. BOUNDS FOR RANDOM PARALLEL SECTIONS

Appendix EPAMELA Run-time LibraryE.1 IntroductionThis appendix describes the main features of the Pamela run-time library that has beenused for the experiments described in this dissertation (Version 1.2). Although primarilyintended as the run-time system for the future Pamela compiler, the library comprisesa general-purpose, stand-alone performance simulation kernel. The library has been usedfor all the simulation experiments that are mentioned in this dissertation.The Pamela run-time library is the latest development in a series of discrete-eventsimulation kernels, aimed to provide a concurrent, general-purpose performance simulationinterface, based on the procedure-oriented (\P/V-style") paradigm [8]. The kernel isdirectly mapped onto light-weight threads, yet extending this concurrent layer with thenotion of virtual time. Partially inspired by the need for this temporal enhancement,typically not present in most thread, task, or class packages, the choice for yet anotherin-house development is further motivated by:� SimplicityPartially intended as an educational tool, the library should be extremely simpleto use. This rules out, e.g., C++ class libraries, which assume a working knowledgeof C++. Furthermore, the interface should provide only a small, orthogonal kernel,directly corresponding to the user's basic needs and understanding of the conceptof processes and semaphores. Featuring a straightforward C implementation, thePamela run-time library is instantly usable for any average user who is familiarwith basic concurrency.� PortabilityWhile many thread libraries are hardware-speci�c, the choice for a separate layerprovides the possibility to abstract from the actual platform, without signi�cantperformance loss. Mapped in terms of only a few macros, the Pamela run-timelibrary is easily ported to di�erent processors.� MaintenanceAn in-house development, the Pamela run-time library is well-documented whicheases maintenance and, especially, the development of functional enhancements.

184 APPENDIX E. PAMELA RUN-TIME LIBRARY� AccessibilityIntended to deliver public domain software, the Pamela project aims to minimizethe use of third-party software, which is either costly, non-portable, or does notdeliver su�cient functionality. Given the relatively small investment, the advantageof a proprietary kernel simply outweighs any alternative.The development path towards the Pamela run-time library has been marked by a num-ber of historic events. Although an o�cial implementation was never been released, theinitial concept of a \P/V"-style performance simulation interface on top of a light-weightprocess kernel has been introduced in [48]. The �rst version was released as part of the\CPE" performance modeling technique [132]. Subsequently, its successor, an optimizedversion called the \VOP library" [124], has been in use, up to the release of the Pamelarun-time library. Although the VOP library o�ers the functionality needed for basicperformance simulation, the implementation is not su�ciently engineered towards exten-sibility and portability over alternative light-weight processing packages. As the VOPlibrary is hard-coded in terms of Sun's LWP library, the need for versions on other typesof PCs and workstations, as well as the need for additional functionality, has inspiredthe development of its successor (the Pamela run-time library includes advanced fea-tures, not present in its predecessor, such as an interrupt mechanism to implement e.g.,timeouts). The Pamela library runs on SunOs 4.x [147], as well as on individual nodesunder the Amoeba operating system [16, 149]. Recently, a fully portable version has beenreleased (Version 1.3 [109]) which has been successfully installed on various 80x86-basedPCs (DOS/Linux) as well as HP workstations.In the following, we describe some of the main features of the library. An elaboratedescription including the more specialized functions (like the timeout mechanism) can befound in [52, 109].E.2 System ArchitectureThe library is de�ned in terms of the following two data types:� Process type pam_procWith each process entity, a lightweight thread of control is associated which executesa user function, passed at creation. Each process has a local time stamp which isused to store the (global) time, either at which it has been suspended (in the past)or at which it has been scheduled to resume (in the future). The time stamps areused to implement the discrete event simulation mechanism, discussed later on.� Semaphore type pam_semaWith each semaphore is associated a queue in which processes are stored whose exe-cution has to be suspended. Queued processes are ordered by increasing time stamp.Apart from storing processes, blocked on a user semaphore, the queue mechanismis also used to implement the event list (or ready list) which contains the runnableprocesses, scheduled to resume execution according to their time stamp.At any time, only one process can be running. Its time stamp value is interpreted as thecurrent time. All other processes are either runnable, i.e., scheduled for future execution

E.2. SYSTEM ARCHITECTURE 185at the time designated by their time stamp, of blocked, i.e., waiting on a semaphore untilanother process lifts this block by executing a pam_V() operation.The concurrent execution of Pamela threads revolves around a queue of runnableprocesses, implemented by a system semaphore, called pam_sched, i.e., the system sched-uler queue (or event list), allocated upon library initialization1. A reference diagramis depicted by Fig. E.1, showing the scheduler queue pam_sched, along with one usersemaphore queue s.
5 5 5 6 8

pam_sched

0 0 2 5

s
semaphore

t process

t timestamp

pam_delay(1)

pam_V(s)

pam_switch()

pam_P(s)

running:

Figure E.1: System OperationLike most thread libraries, Pamela threads are scheduled non-preemptively. Thus, ex-ecution of the current process continues until it voluntarily relinquishes control. Apartfrom process deletion, this can only occur when the following three library routines areinvoked (illustrated in the �gure):� pam_delay()The process stays runnable but is rescheduled (suspended) to be resumed after thedesignated interval.� pam_P()If the semaphore credit value is zero, the process becomes blocked in the semaphorequeue, only to be released through execution of a pam_V() call which reschedulesthe process as a runnable one with its time stamp made equal to the current time.� pam_switch()By this explicit request for a context switch, the running process is traded for arunnable process which has an equivalent time stamp.In all cases, the runnable process at the head of the pam_sched queue is selected to becomethe next running process, which (with exception of pam_switch()) results in an incrementof the global time.1The fact, that system scheduling is performed through a semaphore queue, symbolizes the contentionof (logical) Pamela threads for the single (physical) processing resource (i.e., the single CPU responsiblefor the interleaved execution of all thread programs).

186 APPENDIX E. PAMELA RUN-TIME LIBRARYE.3 Library FunctionsIn the following we brie
y list the most relevant library functions. For brevity, the in-terrupt and exception handling functions have been omitted. In all cases the header �lepam.h must be included.� Initializationvoid pam_init(char *name), the very �rst library function to be invoked, turnsthe caller into a Pamela thread, with user name name (see pam_name()). Thefunction initializes various internal data structures, amongst which the scheduler(semaphore) ready queue pam_sched. Upon invocation the following conditionshold:{ pam_time() = 0.0, i.e., zero global virtual time{ pam_level(0), i.e., library-level debugging o�{ pam_trap(NULL), i.e., default debugging on exceptionvoid pam_quit() unconditionally returns control to the shell.� Processespam_proc *pam_fork(char *name, void (*func)(), int args) creates a newthread in suspended state which is enqueued in the ready queue pam_sched foreventual execution. A thread handle is returned for reference purpose (alternatively,this handle may be obtained by calling pam_me()). The name argument speci�es auser-de�ned string which is intended for debugging purposes. func speci�es theaddress of the actual code which is to be executed. As no arguments are suppliedto this function, args speci�es a user-de�ned integer which is intended to provide avery basic way of parameter passing using the pam_args() facility (see elsewhere).During the execution of func(), invoked by p = pam_fork(name,func,args), thefollowing equalities hold:{ pam_me() = p{ pam_name(p) = name{ pam_args(p) = args{ pam_mode(p) = pam_schedvoid pam_kill(pam_proc *p) deletes the thread speci�ed by the handle p.void pam_exit() deletes the calling thread, i.e., pam_kill(pam_me()).int pam_switch() performs a context switch to another runnable thread which hasan equal time stamp. In case of multiple candidates with equal time, the one atthe head of pam_sched is chosen. Thus, pam_switch() operates in a round robinfashion. If no context switch could be performed, a 0 value if returned. In view ofthe non-preemptive scheduling discipline, in some situations, calls to pam_switch()are necessary in order to avoid starvation.

E.3. LIBRARY FUNCTIONS 187� Identi�cationpam_proc *pam_me() returns a handle to the calling thread similar to the one orig-inally returned by pam_fork().char *pam_name(pam_proc *p) returns a pointer to the user-de�ned name string,originally passed through pam_fork(). The string is used by the debugging monitorfor referencing purpose.int pam_args(pam_proc *p) returns a user-de�ned args string, originally passedthrough pam_fork(). The integer is not used by the library software and is intendedto provide a basic parameter passing scheme (as shown in the examples presentedearlier).pam_sema *pam_mode(pam_proc *p) returns the semaphore handle with respect towhich the thread p is queued. The handle can take the following values{ NULL, i.e., the thread is the caller, which is not blocked{ pam_sched, i.e., the thread is runnable and scheduled{ s, otherwise, when the thread is blocked on a user semaphore s.� Timingpam_proc *pam_delay(double delta) suspends the caller's execution for deltatime units. If other threads are scheduled at earlier times, the caller is enqueuedin pam_sched to be resumed at the designated time. Otherwise, the caller staysin control and system time is simply incremented by delta time units. A processhandle is passed on return. Possible values are{ pam_me(), if the delay was normally executed{ otherwise, if the thread was prematurely unblocked by a timeout interrupt (nullprocess). The return value refers to this handle.double pam_time() returns the system time.void pam_reset() resets the system time to zero. In iterative simulation runs thevalue of pam_time() may become very large. This may cause resolution problemsin which small increments (due to pam_delay()) are no longer properly accountedfor. By periodically resetting system time to zero, these problems can be avoided.� Semaphorespam_sema *pam_alloc(char *name, int cred) returns the handle of a newly cre-ated counting semaphore with a user-de�ned string name for debugging purposes.The semaphore is initialized to the value of cred (i.e., the number of initial pam_P()calls that will not block).void pam_free(pam_sema *s) deletes the semaphore speci�ed by handle s.pam_proc *pam_P(pam_sema *s) decrements semaphore s. If zero on invocation,the caller is suspended and put in the queue associated with the semaphore. Oncequeued, the thread can only be resumed as a result of a pam_V(s) call by anotherthread, which handle is returned by pam_P(). Possible return values are

188 APPENDIX E. PAMELA RUN-TIME LIBRARY{ pam_me(), i.e., the caller was not blocked{ otherwise, i.e., the handle of the process lifting the block, either by pam_V(),or through timeout interrupt (null process).void pam_V(pam_sema *s) increments semaphore s unless threads are queued fors, in which case one thread is dequeued and scheduled for future execution. Thedequeue selection is according to a FIFO discipline, where, in case of multiple can-didates with equal time, one is randomly chosen.int pam_T(pam_sema *s) returns the current credit of semaphore s. If smallerthan 0, the value indicates the number of blocked processes. The call can be usedto test if a subsequent pam_P() call would block.� DebuggingThe void pam_debug(char *prompt, int level) break point facility provides asimple and e�ective means of selectively tracing the execution of Pamela threads.By invoking a debugging monitor, all existing threads and semaphores can be tem-porarily examined before program execution is continued (for a full description,see the manual). When invoked, the monitor prompts for command input usingthe string speci�ed by prompt which typically comprises some tracing information.Whether the monitor is actually invoked depends on the value of level, which mustbe smaller than or equal to the system value set by the last pam_level() call. Iflevel is greater than this value, pam_debug() has no e�ect. This feature enablesapplications to be instrumented with many pam_debug() calls in a selective tracinghierarchy. The Pamela run-time library, itself, is instrumented with pam_debug()calls which o�ers tracing at library call entry level. Currently, the following levelsare implemented:0 no tracing (i.e., �rst level upwards, user-available)1 trace pam_fork(), pam_exit(), pam_kill(), pam_switch(),pam_quit()2 In addition to level 1, trace pam_delay(), pam_P(), pam_V(),pam_T(), pam_reset()3 In addition to level 2, trace pam_alloc(), pam_free()4 In addition to level 3, pam_post(), pam_cancel()5 In addition to level 4, trace internal context and queue operations(for maintenance only)void pam_level(int level) sets the system trace level to the value speci�ed bylevel.E.4 Programming ExampleTo give a quick impression of the ease of programming, we show a listing of a simple im-plementation of the MRM example, discussed throughout the dissertation (Example 3.4).Declarations have been omitted for brevity.

E.4. PROGRAMMING EXAMPLE 189void main()int p;pam_init("main");server = pam_alloc("server",1);barrier = pam_alloc("barrier",0);/* create clients ("par (p = 1, P)")*/for (p = 1; p <= P; p++)pam_fork("client",client,p);/* main blocks; clients unblock*/for (p = 0; p < P; p++)pam_P(barrier);/* clients finished; main unblocks*/printf("Cycle time %e\n",pam_time()/N);pam_quit();}void client(){ int i;/* cycle through network ("seq (i = 1, N)")*/for (i = 1; i <= N; i++) {/* compute locally ("delay(\tau_l)")*/pam_delay(exprnd(10.0));/* request service ("use(s,\tau_s)")*/pam_P(server);pam_delay(exprnd(1.0));pam_V(server);}pam_V(barrier);pam_exit();}

190 APPENDIX E. PAMELA RUN-TIME LIBRARYE.5 DebuggingThe Pamela run-time debugging monitor provides a basic mechanism to examine allexisting threads and semaphores, through an interactive command line interpreter. Themonitor is automatically invoked by the pam_debug() break point facility (see above). Atinvocation, the following prompt is generated<time> (<name>) <trace> >in which <time> is the current time, <name> is the name of the invoking thread (de�nedat creation), and <trace> is the trace message argument of the responsible pam_debug()call. For example, consider the following code, i.e.,main(){ int f();pam_init("main");s = pam_alloc("s",0);pam_fork("f",f,1);pam_delay(2.0);pam_debug("checkpoint 2",0);pam_V(s);...}f(){ pam_delay(1.0);pam_debug("checkpoint 1",0);pam_P(s);...}the following prompt is generated1.000000e+00 (f) checkpoint 1 >With the i command ("inspect") the current contents of all existing semaphores are listedin the following format, i.e.,<semaphore>: <process> (<time>) <process> (<time>)<semaphore>: <process> (<time>) <process> (<time>) ...where <semaphore> denotes its name, <process> and <time> denote process name, andtime stamp, respectively. In any case, the (scheduling) semaphore pam_sched is listed,which is created at initialization. If a semaphore queue is empty, the current semaphorecount value is listed according to

E.5. DEBUGGING 191Command Description Library functioni Inspect semaphore queues (explained above)c Continue program execution (explained above)l <level> set tracing Level pam_level(<level>)q Quit Pamela system pam_quit()d <itv> Delay current process pam_delay(<itv>)k <name list> Kill list of processes pam_kill(<proc>)f <name list> Fork another monitor pam_fork(<name>)s Switch context pam_switch()x eXit current process pam_exit()a <name> <crd> Allocate semaphore pam_alloc(<name>,<crd>)p <name> apply P operation pam_P(<sema>)v <name> apply V operation pam_V(<sema>)e <name list> frEe semaphores pam_free(<sema>)o <name> <itv> pOst interrupt pam_post(<proc>,<itv>)n caNcel interrupt pam_cancel(<proc>)Table E.1: Monitor command menu<semaphore>: <+<value>>In the above example, i would generatepam_sched: main (2.000000e+00)s: <+0>With the c command ("continue"), the monitor is left, after which program executioncontinues. In the above example, the second breakpoint would generate2.000000e+00 (main) checkpoint 2 >Now, i would generatepam_sched: <+0>s: f (1.000000e+00)corresponding to the fact that f() is blocked by pam_P(s).Apart from inspecting semaphores and continuing execution, the monitor o�ers com-mands to create and delete threads and semaphores, in order to experiment with thelibrary on a command line interpreter basis. Table E.1 lists the commands which aresupported in the current release. In the commands, a process or semaphore is referencedby the name, passed as argument to the creation command. Hence, <proc> and <sema>are the handles associated to the corresponding <name> arguments (in the n command,<proc> refers to the �rst association with the null process pam_null).Due to the complexity of a generic scheme to supply a user-de�ned function pointer,the fork command simply forks a thread which executes an internal dummy function,

192 APPENDIX E. PAMELA RUN-TIME LIBRARYwhich, in turn, calls pam_debug("monitor",0), invoking another monitor instantiation,running in an in�nite loop. Thus, multiple copies of the monitor may be active during thedebugging session, each instantiation identi�able by the process name argument, passedat the creation command. The following session illustrates the educational value of thedebugger. The program is given bymain(){ pam_init("main");pam_debug("monitor",0);pam_exit();}The following is a record of an interactive console session upon execution of the aboveprogram:0.000000e+00 (main) monitor > f p1 p20.000000e+00 (main) monitor > ipam_sched: p1 (0.000000e+00) p2 (0.000000e+00)0.000000e+00 (main) monitor > a s1 00.000000e+00 (main) monitor > ipam_sched: p1 (0.000000e+00) p2 (0.000000e+00)s1: <+0>0.000000e+00 (main) monitor > d 10.000000e+00 (p1) monitor > ipam_sched: p2 (0.000000e+00) main (1.000000e+00)s1: <+0>0.000000e+00 (p1) monitor > p s10.000000e+00 (p2) monitor > ipam_sched: main (1.000000e+00)s1: p1 (0.000000e+00)0.000000e+00 (p2) monitor > d 21.000000e+00 (main) monitor > ipam_sched: p2 (2.000000e+00)s1: p1 (0.000000e+00)1.000000e+00 (main) monitor > p s12.000000e+00 (p2) monitor > i

E.5. DEBUGGING 193pam_sched: <+0>s1: p1 (0.000000e+00) main (1.000000e+00)2.000000e+00 (p2) monitor > d 13.000000e+00 (p2) monitor > v s13.000000e+00 (p2) monitor > ipam_sched: p1 (3.000000e+00)s1: main (1.000000e+00)3.000000e+00 (p2) monitor > s3.000000e+00 (p1) monitor > v s13.000000e+00 (p1) monitor > ipam_sched: p2 (3.000000e+00) main (3.000000e+00)s1: <+0>3.000000e+00 (p1) monitor > k p23.000000e+00 (p1) monitor > ipam_sched: main (3.000000e+00)s1: <+0>3.000000e+00 (p1) monitor > c3.000000e+00 (main) monitor > ipam_sched: <+0>s1: <+0>3.000000e+00 (main) monitor > q

194 APPENDIX E. PAMELA RUN-TIME LIBRARY

Bibliography[1] V.S. Adve, Analyzing the Behavior and Performance of Parallel Programs. PhDthesis, University of Wisconsin, Madison, WI, Dec. 1993. Tech. Rep. #1201.[2] V.S. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-mer, J. Mellor-Crummey, S. Warren and C-W. Tseng, \Requirements for data-parallel programming environments," IEEE Parallel and Distributed Technology,July 1994, pp. 234{239.[3] V.S. Adve and M.K. Vernon, \The in
uence of random delays on parallel executiontimes," in Proc. 1993 ACM SIGMETRICS Conf. on Measurement and Modelling ofComputer Systems, May 1993, pp. 61{73.[4] M. Ajmone Marsan, G. Balbo and G. Conte, \A class of Generalized StochasticPetri Nets for the performance analysis of multiprocessor systems," ACM Tr. onComp. Syst., vol. 2, May 1984, pp. 93{122.[5] M. Ajmone Marsan, G. Balbo and G. Conte, Performance Models of MultiprocessorSystems. MIT Press, 1986.[6] M. Ajmone Marsan and G. Chiola, \On Petri nets with deterministic and exponen-tially distributed �ring times," Lecture Notes in Computer Science, vol. 266, no. 24,1987, pp. 132{145.[7] F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh and V. Sarkar, \A frameworkfor determining useful parallelism," in Proc. 1988 Int. Conf. Parallel Proc., IEEE,Aug. 1988, pp. 207{215.[8] G.R. Andrews and F.B. Schneider, \Concepts and notations for concurrent pro-gramming," Computing Surveys, vol. 266, no. 24, 1983, pp. 132{145.[9] M. Annaratone, C. Pommerell and R. R�uhl, \Interprocessor communication andperformance in distributed-memory parallel processors," in Proc. 16th Symp. onComp. Archit., ACM, May 1989, pp. 315{324.[10] D. Atapattu and D. Gannon, \Building analytical models into an interactive pre-diction tool," in Proc. Supercomputing '89, ACM, 1989, pp. 521{530.[11] J. Baeten and P. Weijland, Process Algebra. Cambridge Univ. Press, 1990.

196 BIBLIOGRAPHY[12] D.H. Bailey, \Vector computer memory bank contention," IEEE Transactions onComputers, vol. C-36, Mar. 1987, pp. 293{298.[13] V. Balasundaram, G. Fox, K. Kennedy and U. Kremer, \A static performance esti-mator to guide data partioning decisions," in Proc. 3rd ACM SIGPLAN Symposiumon PPoPP, Apr. 1991.[14] Y. Bard, \Some extensions to multiclass queueing network analysis," in Performanceof Computer Systems (M. Arato, A. Butrimenko and E. Gelenbe, eds.), North-Holland, 1979.[15] F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, \Open, closed, and mixednetworks of queues with di�erent classes of customers," Journal of the ACM, vol. 22,Apr. 1975, pp. 248{260.[16] R. Bhoedjang and T. Ruhl, \Pamela-Amoeba macro package." Personal Commu-nication.[17] L.N. Bhuyan, Q. Yang and D.P. Agrawal, \Performance of multiprocessor intercon-nection networks," Computer, Feb. 1989, pp. 25{37.[18] L. Bomans and D. Roose, \Benchmarking the iPSC/2 hypercube multiprocessor,"Concurrency{Practice and Experience, vol. 1, Sept. 1989, pp. 3{18.[19] M. Bontekoe, \Generalizing interconnection network models," Tech. Rep. 1-68340-28(1994)26, Delft University of Technology, Delft, The Netherlands, Sept. 1994.[20] I.Y. Bucher and D.A. Calahan, \Access con
icts in multiprocessor memories queue-ing models and simulation studies," in Proc. 4th ACM Int. Conf. on Supercomputing,1990, pp. 428{438.[21] I.Y. Bucher and M.L. Simmons, \A close look at vector performance of register-to-register vector computers and a new model," Performance Evaluation Review,vol. 15, no. 1, 1987, pp. 39{45.[22] P. Buchholz, \Hierarchical Markovian models: Symmetries and reduction," in Proc.6th Int. Conf. Modelling Techniques and Tools for Comp. Perf. Eval., Edinburgh,Sept. 1992.[23] D.A. Calahan, \An analysis of vector startup access delays," IEEE Transactions onComputers, vol. 37, Sept. 1988, pp. 1134{1137.[24] D.A. Calahan, \Characterization of memory con
ict loading on the CRAY-2," inProc. 1988 Int. Conf. Parallel Proc., IEEE, Aug. 1988, pp. 299{302.[25] D. Callahan, K.D. Cooper, R.T. Hood, K. Kennedy and L. Torczon, \ParaScope:A parallel programming environment," Int. Journ. of Supercomp. Applic., vol. 4,no. 2, 1988, pp. 84{99.

BIBLIOGRAPHY 197[26] D. Callahan and K. Kennedy, \Compiling programs for distributed-memory multi-processors," The Journal of Supercomputing, no. 2, 1988, pp. 151{169.[27] R. Candlin and J. Phillips, \A statistical study of factors that a�ect the performanceof a class of parallel programs on a MIMD computer," in Proc. Int'l. Conf. onDecentralized and Distributed Systems (IFIP Transactions A-39), Palma, 1993.[28] T. Cheung and J.E. Smith, \A simulation study of the CRAY X-MP memory sys-tem," IEEE Transactions on Computers, vol. C-35, July 1986, pp. 631{622.[29] M.J. Clement and M.J. Quinn, \Multivariate statistical techniques for parallel per-formance prediction," in Proc. 28th Hawaii Int. Conf. on System Sciences, Vol. II,IEEE, Jan. 1995, pp. 446{455.[30] M.E. Crovella and T.J. Leblanc, \The search for lost cycles: A new approach toparallel program performance evaluation," in Proc. Supercomputing '94, ACM, 1994,pp. 600{609.[31] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-nian and T. von Eicken, \LogP: Towards a realistic model of parallel computation,"in Proc. 4th ACM SIGPLAN Symposium on PPoPP, May 1993, pp. 1{12.[32] R. Cytron, \Doacross: Beyond vectorization for multiprocessors," in Proc. 1986 Int.Conf. Parallel Proc., IEEE, Aug. 1986, pp. 836{844.[33] O.J. Dahl and K. Nygaard, \Simula - an ALGOL-based simulation language," Com-munications of the ACM, vol. 9, no. 9, 1966, pp. 671{678.[34] F. Darema, D.A. George, V.A. Norton and G.F. P�ster, \A single-program-multiple-data computation model for Epex/Fortran," Parallel Computing, vol. 7, 1988,pp. 11{24.[35] S. Dasgupta, \A hierarchical taxonomic system for computer architectures," Com-puter, Mar. 1990, pp. 64{74.[36] H.A. David, Order Statistics. John Wiley & Sons, 1970.[37] E.W. Dijkstra, \Cooperating sequential processes," in Programming Languages(F. Geunys, ed.), Academic Press, 1968, pp. 43{112.[38] A.N. Dunlop, A.J.G. Hey, D.A. Nicole and D.J. Pritchard, \Performance estimatingfor parallel performance optimisation," Supercomputer, vol. 66, 1995.[39] D.L. Eager, J. Zahorjan and E.D. Lazowska, \Speedup versus e�ciency in parallelsystems," IEEE Transactions on Computers, vol. 38, Mar. 1989, pp. 408{423.[40] W. Ewinger, O. Haan, E. Haupenthal and C. Siemers, \Modelling and measurementof memory access in SIEMENS VP supercomputers," Parallel Computing, vol. 11,1989, pp. 361{365.

198 BIBLIOGRAPHY[41] T. Fahringer and H.P. Zima, \A static parameter-based performance prediction toolfor parallel programs," in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo, July1993, pp. 207{219.[42] T. Feng, \A survey of interconnection networks," Computer, Dec. 1981, pp. 12{27.[43] A. Ferscha and A.D. Maloney, \Performance-oriented development of irregular, un-structured and unbalanced parallel applications in the N-MAP environment," inComputer Performance Evaluation: Modelling Techniques and Tools (LNCS 977)(H. Beilner and F. Bause, eds.), Berlin, Springer-Verlag, Sept. 1995, pp. 340{356.[44] P. Flajolet and J-M. Steyart, \A compexity calculus for recursive tree algorithms,"Math. Systems Theory, vol. 19, 1987, pp. 301{331.[45] S. Fortune and J. Wyllie, \Parallelism in random access machines," in Proc. 10thAnnual Symp. on Theory of Comput., 1978, pp. 114{118.[46] K. Gallivan, W. Jalby, A. Malony and H. Wijsho�, \Performance prediction of loopconstructs on multiprocessor hierarchical-memory systems," in Proc. 3rd ACM Int.Conf. on Supercomputing, 1989, pp. 433{442.[47] E. Gelenbe, E. Montagne, R. Suros and C.M. Woodside, \Performance of block-structured parallel programs," in Parallel Algorithms and Architectures (M. Cosnardet al., eds.), North-Holland, 1986, pp. 127{138.[48] A.J.C. van Gemund, \Research notes on processor modeling," Tech. Rep.90 ITI 2031, TNO Institute of Applied Computer Science, Delft, The Netherlands,Dec. 1990.[49] A.J.C. van Gemund, \Performance prediction of parallel processing systems: ThePamela methodology," in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo,July 1993, pp. 318{327.[50] A.J.C. van Gemund, \Compile-time performance prediction with Pamela," in Proc.4th Int. Workshop on Compilers for Parallel Computers, Delft, The Netherlands,Dec. 1993, pp. 428{435.[51] A.J.C. van Gemund, \Compiling performance models from parallel programs," inProc. 8th ACM Int. Conf. on Supercomputing, Manchester, July 1994, pp. 303{312.[52] A.J.C. van Gemund, \The Pamela run-time library version 1.0," Tech. Rep. 1-68340-44(1994)03, Delft University of Technology, Delft, The Netherlands, Apr.1994.[53] A.J.C. van Gemund, \Predicting contention in distributed-memory machines," inProc. Second Workshop on Automatic Data Layout and Performance Prediction(tech. rep. CRPC-TR95548), Rice University, Houston, Apr. 1995.

BIBLIOGRAPHY 199[54] A.J.C. van Gemund, \On the accuracy of compile-time performance prediction,"in Proc. Fifth Workshop on Compilers for Parallel Computers, Malaga, June 1995,pp. 157{166.[55] A.J.C. van Gemund, \Compile-time performance prediction of parallel systems," inComputer Performance Evaluation: Modelling Techniques and Tools (LNCS 977)(H. Beilner and F. Bause, eds.), Berlin, Springer-Verlag, Sept. 1995, pp. 299{313.[56] A. Gibbons, Algorithmic Graph Theory. Cambridge University Press, 1988.[57] N. G�otz, U. Herzog and M. Rettelbach, \Multiprocessor and distributed systemdesign: The integration of functional speci�cation and performance analysis usingstochastic process algebras," in Performance Evaluation of Computer and Commu-nication Systems (Combined Tutorial Proceedings SIGMETRICS'93 and PERFOR-MANCE'93, LNCS 729) (L. Donatiello and R. Nelson, eds.), Springer, 1993.[58] R.L. Graham, \Bounds on multiprocessing timing anomalies," SIAM J. Appl. Math.,vol. 17, no. 2, 1969, pp. 416{429.[59] V.A. Guarna, D. Gannon, D. Jablonowski, A.D. Maloney and Y. Gaur, \Faust: Anintegrated environment for parallel programming," Software, July 1989, pp. 20{27.[60] E.J. Gumbel, \Statistical theory of extreme values (main results)," in Contributionsto Order Statistics (A.E. Sarhan and B.G. Greenberg, eds.), John Wiley & Sons,1962, pp. 56{93.[61] M. Gupta and P. Banerjee, \Compile-time estimation of communication costs ofprograms," in Proc. Second Workshop on Automatic Data Layout and PerformancePrediction (tech. rep. CRPC-TR95548), Rice University, Houston, Apr. 1995.[62] B. van Halderen, \A tool for application performance prediction," Master's thesis,University of Amsterdam, Amsterdam, Sept. 1995.[63] F. Hartleb and V. Mertsiotakis, \Bounds for the mean runtime of parallel pro-grams," in Proc. 6th Int. Conf. Modelling Techniques and Tools for Comp. Perf.Eval., Edinburgh, Sept. 1992, pp. 197{210.[64] K. Harzallah and K.M. Sevcik, \Predicting application behavior in large-scaleshared-memory multiprocessors," in Proc. Supercomputing '95, ACM, 1995.[65] P. Heidelberger and K.S. Trivedi, \Analytic queueing models for programs withinternal concurrency," IEEE Transactions on Computers, vol. 32, Jan. 1983, pp. 73{82.[66] T. Hickey and J. Cohen, \Automating program analysis," Journal of the ACM,vol. 35, Jan. 1988, pp. 185{219.[67] J. Hillston, A Compositional Approach to Performance Modelling. PhD thesis, Uni-versity of Edinburgh, 1994.

200 BIBLIOGRAPHY[68] S. Hiranandani, K. Kennedy and C-W. Tseng, \Compiling FORTRAN-D for MIMDdistributed-memory machines," Communications of the ACM, vol. 35, Aug. 1992,pp. 66{80.[69] C.A.R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.[70] R.W. Hockney, \Performance parameters and benchmarking of supercomputers,"Parallel Computing, vol. 17, 1991, pp. 1111{1130.[71] R.W. Hockney and I.J. Curington, \(f1=2): A parameter to characterize memoryand communication bottlenecks," Parallel Computing, vol. 10, 1989, pp. 277{286.[72] R.W. Hockney and C.R. Jesshope, Parallel Computers 2 - Architecture, Program-ming and Algorithms. Adam Hilger, 1981.[73] J. Hollingsworth and B.P. Miller, \Parallel program performance metrics: A com-parison and validation," in Proc. Supercomputing '92, ACM, 1992.[74] INMOS Limited, The Transputer Databook, 1989. Doc. No. 72 TRN 203 01.[75] K.E. Iverson, A Programming Language. Wiley, 1962.[76] K.K. Jain and V. Rajaraman, \Lower and upper bounds on time for multiprocessoroptimal schedules," IEEE Transactions on Parallel and Distributed Systems, vol. 5,Aug. 1994, pp. 879{886.[77] K. Jensen, \Coloured Petri nets: A high level language for system design and analy-sis," in High-level Petri Nets: Theory and Application (K. Jensen and G. Rozenberg,eds.), Springer-Verlag, 1991, pp. 44{122.[78] H. Jonkers, Performance Analysis of Parallel Systems: A Hybrid Approach. PhDthesis, Delft University of Technology, The Netherlands, Oct. 1995.[79] H. Jonkers, A.J.C. van Gemund and G.L. Reijns, \E�cient performance evaluationof parallel systems," inMassively Parallel Processing Applications and Development(L. Dekker et al., eds.), Delft, North-Holland, 1994, pp. 389{396.[80] H.F. Jordan, \The Force," in The Characteristics of Parallel Algorithms (L.H.Jamieson, D. Gannon and R.J. Douglas, eds.), MIT Press, 1987, pp. 395{436.[81] A. Kapelnikov, R.R. Muntz and M.D. Ercegovac, \A modeling methodology forthe analysis of concurrent systems and computations," Journal of Parallel and Dis-tributed Computing, vol. 6, 1989, pp. 568{597.[82] A.H. Karp, \Programming for parallelism," Computer, May 1987, pp. 43{57.[83] A.H. Karp and R.G. Babb, \A comparison of 12 parallel Fortran dialects," Soft-ware, Sept. 1988, pp. 52{67.[84] C.W. Kessler, Automatische Parallelisierung numerischer Programme durch Mus-tererkennung. PhD thesis, Universit�at Saarbr�ucken, Germany, 1994.

BIBLIOGRAPHY 201[85] L. Kleinrock, Queueing Systems: Vol. 2, Computer Applications. Wiley, 1976.[86] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr. and M. Zosel, The High-Performance Fortran Handbook. MIT Press, 1994.[87] C. Koelbel and P. Mehrotra, \Compiling global name-space parallel loops for dis-tributed execution," IEEE Transactions on Parallel and Distributed Systems, vol. 2,Oct. 1991, pp. 440{451.[88] Ulrich Kremer, \NP-completeness of dynamic remapping," in Proc. 4th Int. Work-shop on Compilers for Parallel Computers, Delft, The Netherlands, Dec. 1993,pp. 135{141.[89] W. Kreutzer, System simulation, programming styles and languages. Addison-Wesley, 1986.[90] C.P. Kruskal and A. Weiss, \Allocating independent subtasks on parallel proces-sors," IEEE Transactions on Software Engineering, vol. 11, Oct. 1985, pp. 1001{1016.[91] S.S. Lavenberg, Computer Performance Modeling Handbook. Academic Press, 1983.ISBN 0-12-438720-9.[92] D.H. Lawrie, \Access and alignment of data in an array processor," IEEE Transac-tions on Computers, vol. 24, Dec. 1975, pp. 1145{1155.[93] E.D. Lazowska et al., Quantitative System Performance: Computer System AnalysisUsing Queueing Network Models. Prentice-Hall, 1984.[94] K.Y. Lee, W. Abu-Sufah and D.J. Kuck, \On modeling performance degradationdue to data movement in vector machines," in Proc. 1984 Int. Conf. Parallel Proc.,IEEE, Aug. 1984, pp. 269{277.[95] B.P. Lester, \A system for computing the speedup of parallel programs," in Proc.1986 Int. Conf. Parallel Proc., IEEE, Aug. 1986, pp. 145{152.[96] H.X. Lin and H.J. Sips, \Parallel direct solution of large sparse systems in �niteelement computations," in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo,July 1993, pp. 261{270.[97] M. Maekawa, A.E. Oldehoeft and R.R. Oldehoeft, Operating Systems, AdvancedConcepts. Benjamin/Cummings, Ca., 1987.[98] V.W. Mak and S.F. Lundstrom, \Predicting performance of parallel computations,"IEEE Transactions on Parallel and Distributed Systems, vol. 1, July 1990, pp. 257{270.[99] A.D. Maloney, V. Mertsiotakis and A. Quick, \Automatic scalability analysis ofparallel programs based on modeling techniques," in Computer Performance Evalu-ation: Modelling Techniques and Tools (LNCS 794) (G. Haring and G. Kotsis, eds.),Berlin, Springer-Verlag, May 1994, pp. 139{158.

202 BIBLIOGRAPHY[100] O.A. McBryan, \An overview of message-passing environments," Parallel Comput-ing, vol. 20, 1994, pp. 417{444.[101] P. Mehra, C.H. Schulbach and J.C. Yan, \A comparison of two model-basedperformance-prediction techniques for message-passing parallel programs," in Proc.ACM SIGMETRICS Conf. on Measurement and Modelling of Computer Systems,Nashville, May 1994, pp. 181{189.[102] C.L. Mendes, J-C. Wang and D.A. Reed, \Automatic performance prediction andscalability analysis for data parallel programs," in Proc. Second Workshop on Auto-matic Data Layout and Performance Prediction (tech. rep. CRPC-TR95548), RiceUniversity, Houston, Apr. 1995.[103] J.F. Meyer, A. Movaghar and W.H. Sanders, \Stochastic activity networks: Struc-ture, behavior, and application," in Proc. of the Int. Conf. on Timed Petri nets,Torino, July 1985, pp. 106{115.[104] M.K.Molloy, \Performance analysis using stochastic Petri nets," IEEE Transactionson Computers, vol. C-31, Sept. 1982, pp. 913{917.[105] H.L. Muller, Simulating Computer Architectures. PhD thesis, Department of Com-puter Systems, University of Amsterdam, Amsterdam, The Netherlands, 1993.[106] D. M�uller-Wichards, \Performance estimates for applications: An algebraic frame-work," Parallel Computing, vol. 9, Dec. 1988, pp. 77{106.[107] T. Murata, \Petri nets: Properties, analysis and applications," Proceedings of theIEEE, vol. 77, Apr. 1989, pp. 541{580.[108] K.M. Nichols and J.T. Edmark, \Modeling multicomputer systems with PARET,"Computer, May 1988, pp. 39{48.[109] M. Nijweide, \The Pamela run-time library version 1.3: Extensions and applica-tions," Tech. Rep. 1-68340-27(1995)06, Delft University of Technology, Delft, TheNetherlands, June 1995.[110] A. Norton and G.F. P�ster, \A methodology for predicting multiprocessor perfor-mance," in Proc. 1985 Int. Conf. Parallel Proc., IEEE, Aug. 1985, pp. 772{781.[111] S.F. Nugent, \The iPSC/2 direct-connect technology," in Proc. 3rd Hypercube Con-ference, ACM, 1988.[112] W. Oed and O. Lange, \Modelling, measurement and simulation of memory inter-ference in the CRAY X-MP," Parallel Computing, vol. 3, 1986, pp. 343{358.[113] E.M.R.M. Paalvast, Programming for Parallelism and Compiling for E�ciency.PhD thesis, Delft University of Technology, Delft, The Netherlands, 1992.[114] K. Padmanabhan, \Cube structures for multiprocessors," Communications of theACM, vol. 33, Jan. 1990, pp. 43{52.

BIBLIOGRAPHY 203[115] Parsytec Computer GmbH, Parix release 1.2 software documentation, Mar. 1993.[116] S. Patil, \Limitations and capabilities of Dijkstra's semaphore primitives for coor-dination among processes," tech. rep., MIT, Feb. 1971.[117] J.L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.[118] C.A. Petri, Kommunikation mit Automaten. PhD thesis, Institut f�ur InstrumentelleMathematik, Bonn, Germany, 1962.[119] C.A. Petri, \Communication with automata," Tech. Rep. RADC-TR-68-305, Gri�ssAir Force Base, New York, 1966. (Translation of [118]).[120] A. Pimentel, J. van Brummen, T. Papathanassianis, P.M.A. Sloot and L.O.Hertzberger, \Mermaid: Modelling and evaluation research in Mimd ArchItectureDesign," in Proc. HPCN Conf. (LNCS), Springer, 1995, pp. 335{340.[121] B. Plateau, J.M. Fourneau and K.H. Lee, \PEPS: A package for solving complexMarkov models of parallel systems," in Proc. 4th Int. Conf. on Modelling Tech-niques and Tools for Computer Performance Evaluation, Palma, Mallorca, Sept.1988, pp. 341{360.[122] C.D. Polychronopoulos and U. Banerjee, \Speedup bounds and processor allocationfor parallel programs on multiprocessors," in Proc. 1986 Int. Conf. Parallel Proc.,IEEE, Aug. 1986, pp. 961{968.[123] C.D. Polychronopoulos, M. Girkar, M.R. Haghighat, C.L. Lee, B. Leung andD. Schouten, \Parafrase-2: An environment for parallelizing, partitioning, synchro-nizing, and scheduling programs on multiprocessors," in Proc. 1989 Int. Conf. Par-allel Proc., IEEE, Aug. 1989, pp. II:39{48.[124] R. Pulleman, \Simulation of VOP models," Tech. Rep. 92 TPD-ZP 938, TNO In-stitute for Applied Physics, Delft, The Netherlands, Sept. 1992.[125] B. Qin, H.A. Sholl and R.A. Ammar, \Micro time cost analysis of parallel compu-tations," IEEE Transactions on Computers, vol. 40, May 1991, pp. 613{628.[126] C.V. Ramamoorthy, \Discrete Markov analysis of computer programs," in 20thACM National Conference, Cleveland, ACM, 1965, pp. 386{391.[127] C.V. Ramamoorthy and G.S. Ho, \Performance evaluation of asynchronous concur-rent systems using Petri nets," IEEE Transactions on Software Engineering, vol. 6,Sept. 1980, pp. 440{449.[128] S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis and D.A. Wood,\The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers," in Proc.1993 ACM SIGMETRICS Conf. on Measurement and Modelling of Computer Sys-tems, May 1993, pp. 48{60.

204 BIBLIOGRAPHY[129] M. Reiser and S.S. Lavenberg, \Mean value analysis of closed multichain queueingnetworks," Journal of the ACM, vol. 27, Apr. 1980, pp. 313{322.[130] W. Reisig, Petri Nets. Springer Verlag, 1985.[131] J.T. Robinson, \Some analysis techniques for asynchronous multiprocessor algo-rithms," IEEE Transactions on Software Engineering, vol. 5, Jan. 1979, pp. 24{31.[132] M.R.T. Roest, \The CPE modelling technique," Tech. Rep. 91 ITI 1675, TNOInstitute of Applied Computer Science, Delft, The Netherlands, Nov. 1991.[133] J.F. de Ronde, A.W. van Halderen, A. de Mes, M. Beemster and P.M.A. Sloot,\Automatic performance estimation of SPMD programs on MPP," in MassivelyParallel Processing Applications and Development (L. Dekker et al., eds.), Delft,North-Holland, 1994, pp. 381{388.[134] R.A. Sahner and K.S. Trivedi, \SPADE: A tool for performance and reliability evalu-ation," in Modelling Techniques and Tools for Performance Analysis '85 (N. Abu ElAta, ed.), Elsevier Science Publishers, 1986, pp. 147{163.[135] W.H. Sanders, W.D. Obal, M.A. Qureshi and F.K.Widjanarko, \The UltraSanmod-eling environment," Performance Evaluation Journal, special issue on PerformanceModeling Tools, 1995.[136] V. Sarkar, \Determining average program execution times and their variance," inProc. 1989 ACM SIGPLAN Conf. on Prog. Lang. Des. and Impl., 1989, pp. 298{312.[137] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Pit-man, 1989.[138] P. Schweitzer, \Approximate analysis of multiclass closed networks of queues," inProc. of International Conf. on Control and Optimization, Amsterdam, 1979.[139] H. Schwetman, \Object-oriented simulation modeling with C++/CSIM17," in Proc.1995 Winter Simulation Conference, 1995.[140] A.C. Shaw, \Deterministic timing schema for parallel programs," in Proc. 5th Int.Parallel Processing Symposium, IEEE, 1991, pp. 56{63.[141] M. Siegle, \Using structured modelling for e�cient performance prediction of paral-lel systems," in Parallel Computing: Trends and Applications (G.R. Joubert et al.,eds.), North-Holland, 1994, pp. 453{460.[142] A. Sivasubramaniam, A. Singla, U. Ramachandran and H. Venkateswaran, \Anapproach to scalability of shared memory parallel systems," in Proc. ACM SIG-METRICS Conf. on Measurement and Modelling of Computer Systems, Nashville,May 1994, pp. 171{180.[143] K. So, A.S. Bolmarcich, F. Darema and V.A. Norton, \A speedup analyzer for par-allel programs," in Proc. 1987 Int. Conf. Parallel Proc., IEEE, Aug. 1987, pp. 653{661.

BIBLIOGRAPHY 205[144] F. S�otz, \A method for performance prediction of parallel programs," in Proc. CON-PAR 90-VAPP IV (LNCS 457) (H. Burkhart, ed.), Springer-Verlag, 1990, pp. 98{107.[145] P. Stenstr�om, \Reducing contention in shared-memory multiprocessors," Computer,Nov. 1988, pp. 26{37.[146] B. Stramm and F. Berman, \Predicting the performance of large programs on scal-able multicomputers," in Scalable HPC Conference, Apr. 1992, pp. 22{29.[147] Sun Microsystems, SunOS 4.1.3 Programming Utilities and Libraries, Mar. 1990.Part Number 800-3847-10.[148] V. Sundaram, \PVM: A framework for parallel distributed computing,"Concurrency{Practice and Experience, vol. 2, Dec. 1990, pp. 315{339.[149] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J.Jansen and G. van Rossum, \Experiences with the Amoeba distributed operatingsystem," Communications ACM, vol. 33, Dec. 1990, pp. 46{63.[150] A. Thomasian and P.F. Bay, \Analytic queueing network models for parallel process-ing task systems," IEEE Transactions on Computers, vol. 35, Dec. 1986, pp. 1045{1054.[151] L. Valiant, \A bridging model for parallel computation," Communications of theACM, vol. 33, Aug. 1990, pp. 103{111.[152] H. Wabnig and G. Haring, \PAPS - the parallel program performance predictiontoolset," in Computer Performance Evaluation: Modelling Techniques and Tools(LNCS 794) (G. Haring and G. Kotsis, eds.), Berlin, Springer-Verlag, May 1994.[153] T.A. Wagner, V. Maverick, S.L. Graham and M.A. Harrison, \Accurate static esti-mators for program optimization," SIGPLAN Notices, June 1994, pp. 85{96.[154] D. Walker, \The design of a standard message passing interface for distributedmemory concurrent computers," Parallel Computing, vol. 20, 1994.[155] K-Y. Wang, \Intelligent program optimization and parallelization for parallel com-puters," Tech. Rep. CSD-TR 91-030, Purdue University Apr. 1991.[156] K-Y. Wang, \Precise compile-time performance prediction for superscalar-basedcomputers," in Proc. ACM SIGPLAN PLDI'94, Orlando, June 1994, pp. 73{84.[157] B. Wegbreit, \Mechanical program analysis," Communications of the ACM, vol. 18,Sept. 1975, pp. 528{539.[158] P. Woodbury, A. Wilson, B. Shein, I. Gertner, P.Y. Chen, J. Barttlet and Z. Aral,\Shared memory multiprocessors: The right approach to parallel processing," inProc. COMPCON Spring '89, IEEE, 1989, pp. 72{80.

206 BIBLIOGRAPHY[159] N. Yazici-Pekergin and J-M. Vincent, \Stochastic bounds on execution times ofparallel programs," IEEE Transactions on Software Engineering, vol. 17, Oct. 1991,pp. 1005{1012.[160] J. Zahorjan et al., \Balanced job bound analysis of queueing networks," Communi-cations of the ACM, vol. 25, Feb. 1982, pp. 134{141.[161] H. Zima, P. Brezany, B. Chapman, P. Mehrotra and A. Schwald, \Vienna Fortran -a language speci�cation, version 1.1," Tech. Rep. Interim Report 21, ICASE, NASALangley Research Center, Mar. 1992.

SamenvattingPrestatiemodellering speelt een fundamentele rol in het ontwerp van zowel applicaties alscomputers. Dit geldt met name voor parallelle systemen waar de prestatie een primairerol speelt. Waar de prestatiemodellering van sequenti�ele computers reeds aanzienlijke pro-blemen oproept, zijn de problemen bij parallelle systemen zo mogelijk nog fundamenteler.Dit is in essentie het gevolg van de grote rol die processynchronisatie speelt in parallelleverwerking. Naast de inherente overhead ten gevolge van het parallelliseren, zijn het,met name voor slecht ontworpen systemen, de synchronisatietijden die tot een enormeprestatieverlies kunnen leiden.In parallelle systemen kan men zowel een statische vorm als een dynamische vorm vanprocessynchronisatie onderscheiden. De statische vorm, genaamd conditie-synchronisatie,heeft betrekking op precedentierelaties tussen taken die op grond van de parallellisatievooraf zijn bepaald. De andere vorm, genaamd wederzijdse uitsluiting, betreft de dy-namische toewijzing van procesvolgorde als gevolg van de beperkte beschikbaarheid vansoftware of hardware middelen. Hoewel de aanwezigheid van conditiesynchronisatie reedsaanzienlijke prestatieanalysekosten met zich mee brengen kunnen de kosten gemoeid metde analyse van wederzijdse uitsluiting nog veel hoger liggen vanwege het inherente non-determinisme van deze synchronisatievorm.Er bestaat een grote verscheidenheid aan methoden voor de prestatiemodellering vanparallelle systemen, waarbij elke methode een speci�eke afweging vertegenwoordigt tussende nauwkeurigheid van de prestatieanalyse en de rekenkosten die hiermee gemoeid zijn.Enerzijds bestaan er technieken, gebaseerd op representatievormen zoals Petri-netwerken,die een dermate hoge modelleerkracht bieden dat elke vorm van synchronisatie nauwkeurigkan worden uitgedrukt, maar waarvan de prijs een exponenti�ele rekencomplexiteit in deprobleemgrootte is. Anderszijds bestaan er goedkopere technieken, zoals die gebaseerdop simpele taakgraaf representaties, die alleen conditiesynchronisaties verdisconteren.Hoewel de analyse complexiteit slechts lineair is leidt de verwaarlozing van de verliezenten gevolge van wederzijdse uitsluiting tot een zeer beperkte nauwkeurigheid.Dit proefschrift beschrijft een nieuwe aanpak voor de prestatiemodellering van pa-rallelle systemen. Vergelijkbaar met sommige bestaande aanpakken richt de methodezich met name op de beginfase van het ontwerpproces van parallelle systemen waar denadruk meer ligt op minimale analysekosten dan op een hoge nauwkeurigheid. In afwij-king van vergelijkbare goedkope methoden is de nauwkeurigheid echter sterk verbeterddoor naast de analyse van conditiesynchronisatie een benadering van de vertragingstijdenals gevolg van wederzijdse uitsluiting te introduceren zonder de gunstige rekencomplexi-teit op te o�eren. Tevens levert de analysetechniek expliciete analytische modellen opzodat programma- en machineparameters in symbolische vorm behouden blijven in het

208 SAMENVATTINGmodel. Behalve de lage evaluatiekosten wordt op deze manier bereikt dat parameter-studies of mogelijk geautomatiseerde parameteroptimalisaties kunnen worden uitgevoerdzonder dat opnieuw dient te worden gemodelleerd. Naast de lage rekenkosten is ook diteen belangrijke voorwaarde voor een optimale ontwerp doelmatigheid.De aanpak is gebaseerd op het gebruik van een nieuw simulatieformalisme, genaamdPamela (PerformAnce ModEling LAnguage). Hoewel de taal synchronisatieconstructiesbevat teneinde a priori geen onnodige benaderingen te introduceren, bevat Pamela ookgestructureerde operatoren, met name voor de beschrijving van wederzijdse uitsluiting.In combinatie met het gebruik van een materiaal-geori�enteerd modelleerparadigma kanzodoende belangrijke informatie met betrekking tot de aanwezige synchronisatiepatronenworden behouden. Als gevolg hiervan kan Pamela, naast simulatie, worden gebruikt alseen brontaal ten behoeve van een automatische vertaaltechniek die een expliciet, ana-lytisch prestatiemodel oplevert. Het model benadert de prestatieverliezen ten gevolge vanwederzijdse uitsluiting in de vorm van een ondergrens aan de executietijd. Het nieuwevan de aanpak is de integratie van een taal, een materiaal-geori�enteerde paradigma, eneen vertaaltechniek binnen �e�en modelleermethodiek.Terwijl hoofstuk 1 ingaat op de probleemanalyse en de doelstellingen van het onder-zoek, geeft hoofdstuk 2 een overzicht van het vele werk dat reeds is verricht op het gebiedvan de prestatiemodellering van parallelle systemen, teneinde de aanpak in een juist kaderte plaatsen. Het werk dat aan de orde komt beslaat methodieken gebaseerd op repre-sentatievormen zoals taakgrafen, wachtrijnetwerken, Petri-netwerken, simulatietalen enprocesalgebra. In het overzicht wordt een eigen categorisatietechniek gehanteerd teneindede grote vari�eteit binnen �e�en raamwerk te kunnen plaatsen.Hoofdstuk 3 presenteert Pamela, bestaande uit de modelleertaal en de bijbehorendeanalysetechniek. Er wordt aangetoond dat de expliciete en gestructureerde wijze waaropde materiaal-geori�enteerde modelleermethode beide synchronisatievormen tot uitdrukkingbrengt grote voordelen biedt met betrekking tot de analyseerbaarheid van het model.Naast een beschrijving van de analysetechniek worden een aantal kenmerkende voor-beelden behandeld.Hoofdstuk 4 beschrijft de principes hoe parallelle computersystemen kunnen wor-den gemodelleerd met behulp van Pamela. De methodiek die gehanteerd wordt bijde modellering van zowel gemeenschappelijk- als gedistribueerd-geheugensystemen wordtbeschreven aan de hand van vele voorbeelden. Er wordt aangetoond dat, ondanks derestricties in het modelleren van synchronisaties, de beschrijving van de essenti�ele pres-tatieaspecten voldoende is, gegeven de benaderende analysetechniek.Hoodstuk 5 presenteert een aantal gevallen waarin diverse kanten van de Pamelamethodiek worden belicht. De onderwerpen die aan bod komen zijn onder meer voor-beelden hoe parallelle applicatiemodellen worden vertaald naar analytische modellen,de modellering van een data
ow applicatie op een gedistribueerd-geheugensysteem in-clusief een vergelijking van de modelresultaten met praktijkmetingen, een beschouwingvan de relatie tussen de analytische techniek en simulatietechnieken, en voorbeelden hoede Pamelamethodiek wordt gebruikt ten behoeve van programma-optimalisatie, een vande uiteindelijke doelstellingen van de methodiek.Hoofdstuk 6 staat opnieuw stil bij de benaderende analysetechniek en gaat in op denauwkeurigheid van de analytische techniek vergeleken met simulatie. Aan de hand van

SAMENVATTING 209een uitgebreide studie wordt aangetoond dat de ondergrensbenadering een goede schattingoplevert. Tevens wordt aangetoond dat voor systemen met willekeurige volgordepatronenvan wederzijdse uitsluiting de gemiddelde relatieve afwijking als gevolg hiervan in hetergste geval nog binnen 50 % ligt, onafhankelijk van de grootte van de systeemparameters.Gezien de hoge mate van parametrisering van de modellen vormt deze robuustheid deuiteindelijke rechtvaardiging van de nieuwe aanpak.Tot slot biedt hoofdstuk 7 een terugblik op het onderzoek en geeft een aantal aan-bevelingen voor toekomstige verbeteringen.

210 SAMENVATTING

Curriculum VitaeArjan J.C. van Gemund was born in Eindhoven, the Netherlands on September 4, 1955.He received a BSc degree in Physics in 1981, and an MSc degree in Computer Science in1989 from Delft University of Technology.In 1981 he joined the R & D organization of a Dutch multinational company as anElectrical Engineer and Systems Programmer. Between 1989 and 1992 he joined theDutch TNO research organization as a Research Scientist where he was actively involvedin various international projects, mostly in the �eld of high-performance computing.Currently, he is with the Department of Electrical Engineering of Delft University ofTechnology as an Assistant Professor. His research interests are in the area of performancemodeling of parallel systems as well as in the area of parallel programming languages andcompilation techniques.

