Performance Modeling
of Parallel Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof.ir. K.F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,
door het College van Dekanen aangewezen,

op dinsdag 23 april 1996 te 16.00 uur

door

Arie Jan Cornelis VAN GEMUND

informatica ingenieur
geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotor:

Prof.ir. G.L. Reijns

Samenstelling promotiecommissie:

Rector Magnificus (voorzitter)
Prof.ir. G.L. Reijns (promotor)
Prof.dr. G. Haring

Prof.dr.ir. L. Dekker
Prof.dr.ir. J. van Katwijk
Prof.dr.ir. H.J. Sips

Prof.dr. S. Vassiliadis

Dr. E.M.R.M. Paalvast

Published and distributed by:

Delft University Press
Stevinweg 1

2628 CN Delft

The Netherlands

Technische Universiteit Delft
Technische Universiteit Delft
Universitat Wien, Qostenrijk
Technische Universiteit Delft
Technische Universiteit Delft
Universiteit van Amsterdam
Technische Universiteit Delft
Bakkenist Management Consultants B.V., Diemen

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Gemund, Arie Jan Cornelis van

Performance modeling of parallel systems /
Arie Jan Cornelis van Gemund. - [S.1. : s.n.]. - I11.
Proefschrift Technische Universiteit Delft. -
Met lit. opg. - Met samenvatting in het Nederlands.

ISBN 90-407-1326-X

Trefw.: prestatie-analyse / computersystemen /

computernetwerken.

Copyright (©) 1996 by A.J.C. van Gemund

All rights reserved. No part of the material protected by this copyright notice may be

reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without the

prior permission of the author.

Printed in The Netherlands

To Karen

Contents

Acknowledgments

Summary

1 Introduction

1.1 The Challenge
1.2 Parallel Computing
1.3 Approach
1.4 Outline. o
2 Performance Modeling
2.1 Introduction L
2.2 Queuing Networkso
2.3 Petri Nets . . . o oo o o
2.4 Languageso Lo e e e
2.5 Stochastic Graphs o
2.6 Deterministic Graphs L
2.7 Summary ... L o e e
3 PAMELA

3.1 Introduction
3.2 Language

3.2.1 Control Flow

3.2.2 Condition Synchronization,

3.2.3 Mutual Exclusion o oo
3.3 Paradigm oL
3.4 Analysis

3.4.1 Introductiono

3.4.2 Critical Path Analysis

3.4.3 Lower Bound Analysis
3.5 Examples
3.6 Extensions L

3.6.1 Skewing Effect o

3.6.2 Simultaneous Resource Possession
3.7 Summary ... L e

13
13
17
19
20
21
23
26

i CONTENTS

4 Modeling Technique 65
4.1 Introduction 65
4.2 Machine Modeling Lo 69

4.2.1 Principles o 69
4.2.2 Processor Modeling Lo oo 71
4.3 Shared-Memory Systemso Lo 72
4.3.1 Introduction 72
4.3.2 Cache e 74
4.3.3 Switch 74
4.3.4 Networks e 77
4.3.5 Examples 79
4.4 Distributed-Memory Systems oo Lo 85
4.4.1 Introduction 85
4.4.2 Basic Communication 87
4.4.3 Non-blocking Communication 89
444 Examples 90
4.5 Summary ... e e e 96

5 Case Studies 99
5.1 Introduction 99
5.2 Performance Compilationo 99

5.2.1 Introduction 99
5.2.2 Preliminaries 100
5.2.3 Matrix Factorization L 101
5.2.4 Matrix Multiplication o000 105
5.3 Macro Data Flow Computation 110
5.3.1 Introduction 110
5.3.2 Computation Model oo 112
5.3.3 Communication Model 115
534 Results. 116
5.4 Simulation Revisited 118
5.4.1 Introduction 118
5.4.2 Alternative Techniques 121
5.4.3 Virtual Barrier 124
5.5 System Optimization 126
5.5.1 Introduction 126
5.5.2 Optimization Calculus 128
5.5.3 Line Relaxation, 131
5.6 Summary e 135

6 Accuracy 137
6.1 Introduction e 137
6.2 Absolute Accuracy 138

6.2.1 Introduction 138
6.2.2 General Bound o 141

6.2.3 Adding Knowledge oo 143

CONTENTS iii
6.2.4 General Conjectureo 146

6.2.5 Applicationso 149

6.3 Average Accuracy oo e e e 151
6.3.1 Introduction 151

6.3.2 Experimentso 152

6.3.3 Applicationso 155

6.4 Summary e 158

7 Conclusion 163
7.1 Contributions e 163
7.2 Improvements Lo L 166

A PAMELA Language Semantics 169
Al Introduction 169
A2 Time e e e e 170
A3 Control Flow e 170
A.4 Condition Synchronization o 171
A5 Mutual Exclusion L 171

B Partitioning Index Spaces 173
B.1 Introduction 173
B.2 Block Partitioningo oo 173
B.3 Cyclic Partitioning L 174
B.4 General Results 175

C Reduction of Summation Terms 177
D Bounds for Random Parallel Sections 179
D.1 Introduction 179
D.2 The Upper Bound 179
D.3 The Lower Bound 180

E PAMELA Run-time Library 183
E.1 Introduction 183
E.2 System Architecture oo 184
E.3 Library Functions 186
E.4 Programming Example o oo 188
E.5 Debugging L 190
Bibliography 194
Samenvatting 207
Curriculum Vitae 211

v

CONTENTS

Acknowledgments

Perhaps even more than parallel computing itself, performance modeling of parallel com-
puter systems is a relatively new and challenging field. This thesis is an account of my
research in this area in which I have had the great pleasure to study existing work, develop
an alternative modeling technique, and, last but not least, study its adequacy.

First of all, I am deeply grateful to my advisor Professor Gerard L. Reijns for giving
me the opportunity to do this research while joining up with his group as an assistant
professor in 1992. The four years that I worked with him have been a most enjoyable
start of my academic career.

Although PAMELA came to birth after I was given the above opportunity, many of the
foundations were laid earlier during my involvement in the ParTool project, a nationally
funded parallel processing research project, initiated by Henk Sips, Edwin Paalvast, and
Maarten van Steen. Thanks are due to Henk Sips, who got me involved in parallel
computing in the first place, Maarten van Steen, with whom I have had many stimulating
discussions on concurrency (and planning), and, last but not least, Edwin Paalvast, my
first comrade-in-research, later on head of our research group, who has always supported
me during my research. It pleases me that the four of us are still in touch.

I consider it a privilege to have a graduation committee, apart from Gerard Reijns
and the Rector Magnificus consisting of the distinguished members Len Dekker, Gunter
Haring, Jan van Katwijk, Edwin Paalvast, Henk Sips, and Stamatis Vassiliadis. I grate-
fully acknowledge their efforts.

It is a pleasure to express my gratitude to former graduate student and room mate
Henk Jonkers, with whom I had many stimulating discussions on the subject of parallel
systems performance modeling, both at Delft University as well as during our enjoyable
conference trips to Grenoble and Maui. Thanks are also due to former under-graduate
students Solechoel Arifin, Azzedine Benchellal, Marcel Bontekoe, M’hammed Farahi,
Januar Himantono, Alexander van Lomwel, and Arun Persad for providing valuable feed-
back on the application of the modeling methodology. In particular, credit goes to Marc
Nijweide, Ronald Pulleman, and Mark Roest who have actively contributed in the tool
development. Also the pleasant association with my (former) colleagues André Bos, Hai-
Xiang Lin, Teus Vogel, and Pieter van der Wolf is gratefully acknowledged.

The number of people from whom I learned so much through the years, is simply too
large to permit a listing. Many of them are mentioned in the bibliography. Without their
knowledge 1 would not have come this far.

This especially applies to my dear wife Karen. Of all the valuable things [have learned,
she has definitively taught me most.

Arjan van Gemund

vi

ACKNOWLEDGEMENTS

Summary

Performance modeling plays a fundamental role in the design of computer systems. This
applies especially to parallel systems where high performance is of key interest. While per-
formance modeling of sequential computer systems already poses a number of important
problems, the problem involved with performance modeling of parallel systems is even
more fundamental. This is essentially due to the prominent role synchronization plays in
parallel computing. Apart from the inevitable overhead introduced by parallelization, es-
pecially for badly designed systems the additional synchronization delays can easily cause
a tremendous loss of performance.

In parallel systems synchronization can be distinguished into a static and a dynamic
form. The static form, called condition synchronization, corresponds to precedence rela-
tions between tasks that are predetermined as a result of the parallelization. The alter-
native form, called mutual exclusion, applies to the dynamic resolvement of precedence
order during contention for a limited number of software or hardware resources. While
the performance analysis of condition synchronization entails quite some computational
costs, an accurate analysis of mutual exclusion can be extremely computation-intensive
due to the inherent non-determinism involved.

There exists a wide variety of approaches to the performance modeling of parallel
systems, each representing a different trade-off between the accuracy of the analysis and
the computational cost involved. On the one hand, there exist performance modeling
approaches based on representation formalisms such as (stochastic) Petri nets that aim
for high modeling power such that every synchronization structure can be described with
a high level of accuracy. The computational cost of the associated state space analysis,
however, is exponential in the problem size. On the other hand, there are performance
modeling approaches, based on simple task graph representations, that only account for
condition synchronization. In turn, they entail only a linear analysis complexity. However,
as the performance loss due to mutual exclusion is ignored the accuracy of such methods
is inherently limited.

In this dissertation a new approach to the performance modeling of parallel systems
is described. Similar to some of the existing techniques, the approach is primarily aimed
to support the initial phases in the design of parallel systems where the emphasis is on
extremely low solution cost, rather than on high accuracy. Unlike current low-cost ap-
proaches, however, a minimum degree of accuracy is sustained by introducing an approx-
imate analysis of mutual exclusion, next to condition synchronization, without sacrificing
the low solution cost. Furthermore, the analysis technique yields explicit, analytic per-
formance models, such that program and machine parameters are symbolically retained
in the resulting performance model. Apart from providing low solution cost, in this way,

viii SUMMARY

parameter studies or possibly automated parameter optimization procedures can be con-
ducted without remodeling effort. Next to the low solution cost, this feature is essential
to an optimal design efficiency.

The approach is based on the use of a new simulation formalism, called PAMELA (Per-
formAnce ModEling LAnguage). Although the language features synchronization con-
structs necessary to avoid a priorilimitations with regard to modeling accuracy, PAMELA
also features structured operators, especially for the description of mutual exclusion. Used
within a material-oriented modeling paradigm important information concerning the syn-
chronization patterns involved can be retained in the model. As a consequence, apart
from simulation, PAMELA can be used as a source language for an automatic, compile-
time analysis technique that yields an explicit, analytic performance model. The model
approximately accounts for the performance loss due to mutual exclusion in terms of a
lower bound on the execution time. The novelty of the approach is that it integrates a
language approach, a material-oriented modeling paradigm, and the compile-time analysis
method within one methodology.

While Chapter 1 presents a problem analysis and formulates the goals of the research,
Chapter 2 presents a survey of related work on performance modeling of parallel systems
in order to put the approach into perspective. The work discussed includes approaches
based on representation formalisms such as task graphs, queuing networks, Petri nets,
simulation languages, and process algebras.

Chapter 3 presents PAMELA, essentially comprising the concurrent modeling language
and the underlying analysis technique. It is shown that the explicit, and highly structured
way in which the material-oriented modeling method describes condition synchronization
and mutual exclusion, offers great advantages with respect to model analyzability. The
analysis technique is described as well as a number of typical examples.

Chapter 4 describes the principles underlying the application of PAMELA to parallel
computer systems modeling. The methodology towards modeling shared-memory and
distributed-memory programs and machines are presented through a large variety of ex-
amples. It is shown that the restricted modeling formalism allows to capture the dominant
performance aspects that are relevant in the context of the approximate analysis.

Chapter 5 presents various applications of the PAMELA methodology. The case studies
address performance compilation, showing how PAMELA models are compiled into ana-
lytic models, synthetic applications on a distributed-memory system, demonstrating the
accuracy of the modeling approach compared to actual measurements, a comparison be-
tween the analytic technique and simulation, and, a case study showing how PAMELA is
applied to program optimization.

Chapter 6 investigates the accuracy of the analysis method. By studying the relation
between the analytic estimate and the simulation result it is shown that the approximation
based on a lower bound provides a good estimator. In addition it is shown that for any
system in which resource usage is random, the average estimation error due to contention
effects is limited to 50 % worst case regardless of the system parameters involved. In view
of the highly parameterized, low-cost models that are compiled, this prediction robustness
forms an essential justification of the approach.

Finally, Chapter 7 recapitulates the work, and presents a number of recommendations
for future improvements.

Chapter 1

Introduction

This dissertation presents a methodology to predict the performance of parallel computer
systems. In this definition, a parallel computer system constitutes an imperative parallel
program (application) and the parallel von Neumann machine on which it is executed.
With respect to parallel programs we restrict ourselves to explicit parallel programs that
are native to the machine. Thus we avoid the problem of dealing with the semantical gap
between implicitly parallel, possibly declarative, problem descriptions and their explicitly
parallel, imperative implementations, as well as the complex optimization properties of
compilers in general. With respect to parallel machines we consider any computer sys-
tem that involves some form of concurrency. As such, the methodology also applies to
sequential computers, that, while providing a sequential programming model, exhibit par-
allelism at the hardware level. The focus of this work, however, are shared-memory and
distributed-memory (vector) computers that provide explicit concurrency at the program-
ming level. Although we will discuss performance modeling in the context of parallel (and
distributed!') computer systems its scope is much wider. In fact, any concurrent system
like traffic systems, production plants, or office environments are essentially a collection
of concurrent (man or machine-executed) processes, jointly involved in synchronization
either due to work partitioning or due to the use of common resources. In this respect, a
(parallel) computer is just another (data) processing system.

In the design of concurrent systems, performance engineering is often conducted as an
afterthought. Often systems (prototypes) are already built and functionally tested before
their performance is evaluated, in many cases with disappointing results. This especially
applies to parallel computing where the performance awareness of program (and, to a less
extent machine) designers is minimal, whereas the performance implications of coding
decisions can be profound. As a result of this, there is a growing interest in performance
prediction techniques that provide the programmer some feedback in the design (or selec-
tion) process as illustrated by Fig. 1.1. Given a computational problem, the application
design process starts with some initial choice (in the figure denoted “synthesis”) of a pro-
gram (algorithm) and machine (architecture), partially characterized by various program
and machine parameters (denoted m; and p;, respectively). A program parameter might
be the problem size or the way in which the problem is mapped onto logical processors.

Tn this dissertation a distributed computer system is treated as a parallel system, the distinction
being a matter of architecture.

2 CHAPTER 1. INTRODUCTION

problem —— — program + machine
(M3.75,,...) (TP

Figure 1.1: Application design loop

An obvious machine parameter is the number of physical processors. In order to derive
optimum performance (typically, minimum execution time), the design is analyzed (in
the figure denoted “analysis”) in order to obtain performance feedback on the parameter
choices (in the figure denoted T, the estimated execution time of the application).

As in any feedback system, the ultimate design result is determined by the prediction
accuracy of the analysis. In contrast to sequential systems, performance prediction of
parallel systems is far from trivial given the large amount of academic work spent in
this area. In particular, there exists a large trade-off between solution cost and solution
accuracy, as can be seen from the large variety of approaches that have been undertaken.
Typically, performance feedback is organized in terms of a prediction hierarchy, providing
different types of performance feedback, each with a different quality and cost. At the
low end detailed techniques such as simulation are used that provide realistic predictions,
yet at high computational cost. At the high end, crude techniques such as compile-time
prediction provide much faster performance feedback, however, at the inherent expense
of prediction accuracy. Despite this accuracy sacrifice, this alternative is quite attractive
during the initial phase where the design space is still large.

As shown in the above figure, performance modeling aims to map a (parallel) program
in conjunction with a (parallel) machine onto some computable model, ranging from a
simple expression to some complex algorithm, either which can be evaluated numerically.
For instance, consider the sequential computation of the 3rd-order polynomial

y = ao + arx + azr’ + aza’ (1.1)

For the purpose of the example we will assume a traditional computer architecture ca-
pable of executing floating point multiply and add operations that take 7, time, and 7,
time, respectively (neglecting other instructions). Then the performance model of the
polynomial computation is given by the simple algebraic expression?

T =57, + 37, (1.2)

2For the purpose of the example this analysis is based on a naive algorithm comprising a sequence of
5 multiplications and 3 addition operations. Thus, Horner’s scheme is not applied, the reason being that
a parallelization of the naive algorithm will be considered later on.

1.1. THE CHALLENGE 3

As this model is analytic, subsequent analysis immediately reveals the (linear) dependency
of the above design’s performance on the parameters of the floating point unit. Of course,
deriving a performance model of a complicated parallel computation is by far less trivial.

1.1 The Challenge

As in any area there exist numerous approaches, yielding performance models that are
specific, either for the program, or machine, or both. In the worst case, all system param-
eters are (numerically) hard-wired into the model. Clearly, an ideal performance modeling
technique would map a program and machine combination into a symbolic performance
model where all the system parameters of interest are still retained, rather than being
numerically instantiated prior to the modeling effort. Figure 1.2 shows the performance

f(N1)
T

? -~ T=f(NP) N,

Figure 1.2: Performance modeling process

modeling process involving (only) two parallel application parameters, i.e., the program
parameter N (e.g., problem size) and the machine parameter P (number of processors).
The performance modeling process (in the figure denoted “?”) yields an estimate of the
execution time 7' that is a function f of both parameters (of course, f will also reflect
the other properties of the program and machine). Once the symbolic model is derived,
various parameter studies may be conducted (without remodeling effort) in order to ana-
lyze the application’s performance characteristics, possibly using standard mathematical
tools. The parameter study is illustrated in the figure by the graph in which the speedup®
is plotted as a function of P for two values of V.

Of course, in terms of our definition mentioned earlier, a symbolic performance model
is any formal description that computes a number (7). Consequently, a fully parameter-
ized simulation model would also qualify as a symbolic performance model. However, the
ideal performance model has the lowest solution complexity possible without loss of pre-
diction accuracy. Although a simulation model may be accurate, its solution (i.e., mean

3The speedup is the relative gain in execution speed when more processors are added. Usually,
speedup is defined as the ratio between uniprocessor execution time (7" = f(N,1) in the figure) and
parallel execution time (T' = f(N, P)). Ideally, the speedup is linear in P. In practice, however, speedup
1s much lower. Adding too many processors eventually results in slow down, as illustrated by the plot.

4 CHAPTER 1. INTRODUCTION

value) requires many simulation runs because of the model’s inherent non-determinism.
Preferably, the model should be analytic (computes a deterministic time domain result)
and should have the form of an explicit equation (such as Eq. (1.2)). Apart from its low
solution cost, standard calculus can be used that provides a well-established framework
for the use of symbolic techniques rather than just numeric evaluation. Examples are the
use of model reduction (thus decreasing evaluation complexity) and/or gradient analysis
(cf. Eq. (1.2)). An interesting possibility offered by symbolic models is the application
of optimization techniques such as linear programming (provided the model, or target
function, is linear). In terms of Fig. 1.1, the analysis is strongly coupled with the synthe-
sis (parameter optimization) component. In fact, this approach exemplifies the ultimate
purpose of performance modeling, namely, to transform the design problem in the parallel
computation domain into a “regular” optimization problem in the mathematical domain.
(This problem reformulation in terms of applied mathematics is essentially what makes
computer science to become a mature exact science such as physics.) Within our sym-
bolic approach towards performance modeling, the actual challenge lies in developing a
technique that strikes an optimal balance between modeling accuracy and solution cost.
Before we develop our approach in more detail, we first analyze the performance aspects
involved with parallel computing.

1.2 Parallel Computing

In order to describe the specific aspects of parallel systems performance we discuss a simple
example in which we consider a parallelization of the 3rd-order polynomial computation,
presented earlier. The example is also used to introduce some basic terminology that is
used throughout the dissertation.

Recall the 3rd-order polynomial, given by Eq. (1.1). In order to assess the opportunities
for parallelism, we consider the (directed, acyclic) task graph representation of Eq. (1.1),
shown in Fig. 1.3. Like in the analysis of the sequential case, only 5 multiplication
tasks (?1,t2,t3,t4,16) and 3 addition tasks (¢s,%r,ts) are distinguished. The execution
model of the task graph is based on full task concurrency only restricted by condition
synchronization [8], as designated by the precedence arcs. The condition upon each task
fires is that all predecessor tasks must have finished (i.e., all data dependencies must have
been obeyed). Let each (multiply and add) task take 1 unit time. If an unbounded
number of processors were available the execution time would be T' = 4 as can be seen
from the execution trace shown in Fig 1.4. In this case, execution time is only limited by
the inherent problem characteristics and is determined by the ecritical path in the graph.
In practice, however, the potential parallelism in the problem can not always be realized
due to an unsufficient number of processing resources. For instance, let P = 2. One of the
optimal schedules is shown in Fig. 1.5. Due to the limited number of resources, the actual
parallelism is reduced, resulting in 7" = 5. Note that the limited number of resources
induces additional condition synchronizations on the task graph, forcing tasks, originally
concurrent, to be serialized.

Thus far, in the analysis of the computation’s properties we only considered the floating
point operations, which implies an abstract parallel machine architecture simply compris-
ing a collection of P (floating point) processors. As a first-order approximation, restricting

1.2. PARALLEL COMPUTING 3

8 ?
y
Figure 1.3: Task graph representation of Eq. (1.1)

t [

e []

ts []
ta []
ts]
te
tz
tg

1l
|

Figure 1.4: Inherent parallelism of Fig. 1.3

the analysis to the algorithm’s most dominant operation is quite common as illustrated
by the large body of work in PRAM-based [45] complexity analysis. In a more detailed
performance analysis, however, the fact that the necessary data transfers may also take
considerable time, must be accounted for. At this point, we assume the existence of P
processors that are capable of moving data as well as executing floating point operations
on that data. For the purpose of this example, we just consider a simple shared-memory
architecture, comprising P = 2 processors, connected to a shared memory through some
idealized interconnection network. Throughout the example we will assume the schedule
as given in Fig. 1.5. Apart from executing multiply and add instructions, each processor
can load from shared memory and store to shared-memory. We also assume the presence
of local registers that have a much lower access time than the global shared memory. We
will explicitly account for this memory hierarchy, by neglecting local data moves and only
accounting for the global loads and stores. Consequently, we introduce two extra task
types, i.e., a load task and a store task. For instance, the intermediate result of task ¢ is

6 CHAPTER 1. INTRODUCTION

[7 |

1 | 3 | 5
P, [2] 4] 6 | [8]

T=5

Figure 1.5: Performance loss for P = 2

directly available for task ts, since t3 is mapped onto the same processor. However, with
regard to t4, the intermediate result must first be stored by p; to shared memory, and
loaded by py, before t, may commence. The introduction of the load and store tasks is
represented by the task graph given in Fig. 1.6 where the mapping of each load and store
task directly follows from the original mapping of the floating point operations (Fig 1.5).
For ease of interpretation, each task is annotated by brackets delimiting the (processing)
resource it is mapped onto. Let both a load and store task represent a work load of half
4. The corresponding schedule is given in Fig. 1.7, that shows the dramatic
impact of data transfer overhead on performance (T = 9.5 compared to 7' = 5 in Fig. 1.5).
For P =1 we would have T'= 11 (5 loads, 8 flops, and 1 store). Thus, even for a modest
value of P hardly any speedup is obtained, a result that is typical for many practical
situations.

a unit time

Thus far, compared to the potential task graph performance, we have encountered two
sources of performance loss, i.e., the introduction of additional condition synchronization
as a result of the static schedule (insufficient number of processors), and the introduction
of additional (data transfer) work load as a result of the underlying machine. Apart
from performance loss due to condition synchronization, we will now introduce a second
form of synchronization loss, that results from mutual exclusion [8]. Again, consider the
polynomial example. We will now account for the fact that, in reality, a shared memory
location can not be accessed simultaneously by more than one processor. Let us assume,
that the shared memory system, in fact, comprises only one physical memory module
with one access port. Then all memory locations used to load and store (intermediate)
results can only be accessed sequentially. Thus, the shared memory is to be regarded as
one memory resource, providing exclusive service to each processor. Unlike the case of
the (limited) processing resources, we can not resolve the problem by a static schedule as
the necessary condition synchronizations would typically involve shared memory as well.
Instead, a typical implementation of the shared-memory is by dynamically scheduling
contending load and store requests at run-time by hardware. If the memory resource is
occupied, all other requesting processors face a memory conflict and are blocked for the
duration of the current memory access (hence, the performance loss). Due to the dynamic
contention model, this phenomenon is usually referred to as resource contention.

As memory contention is handled at run-time, the static schedule of Fig. 1.7 still ap-
plies. However, the actual execution trace (or dynamic schedule) will now correspond
to Fig. 1.8, in which each load and store task are serialized according to how the con-
tention is resolved (i.e., the particular conflict arbitration). Due to the additional mutual
exclusion the execution time has increased even further to T' = 11.5. Like condition

*Thus, global memory latency is assumed to be quite considerable compared to floating point opera-
tions. This is not unrealistic for many parallel systems.

1.2. PARALLEL COMPUTING 7

1,2, 3,4, 6: mult

5,7, 8: add

9, 10, 11, 13, 14, 16, 17, 18, 20, 22, 24: load
12, 15, 19, 21, 23, 25: store

Figure 1.6: Annotated task graph including load/store tasks

synchronization, mutual exclusion (“contention”) can easily dominate performance loss.
For instance, consider a parallel computation in which a large number of processors are
involved, all addressing a single memory resource. Due to the request serialization instead
of parallelization, the performance result may be quite dramatic as is shown later on.

In general, the problems involved in performance analysis are related to four aspects,

e Condition synchronization

This form of synchronization is induced either by data dependencies within parallel
computations or by resource limitations, either at program level or machine level.
In contrast to mutual exclusion, the precedence relation enforced by condition syn-
chronization is static. Consequently, the analysis of the associated delays can be
performed simply by determining the longest path in the task graph which, for de-
terministic task times, has polynomial solution complexity. Note that, although
the task precedence relation is static, the actual tasks to which the synchroniza-
tion applies may not be determined until run-time. Nevertheless, the same analysis
technique can be used.

8 CHAPTER 1. INTRODUCTION

P, [9] 1 [12] 3 J1617] 5 [19[22] 7 [23]
P, [10[11] 2 [15[13][14] 4 [21][18[20] 6 | [24] 8 [25]

T=95

Figure 1.7: Performance loss due to memory work load

P, [9] 1 [12] 3 [16] [17] 5 [19] [22] 7 [23]

P, [14] 4 [21] [18[20] [6 [24] 8 [25]

T=115

Figure 1.8: Performance loss due to memory contention (P = 2)

o Mutual exclusion

As shown in the example, mutual exclusion is often associated with contention
for resources, either at machine level (e.g., CPU, memory) or program level (e.g.,
critical sections). Mutual exclusion can be regarded as a dynamic form of condition
synchronization in which the actual precedence relation is not determined until run-
time. Due to the fact that conflict resolution is typically approached as being non-
deterministic® the analysis essentially involves considering all the execution traces
possible which potentially implies exponential solution complexity. Because of this,
the analysis of mutual exclusion poses a far greater challenge than the analysis of
condition synchronization.

e Conditional control flow

While conditional control flow is typically associated with program-level branching,
machine-level examples include caching and communication routing. As exemplified
by the Halting Problem, the undecidability that arises with conditional control flow
is already a fundamental problem in sequential programs. There has been a long-
standing interest in performance modeling of programs in which branches that are
not compile-time deducible are modeled in terms of branching probabilities, typi-
cally based on auxiliary profile information on some representative data set (e.g.,
see [126, 136, 153]). Unlike both synchronization factors, the problems posed by
conditional control flow are not fundamentally different for parallel systems, nor are
the solutions (e.g., see [13, 41, 133]).

e Basic calibration
Essential for any performance model is the work load calibration of its basic model
components (e.g., the basic instruction timings in the previous example). Although
at the basic component level the work loads may be largely deterministic (e.g.,
fixed number of clock cycles), for models in which the basic components are defined
at a higher (aggregate) level, the work loads are often expressed using stochastic

SEither by definition or as a result of modeling abstraction. For instance, an arbitration that is
essentially deterministic (e.g., round robin) at clock cycle level, is often modeled as non-deterministic at
higher abstraction level.

1.3. APPROACH 9

variables to account for the non-determinism at lower level induced by conditional
control flow and/or both forms of synchronization. Similar to mutual exclusion,
the introduction of non-determinism in combination with condition synchronization
introduces a potentially exponential analysis complexity. An equally important issue
related to aggregate components is the determination of the parameters themselves
(e.g., mean and variance). Because of the problems just mentioned the parameters
are typically measured, rather than computed in terms of their constituent parts.

While the latter two performance aspects apply to both sequential and parallel systems,
the specific challenge associated with performance modeling of parallel systems is the
analysis of both forms of synchronization delays.

1.3 Approach

As stated earlier, our major aim is to develop a methodology to derive performance
models with a high level of parametrization. As also mentioned, however, there are
various representation formalisms in terms of which the model can be described, such
as a simulation model or a low-cost explicit analytical model. Consequently, a central
theme in the development of a methodology is an investigation of the trade-off between
analysis accuracy and cost. Although the accuracy needed will depend on the application
context, especially in the case of a parametric model, its accuracy must be sustained across
the entire parameter space as the design process may involve many (possibly erratic)
parameter settings.

As discussed in the previous section, the challenge that is specific to performance mod-
eling of parallel systems is the analysis of synchronization. The other two factors are not
specific to parallel systems, neither do they present fundamentally different complications
compared to the sequential domain (although they pose a formidable challenge in their
own right). Hence, in our performance modeling approach we focus on the analysis of
synchronization delays in terms of the accuracy/cost trade-off mentioned earlier. With
respect to their performance impact, condition synchronization and mutual exclusion are
equally important. Which one actually dominates performance depends on the particular
system. Although in the polynomial example demonstrates the impact of condition syn-
chronization (critical path, the sequential task schedule per processor), mutual exclusion
can be just as damaging. This applies especially to simple analytic techniques that are
based on a simple critical path analysis only. For example, consider a parallelization of
the following algorithm

Vie{l,...,N}:y = f(;)

in which some computation f is applied to each of the N vector elements z;, the result
being stored in y;. Again, we assume an abstract, P processor shared-memory machine
architecture similar to the one discussed earlier. For each element this implies executing
a shared-memory load (z;, taking 7,,, units time), executing f (taking 7 units time), and
executing a shared-memory store (y;, taking 7, units time). Figure 1.9 shows the speedup
S for a simple data parallel scheme based on a regular block decomposition where each
processor is responsible for processing at most [N/P] elements (N = 100, 75 = 107,,).

10 CHAPTER 1. INTRODUCTION

20
S 18t
16

14 - CSonly yan /

12 T~ /

10 t P

12345678 91011121314151617181920

o N A O
T T

— = P

Figure 1.9: The impact of mutual exclusion (ME) on performance

The figure shows two plots (obtained through simulation). The upper plot (“CS only”).
denotes the speedup based on ignoring the effect of memory contention and accounting for
condition synchronization (CS) only (the discontinuities are caused by the load imbalance
in cases when P does not divide N). The lower plot (“CS + ME”) shows the “actual”
speedup where the effect of mutual exclusion (ME) is included. For large P memory
contention delay (queuing) dominates performance. Thus, any prediction technique that
ignores the effects of mutual exclusion (such as conventional critical path techniques) may
seriously under-estimate the execution time by orders of magnitude.

As mentioned earlier, mutual exclusion introduces a major analysis complication com-
pared to condition synchronization as a result of the inherent non-determinism involved.
Therefore, an investigation of the trade-off between analysis accuracy and analysis cost
specifically applies to the analysis of mutual exclusion. From this perspective we approach
the problem of symbolic performance modeling of parallel systems.

We present a novel performance modeling formalism, called PAMELA (PerformAnce
ModEling LAnguage) that serves as a vehicle to express our approach. The formalism
has basically two purposes. First, it serves as a concurrent performance simulation lan-
guage, thus allowing a model to be described dynamically without introducing a priori
limitations with regard to modeling accuracy. At the same time, however, it serves as
a source language for a second, static performance modeling technique that yields an
analytic (compile-time) model. More specifically, the nature of our contribution can be
characterized as follows.

e description formalism.
PAMELA presents a new departure for performance modeling that combines a num-
ber of existing modeling techniques in terms of one framework. Due to the use of
highly structured language operations to describe synchronization important infor-
mation on the problem’s structure with respect to both types of synchronization
can be retained in the model.

1.4. OUTLINE 11

e modeling methodology.
In contrast to usual practice, the approach to modeling parallel systems is material-
oriented [89], in which system components are modeled as subroutines rather than
as processes. Combined with the structured synchronization operators, mentioned
earlier, a model description is derived that is amenable to a low-cost analytic solution
technique.

e analysis technique.
The above choice of modeling formalism and paradigm allows for the application of
a low-cost static technique enabling PAMELA models to be automatically compiled
into analytic models. Unlike traditional approaches to static analysis, this novel
technique approximately accounts for resource contention. The analytical model
approximates the simulation result in terms of a lower bound.

The philosophy behind our contribution is to optimize the trade-off between modeling
power and the yield in terms of analysis cost by a careful choice of constraints with re-
spect to the modeling paradigm. The novelty of our approach is that it uniquely integrates
and extends a number of existing concepts (performance simulation, material-oriented pro-
gram/machine modeling, compile-time analysis) within one methodology. The underlying
thesis is that the vast majority of parallel computer systems can be expressed in terms
of our structured formalism, and that the accuracy of the generated analytical models
is acceptable across the entire parameter range. In this dissertation we will substantiate
these claims.

1.4 Outline

Before presenting the PAMELA methodology, in Chapter 2 we present a survey of related
work on performance modeling of parallel systems in order to put our approach into
perspective. The work discussed includes approaches based on representation formalisms
such as task graphs, queuing networks, Petri nets, simulation languages, and process
algebras. In the survey we introduce a new categorization scheme in order to compare
the various approaches in terms of one framework.

In Chapter 3 we present our performance modeling formalism, essentially comprising
the concurrent modeling language and the underlying analysis technique. It is shown that
the explicit, and highly structured way in which the material-oriented modeling method
expresses condition synchronization as well as mutual exclusion offers great advantages
with respect to model analyzability. The analysis technique is described as well as a
number of typical examples.

While Chapter 3 presents PAMELA from the perspective of concurrent models in
general, in Chapter 4 we present the application of PAMELA to parallel computer sys-
tems modeling. The principles of the modeling methodology towards shared-memory
and distributed-memory programs and machines are described through a large variety
of examples. It is shown that the use of our restricted modeling formalism still allows
us to capture the dominant performance aspects that are relevant in the context of our
approximate analysis.

12 CHAPTER 1. INTRODUCTION

In Chapter 5 we present a number of case studies that demonstrate various applications
of the PAMELA methodology. The subjects addressed include performance compilation,
showing how PAMELA models are compiled into analytic models, a macro data flow ap-
plication on a distributed-memory system, demonstrating the accuracy of the modeling
approach compared to actual measurements, a discussion on the relation between our ana-
lytic technique and simulation, and, last but not least, “optimization modeling”, showing
how the PAMELA calculus is applied to program optimization, one of the ultimate appli-
cations of the methodology.

After this presentation of the utility of the methodology, in Chapter 6 we revisit the
analysis technique by explicitly studying the accuracy of the analysis method compared to
simulation. By studying the relation between our analytic estimate and the simulation re-
sult it is shown why the approximation based on a lower bound provides a good estimator.
In addition it is shown that for any system in which resource usage is random, the average
estimation error due to contention effects is limited to 50 % worst case, throughout the
entire range of the model parameters.

In Chapter 7 we summarize our work, and present a number of recommendations for
future improvement.

Chapter 2

Performance Modeling

2.1 Introduction

In this chapter we discuss the main approaches to performance modeling of parallel sys-
tems, based on representation formalisms such as task graphs, queuing networks, stochas-
tic Petri nets, stochastic process algebras, and simulation languages. Apart from being
an account in its own right of the many and very inspiring concepts that have been put
forward in this area, it provides the background needed in order to present the ratio-
nale for our methodology. For the purpose of comparison, we will introduce a taxonomic
framework in terms of which each approach will be described. In this survey we assume
a basic understanding of the techniques and formalisms. In cases where the techniques
overlap with our approach a more detailed description is given.

Formally, a performance modeling approach deals with evaluating a concurrent system
S € & comprising a program and machine according to

S=PxM

that eventually leads to a numeric result. The system is modeled in terms of some rep-
resentation formalism R € R. The set of representation formalism includes deterministic
graphs (DG, ordinary task graphs with deterministic time delays), stochastic graphs (SG,
task graphs with stochastic time delays), queuing networks (QN), (stochastic) Petri nets
(PN), Markov chains (MC), but also analytical models, generally expressed in terms of a
system of equations' (SE). Thus

R C {DG,SG,QN, PN, MC,...,SE}

Since we are primarily interested in execution time we will denote the set of possible perfor-
mance results by T' € T that include temporal representations like a simple deterministic
scalar, a full distribution function, or just a mean-variance tuple.

In most performance modeling approaches a number of intermediate, symbolic trans-
formations can be distinguished between the original system and the eventual, numeric
performance result. The choice for some intermediate stage is characteristic for a specific

YThis includes implicit systems, such as an MVA recurrence or a (Markov) matrix equation, but also
explicit models, such as a linear pipeline model (each explained later on). Each analytical modeling
technique eventually yields an SE representation.

14 CHAPTER 2. PERFORMANCE MODELING

analysis technique. Note that each intermediate transformation may involve a further
abstraction from the original system. In general, a performance modeling approach can
be characterized in terms of

S — RY & .~ R®

Lol 3
T 7O T(n)

in which each — represents an intermediate transformation and in which each | stands
for the ultimate numeric evaluation. Thus the first | corresponds to actual execution
timing. The other evaluations yield predictions 7 that may become less accurate with
increasing superscript.

The terms modeling and analysis are often used loosely. Modeling is the process of
transforming a system into a performance model. This model can be an analytical time
expression (SE) or a timed Petri net (PN). Analyzing a model may yield another model
(with higher superscript) and the ultimate numeric evaluation (e.g., simulation result).
Thus the steps that can be called modeling cover S — ... — R while analysis covers
the steps R — ... — T In our terminology modeling refers to the step S — R,
Subsequent transformations, possibly including the ultimate numerical evaluation will be
called (model) analysis.

As an example of the use of this reference framework, we demonstrate the procedure
followed in static analysis, a compile-time prediction technique based on critical path anal-
ysis of a deterministic task graph representation of the parallel computation. The reason
to choose this particular approach is because of the fact that our approach originates from
this technique. Recall the polynomial

y = ao+ a1z + axr’ + azz’

Let S denote the parallel computation. The first step is the transformation from S to a
task graph representation RY) = G € DG. For the ease of this discussion we only consider
an ideal abstract machine (i.e., unlimited number of processors, no work loads due to
shared-memory load/stores, nor memory contention). Consequently i is shown in Fig 2.1.
in which each task ¢; represents a deterministic time delay (hence, the deterministic
graph) given by 7; (either 7, or 7,). The domain in terms of which G is expressed is
still a concurrent execution domain, i.e., G expresses a concurrent process in terms of
time delays and condition synchronizations. Consequently, the execution semantics are
based on the notion of a concurrent machine in which evaluation of G (yielding 7))
corresponds to performance simulation in which each task execution and synchronization
is executed by a simulator (of course, a practical performance simulation approach would
involve more factors than covered by just a static task graph representation, but that is
beside the point).

In static analysis, however, a next transformation R — R®) is performed from the
concurrent execution domain to the time domain, i.e., the domain of real numbers that
represent execution time. The transformation is based on following the interpretation of
the execution semantics of R, Let r; denote the time at which task g¢; finishes (thus,
T = rg). Realizing that a task may only commence once all predecessors have finished,

2.1. INTRODUCTION 15

Figure 2.1: Task computation graph of polynomial example

we directly obtain the following set of equations.

m = T

e = T2

rs = T1+7T3

Ty = "1+ Ty

rs = T2+ Ts

re = T3+ Ts

rr = max(ry,rs) 4 77
rs = max(re,r7) + Ts

Note that for series-parallel (SP) graphs?, the above equations would immediately reduce
to a single expression. The above equations, in fact, specify a second (deterministic)
graph R = H € DG of the static analysis computation, that is isomorphic to RV, The
transformation is based on the following mapping. Let ¢; be a task with predecessor tasks
Gp(ig)s J = 1... P(z) (P(7) is the task fanin). Then each task g; in G maps to a task h; in
H that represents the following computation
hi =A{ri=m i\
{ri=n+],:rfl%%((i) To(ii))

Application of the transformation to ¢ yields the task graph H for the computation® of
TA(T® = TW) as shown in Fig. 2.2. Thus, R® is isomorphic to R, The evalua-

2An SP graph (also called “simple graph” [131]) is a possibly nested sequence of parallel fork/join
sections. An SP graph can be reduced to a single node by applying a sequence of series reductions (i.e.,
reducing a sequence of two nodes to one node) or parallel reductions (i.e., reducing a parallel section of
two nodes to one node).

3Note that in this context H is only used to express the analysis computation, rather than to investigate
the opportunities for parallel processing. Of course, performance analysis can be parallelized as well, but
this 18 not the point of this discussion.

16 CHAPTER 2. PERFORMANCE MODELING

Figure 2.2: Critical path computation graph R of polynomial example

tion of R (ie.,, T®, T = TW) is commonly known as critical path analysis as the
execution time of the graph is determined (bounded) by the critical path. (In general
graph analysis terminology, the technique is also known as “longest path algorithm” [56]).
Thus, static analysis involves an intermediate task graph representation, followed by crit-
ical path analysis based on the evaluation of a second, isomorphic computation graph. Of
course, the representation R is usually not generated, but merely exists in terms of the
above set of equations (or in general in terms of a generic longest path algorithm that
dynamically determines the partial order in which the equations (h;) are to be evaluated
(order induced by the data dependencies).
In summary, static analysis can be characterized by the process

S —- DG —- DG — SE

in which the ultimate scalar evaluation (7)) has been ignored for simplicity. The reason
for explicitly including R = DG (i.e., two DG representations) in the above process is
to distinguish the graph analysis method from techniques used in the analysis of stochastic
graphs (having stochastic task times) that may also involve state analysis (thus using an
MC representation) instead of a critical path method (represented by the second DG, note
that the first DG represents the original computation whereas the second D' represents
the computation of T').

The crucial abstraction (and consequent loss of accuracy?) is performed in the first
modeling step. After that, given the deterministic graph, the analysis is exact. The
example also illustrates the cost reduction that is generally involved in a transformation.
In the simulation approach (R(!)), a state machine is simulated that involves the updating
of an event list (in case of a discrete event simulator). In the critical path analysis (R(?)
R®)) also a global time variable is updated, essentially involving the same '+ and "max’
operations as in the maintenance of the event list, however, with potentially less overhead
as the set of equations may be compiled in contrast to the interpretor-based simulator

or

(i.e., a compiled machine interpretor).

*Data communication and memory contention are both ignored.

2.2. QUEUING NETWORKS 17

In the following we present a survey of modeling techniques in which we refer to the
above reference model in order to characterize the particular approach used. Consequently,
we will only consider on generic techniques, i.e., techniques that apply to any program or
machine due to the use of a general representation formalism such as QN, PN, DG, etc.
Despite the importance of system-specific techniques, the proposed taxonomy provides
ample room to accommodate practically all of the well-known approaches.

As discussed earlier, the accuracy as well as the cost of parallel systems performance
modeling is greatly determined by four factors

e Condition synchronization
e Mutual exclusion
e Conditional control flow

e Basic Calibration

of which the synchronization factors are of particular interest in parallel systems modeling.
Consequently, while discussing each particular approach we will focus on the above factors
to determine the merit of each approach, especially in terms of accuracy and cost.

2.2 Queuing Networks

Traditionally, performance modeling of concurrent systems is based on queuing theory
(see, e.g., [93]). The fact that a resource (or service in this context) is mutually exclusive
between contending clients is symbolized by the queuing center, the basic model element
in queuing networks. Conditional control flow is accounted for by calculating the mean
service demand on each center based on the branching probabilities that can be assigned
to each branch. When the service times are exponentially distributed queuing networks
can be mapped to Markov chains due to the memory-less property of the exponential
distribution. The Markov chain is solved either using transient or steady-state analysis
yielding all state probabilities. Due to the state space explosion this method has expo-
nential complexity. For the class of separable networks [15] the mean value of the system
variables can be computed, based on less computation-intensive techniques. A well-known
recursive technique is Mean Value Analysis [129] that yields an exact solution for exponen-
tial distributions in polynomial time. Bard [14] and Schweitzer [138] describe an iterative
approximation. An other approximate method is the use of bounding analysis [93] (for
balanced systems see [160]).

Although queuing networks are appropriate for the modeling of systems with indepen-
dent jobs (or tasks), the formalism has not been intended to account for the condition
synchronization between tasks. Hence, traditional queuing networks cannot be used for
the performance modeling of parallel systems other than those equivalent to a single
parallel task section. Although traditional queuing theory can be applied to the estima-
tion of communication and/or memory delay during various regular phases of a parallel
computation®, aimed towards a more fundamental solution, alternative approaches have

STypically employing a fixed point iteration in which contention delay predicted by, e.g., an M/D/1-like
queuing model is used to estimate processor request rate [110, 64].

18 CHAPTER 2. PERFORMANCE MODELING

been described that are based on a hybrid representation. In order to capture the task
synchronizations at program level a task graph representation is used while a queuing
network is used to model the non-determinism due to conditional control flow and con-
tention for machine resources (i.e., processors, switches, memories). Compared to a full
Markov model of the total system, i.e., task graph and queuing model, the technique
may be viewed as an efficient approximation through the separation into two submodels
(a.k.a. hierarchical decomposition) resulting in a considerable reduction in (exponential)
complexity [65]. The trade-off is an abstraction from reality as discussed later on.

Thomasian and Bay [150] describe a method that computes the mean execution time
based on analyzing the Markov chain derived from the task graph using steady-state
analysis as discussed earlier. The transition rates follow from the throughput analysis of
the queuing network based on the task load corresponding to the current task composition
(Markov state). A comparable approach has been described by Kapelnikov et al. [81] in
which the solution complexity is decreased by using an aggregation technique in which
the throughputs of submodels (“segments”) are approximated (based on Markov analysis).
The method is especially advantageous for program loops. The above approaches can be
characterized by the process

S—HQ— MC — SE

where the tuple HQ) = (DG, QN) denotes the hybrid representation.

Although applying hierarchical decomposition, the above approaches still suffer from
the state space explosion. In order to decrease the state space analysis complexity, Mak
and Lundstrom [98] describe a method that is optimized for SP graphs. Instead of using
Markov analysis an approximate form of SP reduction® is applied at task level in which
the task times are assumed to be exponentially distributed (thus mean and variance
are analytic expressions). From the resulting task residence times the queuing delay is
computed using the underlying queuing network. The queuing delays are fed back to the
reduction mechanism, that, accounting for the additional queuing delay, closes the loop.
Thus an overall polynomial complexity is achieved. Recently, an extension of the above
path analysis approach to general task graphs is presented by Adve [1] and by Jonkers et
al. [78]. The technique is based on critical path analysis in which for each task activity set
the proportional contribution of the queuing delay is calculated. A critical but realistic
assumption in this approach is the fact that the service accesses for each task are uniformly
distributed over the task residence time. For the critical path analysis deterministic task
times are used. The underlying premise is that the actual variance at task level does
not always necessitate a high-variance distribution like the exponential distribution, as
mentioned earlier [3]. Both approaches are characterized by the process

S— HQ — DG — SE

As mentioned earlier, the hybrid approach not only features an approximate analysis
method, but also only partially alleviates the problem of modeling task synchronization.
For instance, neither condition synchronization at machine level, nor mutual exclusion at
program level can be expressed in this approach.

5An efficient implementation of critical path analysis for SP graphs.

2.3. PETRI NETS 19

2.3 Petri Nets

Petri nets are an effective modeling formalism for the description and analysis of con-
current systems. Since their introduction [118, 119], PN have been deeply investigated,
vielding a well-developed theory (see, e.g., [107, 117, 130]). Following [117], we will con-
sider (standard) PN to be Condition Event nets. PN with inhibitor arcs or high-level PN
such as Colored PN [77] are considered extended PN.

Especially designed for concurrent systems, Petri nets express both CS and ME. Unlike
queuing systems the description of ME includes simultaneous resource possession, i.e., the
ability to describe atomic access involving several resources. Consequently, the modeling
power of Petri nets is larger than of queuing networks or P/V systems’. For performance
modeling one considers timed Petri nets in which a time delay is associated with each
transition. Conditional control flow is modeled by a conflict using the relative firing
rate of each of the consuming transitions to determine the mean control flow over the
branch. Furthermore, to allow for a meaningful analysis the net is assumed to be live and
bounded, such that it is cyclic. As a result of the high modeling power of Petri nets their
decision power [117] is low. Hence, for general cyclic nets only verifying a certain bound
on performance is already shown to be NP-complete [127].

In the context of real-time system analysis Ramamoorthy [127] has investigated nets
with deterministic time delays. It is shown that for (cyclic) marked graphs (or decision-free
nets®) a polynomial time analysis is possible. The vast majority of the approaches, how-
ever, is based on using nets with exponentially distributed firing delays, called Stochastic
Petri Nets (SPN). Based on their reachability tree, the nets can be mapped onto a Markov
chain as shown by Molloy [104]. The Markov chain is subsequently solved using steady
state analysis. Thus the predominant approach can be characterized by the process

S— PN - MC—=SE

where PN denotes the (stochastic) Petri net representation. An extension to SPN, called
Stochastic Activity Networks, including mechanisms to control transition firing based on
any function of the markings is described in [103, 135]. Due to the exponential growth
of the transition matrix in the size of the problem, analysis complexity of SPN quickly
becomes prohibitive?. Aimed to reduce the analysis complexity, Ajmone-Marsan et al. [4]
describe an extension called “Generalized Stochastic Petri Nets” with immediate tran-
sitions to model control flow or activities with negligible time delays. As the analysis
complexity of GSPN is effectively dominated only by the number of timed transitions,
the distinction of immediate transitions may reduce analysis costs by orders of magni-
tude. Different approaches to realize state space reduction are described by Plateau [121],
Buchholz [22], and Siegle [141]. Although a significant computational reduction can be
achieved, the analysis complexity of Petri net approaches is essentially exponential. An
alternative approach to reduce complexity is described by Wabnig and Haring [152] which

"The increase in modeling power is illustrated by e.g., the Dining Philosopher problem [37] or the
Sigarette Smoker’s problem [116]. A simple P/V solution entails the risk of deadlock (see Peterson [117]
on the issue of modeling power).

8In a marked graph each place has one input and one output (i.e., the dual of the state machine).

“Even in the case where replication can be exploited by the use of folding [5] (in which the net is
reduced while maintaining equivalence).

20 CHAPTER 2. PERFORMANCE MODELING

is based on using a hybrid modeling approach. While the machine is modeled in terms
of a Petri net, the program is modeled in terms of a task graph. Unlike hybrid queu-
ing networks, the combined model is analyzed using simulation, thus completely avoiding
the combinatorial explosion inherent to Petri net analysis at the expense of a somewhat
stochastic result. The interesting trade-off between analytic techniques and simulation
will be further discussed in Section 5.4.

2.4 Languages

While the above representation formalisms are essentially different from the computational
systems under study, in this section we review concurrent imperative languages, that are
to a large degree similar. Like in the case of Petri nets, we specifically focus on simulation
languages (SL) and timed process algebras (PA) that incorporate the notion of time.

Based on the use of either message-passing constructs (message-oriented paradigm [8])
or semaphore-type constructs (procedure-oriented paradigm [8]), simulation languages
naturally account for condition synchronization as well as mutual exclusion. Unlike the
other formalisms, data dependent control flow is naturally supported!®, although in a
performance simulation context, the usual probabilistic abstraction is applied.

One of the natural advantages of languages is that they provide simple compositional
constructs for building large and parametric models. Usually, a message-oriented modeling
paradigm is used that corresponds to the object-oriented modeling approach taken by most
modelers in which the concepts of inheritance and information hiding are useful for model
engineering. Characteristic examples are SIMULA [33] and, more recently, the CSIM17
library described by Schwetman [139] and the language Pearl described by Muller [105].

As the modeling detail of simulation can be chosen to be arbitrary high, this form
of dynamic performance evaluation is most near to actual system execution. Even when
the actual system is available (i.e., does not need to be predicted) simulation is often
chosen above actual execution because the data measurement and collection processes do
not perturb the system’s dynamic behavior (in terms of virtual time). Due to the above
advantages a vast number of prediction approaches based on simulation modeling have
been described (e.g., [108, 146, 101, 120, 128, 142]), including the simulators within the
program cost estimation tools of Van Halderen [62] and Qin et al. [125].

Unlike the earlier approaches, simulation languages typically lack an explicit analytic
tradition. Hence, their characterization is simply

S = SL

In contrast, stochastic process algebras, a temporal extension to classical process algebras
(e.g., ACP [11], CSP [69]) do have an underlying calculus. Typical examples of this
approach are the work described by Gotz et al. [57], and Hillston [67]. Both approaches
are based on the introduction of exponentially distributed delays associated with the
actions (as in stochastic Petri nets). Similar to other stochastic approaches the model is

1Despite the higher modeling power of Petri nets in terms of synchronization compared to, e.g.,
simple P/V languages (concerning simultaneous resource possession) it would take an extended Petri net
(featuring inhibitor arcs) to achieve Turing power. Any simulation language, in contrast, can determine
conditional control flow as a result of its inherent capability to compute numbers.

2.5. STOCHASTIC GRAPHS 21

subsequently transformed into a Markov chain, that is solved using standard techniques.
Consequently the approach can be characterized by the process

S— PA—- MC = SE

Although there are many differences between simulation languages and process algebras,
there are similarities. Process algebras are much like message-oriented performance simu-
lation languages. Synchronization is based on cooperation or communication, that implies
that mutual exclusion is based on the fact that a process can only engage in a rendez-vous
with one partner (typically selected non-deterministically through the "+’ or '0’ operator)
at the same time.

2.5 Stochastic Graphs

As mentioned in the introduction, task graphs are a popular representation form for the
analysis of parallel computation structures (algorithms) in which task precedence relations
are of primary interest. Due to their static structure, task graphs cannot model mutual
exclusion, nor can they model conditional control flow (unless by weighting all the work
loads of conditional tasks in a branch with all the associated branching probabilities, e.g.,
like in queuing networks). Due to the fact that mutual exclusion is not accounted for
(unless explicitly modeled in terms of additional delay nodes [99]), the predictive value of
task graphs is limited. The trade-off, of course is the potential for a cost-effective analysis.
Because of the relevance of task graph analysis for our approach in the following we will
treat task graph approaches in somewhat more detail.

Because of the static nature of task graphs in many modeling approaches the task
times are often chosen to be stochastic in order to still enable some sort of representation
of the non-deterministic effect of conditional control flow and/or contention at the subtask
level. In this case the task graphs are commonly termed stochastic graphs (SG).

As illustrated in the earlier example, in task graphs the analysis procedure is based on
evaluating the effect of task precedence relations on time. While for deterministic graphs
the procedure is known as critical path analysis, in the general case of stochastic graphs
this procedure involves a more elaborate analysis in order to compute the distribution of
T'. Still, the approach can be characterized by the process

S+ 585G - DG — SE

where DG denotes the deterministic (critical path) analysis method. Let G € SG denote
a task graph comprising N tasks ¢y ...gy where g1, gv denote, the top and bottom task,
respectively. Let T; denote the distribution of the execution time of ¢;, i.e., the time that
¢; finishes. Consequently, T' = T. Let F;(t) denote the task delay time distribution
of g;. Let m; denote the set of predecessors of ¢;. Let S;(f) denote the distribution of
the task start time, i.e., the time when all predecessors are finished. Due to the barrier
synchronization at ¢; it holds

Si(t) = 11 T5(#) (2.1)

JET;

22 CHAPTER 2. PERFORMANCE MODELING

where it is assumed that the F; are mutually independent. The distribution of T; is
determined by S;(t) and the local task delay distribution F;(t) according to the convolution

t

Ti(t):(Si*Fi)(t):/o Si(T)filt — 7)dr (2.2)

where f;(t) denotes the probability density function of the task delay time.

As illustrated in the introduction, the analysis computation can be described by a
computation graph that is isomorphic with G. For general graphs the number of distribu-
tion products and convolutions is given by O(N?). For SP graphs the complexity reduces
to O(N).

While for deterministic graphs path analysis entails O(N?) scalar operations at worst,
for stochastic graphs of any practical size the calculation of T' based on path analysis is
prohibitive unless restrictions are introduced. Basically, two approaches can be distin-
guished, i.e., (1) by limiting the distribution functions representation, and (2) by limiting
the scope of graph structures. The first restriction entails a reduction of the complexity of
Egs. (2.1) and (2.2). The use of deterministic task times is, of course, the most extreme
example in which the above equations reduce to a scalar 'max’ and '+, respectively (in
terms of f, that is). The second restriction limits the number of computation steps nec-
essary to compute the result. The prominent subclass are the SP graphs, in which case
critical path analysis reduces to SP reduction. Another reason for the popularity of this
approach is that many computations can be expressed in terms of SP graphs, or can be
approximated in terms of SP graphs!!. Both approaches may be combined, of course.

An example of the first approach is the work by Lester [95] who uses the geometric
transform of f (a.k.a. z-transform or generating function) in terms of which Eq. (2.1) is
a product of polynomials and Eq. (2.2) is called “join product”. One of the motivations
for this approach is that non-deterministic conditional control flow is naturally accounted
for in terms of this discrete transform. An example of the second approach is the work
by Gelenbe et al. [47] in which a closed form expression is derived for the execution time
distribution of a class of random SP graphs that obey certain stochastical rules concerning
their construction. An example of the combined approach is the work by Sahner and
Trivedi [134] who describe a method to compute this function for task time distributions
that have an exponential polynomial form (i.e., f; = 3, axt’*e"’). Since exponential
polynomials are closed under the SP reduction operations T" will also be an exponential
polynomial. Thus, unlike the geometric transform this (intermediate) representation does
not necessarily grow during the analysis.

Without the above restrictions, for practical graphs the analysis cost of the distribution
of T' is prohibitive. As a result, many approaches restrict to the characterization of the
execution time in terms of scalar metrics only, such as the mean and variance, or lower and
upper bounds. One example is the bound approach that is described by Yazici-Pekergin
and Vincent [159] who compute stochastic bounds on the mean completion time for general
graphs. The basic idea is that a deterministic version of the graph produces a lower bound
while the upper bound is provided by a version that assumes independence of all paths in
the task graph. A related approach is described by Lester [95] that applies SP reduction

YFor instance, Hartleb and Mertsiotakis [63] describe a bounding analysis by deriving SP approxima-
tions with the use of heuristics.

2.6. DETERMINISTIC GRAPHS 23

for mean values based on the reduction rules for deterministic values. While appropriate
for series reduction and conditional control constructs, parallel reduction based on a simple
max function (i.e., without using order statistics) yields an underestimation for stochastic
variables (i.e., for which o > 0). Consequently, the result is a lower bound for T'. In order
to account for task variance an enhanced scheme is also described in which both mean
and variance are propagated in the course of the SP reduction. Parallel reduction is based
on an approximation of order statistics assuming a normal distribution. A comparable
approach including the use of order statistics is described by Robinson [131] in which the
SP graphs are called “simple graphs”. Sarkar [136] describes a comparable technique for
sequential control graphs in order to determine the effect of conditional control flow.

Another popular approach to computing the mean execution time is based on re-
stricting the task distributions to the exponential type. Thus, a Markov chain can be
constructed of all the (O(2V)) activity states of the graph. Typically, a transition is
added corresponding to a cycle from ¢x to ¢; in order to allow for steady state analysis.
Unlike most Petri nets and queuing networks the task graph itself has no internal cycles.
Consequently, the transition matrix is triangular in which case the direct solution com-
plexity is approximately O(2V) instead of the usual O(2*") for full matrices [150]. The
approach is characterized by the process

S+ 585G —-MC = SE

Although the use of exponential distributions is quite popular due to the Markov property,
this distribution is not particularly realistic for the time behavior of tasks exhibiting low-
level non-determinism (control flow, queuing). Usually such tasks have much less variance
as observed by Adve and Vernon [3] (Lester [95] reports that unconditional loops with
even a few iterations can be approximated by normal distributions within a few percents
accuracy). The use of Erlang-k distributions with a high number of phases in order
to decrease variance, however, results in a significant increase in complexity. Hence,
approximations are used. An example is the approach used by Soétz [144] in which he
approximates low-variance task distributions by a series combination of a deterministic
and exponential task term such that the first two moments are equal to the Frlang-
k distribution. As the memory-less property of the exponential distribution is lost an
approximate method is used to solve the Markov chain.

2.6 Deterministic Graphs

As mentioned earlier for deterministic graphs the analysis is based on critical path analysis.
In terms of the stochastic graph analysis the product and convolution formulae reduce to
a scalar addition and maximum, respectively. As our symbolic approach is based on the
use of deterministic graphs we present a more elaborate treatment of the related work
that employs this representation type. As discussed in the introduction, the approach is
characterized by the process

S —- DG —- DG — SE

Almost every approach is restricted to SP reduction (SE is one expression) that yields the
fastest analysis possible (O(N) complexity) which partly explains why all compile-time

24 CHAPTER 2. PERFORMANCE MODELING

prediction approaches are based on this technique. Since most reductions are stated in
terms of an (intermediate) language, the actual process is even linear in the size of the
program as can be seen as follows. Due to the predominant procedure-oriented style in
parallel programming (either a fork/join style in the case of an explicitly parallel dialect,
or a data parallel style in case of implicit parallelism), programs can be represented by
an SP task graph that is amenable to SP reduction. Expressed in terms of the source
language itself, the program is consequently termed an SP program. In program terms
SP reduction is implemented by the following function that is recursively applied to a
(compound) statement S (initially, S is the program).

o if S =51; .. sn; then T(S) = T(S1) + .. + T(Sn)

o if S=for i =1 .. n do S(i) then T(S) = ¥, T(S(4))

o if S =forall i =1 .. n do S(i) then T(S) = maxi—i_, T(S(5))
o clse T(S) represents time cost of the basic instruction.

The use of a language enables the conditional control flow analysis to be included within
this scheme according to

e if S =1if ¢ then S1 then T(S) = pT(51)

where p denotes the probability that ¢ evaluates true. This is equivalent to weighting all
the work loads of tasks within a branch with all the associated branching probabilities
(note that like in e.g., queuing networks, in this “mean value” approach, all the branching
probabilities involved are assumed independent).

In terms of the above SP reduction, all the deterministic approaches are practically
similar. In contrast to the use of stochastic task times, in compile-time techniques ad hoc
approaches are typically followed in order to account for mutual exclusion (if accounted
for at all). In view of the importance to account for resource limitations (contention)
in parallel systems, we will discuss the various reduction techniques with respect to this
particular aspect. In the estimation approaches for shared-memory systems described
by Allen et al. [7], Sarkar [137], and So et al. [143], the effect of dynamically scheduling
the task graph given a limited number of processor resources is approximated in terms
of bounds by applying Graham’s result for list scheduling [58]. Also Polychronopoulos
and Banerjee [122] describe bounds on the speedup for doacross loops (a generalization
over do and doall due to Cytron [32]) when cyclically scheduled on a limited number
of processors. The method presented by Wang [155] includes an approximation of cache
performance and hot spot contention for memory resources. Targeted at real-time systems,
Shaw [140] presents an estimation scheme that computes both a lower and upper bound
on the execution time. The scheme approximately accounts for contention, be it for non-
preemptive resource sharing only (e.g., critical sections). The approach does not consider
preemptive processor sharing and memory sharing.

While for shared-memory machines resource limitations primarily relate to (dynamic)
processor scheduling and memory contention, in distributed-memory machines, the con-
tention issues relates to network contention as the processor mapping is typically static.
In the approach by Balasundaram et al. [13] the underlying distributed-memory machine

2.6. DETERMINISTIC GRAPHS 25

is characterized in terms of its collective message-passing interface, thus automatically
accounting for network contention. The above approaches are more or less based on re-
duction down to a single estimate (or derivative). Clearly, however, one single number
does not provide the diagnostic information that enables an efficient optimization process.
Based on this argument, Fahringer and Zima [41] present a number of specific diagnostics
for distributed-memory systems, such as processor load balance, communication volume,
cache performance, as well as an indicator for network contention.

A number of approaches have been described in which the prediction is still expressed
in terms of certain symbolic parameters, thus providing another form of diagnostic in-
formation (suitable for, e.g., scalability analysis). Atapattu and Gannon [10] describe a
partially symbolic estimation approach for shared-memory systems that includes an an-
alytical approximation of memory contention (based on a queuing model) and of cache
behavior (i.e., conditional control flow) for a specific architecture. The shared-memory
program performance estimation tool of Qin et al. [125] also generates a partially symbolic
output in terms of the simulation model source text. The effect of (dynamic) processor
sharing between tasks is accounted by computing the available processing bandwidth while
traversing the computation graph. The analysis of non-preemptive memory contention
however is approached by accounting (enumerating) for all the paths that are possible, thus
leading to exponential complexity. Wang [156] describes a symbolic prediction technique
that is used for super-scalar based processor design. Aim to enable efficient scalability
analysis, Mendes, Wang and Reed [102] describe a method to derive a symbolic model in
terms of the problem size, the number of processors and a number of system parameters
that are derived by fitting the model on execution time measurements for different prob-
lem sizes and processor numbers. In the symbolic approach by Clement and Quinn [29]
the system parameters are also determined from measured run times. However, they are
computed from instruction counts as actually profiled, rather than predicted as with the
model of Mendes et al.. Both approaches do not account for contention.

Essentially all static approaches have the same “mean value” approach towards condi-
tional control flow in which the actual work load is weighted in terms of the (appropriate)
branching probabilities. The approach is basically similar to sequential system analy-
sis [136, 153]. In cases where the branching probability can not be deduced at compile-
time, either a default is assigned (e.g., [13]) or the probability is based on statistics gath-
ered during profiling. An underlying assumption is that program level conditional control
flow is characteristic of the program and, consequently, is independent of other system
parameters. Evidence to suggest this have been produced by Fahringer and Zima [41])
who successfully uses control flow statistics based on sequential profile runs. Unlike pro-
gram level, at machine level, conditional control flow (e.g., caches), is usually dependent
on system parameters. Again, when the hit ratio can not be deduced at compile-time
(typically based on a loop model [10, 41, 155]), profile statistics (possibly obtained by
simulation [38]) must be used.

Some of the analytic approaches feature calibration methods in which certain program
parameters are determined by direct measurement (e.g., [30, 73]), or where aggregate
submodels are timed as a whole. A typical example is the deduction of the startup
and bandwidth parameters of vector instructions by fitting measurement data to the
underlying linear (pipeline) model [70] for various vector lengths and for various access

26 CHAPTER 2. PERFORMANCE MODELING

strides. In this way the effects of low level memory hierarchy and memory bank contention
are automatically accounted for. One of the first approaches in this direction was taken
by Gallivanet al. [46], in which program performance was predicted by characterizing
program workload in terms of a kernel of basic (vector) routines (including associated
memory traffic). A comparable approach is taken by Balasundaram et al. [13], in which the
(distributed-memory) machine is characterized (i.e., measured) in terms of its collective
communication interface. Again, the effect of message pipelining, link contention, etc.
is automatically accounted for. Clearly, modeling the machine in terms of (judiciously
chosen) aggregate submodels instead of at a more basic instruction level has a benefit in
terms of modeling efficiency. Another approach in which communication cost is estimated
in terms of an MPI-like abstract kernel instead of the actual code (as would be generated
by the compiler) is described by Gupta and Banerjee [61]. In general, the trade-off in
these approaches is the cost (and accuracy) of workload characterization at program level
as now the program must be decomposed in terms of a (usually less orthogonal) high-level
kernel instead of basic instructions. A detailed study into the feasibility of automatically
recognizing kernel operations in parallel programs is described by Kefler [84]. Other static
approaches feature calibration methods in which the basic model parameters are inferred
rather than directly measured, based on the use of statistical techniques. Two approaches
that have been discussed are those by Clement and Quinn [29] and by Mendes et al. [102].
An more phenomenological approach is taken by Candlin [27] in which the influence of
several program statistics (e.g., granularity, task time variance) on system performance
are studied using a (two-level) factorial analysis method.

2.7 Summary

We conclude this chapter with a short summary of the techniques considered in this
review. The various approaches, along with their primary characteristics are listed in
Table 2.1. The columns 'CS’, "ME’, and ’CF’ signify whether the approach accounts for
condition synchronization, mutual exclusion, and, conditional control flow, respectively.
The complexity column lists the solution complexity in terms of the characterization poly-
nomial ('pol’, ranging from high complexity to the quadratic or even linear complexity
of the DG approach), or exponential ('exp’). Note that a less favorable “mark” (i.e., -’
or '07) should be strictly interpreted in the sense of generic applicability. Sometimes a
formalism is not intended to be used in a system-level generic way. For instance, stochastic
graphs are quite useful for the analysis of task systems once the underlying machine has
been chosen. In this approach extending the model in order to include the machine would
only entail a needless increase in analysis complexity. Thus, depending on the specific
purpose, any of the above techniques may be an optimal choice. From the perspective
of a generic, system-level modeling formalism, however, the above table holds. We will
briefly summarize the approaches in terms of the basic properties of interest as we have
defined earlier.

o Modeling (RM):
All the approaches inherently account for condition synchronization except tradi-
tional queuing networks. Note, however, that the hybrid approaches only account

2.7. SUMMARY 27

for condition synchronization at program level. All the approaches inherently ac-
count for mutual exclusion, except for the techniques based on task graphs. The
‘07 sign for stochastic graphs denotes their (small) ability to account for the non-
determinism associated with contention. Note that hybrid queuing techniques only
account for mutual exclusion at the machine level. The only technique that is fully
capable to model conditional control flow is simulation. All other techniques are
based on a probabilistic abstraction (branching probabilities).

o Analysis (R(?):

Most solution techniques are based on a numeric process such as simulation, the
recursive/iterative solvers for (hybrid) queuing networks (S E'?), as well as the direct
solvers for Markov chains (MC'). Only the techniques of which the solution can
be expressed in terms of deterministic graphs are eligible for a symbolic process
(except H(Q) due to the underlying network solver) as exemplified by the compile-
time symbolic techniques. Associated with each type of analysis process is a trade-
off between information and cost. Simulation is a computation-intensive solution
technique partly since it yields only one sample of the execution time distribution
for each run (i.e., a stochastic model). Analytic techniques, on the other hand,
provide the solution in only one process run (i.e., a deterministic model). However,
the cost may become prohibitively high. Methods based on Markov analysis yield
probability information on each individual state, however, at exponential costs as
the state space is exponential in the system size. Under certain conditions, solution
techniques for (hybrid) queuing networks can be used that only provide mean values
but which have costs that are only polynomial. Deterministic graph analysis has
the lowest complexity (quadratic for general graphs, linear for SP graphs). The
trade-off is a limited accuracy due to the fact that task delay distributions as well
as mutual exclusion are ignored.

RW [CS | ME | CF [R® | compl. |

QN | - + O || MC | exp
QN | - + | O SE pol
HQ | O O O || MC | exp
HQ | O O a || DG pol
PN | + + O MC exp
SL | + + + - pol
PA | + + O MC exp
SG | + | O a || DG pol
SG | + O O MC exp
DG | + - O DG pol

Table 2.1: Approaches to performance modeling of parallel systems

12The only occurence of SE in the table is due to the MVA technique, which simply maps QN onto a
(recursive) set of equations, without using a second, intermediate representation formalism.

28 CHAPTER 2. PERFORMANCE MODELING

As mentioned before, due to the choice to survey performance modeling in terms of the
(intermediate) representation formalism used, not every approach has been accounted for.
An obvious example are the system-specific approaches that map some (sub)system into
a (usually optimized) analytical model. The best way to characterize these approaches
would be the default process

S =+ SKE

For instance, the derivation of the linear, symbolic performance model for vector process-
ing (either arithmetic processing, or data movement) is based on an immediate, manual,
derivation process, rather than through some intermediate representation (using, e.g., a
Petri net will not yield the symbolic solution'?).

Returning to the criteria mentioned in Chapter 1, none of the above modeling ap-
proaches adequately pairs accuracy with an analytic method that comes with sufficiently
low solution cost. On the one hand, QN, HQ, SG, and DG do not always provide sufficient
modeling accuracy. On the other hand, PN, and PA entail exponential costs. Although
SL pairs accuracy with polynomial costs, they merely provide a stochastic result (a single
draw) rather than an analytical model. Our approach aims to combine an analytical tech-
nique with sufficient accuracy. In terms of the earlier table, our approach can be described
as given in Table 2.2.

| RW [CS | ME | CF [| R® | compl. |
(DG]+ [+ |0 [DG] pol |

Table 2.2: The PAMELA approach to performance modeling of parallel systems

135When using PAMELA the automatic derivation of a symbolic model is indeed possible, as is shown in
the next chapter.

Chapter 3
PAMELA

3.1 Introduction

In this chapter we present our approach to the performance modeling of parallel systems.
The methodology we propose is based on the use of a performance modeling formalism,
called PAMELA (PerformAnce ModEling LAnguage), that,

e with respect to modeling provides a concise, procedure-oriented performance simula-
tion interface. Unlike most abstract representation formalisms, the language allows
the description of models without forcing significant a priori loss of accuracy. Pri-
marily intended as a description formalism for subsequent analysis, the language
features operators to express structured forms of condition synchronization and,
most notably, mutual exclusion.

e with respect to analysis introduces a novel static technique that, due to a procedure-
oriented and structured synchronization paradigm, allows simulation models to be
compiled into an analytic (parameterized) model that trades accuracy for cost. Un-
like traditional compile-time analysis the method introduces an approximate analysis
of mutual exclusion within the critical path analysis, thus yielding a lower bound
estimation 7" of the simulation result 7' that is much tighter than conventional
predictions, yet at the same cost.

In terms of the previous chapter, the approach can be characterized by the process

S—-S5L—DG—=SE — ... - 5SFE

l l l
T T(2) 7(n)

In the PAMELA methodology (see Fig. 3.1) both parallel program and parallel machine
are converted into their PAMELA model counterparts. After substitution of the machine
model into the program model the combined model is either compiled into a simulation
object returning a result T (T'")) or compiled into an analytical model that yields the lower
bound estimate T" (T(z)) at much less cost. Based on the analytical model, subsequent
reductions are possible (see figure), again possibly trading accuracy for cost (7). Thus,
the approach offers a flexible trade-off between prediction accuracy and cost. In a typical

30 CHAPTER 3. PAMELA

Appl. Domain 3 PAMELA Domain 3 Time Domain
program
(T, 1,,..)
— ‘ — serialization
— modeling = analysis reduction
— = /— SyIs| T b2
3 I_ T| I_ T|
machine |
(H]_:U 2!"')
modeling | = simulation

Figure 3.1: Modeling methodology

application environment, program model generation, machine model substitution, as well
as subsequent model compilation are performed on line, whereas the machine model has
been programmed in advance.

The rationale for the choice of a procedure-oriented simulation language combined
with a symbolic compile-time calculus is the following.

e symbolic modeling

Unlike other representation formalisms, languages provide a natural means to ex-
press parameterization, as well as a convenient set of constructors to easily express
composition, replication, etc. Due to the procedure-oriented modeling paradigm a
path analysis method can be used that yields a time domain model that is also com-
pletely symbolic, whereas the message-oriented paradigm of traditional languages
and process algebras as well as the choice of other representation formalisms (queu-
ing networks, Petri nets) entails a numerical solution process (with the exception of
analytic solutions that are manually derived).

e modeling power

With its ability to express condition synchronization, mutual exclusion, as well
as (data dependent) conditional control flow, the language provides high modeling
power to capture the performance behavior of parallel computer systems. Even when
conditional control flow is modeled probabilistically, the language still combines
the modeling power of task graphs, (hybrid) queuing networks, as well as process
algebras and Petri nets as a result of its capability to express simultaneous resource
possession.

3.2. LANGUAGE 31

e analyzability

The choice for a structured, procedure-oriented paradigm, combined with structured
operators to express mutual exclusion offers the possibility of a compile-time path
analysis technique that approximately accounts for mutual exclusion. Hence, the
resulting time domain model has the minimum robustness that is needed in view
of the very large parameter space covered by the analytic model. The choice for
a low-cost, deterministic path analysis technique is motivated by the fact that in
many cases task time variance is limited [3]. Hence the analysis error due to the
the assumption of deterministic task times (mean values) instead of accounting for
task variance is acceptable in view of the overall approximation (indeed the use of
a deterministic scheme is suggested in [3]).

Thus our methodology distinguishes itself from the other approaches by the combination of
a procedure-oriented language, structured operators to describe mutual exclusion, and the
(consequent) compile-time calculus that allows for the automatic compilation of symbolic
performance models.

In the remainder of this chapter, the language and underlying calculus are presented.
Rather than providing a formal language description, in Section 3.2 an informal intro-
duction is given of the language as well as many examples. A rationale for the material-
oriented modeling paradigm that is adopted in PAMELA is given in Section 3.3. Section 3.4
presents the underlying calculus as well as a number of examples. Parts of this chapter
have been presented in [49, 51].

3.2 Language

Being a research vehicle for the formalization of concurrent computations the syntax and
semantics are not (yet) rigorously defined. Consequently, we will refrain from a formal
language definition and loosely describe its syntax and semantics in an informal way
using examples. A semantics description of the most important language constructs,
expressed in terms of Deterministic and Stochastic Petri Nets (DSPN [6]) can be found
in Appendix A.

Basically, PAMELA is an imperative, process-oriented simulation language. Thus, like
other simulation languages it is capable of functionally simulating concurrent computa-
tions on von Neumann machines. Unlike most simulation formalisms, however, its design
is tailored to facilitate a compile-time performance analysis. Of course, this compile-time
analysis is strictly defined for performance simulation models, i.e., the subset of simulation
models that exclude original data computations.

Intended as a source language for compile-time analysis, the syntax of PAMELA is
reminiscent of that used in ordinary mathematics. Rather than defining a full fledged
programming language (including type declarations, etc.) we simply borrow the equation
syntax and substitution semantics as found in mathematical formalisms. Thus, much like
in process algebra, a PAMELA program or process (usually denoted by L) is written as a
set of algebraic equations that describe the simulation model of the system under study.
We will also often refer to a PAMELA program as a PAMELA model.

32 CHAPTER 3. PAMELA

Like any simulation language PAMELA supports the notion of virtual execution time
that is the key (performance) result of the simulation. By convention, T' denotes the
(simulated) execution time of program L. By definition, the time of the empty program is
zero. The basic operation that increments virtual time is the delay construct that takes
a time increment as argument. For example, the execution time of the PAMELA model

L = delay(r)
is given by
T=r1

The time interval 7 can be either deterministic or stochastic according to some specified
distribution.

3.2.1 Control Flow

To enable basic model construction PAMELA provides the following control flow operators:

e sequential operator: ;
For example, the following PAMELA program (or model) L = delay(7) ; delay(7)
specifies a strict sequence of two processes (or submodels) delay () and delay(7).
Consequently, T'= 7y 4+ 1. Clearly, ’; is associative.

e parallel operator: ||
For example, the following PAMELA model L = delay(r) || delay(r;) specifies
two processes running in parallel without any intermediate form of synchronization.
Similar to the well-known parallel constructs like forall, the par construct has an
implicit barrier semantics. Consequently, T" = max(7y,72) due to the additional
synchronization delay. Clearly, ’||” is associative and commutative.

e conditional operator: if
For example, the following PAMELA program L = if (r < p) L, where r is a random
variable uniformly distributed over [0, 1], implements a branch with average branch-
ing probability p (0 < p < 1). For programming convenience an else construct is
included.

In order to specify sequential as well as parallel replication PAMELA provides reduction
operators defined by

seq (1=a,b) L, = Ly; ...; L
par (1t =a,b) L, = Lo| ... | Ls
The simple lower /upper bound syntax is inspired by corresponding reduction functions in

the time domain such as the > operator. A more detailed discussion on the semantics of
sequential and parallel composition is given in Section 3.4.

3.2. LANGUAGE 33

As a simple example, the following set of equations

L = L| Ly

Ly = delay(n); delay(m)
L, = delay(rg) i Ls

Ls = delay(ry) || delay(7s)

constitute a legal PAMELA SP model that is equivalent to

L ={delay(n) ; delay(r)} || {delay(rs) ; {delay(r) || delay(rs)}}

Although the first ’{ }’ pair is superfluous (the ’;” operator has a tighter binding than ’||),
in order to avoid confusion { }” or ’() pairs are used throughout the text.

The above operators form the ingredients for a basic performance simulation kernel.
In order to enable functional simulation as well this kernel is extended with

e iteration operator while (¢) L

e usual computational data types including assignment in order to enable full data
computation. Consider the sequence L = delay(1); = = 2; if (z* < 4) delay(1).
It follows T' = 1.

The while operator is required for simulation purposes only (where termination is not
essential). In order to allow the analytical approach to be used as well, the while construct
is typically replaced by a seq operator where the loop bound is specified by some symbolic
user parameter. Although original data computations are typically left out of the model for
analytical reasons, in some cases the use of data computation cannot be avoided in order
to compute data-dependent (conditional) control flow. For the compile-time analysis,
however, these computations are typically accounted for by branching probabilities, thus
yielding a model only in terms of the basic performance simulation kernel.

3.2.2 Condition Synchronization

Apart from the implicit condition synchronization inherent in the parallel (and sequential)
composition constructs, PAMELA offers explicit condition synchronization operators, i.e.,
wait and signal in order to express inter-process precedence relations in a manner that is
compile-time deducible and efficiently executable at run-time. Both operators take a set of
boolean conditions as argument. Let C' = {¢;,...,en} denote a set of N conditions. The
operation wait(C') suspends a process until all conditions are true, i.e., ¢y A...Acy = true.
The operation signal(C') assigns a true value on each of the member conditions. For single
conditions (|C'| = 1) the set notation may be omitted. For example, the PAMELA model

{delay(1) wait(c) ; delay(5)} || {delay(5) ; signal(c) ; delay(1)}

yields T' = 10. Note that subsequent wait or signal operations on the same variable have
no effect. Effectively, the number of processes that is allowed to signal a condition is
constrained to be one.

34 CHAPTER 3. PAMELA

While the implicit synchronization of the parallel (and sequential) operators discussed
earlier enables the construction of SP graphs, the explicit wait/signal operators allow for
the expression of any task graph (like the above non-SP model). Note that a construct

while (—¢) < do nothing >

instead of wait, in combination with a simple truth assignment ¢ = true (i.e., substitute
for signal) does not implement a conditional synchronization in any simple discrete event
simulator (like the PAMELA Run-Time Library, see Appendix E) as the virtual time of
the executing process would never advance. In other words, the construct would block
the process indefinitely. Thus, the wait construct should be used instead, in combination
with signal.

The choice for wait /signal operators with the above constraint instead of simply using
semaphores is deliberate. A crucial difference between the above condition synchroniza-
tion operators and semaphore operators (as discussed later on) is that the wait/signal
operations are assumed to be used only once, corresponding to satisfying the unique prece-
dence between two synchronizing tasks. In contrast to a (counting) semaphore a condition
variable implements no memory other than the state of the signaling task. Thus it is
a single assignment variable, that allows for the application of the functional analysis
approach that is discussed in Section 3.4.

Example 3.1 In this example we demonstrate the description of parallelism in conjunc-
tion with condition synchronization. Recall the parallelization of the polynomial computa-
tion (cf. Fig. 1.3) in which we assume an idealized machine model. Let each multiplication
and addition correspond to a work load of 7,, and 7, time units, respectively. The PAMELA
model is given by

L = par (1=138)L;

Ly = delay(7,) ; signal({cis, c14})

Ly = delay(7,) ; signal(css)

Ls = wait(c¢i3) ; delay(7,) ; signal(cse)

Ly = wait(c4) ; delay(r,) ; signal(cyr)

Ls = wait(cys) ; delay(7,) ; signal(csr)

Ls = wait(csg) ; delay(r,) ; signal(ces)

L. = wait({cr, c57}) ; delay(7,) ; signal(crs)
Ls = wait({ces,crs}) ; delay(7,)

Each task is expressed as executing in parallel while the wait/signal pairs express the
data dependencies between them, thus constraining the actual parallelism. O

3.2.3 Mutual Exclusion

Being a procedure-oriented language, the basic mechanism to implement mutual exclusion
are counting semaphores [37], in conjunction with the simultaneous semaphore operators P
and V [97]. Like process parallelism, the notion of mutual exclusion is central in PAMELA

3.2. LANGUAGE 35

as it stands for the (exclusive) use of resources. Given their full-empty semantics the
semaphore abstract data type is a natural mechanism to model the use of resources.
Consequently, in the following we will often denote a (counting) semaphore by the term
resource that can take any integer value greater than or equal to zero.

Let R = {ry,...,rm} denote a finite set of M integer variables (resources). Let
U={ ...r,...}, U € R>, denote a multiset [117] of resources. Let # : R x R® — N
denote the multiplicity function such that #(r;, U) returns the number of occurrences of
r; in the multiset U. The process

P(U)

is suspended until in holds Vi : r; > #(r;, U), after which it unblocks and it instantaneously
holds Vi : r; = r; — #(r;, U). Conversely, the process

Vi(U)

restores R according to the post condition Vi : r; = r; + #(r;, U). For example, let r; = 1
and ro = 2. While the operation P({ry,rq,72}) will acquire all resources, the operation
P({ry,r1,r2}) would block until the occurrence of a 'V operation that returns at least one
unit r;. Notice that the above definitions allow for the expression of both simultaneous
resource possession as well as instantaneous consumption and production multiplicity due
to the multiset definition of the argument!. For a single resource the above set notation
is omitted in which case the above operations have the usual syntax of simple semaphore
operations.

Example 3.2 In this example we present a typical application of counting semaphores.
Consider a producer-consumer scheme around a bounded buffer with B storage cells that
is initially zero. Let the production time and consumption time be 7, and 7., respec-
tively. Let N denote the number of items being produced, buffered, and consumed. The
performance simulation model is given by

L = producer || consumer
producer = seq (1 =1,N) {delay(7,) ; put}
consumer = seq (1 =1,N) {get ; delay(r.)}
put = P(room) ; < store in buffer > ; V(data)
get = P(data) ; < load from buffer > ; V(room)

where the actual buffer access is assumed to be mutually exclusive (discussed below). The
initial value of the resources room and data are B (available empty cells) and 0 (available
full cells), respectively. O

The above example shows a case where resources are acquired and released by different
processes. In most cases, however, resource acquisition and release is associated with the

IThe multiset approach is similar to the approach used by Peterson to describe multiplicity in Petri
nets [117].

36 CHAPTER 3. PAMELA

same process in order to temporarily obtain exclusive access. For instance, a simple model
of the shared buffer access in the above example is given by

P(b) ; < update buffer variables > ; V(b)

where b models the buffer resource (initially, b = 1) that needs to be accessed exclusively
in order to maintain data integrity. Apart from the fact that resource access is often
performed in the context of the one process, the essential performance aspect is that
mutual exclusion is associated with time delay (otherwise, there would not be any reason
to include mutual exclusion in performance models, except for maintaining data integrity).
Thus, the principal model of resource access is given by the following “template”

access = P(r) ; delay(7) ; V(r)

where 7 accounts for the total time spent using resource r. For example, for r = 1 the
model L = access || access || access yields T' = 37 due to mutual exclusion of the three
accesses. The frequent occurrence of the above template corresponds to the fact that each
time delay can be associated with the use of some resource (multiset), like, e.g., a CPU,
a memory (disk), a communication link, or simply some critical software section (e.g., file
server). This is reflected in terms of PAMELA by the use construct. Let U be defined as
earlier. The PAMELA model

L =use(U,r)

specifies a process that exclusively (and instantaneously) acquires the multiset of resources
specified by U for 7 time units. Note that the use concept is similar to the (modular)
server concept used in queuing networks. In the sequel we will often refer to resources as
servers and vice versa.

In its basic definition, the use construct is equivalent to

use(U,7) =P(U) ; delay(r) ; V(U)

Hence, the scheduling discipline is FCFS (FIFO semaphores) with non-deterministic (fair)
conflict arbitration. Note, however, that other disciplines can be modeled by explicitly
modeling resource queues with some user-defined ordering in conjunction with the basic
mutual exclusion mechanism provided by the P and V operators.

Let s denote an FCFS resource. Thus far, a use(s, 7) operation is assumed to be asso-
ciated with one service visit, i.e., the duration 7 equals the basic service time. However,
in many situations (i.e., at aggregate modeling level) the service demand will be a large
multiple of the service time. Let 7, denote the service time. Although this situation can
be easily expressed by

seq (1 =1,7/7) use(s, 7s)

(where 74|7), it is more convenient to be able to associate a service time with each resource
such as, for instance, in queuing theory. In that way, without loss of information we can
still write

use(s, 7)

3.2. LANGUAGE 37

By default, the operation will be interpreted as pure FCFS with 7, = 7. However, if
a service time 7, < 7 is associated with s, the semantics of the operation is equal to
the above use(s, 75) sequence. Although, from a modeling perspective the definition of a
service time is merely a matter of convenience, during the analysis in Section 3.4 for cases
where the resource multiplicity is larger than 1, it is advantageous to have information
on the actual number of visit counts, rather than just the total service amount. However,
in the sequel we will always assume a non-preemptive FCFS interpretation, unless noted
otherwise.

One particular discipline next to FCFS that we will explicitly consider is processor
sharing (PS), that is effectively an application of the FCFS model with associated service
time definition 7, — 0. Let s be a PS type resource and let 7 denote the service demand.
Based on the convention for resources with defined service time as described earlier, we
can write

use(s, 7)

instead of having to specify an (infinite) sequence. While the additional definition of a
basic service time covers the whole spectrum, in typical modeling practice, we will only
consider resources in terms of a default FCFS discipline (non-preemptive, 7, = 7) and a
PS discipline (7, — 0). Both types of resource usage are conveniently addressed by the
same use operation that simply specifies the (aggregate) service demand. Although in
the basic lower bound analysis technique we introduce in Section 3.4 the specific resource
type is not of much influence, there are situations in which knowledge of the fact that
resource access is “sliced” (large visit counts) rather than non-preemptive (one visit), can
considerably improve the analysis accuracy that can be obtained. This subject will be
treated in Section 5.4.

Example 3.3 In this example we show how the use operator is applied. Consider the
dining philosophers problem [37]. Let N denote the number of think/eat cycles each
philosopher performs. The PAMELA solution is given by

L = par (p=1,5) philosopher(p)
philosopher(p) = seq (i =1, N) {think(p) ; eat(p)}
think(p) = delay(n)

cat(p) = use({cp, ¢(pt1)mods}, Te)

where the (FCFS-type) resources ci,...cs represents the five chopsticks. Note that the
above model introduces the notion of time in contrast to the classical problem that only
addresses the issue of concurrency and process synchronization. O

Considering the fundamental role of the use operation in modeling time delays as dis-
cussed earlier, like in queuing networks, it is appropriate to (re)define the delay operation
in terms of an infinite-server p where p = oo according to

delay(7) = use(p, 1)

Thus, every time delay can be expressed in terms of a use operation.

38 CHAPTER 3. PAMELA

While the use operator provides a basic mutual exclusion mechanism, in order to
model systems in which resource usage is nested PAMELA offers a generalization of the
use operation in the form of the using construct according to

using (s) L

Its syntax resembles the PASCAL with construct in the sense that all statements within its
scope (i.e., L) are executed under the condition that the specified resource (s) is acquired.
In order to avoid various interpretation problems, the construct is only defined (and used)

for FCFS scheduling according to
using (s) L=P(s); L; V(s)

where s is of FCFS type. It follows use(U, 7) = using (U) delay(r). Note that nesting
resource usage is different (and less powerful) than simultaneous resource possession. For
example, using (r1) using (r2) delay(7) is not equal to using ({ry,r2} delay(r), that,
in turn, is equivalent to use({ry,ry}, 7).

Apart from its evident modeling convenience, the important reason to express mutual
exclusion in terms of use (and using) constructs instead of the underlying P and V
operations is that the additional structure in the model as imposed by the constructs
allows us to define a simple calculus that approximates the effects of mutual exclusion.
The use of P and V operators would necessitate the (compile-time) recognition of use-
like access templates in order to deduce the work loads in terms of the resources involved.
A similar point with respect to procedure-oriented modeling instead of message-oriented
modeling is made in Section 3.3. Furthermore, as explained in Section 3.2, providing
wait /signal operators rather than using semaphores is also motivated by analytic reasons.
While a language definition without P/V operators would yield a too serious limitation
with regard to modeling power, one of the underlying theses of this work is that their need
in performance modeling of parallel computer systems, and the consequent loss of model
analyzability that they introduce, is limited to a small class of problems. This point will
be further addressed in Section 3.4.

We end this section by an example that forms a typical demonstration of the modeling
approach in PAMELA.

Example 3.4 A classical example in performance modeling is a machine repair model
(MRM) [91] in which P clients either spend a mean time 7; on local processing, or request
service from a server s (s = 1), with mean service time 7,5, with a total cycle count of N
iterations (unlike the steady-state analysis of e.g., queuing systems or Petri nets, in our
approach we require models to terminate). Both times are assumed to be exponentially
distributed (the implementation through a call to some random generator function is
ignored for simplicity). The PAMELA model of the MRM is given by

L=par(p=1,P)
seq 1 =1,N) {
delay(r);
use(s, 7s)

3.3. PARADIGM 39

in which the exclusive service is expressed by the use operation applied to the passive
resource s that represents the server. Note that the above mathematical expression L
is displayed in program format, including the usual indentation. Figure 3.2 shows the
task graph as well as the execution trace of the MRM. In the figure deterministic times
are assumed. Furthermore, the processes are sorted according to ascending rank (round
robin scheduling is assumed). The (use) tasks that are mutually exclusive are shaded

4 . 1] 1 O
[R w
O . 1 01 O
1) L1 O O
1 O O O
. .] 1 O O
Q' |] 1 O O
P 1 O 1 O

Figure 3.2: MRM graph and execution trace (deterministic time version)

(recall that task graphs cannot express mutual exclusion). Note that T' is dominated by
the contention for s (in fact, T'= O(PN)). The static analysis we present accounts for
this effect whereas traditional static analysis only accounts for the critical path due to the
task precedences (T'= O(N)). O

3.3 Paradigm

In this section we provide a rationale for the choice of a procedure-oriented language
paradigm in PAMELA. In systems modeling two basic modeling approaches may be dis-
tinguished, i.e., material-oriented and machine-oriented modeling [89]. The terminology
originates from modeling and simulation in the industrial environment where material is
processed by several machines in sequence according to some manufacturing process. In
material-oriented modeling each material is associated a (“client”) process (i.e., the man-
ufacturing process) that describes the propagation of the material along the various ma-
chines, whereas in machine-oriented modeling each machine is associated a (“server”) pro-
cess, that accepts, processes, and delivers material within a chain formed by all machines.
In terms of concurrent programming paradigms, material-oriented modeling has a natural
correspondence to procedure-oriented programming [8], whereas machine-oriented mod-
eling has a natural correspondence to the message-oriented programming paradigm [§].
Note, however, that either concurrent programming paradigm can be used to implement
either modeling approach.

In order to enable compile-time analysis, the natural approach to performance mod-
eling chosen in the PAMELA methodology is material-oriented, hence the choice for a

40 CHAPTER 3. PAMELA

procedure-oriented language definition. This approach is demonstrated in Example 3.4
(MRM), in which the server is modeled as a passive resource S, to be held for duration
7s by each client process. In a machine-oriented approach, the server would be mod-
eled by a separate process that would communicate with the client processes through
message-passing.

The choice between both modeling paradigms touches upon the fundamental issue of
ease of modeling versus ease of (subsequent) analysis. For example consider the MRM.
In a machine-oriented paradigm, both clients and server would map to processes that
would communicate (and synchronize) using message-passing constructs. Let us assume
a message-oriented version of PAMELA based on the use of a CSP-like scheme using syn-
chronous send and receive operators combined with a selective communication state-
ment. Let C,, p = 1,..., P denote the P client processes and let S denote the server.
The MRM is modeled according to

L= 5| par(p=1P)C,

Cp,=seq(1=1,N){
delay(n);
send(S);
receive(S5)

1
S = while (true) {
receive(L,) — delay(r,); send(L,) O
receive(L,) — delay(r,); send(L;) O

receive(Lp) — delay(r,); send(Lp)

}

By the way, note that in this model the mutual exclusion (implicitly) results from the
single thread of control within the server while the non-determinism results from the ‘0’
operator.

From a simulation software engineering point of view it might be advantageous to
adopt the machine-oriented paradigm because of its similarity with the object-oriented
(machine-oriented) approach taken by most model builders. However, the above ap-
proach is less amenable to compile-time analysis, both with respect to the analysis of
condition synchronization as well as to the analysis of mutual exclusion. Unlike the
material-oriented model the analysis of condition synchronization is complicated because
of the non-determinism introduced by the message-passing mechanism (as a result of the
mutual exclusion involved). For instance, a critical path analysis technique is impossible
as the condition synchronization in above machine-oriented model cannot be expressed in
terms of a task graph (it is unknown in which order the tasks actually synchronize). In
other words, it may be impossible to deduce the “thread of condition synchronization”
that now dynamically passes between different processes, whereas in a material-oriented
model this thread would coincide with the process’s own thread of control, thus enabling a
much more simple, symbolic analysis scheme (a striking example of this important aspect
is discussed in Section 5.5). In fact, by localizing information (comparable to “information

3.3. PARADIGM 41

hiding” as proposed in software engineering) the information on the global synchronization
structure has been lost? (demonstrated in Example 3.6 later on).

While the above applies to condition synchronization the material-oriented paradigm
also provides better analyzability with regard to mutual exclusion. In fact, unlike message-
passing, the use construct forces the user to model according to a structured (operation-
oriented [8]) paradigm that would be characterized by the template

use(s,7) = send(s) ; receive(s)

where s is given by the above server process. Note that a similar observation has already
been made earlier with regard to the basic “asynchronous message-passing” operators P
and V. In some sense the situation is comparable with the use of unstructured gotos in
sequential languages and the resulting problems with respect to program analyzability.

In summary, the global as well as the structured approach to describing synchroniza-
tion in the material-oriented paradigm offers the possibility of a symbolic analysis scheme.
As it is highly doubtful that recognition of a machine-oriented model in terms of an equiv-
alent material-oriented model (reverse engineering) can be entirely mechanized, we adopt
the material-oriented approach, that, at the possible expense of somewhat more model-
ing effort, retains the possibility of applying an automated mapping scheme yielding a
symbolic performance model in the time domain.

Perhaps even more than the MRM, a pipeline is a typical example to demonstrate the
merit of the material-oriented modeling approach.

Example 3.5 Consider the pipelined processing of N data sets involving an M unit
pipeline (e.g., vector unit, packet-switched communication pipeline, software pipeline). In
a machine-oriented paradigm, each unit would map to a process that would synchronously
receive a data set, process it, and send it to the next unit. In our material-oriented
approach, the entire computational process (involving M stages) is expressed for each
data set. The result is a contention model in which each data process is executed in
parallel and contends for each unit in its course. The PAMELA model is given by

L=par (i:=1,N)seq (m=1,M) use(tn,)

where wu,, denotes the resource that represents unit m, and 7,, denotes the associated
processing time. The above model correctly predicts both startup delay as well as the
bandwidth of the pipelined system. Note that, although the absolute order in which data
is processed is left undetermined, the performance prediction is valid.

Note that the material-oriented approach in which the pipeline is expressed in terms
of a contention model yields an SP model that is amenable to the symbolic analysis
method as will be described later on. If a task graph formalism would be used the
processing of each data element by each unit would have to be expressed at the expense
of a non-SP, N x M task graph as shown in Fig. 3.3, that, unlike the SP graph, is not
amenable to the symbolic mapping process. Although the non-SP model can be mapped
to a numeric time domain computation (in PAMELA terms, wait/signal operators can be

2The problem is more or less comparable to the parallelism detection problem with sequential pro-
gramming languages, that, in general, cannot be solved at compile-time due to the irreversible loss of
information.

42 CHAPTER 3. PAMELA

used instead of send/receive operators, see, e.g., Example 5.1), the generated process is
still essentially numeric in contrast to the symbolic model that results from the material-
oriented approach.

1 N 1 - ’\\’ N
()

(12)
9 e e

~. _

@ w

Conventional task graph

Pamela contention model

Figure 3.3: Traditional DG of a 3-stage pipeline compared to PAMELA graph.

Compared to a machine-oriented solution, a consequence of the material-oriented ap-
proach is that more processes may be involved than absolutely necessary as in a typical
pipeline N > M. In fact, contention models express potential parallelism (N) instead of
the actual parallelism (min(N, M)). Note, however, that given our analytical approach
the use of a possibly huge number of processes does not induce actual (simulation) costs.
For instance, there is no reason not to specify a 10%-element vector operation using 10°
“virtual” processes. O

At first glance, the use of the material-oriented paradigm with its structured syn-
chronization operators (which we coin contention modeling) may seem to be restricted to
systems that perform simple, and highly structured synchronizations. Consequently, a
typically “message-oriented” problem such as the producer-consumer problem (cf. Exam-
ple 3.2) might seem less amenable to a description in terms of a contention model. Yet
again, a material-oriented description is possible, as shown in the next example.

Example 3.6 Recall the producer-consumer scheme shown in Example 3.2. In contrast
to the machine-oriented flavor of the first solution® we now describe the propagation
process of the data. In order to obtain a terminating system we define N to be the
number of data elements that are processed. If we define the result to be the execution
time it takes for the combined system to terminate, it follows

L = par (i =1,N) {produced ; buffered ; consumed}
produced = use(producer,,)

consumed = use(consumer,T.)

buffered = use(buffer,)

30f course, a pure machine-oriented solution would involve three processes, i.e., producer, consumer,
and buffer that would communicate using send/receive primitives. Nevertheless, although expressed
in terms of our procedure-oriented formalism (“P/V”), the modeling paradigm was (largely) machine-
oriented.

3.4. ANALYSIS 43

where 7, accounts for the time delay involved with the buffer storage and retrieval of each
data element (not specified in the earlier example). O

As in the pipeline example, the contention model accurately accounts for the overall time
behavior of the process, while the model can be easily mapped into a symbolic time domain
model, unlike the machine-oriented model. Again, the sacrifice is “under-specification”,
namely the abstraction of the order with respect to the actual data being processed, as
well as the exact location where the data resides. Assuming the bandwidths of the various
process stages differ, due to the infinite resource queues, all virtual processes will be queued
at the slowest resource, instead of being spread across the total system due to the bounded
storage capacity of each stage as in reality (e.g., the bounded buffer). Thus, contention
modeling is a good example of the trade-off between obtaining precise knowledge of the
timing and location of each individual element with the associated analysis cost, versus
obtaining global, system-level timing information only, yet at a much lower expense.

3.4 Analysis

3.4.1 Introduction

In this section we present a basic calculus that enables us to reason about the temporal
behavior of PAMELA models. As mentioned earlier, the approach towards the analysis
of PAMELA models is based on the application of critical path analysis, extended with a
bounding analysis to approximate the effects of mutual exclusion. As the latter approach is
based on identifying potential serialization of contending model components, the analysis
has been coined serialization analysis.

Apart from providing transformation rules from the PAMELA domain to the time
domain, the calculus enables model optimizations based on equivalence relations between
models in the PAMELA domain that have the same time solution. Some very simple
examples have already been presented during the description of the PAMELA language.

Recall the model

L = delay(m) ; delay(m)

where 71 and 7, are deterministic variables. Clearly, it follows T' = 7 + 7. On the other

hand, it also holds
delay(7) ; delay(m;) = delay(r, +)

of which the right hand side also yields T'= 7 + 75. Likewise the model
L = delay(m) || delay(m:)

immediately yields T' = max(7y, 72) due to the implicit barrier synchronization. Conse-
quently,

delay(r) || delay(m) = delay(m max 73)

Consequently, the calculus comprises a mixture of mapping descriptions from the PAMELA
domain to the time domain as well as transformations within the PAMELA domain. As

44 CHAPTER 3. PAMELA

PAMELA models, based on delays only, can be expressed in terms of task graphs, a critical
path analysis scheme can be defined that maps a so-called contention-free (delay) model
into a deterministic time domain computation. This will be described in the next section.

As an introduction to the mechanics of contention analysis, consider the PAMELA
model

L = use(r,m) || use(r, m2)

where r is FCFS-type (initially, r = 1). In contrast to the above parallel composition this
model yields T' = 7 + 75 due to the serialization of both use statements. Even though
the outcome of the above model can still be expressed in terms of a single solution, the
introduction of mutual exclusion next to condition synchronization entails a new analysis
problem due to the inherent non-determinism of the conflict arbitration. For instance,
the analysis of the model

L — Ll H L2
Ly = wuse(r,m) ; delay(m)
Ly = wuse(r,73) ; delay(my)

is much less trivial. Depending on which process is given priority the outcome is either
T =7 4+ max(7s + 74, 72) or T' = 73 + max(7y + 72, 74). The non-deterministic direction of
the implicit precedence arc between both use statements introduces the uncertainty in the
prediction. Recall that we assume for every FCFS resource that the service time equals
the service demand argument of each use operation unless stated otherwise. Hence, the
variance of T' for the above model can be quite large (up to a factor 2 as will be discussed in
Chapter 6). On the other extreme, for PS-type resources (service time — 0) the variance
of the result would go to zero in which case a deterministic result is obtained. (It holds T' =
2min(ry, 73) + max(7y 4+ 71 — 73, T2, T4 + T3 — T1, T4) as explained in Section 5.4.) In general,
however, the result is essentially non-deterministic. The analysis of PS-type resource
usage is discussed in Section 3.6. While this analysis involves additional transformations
that apply to PS-type resources only, the basic calculus we present in this chapter covers
any scheduling discipline. Hence, in the following we tacitly assume FCFS-type resources
unless specifically noted.

In general, large models comprise many use statements involving many resources.
Even worse, for aggregate and possibly dynamic models, the exact relative order of the
various use statements is typically unknown at compile-time. Clearly, unlike critical path
analysis, there is no simple mechanical process through which I can be mapped onto T
other than through enumeration of all possible critical paths, depending on the actual 7
values and priority schemes. In general, the execution time T' of a PAMELA model may be
anywhere between a lower bound T and some upper bound 7. Note that this uncertainty
is entirely due to the presence (or potential) of contention. At this point we do not (yet)
consider conditional control flow which, of course, forms an additional complication.

The characteristic approach in probabilistic models like queuing networks, Petri nets,
or process algebras is to analyze the entire (state) distribution or, for efficiency reasons,
merely to consider the mean value of T. The approach we will take is to select 7! as an
estimate for T'. The reason for this choice is as follows. First, the analysis of a (tight)
lower bound is trivial and, equally importantly, it is amenable to a mechanical, symbolic,

3.4. ANALYSIS 45

scheme like conventional critical path analysis. Second, as will be shown in Section 6.2,
the analysis of an upper bound that is tight (i.e., has any practical value) is extremely
complex. Third, as will be shown in Section 6.3, for the vast majority of systems with
random resource usage (i.e., a typical system) the mean value of T is much closer to 7"
than T*. The upper bound corresponds to extremely unlikely schedules (unfair resource
conflict arbitrations) whereas the vast majority of schedules entails execution times close
to T". Hence, the lower bound is a much better estimate of 7' than T%.

Our general approach towards the analysis of PAMELA models is characterized by
Figure 3.4. For the subset of contention-free models T' can be computed based on the

PamelaDomain Time Domain

T (analytic, exact)

T' (analytic, approx)

T (smulation, sample)

Figure 3.4: PAMELA analysis approach

isomorphism ¢. For a subset of contention models (i.e., those having structured ME and
no data dependencies) the lower bound analysis technique applies (7). For the superset
simulation is the only solution, be it that parts of the model that are within the above sub-
sets can be replaced by reduced versions using the appropriate analytic technique. Hence,
significant savings in simulation time can be achieved at small (or without) sacrificing
prediction accuracy. With respect to the if operator within the smallest set, note that
this only applies to simple conditions that are static. For many applications, however,
the if operator should be thought as being in one of the supersets. This point will be
discussed later on.

In the following we first describe the critical path component of the calculus that
applies for models that are contention-free. After that we will describe our approach to
the analysis of mutual exclusion and how it is integrated within the critical path analysis.

3.4.2 Critical Path Analysis

In the following we formalize critical path analysis in terms of PAMELA. First we consider
models without conditional control flow. As described in Chapter 2, for task graphs,

46 CHAPTER 3. PAMELA

critical path analysis is based on the isomorphism®* between the task graph in the original
computation domain and the task graph representing the time domain computation. As
contention-free PAMELA models can be represented by task graphs the isomorphism also
applies to PAMELA models. Let ¢ denote the isomorphism between a computation L
in the PAMELA domain and the corresponding (execution) computation 7' in the time
domain. Then T' = (L) denotes the estimated execution time of L. Based on the task
graph isomorphism described in Chapter 2, T' is constructed by applying the following
transformations.

Let ¢; denote a basic PAMELA statement, i.e., a delay a wait or a signal statement.
Let g¢p(;) denote its predecessor statement (except for the very first statement). The
following time computations are generated:

e identity:
delay(r) = ri =1y + 7 (3.1)

e condition synchronization:

signal({cy,....en}) = ri=rye , Vi=1...N:r,,=mr (3.2)
wait({cy,...,en}) = ri = max(rpy), max) (3.3)

Note that each variable is assigned exactly once. Instead of implementing the wait/signal
time synchronization in terms of the wait task variable r;, a condition-specific variable
r is used. The reason for using this modified scheme is its practical value in that a
computable result is still achieved in cases where the name of the predecessor task is
not available in explicit form (see Example 5.1 that involves the critical path analysis of
conditional message-passing code).

The transformation of a delay statement can also be expressed in terms of ¢ according

to

o(delay(r)) =7 (3.4)
The transformation of the sequential and parallel composition operators are given by

e sequentialism:

@(L1 5 La) = (L) + ¢(Ls) (3.5)

e parallelism:

@(Ly || Le) = ¢(L1) max (L) (3.6)

*Although all static analysis techniques are based on this isomorphism a comparable algebraic de-
scription has only been explicitly introduced in [106].

3.4. ANALYSIS 47

These transformations generalize to the following reductions

plseq (i = 1,N) Li) = 3_ (L) (3.7)
p(par (i = 1,N) L) = max o(Li) (3.8)

For example, consider the PAMELA model of the parallelized polynomial computation
according to Example 3.1. Fach equation of the PAMELA model is compiled into the
following computations (after some simplifying local substitutions)

T = max(ry,r2,...,7s)

ry = 047, ,r3=m ,1ry=n
ry = 047, , rhs =1

r3 = max(0,73) + T , The = T3

re = max(0,r,) +Tm , Ty =714

rs = max(0,r9) + 70 , Thr =75

re = max(0,r5) + T , Tes = T6

re = maX(Ov Tig, T/57) + 70, r/78 =T
rs = max(0, g, Trg) + Ta

Due to the static precedence relations, the computation of T is straightforward. The
order in which each equation is to be evaluated on a (presumably) sequential system
can be determined using compile-time dependence analysis. For models in which the task
precedence relations are dynamic the above compilation scheme also applies. In that case,
the above equations must be embedded within an additional iterative loop structure that
evaluates the data dependencies at run-time®.

Due to the isomorphism, by Eq. (3.4) through (3.6) the following transformations are
defined as well

delay(m) ; delay(m) = delay(m + 72)
delay(r) || delay(m) = delay(m maxm)
that form the basis for SP reduction. For example, consider the following SP model
L — Ll H L2

Ly = delay(n) ; delay(m)
Ly = delay(rs) ; delay(my)

Application of ¢ (Egs. (3.4),through (3.6)) results in

T = TimaxT,
Th = nn+m
T, = m+7y

>See Example 5.1. Note that this is similar to maintaining a discrete event list in a simulation approach.
The relation between critical path analysis and simulation 1s elaborated in Section 5.4.

48 CHAPTER 3. PAMELA

that yields T' = ((71 + 72) max(73 + 74)). On the other hand, SP reduction yields the same
result, be it in the PAMELA domain according to the derivation

Ll = delay(rl —|— 7—2)
L2 = delay(rg —|— T4)
L = L] Ly = delay((r, + 72) max(7s3 4 74))

As discussed in Chapter 2, conditional control flow is usually handled by weighting the
workloads in the model by the (combined) branching probability associated with the
branch in which the statement resides. Formally, conditional statements can be incorpo-
rated in the compilation scheme by simply transferring the condition to the time domain
according to

plif (¢) L) = [c]e(L) (3.9)
where [...] : {true, false} — {0,1} denotes Iverson’s operator [75] defined by

1, cis true;

le] = { 0, cis false.

Hence, the following transformation holds
if (¢) delay(7) = delay([c]7)

Clearly, the conditional construct(s) will eventually have to be reduced in order to avoid
a functional simulation. For some parameters of interest, however, Eq. (3.9) provides a
means of retaining them within the resulting performance model. For instance, consider

L =seq (i=1,N)if (i mod S) delay(r)

is compiled into
N
T=> [imodS]r
=1
in which the value of S is clearly of interest to the model. Retaining parameters may also
have a favorable effect on accuracy. In the above case, subsequent reduction of the } -
[...] pair yields

T=|—|r

B
However, in many cases, probabilistic reductions are used, which, in terms of our calculus
is expressed as the following mean value expression

N
EQ_le]T) = pT
=1
where ¢; denotes some, possibly i-dependent condition (e.g., resulting from a branch in a
loop), and p denotes the average truth probability of ¢;,...cn (e.g., the average branching
probability).

3.4. ANALYSIS 49

3.4.3 Lower Bound Analysis

In this section we introduce the approximate analysis of mutual exclusion and describe its
integration within the critical path compilation scheme as described earlier. The analysis
is restricted to simple use models, i.e., models in terms of use(U, 7) where |U| = 1. The
analysis of simultaneous resource possession will be discussed in Section 3.6.

Recall the model

L — Ll H L2
Ly = wuse(r,m) ; delay(m)
Ly = wuse(r,73) ; delay(my)

where r = 1. As discussed before, in general the prediction for 7" is only known to lie
between a lower bound 7" and an upper bound 7™ due to the non-determinism involved
with the potential of resource contention. In the following we describe the analysis of the
lower bound.

On the one hand, the lower bound is determined by the fact that T' cannot be less
than the execution time of the same model L' with r = p according to

L7 = delay(m) ; delay(m)
Ly, = delay(7s) ; delay(m)

Consequently, T' > (L) which yields
T > max(m + 72,73 + 74)

as shown earlier.

On the other hand, T cannot be less than the aggregate service demand 7 4+ 73 on
the resource r corresponding to the fact that the use statements cannot overlap (i.e., are
serialized). Consequently

!
T' = max(my + T2, T3 + T4, 71 + T3)

When more resources are involved the serialization argument simply applies to each re-
source separately. Clearly, the above serialization analysis is amenable to a mechanized,
symbolic scheme.

We now present the analysis algorithm. Let ¢ now be defined for any PAMELA model
including use statements according to Eqs. (3.1) through (3.9) including

p(use(r,7)) =7 (3.10)

The effect of mutual exclusion is approximated by the following scheme. Let §(L) =
(61,...,00) denote the total service demand vector of I where M is the total number of
resources involved and §,, denotes the total service demand on resource r,,. For conve-
nience we will write d,,(L) to denote the m-th element of §(L). Clearly, the aggregate
work load on each resource is given by

{Q(Ll)—l—...—l—é(LN), L=1"Li;...; Lyor L=1Ly | ... | Ln;

Te™, L = use(r,,, 7).

(3.11)

50 CHAPTER 3. PAMELA

where ¢ = (0,...,0,1,0,...,0) is the M-dimensional unit vector in the m direction, and
addition and multiplication are defined element-wise. Let w denote the lower bound on
the execution time of L due to the fact that each access to a resource is at least serialized.
Assuming that the amount of request parallelism is larger than the appropriate resource
multiplicity, for sufficiently large visit counts (e.g., PS-type resources) it follows
Sm (L)

w(l) = _max o (3.12)
Eq. (3.12) follows from the fact that the execution time can never less than the maximum
of the total time delay at each resource (i.e., the total service demand divided by the
server multiplicity). For cases where the number of visit counts is very low, when the
basic service time 7, is known, a somewhat tighter bound is established by

mmw) =)

T'm Tm

w(L) = max {

m=1...M

(3.13)

where v, denotes the aggregate visit count of resource m. For instance, when the total
service demand only entails v = 3 visits involving a resource with multiplicity r = 2,
the minimum delay corresponds to 2 units service (27,,), rather than 1.5 units service
as would be computed by Eq. (3.12). When the ratio between the number of visits and
resource multiplicity is large, Eq. (3.13) approaches Eq. (3.12).

Combining the lower bound due to mutual exclusion (w) with the lower bound due to
condition synchronization (), it follows that the lower bound on T is predicted by

THL) = max(e(L),w(L)) (3.14)

While Eq. (3.14) applies to basic parallel sections, for general models the following recur-
sion provides a sharper bound as will be illustrated in Example 3.10.

THL) + ...+ TLy), L=1~L;...; Ly;
TI(L) — ! TYL;)max ... max TY(Ly)max w(L), L=1L]| ...| Ly; (3.15)
max(¢(L),w(L)), otherwise.

Note that conventional compile-time analysis disregards w while conventional queuing
analysis (partially) disregards ¢. Serialization analysis combines both terms in an ap-
proximation that sustains a minimum accuracy where the aforementioned approaches fail.
Like conventional critical path analysis, serialization analysis has a quadratic complexity
in the (symbolic) size of the model, while for SP models the complexity is linear.

Similar to the critical path analysis, described earlier, the lower bound analysis can
also be expressed in terms of the PAMELA domain, rather than the time domain. Unlike
contention-free models, however, some transformations are approximations, rather than
exact. This even applies to simple models. Consider a submodel

use(r,my) ; use(r,2)
where r = 1. For FCFS-type resources the reduction

use(r,my) ; use(r,m2) = use(r, 7 + 72)

3.4. ANALYSIS 51

is not entirely correct (for PS-type resources the reduction holds). Although, in terms
of T! both cases are equivalent, in terms of T a different distribution will result due to
the fact that the state space has changed (in the original submodel a process can be
preempted after 7 time units). Similarly, the reduction

use(r,my) || use(r,m5) = use(r, 7 + 72)

entails the same problem. Nevertheless, when the lower bound analysis is applied the
above reductions hold. Even when T' is considered, the errors that are introduced are
typically small except for small models with coarse grain FCFS resource usage. The
related accuracy aspects are extensively discussed in Chapter 6.

As the above reductions are correct within the lower bound analysis, we now present
the remaining transformations needed to apply serialization analysis within the PAMELA
domain. Like in the case of contention-free models, conditional control flow is formally
transferred to the time domain according to

if (c) use(r,7) = use(r, [c|7)

After all conditional constructs are rewritten accordingly, a static model results that is
amenable to the application of Eq. (3.15). In the PAMELA domain, Eq. (3.14) corresponds
to the following transformation, denoted F'.

Transformation 3.1 Let
Liry=par (p=1...P) Ly(r)

model a parallel section where L,y(r) involves mutual exclusive access to some resource r
up to a total service demand 7,. Then its lower bound transformation F(L) is given by

P
Y op=1Tp

T'm

F(L) = use(r,w) || L(p) , w =
O

Note that, instead of the isomorphism with respect to contention-free models, this trans-
formation does not imply an equality. It denotes an approximation. In case of multiple
resources the lower bound transformation successively applies to each resource, based on
the fact that the contributions to T are independent.

The transformation factors out the serialization part from within the parallel section.
The use statements within the original section are subsequently replaced with delays
(hence the p term) to avoid the introduction of redundant contention terms. For instance
consider the example

L = {use(r, 1) ; delay(ms)} || {use(r,73) ; delay(m)}
Application of Transformation 3.1 yields
L' = {use(r,71) ; use(r,m3)} || {delay () ; delay(m)} || {delay(7s) ; delay(74)}

that introduces the extra term in the lower bound formula derived earlier.
Corresponding to the recursive process of Eq. (3.15) the above transformation is em-
bedded in the following algorithm.

52 CHAPTER 3. PAMELA

Algorithm 3.1 Let L be a contention model. The following serialization algorithm A
transforms L into a contention-free model L' = A(L) while preserving the lower bound on
execution time as defined by serialization analysis.

A(L)

{
let L =seq (s=1,5) L,

if (S >1)
Jor (s =1...5)
A(Ly)

let L =par (p=1,P) L,
d(P>1)4

for(p=1...P)
A(Ly)
P(L)

¥
¥

3.5 Examples

In this section we present a number of examples that demonstrate how the analysis tech-
nique is applied.

Example 3.7 In this example we derive 7" for the MRM and compare it with results
obtained through queuing theory. Recall the MRM in Example 3.4. It follows

N
¢ = max Z(Tl +75) = N(m+75)
p=1...P =1
N

p
w = Z Z T, = PN,
p=1i=1
Hence, by Eq. (3.14) (or Eq. (3.15)) it follows T' = N max(m + 7,, P7;). Unlike con-
ventional compile-time analysis 7" accounts for the additional queuing delay when s is
saturated. The above analysis yields the same result as asymptotic bound analysis in
queuing theory [93]. Let R denote the response time and let Z = 7; denote the think
time. Then the mean cycle time R + Z equals ¢/N for P < P* and w/N for P > P*,
where the saturation point P* = (7,4+7)/7, denotes the crossover between the asymptotes.
For deterministic time delays 7" provides a good estimation. However, even for
stochastic time delays 7" serves as a reasonable estimator. For example, assume that
7 and 7, are exponentially distributed. While the result for 7" remains the same, the
accurate (simulation) result T' can be computed analytically. Since the MRM maps to a
separable queuing network [15], Mean Value Analysis (MVA) [129] may be applied that
yields (for large V)

T = N(R(P) +)

3.5. EXAMPLES 33

where the response time R(n) of the server for n clients in the closed system is given by

the MVA recursion [93]

R(0) =0, R(n—l—l)z[l—l—in))]rs

7+ R(n

Figure 3.5 compares the predictions 7' (dotted line) and T' (straight line) as a function
of the number of clients P. The figure shows that the lower bound essentially forms the

Figure 3.5: Lower bound 7" compared to MVA prediction T’

asymptotes of the probabilistic prediction, with a limited deviation occurring at P = P~
due to the small amount of contention that occurs in the stochastic system. Notice the
dramatic error that traditional compile-time analysis (7% = ¢) entails for large P. The
utility of 7" as an estimator for 7' is further discussed in Chapter 6. O

Example 3.8 In this example we derive T for the pipeline model and compare it to 7.
Consider the pipeline model discussed in Example 3.5 given by

L=par (i:=1,N)seq (m=1,M) use(tn,)
Let a pipeline unit take 7, on average, and let ¢ denote the slowest pipeline unit. It follows
pw=Mr,, w=Nr,

Thus Eq. (3.14) yields T = max(Mr,, N7.). Indeed, T' is a lower bound as the correct
pipeline model is given by T'= M, + (N — 1)7.. However, the relative deviation is neg-
ligible for cases where either ¢ dominates (startup term, M > N) or where w dominates
(bandwidth term, N > M). The maximum deviation occurs for a balanced system (i.e.,
equal resource demands, 7. = 7, = 7) when N = M. In this case, T' = N7 whereas
T = (2N —1)7. Hence, the worst case relative deviation is a factor 2. Note, however, that
this can only occur for balanced systems that are precisely in the cut-off region between no
saturation and full saturation. Notice how the contention model and its associated anal-
ysis account for both pipeline startup (critical path term ¢) and bandwidth (contention
term w). O

54 CHAPTER 3. PAMELA

Both the MRM and the pipeline are examples in which T" and T' differ (up to a factor
2) due to the fact that the p-w analysis does not account for the transient skewing effect
in which the processes incur a one-only delay as a result of the initial resource conflicts
(see Fig. 3.2). An extension of the lower bound analysis method to accurately account for
this general phenomenon will be described in Section 3.6. Due to the extension a correct
result for the pipeline model can be achieved.

Example 3.9 As an example of the recursive operation of Algorithm 3.1, interleaved
with SP reduction, consider the following SP model

L = ti; (L] La) s tis
Ly = ty; ((tas to) [(Ts5 t8)) 5 tun s tua
Ly = 135165 ((to; ti2) || (tos tis)) 5 tis

where
t1,5.67911,13,16 = delay(1), ty514y = delay(2)
are delay tasks and
ty = use(ry, 1), t{io,12) = use(r1,5), ti5s = use(ry, 1), tyas) = use(ry,5)

contend for resource ry or ry (r; = 1). Figure 3.6 shows the initial task graph (annotated

e o (Trad: 16)
\CD/ @\®/ > Conflict-free

> Mutex (r1) D Mutex (r2)

(Trad: 12) (Trad: 16)

Figure 3.6: Serialization process at recursion depth 1

with the individual workloads, the tasks are numbered row-wise), the graph after the first
two applications of Transformation 3.1 (S: serialization) at recursion depth 1, and after
partial reduction (R: reduction). Figure 3.7 shows the graph after application of Trans-
formation 3.1 (S) at the top level, after replacing use operations by delays as there is
no more potential for contention (p), and after final reduction (R). The numbers below

3.5. EXAMPLES 35

N

))
@ @ ® (& @ A \ - > -
w w @ @
° Q o Conflict-free
o (D)

(Traj: 16) (Trw: 16) O Mutex (I’l)
D Mutex (r2)

(Trad: 16)

Figure 3.7: Serialization process at recursion depth 0

each graph denote the result of traditional analysis (¢). The example demonstrates that
the complete recursion needs to be performed, rather than simply applying Transforma-
tion 3.1 just once, incorporating all par levels simultaneously. The latter would still yield
T'! = 12, not accounting for the serialization effects that occur at par level 1. O

Example 3.10 In order to demonstrate the vital importance of recursively applying

Eq. (3.14) (i.e., Eq. (3.15)), consider the following model, i.e.,
L=seq(i=1,N) par (p=1,P) use(r;,7)

in which resource usage is non-uniformly distributed over the length of the entire com-

putation (see Fig. 3.8). While Eq. (3.14) yields T' = max(P7, N7), Eq. (3.15) yields

On

@ N

-/ VNN

A AV

Figure 3.8: Nonuniform resource access

7" = N max(Pr,7) = NPr. Thus applying Eq. (3.15) (i.e., applying Eq. (3.14) to
each parallel section instead of only once) improves the bound by as much as a factor V.
O

56 CHAPTER 3. PAMELA

To conclude this section we present an example showing how (simple) algorithms are
analyzed. For the sake of modeling we must now assume the presence of a machine.
However, we will not consider machine modeling in more detail than necessary as this is
the subject of Chapter 4. Furthermore, the example shows how conditional control flow
is modeled.

Example 3.11 Consider the following SPMD [82] program that scales a sparse N element
vector v using a simple (abstract) P-node scalar shared-memory machine, i.e.,

for i = 0 .. B(p)-1
if v[f(p,1)] =0
v[f(p,i)] = v[f(p,i)] * alpha;

where p =0... P — 1 denotes the processor index and B(p) and f(p,7) denote local loop
bound and index function, respectively (based on the specific partitioning scheme used).
Let the machine (interface) be modeled in terms of the instructions move (shared memory
load/store) and flop (local floating point operation, including register traffic). Note the
similarity to the abstract parallel machine introduced in Chapter 1. Given this machine
interface, the PAMELA model of the parallel program is given by the expression

L=par(p=0,P—1)
seq (1 =0,B(p) — 1) {
move(v + f(p,1));
if (v[f(p,9)] # 0) {
flop;
move(v + f(p,1))
}
}

where the par section accounts for the SPMD execution. Many details like multiprocessing

overhead are ignored for simplicity (alpha is assumed to be already loaded in register).
For this example we only consider an abstract machine model where a floating point

is represented by a delay and shared-memory access is mutually exclusive according to

flop = delay(ry)
move(a) = use(m,)

where 7; denotes the effective floating point instruction time, m denotes the shared mem-
ory resource, and 7, denotes the effective memory load/store time. Note that in this
abstract architecture the actual memory address (@) is irrelevant (unlike many of the
architectures we will discuss in the next chapter). Consequently, it follows

L=par(p=0,P—1)
seq (i 2(07;3(19) - A
if (c(p.1)) {
delay(7;);
use(7,,)

}

3.5. EXAMPLES 57

P | TYT | /T P | TYT | /T
5 0.96 | 0.96 5 0.89 | 0.89
10| 0.87 | 0.87 10| 0.73 | 0.73
15 0.89 | 0.72 15| 0.89 | 0.62
20 | 0.92 | 0.59 20| 0.92 | 0.46
251 0.95 | 0.46 251 0.95 | 0.38
Table 3.1: T without reduction. Table 3.2: T (reduction to O(1)).

where ¢(p,i) = (v[f(p,7)] # 0) denotes the data dependency.
Serialization analysis yields
B(p)-1

¢ = max > (7w +[e(p,i)](Tm + 1))

p=0...P—-1 =0

P-1 B(p)-1

o= XY (il

which yields the prediction T = max(p,w).

For vectors with N = 10* and uniform density d = 0.1 Table 3.1 shows some results for
different numbers of processors (7; = 1007,,). As in the other examples T" is reasonably
accurate for cases with relatively high ¢ or w. For P > 15 contention starts to dominate
as can be seen by the values of ¢ (second column).

The above prediction has an O(N) complexity. In the interest of efficiency we consider
two possible reductions of T'. First, let the density of v be uniform and measured to be
given by d. As a result of the reduction

B(p)-1
Z [C(p,z)] = dB(p)
=0
it follows
o= e, Bt d(m 7))

w = PB(1+d)r, =N(1l+d),

which reduces the complexity of 7" from O(N) to O(P). Note that ¢ and w now denote
mean values. Furthermore, under the assumption of a standard block or cyclic partitioning
scheme an O(1) complexity model results, i.e.,

T = max([%-‘ (T + (70 +77)), N(1 4 d)7)

Note that the first reduction of ¢ to a mean value introduces an error as the real mean value
be slightly higher due to the actual variance in the number of non-zeros that are processed
by each node (the mean value offset is logarithmically in P [90]). This phenomenon is
reflected by the lower /T values in Table 3.2 compared to Table 3.1 (again, for parameter
valuses N = 10*,d = 0.1,7; = 1007,,,). However, the error is limited due the fact that
for larger P the w term will dominate (a correct mean value), which yields the correct
asymptote as illustrated by Table 3.2. O

38 CHAPTER 3. PAMELA

3.6 Extensions

In this section we describe two simple extensions to the lower bound analysis method.
The first extension applies to the introduction of a third term (next to ¢ and w) that
accounts for the transient skewing that occurs in a parallel system. The second extension
deals with the approximation of the effects of simultaneous resource possession.

3.6.1 Skewing Effect

Inherent to our methodology, the models that are subject to our analysis method are
transient, i.e., they eventually terminate (as does the corresponding time domain model).
Consequently, there are cases in which performance is dominated by an initial (and final)
transient phase, rather than the steady state phase. This transient phenomenon specifi-
cally occurs when multiple processes (initially) execute the same resource access sequence
that gives rise to a large number of initial conflicts. As a result the processes are skewed
during their subsequent steady state phase. Example models are the MRM (Example 3.4
and 3.7, especially for small N, also see Fig. 3.2), and, most notably, the pipeline model
(Example 3.5 and 3.8). This one-only phenomenon is not accounted for by ¢ as it is a
contention effect, nor is it accounted for by w since this initial serialization phenomenon
is independent of the possible steady state serialization. In the following we will account
for the skewing effect when we derive an exact solution for a simple model called the
“generalized MRM” that generalizes over models like the MRM and the pipeline. The
result represents an optimization over the general bound

T" = max(p,w)
Let the generalized MRM be given by
L= par (p = 17P) seq (Z = 17N) {delaY(Tl) ; seq (m = 17M) use(umva)}

For M =1 the model reduces to the MRM while for N = 1 and 7, = 0 the model reduces
to a pipeline. After each process has finished its first iteration ¢ = 1, the system enters
a steady state in which each thread is delayed (skewed) with respect to its immediate
resource access predecessor by an amount equal to the largest resource access delay (see

Fig. 3.9). It holds

L. Lt jal2f3 1 [if2]3

L. [+ @ [2f3 1 [f2]g -
Lsa [1] [2[3f 1 [if2[3 -
La [1] [2]3 1 [1[2]3

Figure 3.9: Trace of a 3-stage generalized MRM (P = 4, 7, deterministic)

M
c,o:N(Tl—l—mZ::le), w=PN max T

m=1...

3.6. EXTENSIONS 59

Let

*
T = Imax T,
m=1...M m

denote the largest resource access delay (7* = 75 in the example). From Fig. 3.9 it is easily
seen that when contention only entails skewing it holds T' = ¢+ (P—1)7* (critical path plus
skewing). When contention does dominate the entire process it holds T'= w + ¢ /N — 7*
(contention chain embedded within slightly longer trace). Consequently, for generalized
MRMs the optimization of Eq. (3.14) is given by

T =max(p+ PT",w+ @/N) — 71~ (3.16)

Note that for deterministic time delays the above result is exact, i.e., 7" = T as is easily
seen from the example in Fig. 3.9.
For the standard pipeline Eq. (3.16) reduces to

T=p+w—r1"
For equal stages (i.e., balanced pipeline) it follows
T=(M+P—1)m

which is the well-known linear startup-bandwidth model [72]. Note that for large P and
M it holds

T~p+4+w
instead of
T = max(p,w)

that explains the worst case deviation of a factor two between T and 1" as mentioned in
Example 3.8.

3.6.2 Simultaneous Resource Possession

The analysis presented thus far has been restricted to models with single resource pos-
session, i.e., to use(U,T) operations where |U| = 1. In this section we briefly discuss
the analysis of simultaneous resource possession. Note that this analysis is significantly
harder than that for single resource usage as exemplified by the difference in complexity
between, e.g., the analysis of queuing networks (single resource possession) and Petri nets
(multiple resource possession) [117]. Consider the following model

L = par(p=17P) L,

L, = seq(i=1,N){...;t1;...5t; ...5t3; ...}
ty, = wuse(ry,m)
ty = use(ry,)
ts = use({ry,r2},73)
where ry,ry are FCFS-type resources and the ... regions represent a finite number of

arbitrary statements. Instead of only two types of mutual exclusion, i.e., the r; accesses
and the ry accesses, there are five serialization mechanisms to be considered:

60 CHAPTER 3. PAMELA

ty conflicts with ¢,

ty conflicts with

ts conflicts with 75

ts conflicts with #;

o {5 conflicts with ¢,

Let the set {ry, 2} be represented by the “simultaneous resource” ry3 and let 715 = 73. In
terms of ryy it follows that the w contribution of #1, ¢,, and ¢3 to the lower bound is given

by
w = NP max(7, 72, T2, 71 + T2, T2 + T12) = NP(712 + max(r, 7))

In general, the number of potential conflicts (i.e., intersections between sets of simultane-
ous resources Uy, Us, . ..) that need to be considered grows with the number and cardinality
of the sets.

Like the approximate transformations, discussed earlier, that hold in terms of the lower
bound analysis, we introduce the following transformation

use({r1,...,rm},7) — par (i = 1, M) use(r;, 7) (3.17)

Thus, the potential conflicts between the various resource sets are preserved. Conse-
quently, in terms of the lower bound, the above transformation yields the same solution
as can easily be seen in the above example (if follows w = NP max(m + 73,72 + 73)).
In terms of T', however, the transformation introduces an error since the original syn-
chronization requirement is not present in the par statement. For example, consider the
following process (taken from the case study in Section 5.3)

L = Li| L,
Ll = use({f7x}77—l’) ; use(f? TZ/)
Ly = use(z,7,)

where f,x are FCFS-type resources (see Fig. 3.10). When L; is scheduled before L, it
follows T'=T! = 1, + max(7,, 7,). When Ly is scheduled before L, it follows T'=T" =

Tr + T + 7,. However, transformation (3.17) yields

L — Ll H L2
Ly = {use(f,7.) | use(x,7)} ; use(f,7,)
Ly = use(z,7,)
which results in T* = T' = 7, + max(r,, 7,). In this case, there are no synchronization

restrictions with regard to the f resource, hence, the decrease in T". Note, however, that
T! is equal for both models.

3.6. EXTENSIONS 61

original:

P S O A

L L

L1z o L

Figure 3.10: The effect of applying Eq. (3.17)

Example 3.12 In this example we demonstrate the application of the above approxima-
tion. Recall the dining philosophers problem in Example 3.3. Application of transforma-
tion (3.17) yields

L = par (p=1,P) philosopher(p)
)

= seq (1 = 1,N) {think(p) ; eat(p)}
= delay(m)

philosopher(p
think(p

)
cat(p) = use(c,,7) || use(c(priymoar; 7e)

in which the problem has been generalized to P philosophers and where the original
infinite loop has been replaced by a finite loop in order to apply our transient analysis

method. Lower bound analysis yields

¢ = N(r+r7)
w = NP(r.+71.)=2NPr,

Assuming 7. is sufficiently large it follows 7! = 2N Pr. which (correctly) implies that at
most P/2 philosophers can be eating simultaneously. O

The above transformation can also be used for the lower bound analysis of models
with nested resource usage. For example, consider the process

using (s1) {delay(7;) ; using (s;) {delay(7;) ; delay(7,)}}

that models circuit-switched communication involving 2 intermediate switches sy, s (75
is setup time, 7, is the data transfer time, see Section 4.3). First, the usage nest is
approximated in terms of multiple resource possession, according to the transformation

using (r) Ly ; use(U); L, — using (r) Ly ; use({r}UU,) ; using (r) L,(3.18)

where Ly, Ly are arbitrary submodels and U is a resource multiset as defined earlier. This
yields

use(sy, 7s) ; use({s1,s2},75) ; use({s1,s2},7)

62 CHAPTER 3. PAMELA

original:
S ‘ Ts Ts Tx ‘
S, Ts Tx ‘

Figure 3.11: The effect of applying Eq. (3.18) and Eq. (3.17)

which, in turn, is approximated by Eq. (3.17) to
use(slvTS)) {use(slvTS) H use(‘s?vTS)}) {use(slvTx) H use(‘s?le’)}

The approximation process is depicted in Fig. 3.11. Again, note that the lower bound is
preserved.

3.7 Summary

In this chapter we have introduced PAMELA as well as a basic calculus that yields symbolic
lower bound predictions for PAMELA models that feature a structured use of resources.
A key concept is the use of a procedure-oriented performance simulation formalism with
structured synchronization operators that enables a material-oriented modeling approach
coined contention modeling. As a result, many systems can be expressed in terms of an SP
model that, unlike in a machine-oriented modeling approach, enables the application of an
automatic compilation scheme yielding analytical performance models. From the point of
view of typical mutual exclusion analysis techniques, such as conventional queuing theory
or complexity theory, the critical path analysis prevents the usual errors when parallel
system performance is dominated by task precedence relations. On the other hand, from
the viewpoint of critical path analysis techniques, the (approximate) analysis of mutual
exclusion prevents the large errors that occur when system performance is dominated by
contention parameters. The integration of critical path analysis and contention analysis
provides the basic prediction robustness needed in view of the large parameter space that
is inherently covered by the analytic model.

As the language has been defined to provide sufficient modeling power in order to
avoid a priori loss of accuracy at the modeling stage, the subsequent analysis method
essentially breaks down in a number of categories as illustrated in Fig. 3.12. In terms
of this taxonomy the specific contribution of the PAMELA methodology pertains to the
subset of “use” models. The underlying thesis is that a large part of the parallel computer
systems can be adequately expressed in terms of structured mutual exclusion. Next to
the examples discussed in this chapter, including inherently “message-oriented” problems
(Example 3.6), the next chapter will substantiate this claim. Note that the appropriate

3.7. SUMMARY 63

model category | model structure analysis method

contention-free | SP (“par/seq”) symbolic expression ()
non-SP (“wait/signal”) | symbolic SE (¢)

contention SP (“use”) symbolic expression (¢, w)
non-SP (“use”) symbolic SE (¢, w)
SP/non-SP (“P/V”) simulation

Figure 3.12: Performance modeling classification

analysis technique can be easily deduced given any PAMELA model. The situation for Petri
nets or process algebras (next comparable in terms of modeling power) is not as attractive
because of the lack of structured mutual exclusion operators. Of course, restricted Petri
nets include syntactic classes such as state machines, and marked graphs that are deducible
at the transition or place level [117]. However, these restrictions yield a modeling power
that is much less compared to the “use” subset of PAMELA models.

Apart from the related work in terms of other representation formalisms® (as surveyed
in Chapter 2), our language approach and associated symbolic analysis has clearly been
influenced by much existing work in the language area. Language approaches to perfor-
mance modeling in conjunction with an associated analysis method include the work of
Lester (PEL [95]), and Qin (TCAS [125] that compiles symbolic model output). While
symbolic model compilation originated in the sequential domain [44, 66, 157], in the par-
allel processing domain, symbolic compilation approaches have been recently described by
Atapattu and Gannon [10], Clement and Quinn [29], Mendes, Yang and Reed [102], Sah-
ner and Trivedi [134] (for stochastic graphs), and Wang [156]. As discussed in Chapter 2,
however, none of the above approaches integrate contention analysis within the symbolic
compilation scheme.

The lower bound approach to mutual exclusion analysis in static prediction techniques
for parallel systems is not entirely new, be it that the underlying resource model is typ-
ically restricted to work conserving processor pools, unlike our general approach (at this
point we do not discuss bounding analysis techniques for, e.g., queuing networks as we
specifically focus on lower bound techniques for parallel systems including condition syn-
chronizations). As mentioned in Chapter 2, a lower bound comparable to Eq. 3.14 has been
used by Allen et al. [7] to account for the limited number of (multi)processing resources
in compile-time prediction of dynamically scheduled task graphs. Recently, a technique
has been described by Jain and Rajaraman [76] to predict the lower bound for optimal
multiprocessor schedules that is tighter than the bounds obtained thus far in the multi-
processing domain. Comparable to our recursive approach (Eq. 3.15) they improve the
sharpness of the basic bound given by Eq. 3.14 by applying the analysis to separate task
graph layers (cf. Example 3.10). However, both approaches apply to dynamic scheduling
of M equal processors only (i.e., one resource cpu with ¢pu = M in terms of PAMELA),
whereas our generalized approach applies without any constraints on resource types or
demands. In particular, our approach does not assume a work conserving scheduling dis-

5The attractiveness of a structured approach towards mutual exclusion, terms of both modeling and
analysis is an important reason for the success of queuing networks.

64 CHAPTER 3. PAMELA

cipline. In fact, when considering all resources in a real system, be it physical (processors,
switches, memories) or logical (i.e., software services, critical sections), unforced idleness
i1s quite common.

The choice to account for contention in terms of a lower bound model is based on two
reasons. In contrast to the computation of a tight upper bound (discussed in Chapter 6),
a tight lower bound can be computed at the same cost as conventional compile-time
techniques. Moreover, as illustrated by many of the examples, in the limit, the lower
bound model correctly predicts the average execution time of many systems that are
either contention-free or fully saturated. While the efficiency of the presented analysis is
optimal (linear for SP models), an important question is the accuracy of T' compared to
T'. An elaborate discussion of this issue is presented in Chapter 6.

Being an experimental formalism, the definition of PAMELA may still be subject to
(minor) changes. Especially the development of a compiler (currently under way) is
expected to yield valuable feedback on the language level as well as on the calculus.
Currently all experiments have been conducted using a discrete-event simulation kernel
(see Appendix E) that is to be used as the compiler run-time environment. Although
experimentation using this “PAMELA-like” library interface has been invaluable in the
development of PAMELA and its associated analysis, a real language interface is expected
to accelerate this process.

Chapter 4

Modeling Technique

4.1 Introduction

Thus far, we have discussed the application of PAMELA using problems relating to con-
currency in a general sense. In this chapter we discuss how parallel computer systems
are modeled (and subsequently analyzed). On the one hand, the discussion shows how
PAMELA can be applied. On the other hand, it shows how the entire domain of (von Neu-
mann) parallel system architecture (multiprocessing, multicomputing, vector processing)
can be characterized in terms of one simple formalism. As our main purpose is to discuss
the technique that we use in parallel systems modeling, we will only address the principles
involved with modeling parallel machines without going into much detail with respect to
contemporary parallel computer architecture.

In the previous chapter we have shown the material-oriented way in which parallel
computations are modeled. In this paradigm parallel programs are mapped to “active”
parallel processes while parallel machines are mapped to a set of concurrently operating
“re-active” subroutines. The formalization of this concept in terms of PAMELA is by
specifying a subroutine model for each instruction. For example, consider the scalar
floating point computation y = xyx5. Let the machine program be given by the process

move(xl,rl); move(x2,r2); mult(rl,r2,r3); move(r3,y)

thus assuming a traditional register architecture. Assuming that the register number
does not affect performance, for the purpose of modeling we define the following abstract
instruction set mult, load(a), and store(a) where a is the memory address (thus we
distinguish memory loads and stores). Then the PAMELA program model becomes

L =load(xy) ; load(xz) ; mult ; store(y)

where the instructions now represent models of the original instructions. The set of these
models is referred to as the machine model. In the most simple performance model each
instruction maps to a simple time delay according to

mult = delay(7,)
load(a) = delay(n)
store(a) = delay(rs)

66 CHAPTER 4. MODELING TECHNIQUE

As discussed before, the total performance model L is given by the combination of all four
equations. By substitution it follows

L = delay(m) ; delay(n) ; delay(r,,) ; delay(7;)
Consequently
T'=2n+7+7

Thus a key step in performance modeling of parallel computer systems is its mathematical
formalization in terms of a program model and a machine model, both generally expressed
as a set of PAMELA equations. Note, that modeling practice does not necessarily involve
modeling applications at the instruction level. As shown by the above reduction of the
four delay statements effectively into one delay(27, + 7,, + 75) model, in many cases
the modeling level can be increased to a macro instruction level (e.g., subroutine level)
where the parameters of the aggregate model are determined in terms of the constituent
submodels (as shown) and/or calibrated by measurements.

In practice, the subject of parallel systems modeling mainly concerns the way how
machines are modeled rather than the programs. Being a simulation language, mod-
eling imperative programs and algorithms in PAMELA is relatively straightforward. In
view of the material-oriented modeling approach, this is particularly true in case of a
procedure-oriented (“shared-memory”) source, that is typical for intermediate code gen-
erated by compilers for high-level, global name-space programming languages such as
the data parallel languages (e.g., HPF [86], FORTRAN-D [68], VIENNA-FORTRAN [161],
BoOSTER [113], and KALI [87]), the language restructuring systems (e.g., Faust [59],
Paraphrase 2 [123], ParaScope [25], PTRAN [7]), as well as the explicit parallel language
interfaces such as VM/EPEX [34], the Force [80], and other dialects [83]. Even in the
case of programs expressed in terms of an explicit parallel message-passing interface (e.g.,
PVM [148], MPI [154], or comparable interfaces [100]), the mapping to a PAMELA model
is simple as will be shown by some of the examples in this chapter as well as in the
succeeding chapter.

The simple nature of the above correspondence implies that (PAMELA) performance
models can be automatically extracted from a program source description as in most
parallel program performance prediction approaches discussed in Section 2.6 (e.g., [13,
29, 41, 102]). Thus, the prediction technique can be integrated within a more general
parallel application engineering environment based on only one source specification. A
good example of the advantages of integrating performance prediction within the software
engineering process is shown by the N-MAP environment [43].

Although, the transformation of a source program to a PAMELA image can be assumed
trivial in many aspects, there remains the fundamental problem of undecidability due to
(data-dependent) program parameters, such as branching conditions and loop bounds
when the analytic prediction technique is chosen rather than simulation. As discussed
earlier, out of three common solution techniques are assumed to be implemented, i.e.,
automatic compile-time reduction, or, if not compile-time deducible, symbolic parameter-
ization (in which the problem parameters are carried over in the time domain), or the use
of probabilistic abstractions based on either symbolic values, numeric defaults or numeric
profile data. Especially in the latter case, the underlying premise is that the program’s

4.1. INTRODUCTION 67

branching behavior largely depends on the given data set (problem size, input data, etc.).
Thus the profile obtained is also valid for a different parameter setting (e.g., different tim-
ing parameters or different number of processors'. Evidence suggesting this is presented
in, e.g., [41]). As mentioned in Chapter 1, the issues involved in parameter calibration is
outside the scope of our research.

To conclude the discussion on program modeling, we present a simple program model-
ing example (more examples can be found in Chapter 5). Many approaches in performance
modeling are based on the notion that the program describes the processes with their
parallelism, only limited by inherent algorithmic properties such as sequential fractions
(condition synchronization), whereas the machine represents the collection of resources,
and, consequently, is the system part responsible for the main performance degradation
due to contention. Hybrid queuing networks are an example of a representation formalism
that is conceived according to this model. Although this is often a realistic assumption
(e.g., when only a limited number of processors are considered), the notion of resource
limitations (i.e., queuing) do play a role at program level as well, as is shown in the next
example.

Example 4.1 In this example we describe a case where mutual exclusion at the program
level already dominates overall performance. Consider an SPMD shared-memory program
that computes the sum of a global N-element floating point vector v. Instead of applying a
recursive doubling scheme, in this example the vector is simply block-wise partitioned, i.e.,
N/P consecutive elements are assigned to the same processor (for simplicity we assume

P|N). The SPMD program is given by the pseudo code

for i =0 .. (N/P)-1
local = local + v[p*(N/P)+il;

set (lock);
sum = sum + local;
reset(lock);
where p = 0... P — 1 denotes the processor index, local denotes a local summation

variable (e.g., register), sum is the global result, its exclusive access ensured by the lock
semaphore.
Let the machine model interface be given by only two instructions models,

o flop that models the floating point addition instruction including all local register
traffic

e move(a) that models the global data transfer to or from shared memory where a
denotes the address

Given the above instruction interface, the corresponding PAMELA model is given by

INote that this only applies to branches and loop bounds that are not directly involved in the par-
allelization itself. Clearly, there exist many (data parallel) loops that are inherently affected. However,
these branching and loop bound dependencies are already accounted for in the model as they are explicitly
present in the (compiled) program.

68 CHAPTER 4. MODELING TECHNIQUE

L=par (p=0,P—1){

seq (i = 0, (N/P) — 1) {
move(v + p(N/P) + 1);
flop

b

using (lock) {
move(sum);
flop;

move(sum)

where the par construct models the SPMD parallelism. For simplicity, multiprocessing
overhead is ignored. The FCFS-type resource lock (lock = 1) implements the critical
section (this is an example of a software resource, rather than a hardware resource).
Note that the mapping between the program code and the PAMELA program model is
straightforward.

As we intend to illustrate the dominating influence of program-level contention, let,
as a first-order approximation, the machine model be given by the contention-free model

flop = delay(ry)
move(a) = delay(7,,)

It follows

L=par(p=0,P—1){

seq (i = 0,(N/P) — 1) {
delay(7,,);
delay(7y)

b

using (lock) {
delay(7,,);
delay(7;);
delay(7,,)

}

Application of the basic calculus for delay and using operations yields the following
reduction

L=par(p=0,P—1){
delay ((N/P)(7m + 77));
use(lock, 27, + T¢)

4.2. MACHINE MODELING 69

Thus, the summation algorithm (or any arithmetic reduction) has a similar behavior as
the MRM. Simulation as well as our symbolic technique (Eq. (3.16)) correctly predict
the initial speedup for small P as well as the eventual slow down for large P when lock
contention dominates. O

Indeed many applications have three behavioral phases with respect to their scalability,
i.e., initial speedup (O(P~')), a maximum bound (O(1)) due to some sequential fraction,
and an eventual slow down (O(P)) due to service demand that is inherently proportional
to the system size (P). In this example it is a numerical service. Another typical example
is the data transfer part that is proportional to P (e.g., some shared 1/O service).

4.2 Machine Modeling

4.2.1 Principles

Thus far, we have seen a few small examples of how machines are modeled in the material-
oriented paradigm. Usually, machine models have been considered in which the instruc-
tions are simply modeled (abstracted) by single delay statements, or, in some cases, by
a simple use statement in order to account for memory contention (Example 3.11). In
general, however, machine models (especially those associated with data transfer instruc-
tions) may become rather complicated subroutines, involving synchronization delays at
various levels, which (like at program level) can easily dominate performance.

While in program modeling, the level of detail is limited by the size of the program
description itself, machines can be modeled to any level of detail, in principle up to, say,
a gate-level hardware description. With respect to the performance prediction of parallel
applications however, such a high level of detail does not necessarily add to the prediction
accuracy (although it certainly does add to the prediction costs). Consequently, an im-
portant issue is the maximum level of aggregation that is acceptable without sacrificing
predictive power (due to loss of vital information concerning the internals of the aggregate
component). Essentially, the criterion regarding what to model or not to model explicitly
is the question whether the time behavior of a potential component (aggregate submodel)
depends on its access history. A basic example is a cache where the access delay ex-
perienced by a calling process depends on previous accesses. The mechanism involved
must be explicitly modeled (in terms of conditional control flow) as we will see later on.
While this form of context dependency also arises in purely sequential systems, in parallel
systems there exists the additional potential for interference between different processes
while accessing machine components due to synchronization. The primary form of syn-
chronization between services at machine level is mutual exclusion where a service call of
one program thread experiences (additional) queuing delay as a result of some other, pos-
sibly non-related thread of control (condition synchronization in message-passing systems
will be discussed separately)?. If there is no potential for interference outside the range

ZNote that in this respect where to attribute the actual “history” as mentioned earlier depends on
the paradigm used. In a machine-oriented approach, the history indeed associates with the component in
terms of the current state of its mutual exclusion mechanism (e.g., request buffer state). In the material-
oriented approach, however, we tend to associate the concept of history with the current state of the
concurrently calling process.

70 CHAPTER 4. MODELING TECHNIQUE

of the current caller, a component (and all within it) can simply be modeled by a single
delay that has a fixed duration, independent of the state of other program threads®. For
example, local arithmetic operations within a CPU may, at the register level, involve a
large amount of internal concurrency. However, as the range of the operation is local to
the processor there is no potential of interference between the instruction and instruc-
tions executed at other processors. Hence, from the viewpoint of the invoking program
thread the operation (and therefore the entire subsystem involved with its execution)
can be accounted for by a simple delay (note that we assume a synchronous instruction
architecture where each instruction blocks until completion).

While the same argument holds for local data transfers (i.e., register to register),
global data transfers may involve contention between CPUs for switch links and (global)
memories. Consequently, from the CPU point of view, machines need only be modeled
as far as global data transfer operations are concerned. Hence, all machine instructions
involving local resources used in the context of a single CPU process are simply modeled
by delays, whereas global load and store instructions refer to more complex machine
models.

Thus, from a parallel process point of view machines can be modeled as a collection
of processors providing CPU service to the process threads at program level, each CPU
being connected to a shared memory subsystem comprising switches, and possibly caches,
all of which provide memory (load and store) services based on a bottom layer of basic
memory devices as illustrated in Fig. 4.1. As a result of the above criterion by which

program model

machine model
CPUs

. shared-memory system
switches, caches

memories

Figure 4.1: Machine modeling hierarchy

we only focus on the components that may be responsible for interference experienced at
process level, the level of modeling detail is effectively limited to the processor-memory-
switch (PMS) level. In the following we first consider the computation service layer (i.e.,
the CPU resources). The main part of this chapter, however, is devoted to modeling the
memory subsystem as this part is by far characteristic for the machine architecture.

3Note that this also applies for caching in which case the delay expression represents a mean value
being the result of a probabilistic reduction based on an average hit ratio.

4.2. MACHINE MODELING 71

4.2.2 Processor Modeling

In the SPMD examples presented so far, it has been assumed that each process executes
on a unique processor. This implies that the effect of a limited number of processors
P has directly been translated into the workload description (e.g., the size of the index
space per process) through some static partitioning scheme. In the interest of generality,
however, in machine modeling we must assume a more general scheme in terms of which
the earlier model is just a specific instance. While the other resources in the PMS scheme
will be treated in detail later on, at this stage we explicitly consider the CPU as just
another resource capable of servicing multiple program-level processes through a (proces-
sor sharing) scheduler. Examples include a uniprocessor (e.g., workstation or mainframe)
scheduler as well as a multiprocessor kernel or a node microkernel on a multicomputer.
For instance consider the following parallel program model

par 1 =1,N) L,

where L; denotes some sequence of instructions local to the CPU (e.g., flop) with a
total duration of 7;. Consider a P processor parallel machine capable of running multiple
processes per CPU according to a static process mapping. Let p denote the mapping
of the N process parallel program onto the P processor parallel machine, such that ()
denotes the processor resource onto which [; is mapped. Then the resulting PAMELA
model is given by

par (1 =1, N) use(cpuu(i),n)

where the resource epu (cpu = 1, PS-type) represents the CPU service (note that at the
instruction level, epu is FCFS-type). When multiple processes are mapped onto the same
CPU, serialization will occur corresponding to the fact that each process receives less
computation service (bandwidth). This is accounted for by the use construct (even to a
high degree of accuracy as will be shown in Section 6.3).

According to this general modeling approach each local instruction such as flop is
formally modeled

ﬂOp = use(cpuu(i)v Tf)

thus signifying the resource responsible for its execution (note that formally, each oper-
ation is associated with some resource). Thus, by explicitly accounting for the CPU as
a resource (i.e., modeling all local instructions as use models rather than delay models)
the effect of process mappings is naturally expressed in PAMELA through functions (like
) that map logical resources to physical resources. In case of the SPMD examples dis-
cussed earlier, each process maps onto a unique CPU. As this implies that there is no
potential interference between any of the flop operations, the flop model reduces to a
simple delay.

The above approach corresponds to a static process placement. While this is appro-
priate for distributed-memory systems, in shared-memory systems, dynamic scheduling is
often used because of the absence of large data transfer overhead when successor tasks are
scheduled on different processors. Again, a processor sharing model can be used. Consider
a P processor machine running N processes. When the scheduler itself is of no interest, a

72 CHAPTER 4. MODELING TECHNIQUE

first-order approach is based on modeling the multiprocessor as a resource pool cpu (i.e.,
one resource instead of P separate resources), however, with ¢cpu = P. Again local CPU
instructions are modeled like the flop model

flop = use(cpu, 7y)

Only when the amount of machine parallelism suffices (P > N in the example) the flop
model reduces to a delay.

Also with respect to the processor layer note that the modeling approach is material-
oriented in which the processor is modeled as a passive device, contended for by the
program threads. Of course, this is in contrast to the typical implementation in which
processor scheduling is often performed by an operating system (process) on interrupt
(e.g., I/O or full time slice), rather than based on atomic process tasks voluntarily re-
linquishing control as in our instruction-level FCFS model. While the exact scheduling
process at this level of detail may be of great interest for the evaluation of operating system
aspects (e.g., fairness), especially in our approximate analysis the precise slicing granular-
ity and scheduling order in which the processor resource is used is of no consequence as
long as the total workload is the same. In Section 5.3 we will present measurements that
show that a simple, coarse grain sharing model provides an accurate prediction.

In the following we discuss the memory modeling technique in which we characterize
the machine architecture that is external with respect to the processor. Although from
methodological point of view there is no difference between modeling shared-memory
machines and distributed-memory machines in practice the architectures have different
features as they reflect different design optimizations. Hence, we will discuss each archi-
tecture separately.

4.3 Shared-Memory Systems

4.3.1 Introduction

As mentioned earlier, apart from the computational services, an architectural description
in PAMELA is effectively a specification of the global memory resources and how they are
made available (i.e., “seen” by the CPU) through intermediate components like caches
and switching networks. (Note that the methodology equally applies to other forms of
storage media like disks and intermediate software components like file servers including
buffer caches, etc. For simplicity, however, we will limit the discussion to central memory
systems.)

Due to the material-oriented paradigm, we characterize the memory architecture in
terms of its access interface, i.e., the (global) load and store operations. Except where
it is essential, in the following we will simply consider a move model that generalizes
the data movement process we are basically interested in. Thus the general model of a
shared-memory subsystem is

move(m, a)

where m denotes the memory system (or device) that is addressed while a denotes the
memory address. Note, that the actual data transfers associated with loading and storing

4.3. SHARED-MEMORY SYSTEMS 73

are quite different. For example, loading implies a return transfer next to sending the
request. However, from our abstract point of view we assume that all latencies and
queuing involved in both directions are accounted for in terms of the initial processor-
to-memory path (typically one does not need to consider both the forward and return
network separately).

Clearly, the terminal device of a shared-memory system is the basic (single ported)
memory module shown in Fig. 4.2. The arrow in the figure denotes the interaction between

pP— M

Figure 4.2: Basic memory module

the active process (denoted p) and the reactive memory component. In a basic memory
module (single port, no internal caching) the externally measurable timing behavior will
only depend on one internal state that is determined by previous requests, being the
memory busy state. In contrast to the simple delay model often used at program-level
analysis, in general, a memory resource m is modeled according to

move(m,a) = use(m, 7,) (4.1)

where 7, denotes memory access time, that is defined to be the total time between starting
the (load or store) transaction at the memory and the moment a new transaction can
be started. In this general-purpose model, exclusive memory service is modeled by the
resource m. Despite the fact that the basic memory unit is single-ported, this general
model does account for the fact that multiple processes may gain access within a memory
access time slot due to intermediate switching units (as we will discuss later on). If a delay
model were used instead, this would allow multiple requests to be serviced simultaneously.
Only when one process is to gain access, the above contention model may be reduced to
a delay model as a result of the fact that the sequential access is synchronous (i.e., the
memory will always be ready to service the next call). Note that conflict arbitration does
not need to be considered since simultaneous accesses (from different clients) cannot occur
(single port). Hence, a simple P operation suffices.

As discussed earlier, a memory system can be viewed as a layer of basic memory
units with on top a layer that maps the basic memory service m’ into more sophisticated,
shared, service m (e.g., faster, more parallelism) to the processor layer. In terms of the
material-oriented approach the system is expressed as

move(m,a) = ... ; move(m',a’) ; ...

where the move(m, a) model calls upon a lower-level move model. In the following we will
discuss the basic intermediate components that enhance the service provided by the basic
memory unit, i.e., the cache (“temporal” enhancement through faster access time), and the
switch that provides concurrent access (“spatial” enhancement through multi-port access).
Especially switches will be discussed in more detail due to the prominent role played by
contention as well as the fact that interconnection networks are largely responsible for

74 CHAPTER 4. MODELING TECHNIQUE

the machine contribution to application performance. This fact is evidenced by the large
body of work on the performance modeling of (shared-memory) interconnection networks

(e.g., see [17]).

4.3.2 Cache

A cache model simply maps its move call move(c,a) to its successor memory unit, which
may be a basic memory unit as illustrated in Fig. 4.3, or may be some complex memory
subsystem on itself. For the purpose of merely illustrating the general modeling technique

p—™ C M

Figure 4.3: Cached memory system

we only discuss a simple load model for a request-buffered cache.

move(e,a) = using (¢) {

if (hit(a))
delay(7.)

else {
move(m, a);
update(a)

}

}

Again, the mutual exclusion construct ensures access serialization. In case of a cache
hit (abstracted through the data-dependent hit function), a relatively small cache access
time 7. is charged. In case of a cache miss the lower-level memory unit m is invoked
entailing a call latency that is much larger than 7. (data is returned to caller and cache
in parallel). The cache directory update is modeled by the update function. Both hit and
update do not involve simulated delays. Note that this simple scalar model ignores the
fact that usually a cache line is loaded from memory. Also the possible existence of cache
coherence logic [145] has been ignored. The above example will be discussed further in
Example 4.3.

4.3.3 Switch

While caches upgrade memory service from a temporal point of view, the main purpose
of (shared) memory systems is to provide the memory service to more than one client
(i.e., a service upgrade from a spatial point of view) through the use of switches. Again
in this section we only touch upon the main principles as far as performance modeling is
concerned.

The basic component that maps (single-port) memory service onto multiple clients is
the n-to-1 switch illustrated by Fig. 4.4). As connecting multiple clients to a single succes-

4.3. SHARED-MEMORY SYSTEMS 75

P1——

Pp——

Figure 4.4: Multiported memory system

sor unit inherently involves contention, the switch’s basic function is to implement mutual
exclusion between multiple requesters and providing some sort of arbitration in case mul-
tiple requests arrive at exactly the same moment (i.e., at the same clock tick). Basically,
two switching protocols can be distinguished, i.e., circuit-switching and packet-switching.
Unlike the above, a more detailed move model is needed in order to describe both switch-
ing protocols (note, that our only purpose is to illustrate the modeling technique used,
not to model all possible protocols in great detail).

In principle, a move model (or any service model) comprises the following protocol (in
our material-oriented approach to be executed by the caller)

e service request (acquiring necessary resources)
e the actual service (data transfer)
e end notification (releasing resources)

Similar to typical service terminology, we will adopt the names open and close to model
the first and last phase, while we will denote the actual data transfer by zfer. For simple
models like a memory module it holds

move(m,a) = open(m) ; zfer(m,a); close(m)
open(m) = P(m)
afer(m,a) = delay(r,)

close(m) = V(m)

that reduces to the use model described earlier.

Let s denote a switch. Let m denote the downstream memory system to which s
provides concurrent access. For circuit-switching, the basic switch model is given by the
following model

move(s,a) = open(s) ; zfer(s,a); close(s)
open(s) = P(s); delay(rs) ; open(m)
afer(s,a) = delay(r,); afer(m,a)
close(s) = close(m) ; V(s)

where 7, denotes the startup time needed to setup the path through the switch, and
7, denotes the time needed to propagate the datum through the switch. Thus, first
all resources in the transfer path are acquired* before the actual transfer is executed.

4 Apart from this so-called hold protocol, a second, so-called drop protocol exists in which a request is
simply dropped (discarded) if during circuit establishment a contest is lost. The modeling of this protocol
is discussed in Section 4.5.

76 CHAPTER 4. MODELING TECHNIQUE

Note, that because there is no intermediate buffering (like in packet-switching) 7 and
7, are compared to the downstream open and xfer parameters (especially for large data
transfers). In the above model conflict arbitration is left undetermined for simplicity.
In more detailed models more elaborate arbitration schemes are possible by inserting
“user-defined” operators with explicit queue management using the basic P/V scheme as
explained in Chapter 3.

For packet-switching, the basic switch model is given by the following model

move(s,a) = open(s) ; zfer(s,a); close(s)
open(s) = P(s)
afer(s,a) = delay(r,)
close(s) = V(s); open(m) ; zfer(m,a) ; close(m)

where any local setup time is accounted for by 7.. In contrast to circuit-switching the
switch provides transfer service as soon as its output link is available, after which the
process moves to the next device. Note that this simple model assumes an infinite (packet
buffer) queue for requests (packets) that are temporary blocked (resource queues are
infinite). In terms of modeling the problem is comparable to the abstract, material-
oriented solution to the producer-consumer problem (Example 3.2). In many practical
situations, however, the fact that the actual “location” of each propagating process is left
indeterminate does not degrade the overall model accuracy. In a detailed study the use of
more elaborate synchronization models may, again, be necessary in order to account for the
inter-switch handshaking involved. As discussed before, however, the two-way (message-
passing) synchronization that arises with the use of bounded buffers is not amenable to
our analysis technique.

Also note that in the case where a memory is connected through a packet-switched
network, the mutual exclusion construct in the memory model of Eq. (4.1) is indeed
necessary in order to prevent multiple processes from (almost simultaneously) accessing
the module (assuming 7, < 7,). As mentioned earlier, the resource m symbolizes the
queue at the memory module that buffers access requests passed on by the switch.

While the above models allow a reasonable description of circuit-switched and packet-
switched communication, the use of the individual protocol phases introduces the explicit
use of P/V operators which is unsuited for our calculus. Hence, we present versions of
both models in terms of the structured templates we have introduced. Similar to the
example of the memory module, for packet-switching the above model can be simply
written as

move(s,a) = use(s, 7,); move(m,a)

where each move service induces temporary resource usage followed by a service call
down stream. While for packet-switching the result is equivalent to the original model,
for circuit-switching the solution is slightly different because the switching workload is
divided across two phases. The following expression

move(s,a) = using (s) {delay(7s) ; move(m,a) ; delay(r.)}

adequately models the process although, compared to the earlier model, the transfer delays
7, are accounted for after the ultimate move call, rather than prior to the call. However,
in terms of performance (resource usage) both models are identical.

4.3. SHARED-MEMORY SYSTEMS 77

4.3.4 Networks

While the basic n-to-1 switch, as introduced thus far, captures two important aspects of
switching networks, i.e., delay and contention, practical interconnection systems switch n
sources to m destinations, rather than providing concurrent access to just one resource.
In order to describe interconnection networks, we therefore generalize the above switch-
ing component by distinguishing m addressable output links. Consequently, the request
address a determines the routing inside the switch (assuming decentralized routing con-
trol [17]). With the introduction of this decoding functionality, the n-to-m switch is simply
referred to as an (n-to-m) crossbar of which a 2 x 2 version is shown in Fig. 4.5 in terms
of its basic decoding and switching functionality (denoted D and S, respectively in the
figure). Let rout(a) denote the address decoding and routing function that determines

Figure 4.5: Crossbar switch model (2 x 2)

the output link index 7 = 1,...m and the address remainder o', used as address for the
next stage®. Let d; be the memory device at the output ¢ of s. The crossbar model (again,
ignoring arbitration, infinite buffers) is given by

move(s,a) = {(i,a") = rout(a); using (s;) move(d;,a'); }
for a circuit-switched protocol (setup propagation delay ignored), and by
move(s,a) = {(i,a") = rout(a); use(s;,7s); move(d;,a’); }

for a packet-switched protocol. For m = 1 the decoding and routing function rout is
immaterial (¢ = 1, ¢’ = a). Thus, the above model generalizes over the former switch
model.

As discussed earlier, an interconnection network provides a connection between mul-
tiple process clients and multiple memory servers, through a number of switching com-
ponents. The most obvious IN is simply the above crossbar component that provides
full interconnectability between any input and output without any intermediate blockage.
(Of course, contention may still occur at each output ¢ but this is inherent to any n-to-m
IN.) However, the absence of intermediate blocking comes at the expense of a quadratic
complexity in terms of internal logic. As a result of the trade-off between network cost

Destination tag routing is typically given by the low-order address interleaving function (i,a’) =
(a mod m, a/m)).

78 CHAPTER 4. MODELING TECHNIQUE

and network performance, a large variety of network topologies exist of which we will only

discuss the most common classes®

. In essence, all these networks are based on the use
of multiple, crossbar-like switches with a much smaller capacity than the total network
capacity. Hence, we will model interconnection networks in terms of the above cross-
bar model, which we will adopt as a basic building block. Although this amounts to a
graphical model representation, note that each crossbar represents the above PAMELA

model.

An example on the opposite extreme of the interconnection network spectrum is the
(single) bus, that is modeled according to Fig. 4.6. While the second crossbar merely rep-

pl—-> — ml

Figure 4.6: Bus system)

resents the decoding functionality of each of the M connected memory modules, the first
P-to-1 crossbar (the output link resource s) accounts for the bus contention that occurs
when multiple processors access memory. In order to support the full memory bandwidth
of the M parallel memory modules, the bus is typically packet-switched (“pended” [15§],
see Example 4.4).

In terms of our generic crossbar model, a multiple-bus comprising B busses has the
same representation. However, s = B instead of s = 1. Hence, the effective bus bandwidth
increases by a factor B which directly follows from Eq. (3.12).

Note that the configuration modeled according to Fig. 4.7. represents another solution

P1— - — M
Pp

My

Figure 4.7: Multiple bus (static bus selection)

because of the static routing assumption of the crossbar model as defined earlier (B single
servers vs. 1 multiple server).

Given the basic crossbar model, the expression of multistage interconnection networks
is straightforward (see [42]) as illustrated by the example Omega network [92], shown in
Fig. 4.8. Note that the resulting PAMELA model accurately accounts for the possibility
of internal contention at each intermediate switch level”.

SAn extensive survey of multiprocessor interconnection techniques appears in [17]. A survey of the
performance aspects of some well-known multiprocessor architectures appears in [145].

“For instance, consider the two conflicts that may arise when pg, p1, and ps address mg, ms, and ms,
respectively.

4.3. SHARED-MEMORY SYSTEMS 79

Y e R
Ez: X X x | mi
E:: X X X : 2:
Ej: X X x | Ej

Figure 4.8: Omega network

4.3.5 Examples

In this section we describe a number of examples in which some of the machine modeling
principles discussed so far are applied.

Example 4.2 In this example we demonstrate the modeling of memory contention as well
as CPU contention in the case of the polynomial computation. Recall the parallelization of
the polynomial computation for P = 2 in which we assume the machine model including
the load/store overhead and memory contention (cf. Fig. 1.6 and 1.8). The PAMELA
model is given by

L — L1HL2

Ly = ty; signal(ci4) ; t3; signal(css) ; wait(cos) ;

ts ; wait(cyr) ; ¢ ; signal(ers)

L2 = tg 3 signal(025) 3 Wait(014) 3 t4 3 signal(c47) 3 Wait(036) 3 t6 3 tg
where

ty = load; flop; store

ty = load ; load ; flop ; store

ts = flop; store

ty = load ; load ; flop ; store

ts = load ; load ; flop
te = load ; load ; flop
tr = load ; load ; flop ; store
ts = load; flop; store

80 CHAPTER 4. MODELING TECHNIQUE

The abstract machine model is given by

flop = delay(1)
load = use(m,0.5)

store = use(m,0.5)
It follows
=95, w=2_85

which yields T = 9.5. From Fig. 1.8 it follows that 7' = 11.5.

In the following we demonstrate the use of CPU contention modeling in order to
assess the performance of an implementation in which the actual order of tasks on each
processor is scheduled dynamically. Under the same task mapping for P = 2, a dynamic

task scheduling implementation is expressed by the original, fully parallel task model (cf.
Example 3.1), i.e

L = par (:=1,8) L;
Ll = tl 3 signal({clg, 014})
L2 = tg 3 signal(025)

Ls = wait(cs) ; ; signal(cse)

Ly = wait(cq) 5 14 ;5 signal(cyr)

Ls = wait(cys) ;5 15 ; signal(csr)

Ls = wait(csg) ; 16 ; signal(ces)

L. = Walt({c47,c57}) t7 ; signal(crs)
Ls = wait({ces, crs}) ;

however, where ¢; is given as before in terms of load, flop, and store. However, now it

holds

flop = use(cpuimoaz)

where ¢ denotes the task index (1,...,8). In this model each task “contends” for its
(statically assigned) processor, one of the possible task schedules being the one according
to the earlier, static model. It follows

=5, w=max(7.5,9,8.5) =9

where the max applies to cpuy, cpusy, and m, respectively. Consequently, 7% = 9, which is
not far from the actual execution time corresponding to the static schedule (7" = 11.5).
O

Example 4.3 In this example we illustrate how the cache load model discussed earlier
may be reduced to a performance model that is amenable to our analytic technique.
Consider the simple cached memory such as depicted in Fig. 4.3. Based on the memory
and cache models discussed earlier, the model equals

4.3. SHARED-MEMORY SYSTEMS 81

move(e,a) = using (¢) {

if (hit(a))
delay(7.)

else {
use(m, 7,);
update(a)

1

1

A number of model reductions are possible. First of all, as the memory module can not
be accessed concurrently (cache provides mutual exclusion) the use model reduces to a
delay. Furthermore, let the hit ratio be known to equal the fraction h. As the hit and
update models do not involve time delays it follows

move(e,a) = using (¢) {
if (r <h)
delay(7.)
else
delay(7,)

which reduces to
move(c,a) = use(c, hr. + (1 — h)7,)

a

Example 4.4 In this example we demonstrate a number of model reductions by dis-
cussing the machine model of a bus-based multiprocessor with M (low-order) inter-
leaved memory banks. As in earlier examples, we consider a simple instruction interface
(flop, move). For the flop model it holds

flop = use(cpuu(p),)

where p denotes the process mapping (see Section 4.2). With respect to the move model,
we first consider a conventional bus that is blocked during memory access (cf. circuit-
switching). Hence, the move model is given by

move(a) = using (b) {delay(r;) ; use(Mmaumodrs, 7a)}

where b denotes the bus resource and m; denotes the memory bank addressed according
to the interleaved scheme (7, is the memory access time). For simplicity we assume all
the bus delay (73) to be accounted for by the single delay statement. Due to the fact that
m; is always accessed under mutual exclusion due to b, the model can be reduced to

move(a) = using (b) {delay(m,) ; delay(7,)}
= using (b) delay(m, + 7,)
= use(b, 7+ 7,)

= use(b,7,)

82 CHAPTER 4. MODELING TECHNIQUE

where 7,, = 7, + 7, denotes the effective memory access time (b is of type FCFS). Note
that the actual address a is of no importance as the blocking bus prohibits any form
of memory bank concurrency. The resulting model is exactly the same as the abstract
machine model in Example 3.11.

If multiple processes were to run on a CPU (recall that the above delay is in fact a
use(cpuy(y), 75)), the above model assumes that the CPU is not occupied during memory
system access. Consequently, during memory access another process at p will have the
possibility to do computations. (Note that queuing approaches use the same assumption
by including both a CPU server as well as a memory server.) When memory access can
not be overlapped with computations, i.e., the access call is synchronous, the move model
would be given by

move(a) = using (cpu,(,)) using(b) {delay(n) ; use(mamodn; 7a)}

which is an example of nested resource possession. Note that at higher software level (e.g.,
operating systems) the access call would be based on simultaneous resource possession in
order to avoid wasting CPU cycles waiting for service (e.g., disk 1/0O). In most CPU thread
kernels, however, instruction execution is non-preemptive. Hence, when a thread executes
a memory instruction that blocks, the entire CPU becomes blocked which is essentially
captured by the above nesting. Again, since mgmoqns 18 always accessed under mutual
exclusion (due to b, note that this does not hold for cpu,) the model reduces to

move(a) = using (cpu,(,)) using(b) {delay(r, + 7,)} = using (cpu,(,)) use(b, 7,,)

Note that this model can not be reduced further because of the need to account for
bus contention as well as for sharing cpu,(,) with another process simultaneously doing
computations.

Next we consider a pended bus that does not block during memory access (cf. packet-
switching). The move model is given by

move(a) = use(b, Tb) ; use(mamodeTa)

Thus, bus access and memory access occur concurrently instead of sequentially which
allows the effect of the M memory banks to become manifest. Serialization analysis
quickly reveals that depending on 7, 7, and M, for large P the bottleneck is either
the bus of the memory bank system (see next example). Again, when the move call is
synchronous, for multiple threads per CPU the model becomes

move(a) = using (cpu,p)) {use(b,7) ; use(Mamodrs, Ta) }

a

Example 4.5 In this example we derive some familiar performance models of a multi-
banked memory system for vectorized access. Consider a memory bank system comprising
M memory banks organized according to a low-order interleaved addressing scheme. A
memory vector access is based on a sequence of individual requests issued by an access
port with a cycle time 7.. Let each memory bank have an access time given by 7,,. The
vector access pattern is given by the address sequence f(1),..., f(N). A simple PAMELA
model of the vector move vmove is given by

4.3. SHARED-MEMORY SYSTEMS 83

vmove = par (p=1,N) {
use(port, 7.);
use(mf(i)modeTm)

}

where 1 f(;ymoans models the memory bank. Again, note the material-oriented approach in
which the port, that issues the addresses, is modeled as a passive resource that effectively
serializes N parallel requests at the port request rate 1/7. (cf. pipeline model). The
requests are passed asynchronously, i.e., the port is only occupied during 7. after which
the request is processed (and perhaps queued) at the memory bank. Note that in a real
system, the port may block until a memory bank is able to process another request (i.e.,
the memory banks have no request queue). However, as far as the performance of the
entire vector operation is concerned, the above performance model is equivalent (again
note the discussion in Section 3.3 on material-oriented modeling).

When M is sufficiently large (depending on the access pattern f(7)), memory con-
tention will not occur and the above model reduces to the familiar “memory pipeline”
characterized by startup time 7,, and bandwidth 1/7. (see, e.g., [71, 94]). In practice,
however, memory bandwidth is often determined by the limited number of memory banks
M, that, under ideal circumstances boosts memory system bandwidth by a factor M
compared to a single memory bank. However, in situations where the access pattern is
such that the bank reference rate exceeds the memory bank service time, performance
decreases sharply due to the occurrence of memory contention. The situation becomes
even worse when multiple vector access streams occur in parallel. For regular vector ac-
cesses (i.e., [is affine), the effect of simultaneous access, start address, and stride on the
effective memory bandwidth has been subject of much work [12, 21, 20, 24, 28, 40, 112].
In the following we apply our analysis method to derive the effect of the access stride on
the effective memory bandwidth. Serialization analysis on the above move model yields

T = max(7. + T, w)

where

N
w = maX(NTC,mI:nlE.LX Z [f(¢2) mod M = m]7,,)

=1

Let f(i) = Si¢ where S denotes the access stride. Since the following reduction holds
(Definition 5.2, discussed in Section 5.2)

N

N
St dM=m|= ——F——

ZZ:; [(S7) mo m] acd (M. 5]

it follows

N
sl (11,5
When performance is limited by memory, the effective memory bandwidth B is given by
_ ged(M, S)

Tm

T = max(7. + 7, N7e,

B

which is similar to the results mentioned in the work cited above. O

84 CHAPTER 4. MODELING TECHNIQUE

Example 4.6 As a final demonstration of our approach to machine modeling, we describe
a model of the Cray X/MP memory system. The memory system has been extensively
described in, e.g., [23, 28, 112]. However, these models usually reflect a hardware view of
the underlying system rather than being based on a methodological performance model-
ing point of view. For instance, the memory bank sections are usually expressed in terms
of the multiported memory banks as shown in Fig. 4.9. Although correct, the way the

Section #0
‘ Bank O ‘ ‘ Bank 4 ‘ . Bank N- 4
‘ \ [P1
| \ Py
Pe
Section #1
‘ Bank 1 ‘ ‘ Bank 5 ‘ . Bank N- 3
1 H - ="
P>
Pe
Section #2
‘ Bank 2 ‘ ‘ Bank 6 ‘ . Bank N- 2
P
‘ \ [] 1
| \ P,
Pp
Section #3
Bank 3 ‘ Bank 7 ‘ . Bank N- 1|
P
‘ \ [1
| \ P,
Pe

3x 4 Xbar

Processor 1

Figure 4.9: Cray X/MP memory system (taken from [23]).

architecture is modeled is not entirely conducive to revealing the actual locations where
contention may occur (i.e., line conflicts, simultaneous bank conflicts, and bank busy con-
flicts). A PAMELA model of the memory system, on the other hand, turns out to be
simple while providing more insight at the same time. Let B denote the number of banks
per section, S denote the number of sections, T' the number of vector ports per processor,
and P the number of processors. Expressed in terms of our crossbar representation, the
complete system is given by the multistage representation in Fig. 4.10. In the figure X
and M denote crosshbar and memory device, respectively. Both crossbhar stages are inter-
connected through a simple permutation (a 2-D transposition). The multiport capability
of the section memory banks is explicitly modeled by the second crossbar stage X ... Xg,
that is typically omitted in traditional diagrams. From the model the three potential con-
tention points are now easily identified (i.e., each crossbar output link and each memory
bank, respectively corresponding to the three conflict types mentioned earlier). O

4.4. DISTRIBUTED-MEMORY SYSTEMS 85

Processor 1 Section 1
X 1 S P X 1
Port; — —{ W, |
1 1
Processor P Section S
X P S P X] !
Port-r —> M SB

Figure 4.10: PAMELA model of the Cray X/MP memory system.

4.4 Distributed-Memory Systems

4.4.1 Introduction

The global memory modeling approach taken in PAMELA in which processes use process-
ing and/or memory services, in effect, implies a unification with respect to parallel ma-
chine modeling. While most machine description taxonomies make a distinction between
shared-memory and distributed-memory architectures (e.g., dynamic vs. static point-to-
point topologies [42]), in the PAMELA approach, a distributed-memory machine is basically
just another global memory system but with a message-passing interface on top. The cor-
responding modeling hierarchy is shown in Fig. 4.11. To illustrate the principle, consider

program model

machine model
CPUs

MP layer message-passing system

) shared-memory system
switches, caches

memories

Figure 4.11: Modeling hierarchy for message-passing machines.

the shared-memory architecture depicted in Fig. 4.12 based on a 2-crossbar network. De-
spite its appearance however, the architecture corresponds to a 2-node distributed-memory
machine with the PEs communicating through what is now usually referred to as a bi-
directional link. (In a multiprocessor architecture a single, symmetric crossbar would, of

86 CHAPTER 4. MODELING TECHNIQUE

course, suffice®.) Note that the network invites the exploitation of memory locality due
to its form (multiple hops for non-local loads and stores) and different timing parameters
(the much longer links between PEs require much slower access speeds). The message-

bi-directional
link

Figure 4.12: Shared memory hardware of distributed-memory machine.

passing layer on top of the above memory layer simply maps the send/recv calls onto the
load/store (move) functions of the underlying global memory, incorporating some con-
dition synchronization protocol. For instance, in the above architecture a simple (scalar)
memory access model is given by

load(a) = store(a) = {q = f(a); delay([p # q].); use(m,)}

where m denotes the memory (and associated switch link), p denotes the processor index of
the caller, and ¢ denotes the processor index to which the target memory module is “local”
(f(a), determined by memory address a). The delay term accounts for the additional
switching delay 7, for a non-local transfer (in fact, a reduced model since at an outbound
switch link no contention will occur). Note that in general 7, is large which is why the
model penalizes non-local memory access. A simple message-passing interface, organized
around a scalar buffer at address a, would be modeled by the producer-consumer scheme
(cf. Example 3.2, room = 1, data = 0)

send(a) = P(room); store(a) ; V(data)
recv(a) = P(data); load(a); V(room)

where a is either in m; or my. Thus, all performance aspects of the message-passing layer
(i.e., condition synchronization protocol) and underlying network layer (i.e., latencies,
bandwidth, mutual exclusion on links and buffers, etc.) are accounted for (for simplicity,
protocol stack overhead has been ignored in the example). Note that the physical im-
plementation of the message-passing layer (handshaking traffic) is completely abstracted.
Only the condition synchronization, i.e., its effective result, is modeled. The overhead of
the synchronization protocol is assumed to be accounted for by the startup cost of the
message-passing calls (discussed later on).

8Note that a multicomputer topology like the hypercube is, in fact, related to the Omega type multi-
stage network known in the multiprocessing domain [114]. For busses, the similarity is obvious.

4.4. DISTRIBUTED-MEMORY SYSTEMS 87

4.4.2 Basic Communication

In the above example, the actual interprocessor communication could be through a mem-
ory location at either sender or receiver. In typical message-passing systems, however,
the target (or intermediate buffer) address resides at the receiver which implies that the
actual interprocessor data transfer is initiated by the store operation, rather than the
load operation. Furthermore, typical interfaces explicitly refer to a source, destination, as
well as intermediate data location involved in the data transfer. An example in which the
addressing scheme is associated with both the processors involved are the calls send (r,x)
that stores local (user) address x to some remote address designated by the receiver r,
and recv(s,y) that loads data from sender s from some intermediate buffer into (user)
address y.

As in general a data transfer involves much more than just a scalar operation, we
will introduce the block move model bmove(a,b,l) to denote the actual global transfer
of | (contiguous) data elements between address ¢ and b. Consequently, a synchronous
message-passing model is modeled as

send(r,x,l) = P(room) ; bmove(x,b,l); V(data)
recv(s,y,l) = V(room) ; P(data) ; bmove(b,y,l)

where b denotes the local buffer address for data from s, with room = 0 and data = 0 (in
fact, a “rotated” version of the producer-consumer model in Example 3.2 with regard to
the receiver).

The asynchronous message-passing scheme can be conveniently expressed in terms
of the same model with room = C where (' denote the initial capacity of the buffer
(mailbox). Note that typical implementations of asynchronous sends will never block
which is modeled by C' = co. As in practice C' is certainly not infinite this implies that
overflowing messages may have to be discarded. When infinite buffers are assumed the
above model reduces to

send(r,x,l) = bmove(x,b,l); V(data)
recv(s,y,l) = P(data); bmove(b,y,!)

Another consequence is that when the pair of tasks that are to communicate is determined
at application level (e.g., in terms of some task index ¢ and j), the model can be written
in terms of

send(r,x,l) = bmove(x,b,l) ; signal(c;;)

recv(s,y,l) = wait(c;) ; bmove(b,y,l)

as a result of the fact that the memory property of the P/V operators is not used. Clearly,
the implications for the analyzability of message-passing programs are considerable (see
Example 4.7 and also Example 5.1).

With respect to the move model we use the same modeling principles as described for
interconnection networks for shared-memory systems. For example, the interconnection
network of the iPSC/2 hypercube [111] (P nodes) can be modeled by P (log, P 4+ 1) x

(logy P + 1) crossbars (like the earlier example, an extra link is needed to connect with

88 CHAPTER 4. MODELING TECHNIQUE

Crossbar
Connection
Diagram:

Figure 4.13: PAMELA model of Intel iPSC/2 distributed memory system.

local traffic, see Fig. 4.13). Compared to the hypercube (omega) network discussed earlier
this network is clearly optimized for memory access locality (0 hops for local access, up
to logarithmic number of hops for remote access). Let ny = s...r denote the index of
the K nodes involved in the path between processors s and r where n; = s and ng = r.
In the following we will ignore the forwarding delay through the pipeline of switches. Let
¢; denote the switch link (channel) responsible for transferring data from n; to n;1;. For
circuit-switched systems (like the iPSC/2) the bmove model can be roughly expressed by
(ignoring circuit setup overhead)

bmove(x,b,l) = using (c¢;) {using (¢2) {...using {(cx_1) afer(x,b,0)}...} }
and the data transfer is modeled by
afer(x,b,1) = seq (1 = 1,1) delay(r.) = delay(ir.)

where 7, denotes the transfer time per unit data. Note that the initial link resource ¢
would always seem available as the outbound link is used only by local senders. However,
in order to account for multiple threads sending concurrently (in non-blocking send mode),
the ¢, term must be included.

Also for packet-switched interconnection systems the situation is comparable to the
shared-memory model. (In Example 4.9 a message-passing model will be described for a
mesh topology.) The fact that in distributed-memory networks message vectors are trans-
ferred instead of unit data implies that a pipelining model must be used. However, due
to the material-oriented approach, the basic propagation model stays the same. Consider
a vector of [data elements. Let the packet size be W. For simplicity we assume padding
such that the last packet has the same length W (although [may not be a multiple of
W). Again the forwarding nodes are denoted by channels ¢;...cx_1. Note that in this
respect a channel resource may represent a node’s CPU (older generation systems) as well

4.4. DISTRIBUTED-MEMORY SYSTEMS 89

as dedicated switching hardware (current generation systems). For one packet a coarse
model for bmove is given by

bmove(x,b, W) =seq (k =1, K — 1) using (c) afer(bg, bpyr, W)

where by denotes the address of the intermediate packet buffers. Unlike the shared-memory
switching model, however, the multiple packet transfer is pipelined which is modeled as

bmove(x,b,l) = par (i =1, [{/W]) seq (k =1, K — 1) using (cx) zfer(by, by, W)

according to the material-oriented approach (cf. pipelining example). Note that the above
model accounts for startup time, bandwidth, as well as the effect of link contention with
simultaneous communications that use mutual channels (forwarding services). This is
a significant improvement over conventional models (the linear delay model accounting
for startup and bandwidth [9, 18, 70]) that only predict communication performance for
isolated point-to-point communications. The above model will be used to describe the
message-passing interface of a transputer mesh (Example 4.9).

4.4.3 Non-blocking Communication

The basic message-passing systems discussed thus far are blocking in the sense that the
actual message transfer (the bmove call) is synchronous with respect to the sending pro-
cess. Especially when dedicated transfer hardware is installed (e.g., ¢; is implemented
by switches or DMA devices), even an asynchronous send will entail many lost cycles for
the calling process. In order to provide additional scheduling freedom current interfaces
feature a non-blocking version of the (a)synchronous send and receive call. The typical
use of such a call is to exploit the additional concurrency for overlapping communication
and computation, or to execute concurrent communications under the assumption that
the underlying system actually supports this form of parallelism.

The implementation of a non-blocking call typically involves a separate, dedicated
process that takes care of the actual (blocking) call. Consider a non-blocking send call
nbsend. The call communicates the actual send request (by process s) to a dedicated
(kernel) process S according to the (blocking) scheme

nbsend(r,x,l) = send(S, a,2)

in which both parameters a = (r, x) are passed to S (hence the parameter "2’ in the above
model). The send and recv models are defined as earlier and S executes the service

while (true) {recv(s,a,2); send(r,z,l)}

Thus, the intermediate process insulates the program-level process from the blocking call.
Note that the intermediate communication may involve an asynchronous request buffering
scheme.

Like the earlier model, the above model is essentially a message-passing model. Al-
though the model is a legal PAMELA model, the message-passing paradigm used to model
the call (featuring the kernel process) makes it hard to apply serialization analysis (as

90 CHAPTER 4. MODELING TECHNIQUE

discussed in Chapter 3). In order to allow the call to be modeled in terms of a material-
oriented PAMELA model one must consider the call in combination with its formal coun-
terpart, i.e., the nbtest, that tests if the transfer has actually finished. (This is especially
appropriate for nbrecv, however, note that a non-blocking scheme that never blocks must
always include a test function or must eventually block when out of resources.) In fact, this
problem is an example of the general idea that the fork-join structuredness of PAMELA’s ’||’
operator somehow forces the system under study to have structure as well (thus enabling
compile-time analyzability). Assuming that nbsend is always used in conjunction with
the nbtest. The semantics of the blocking nbtest are such that the following equality
holds

send(r,x,l) = nbsend(r,x,l) ; nbtest(r)
In modeling nbsend we use the following (structured) template
nbsend(r,x,l) ; L ; nbtest(r)

where L is program code that is executed between nbsend and nbtest. Note that the
above template is a fork-join template. A procedure-oriented model of this template is
given by

nbsend(r,x, 1) ; L ; nbtest(r)= L || send(r,x,l)

This model is amenable to serialization analysis. Even when the nbtest is not present
(in the program) at modeling-time always an appropriate location can be found at which
point the processes are joined (e.g., the end of the parallel section of which L is part of).
Depending on the nature of the forwarding hardware, the communication proceeds either
fully or partially in parallel (see Example 4.8).

4.4.4 Examples

In this section we describe a number of examples that show some of the principles under-
lying the modeling of distributed-memory systems.

Example 4.7 In this example we demonstrate the (performance) equality between sim-
ple message-passing implementations and shared-memory implementations. Consider an
implementation of the polynomial computation statically scheduled for P = 2 on a
distributed-memory machine with asynchronous send/recv instructions. The PAMELA
model would be given by (ignoring the actual data)

L — Ll H L2
Ly = t1; send(cpuy) ; ts; send(cpuy) ; recv(ecpus) ;
ts ; recv(cpuy) 5 tr; send(cpuz)

Ly = ty; send(cpuy) ; recv(epuy) 5 ty; send(cpuy) 5 recv(epuy) 5 te 5 ts

4.4. DISTRIBUTED-MEMORY SYSTEMS 91

where each task ¢; is given by

ty = load; flop

ty = load ; load ; flop
ts = [flop

ty = load; flop

ts = [flop

te = load; flop

tr = [flop

ts = [flop

Note that the local load instructions account for the initial loading of variables z, ao, . .. as

in order to achieve a comparable situation with respect to the original shared-memory im-
plementation. When we consider a simple (memory-less) implementation of the message-
passing interface according to

send(r) = store ; signal(c;;)

recv(s) = wait(c;) ; load
the model automatically reduces to the original shared-memory model described in Exam-
ple 4.2. Thus, in terms of the PAMELA models, the actual difference between applications
programmed in a shared-memory paradigm or in a (simple) distributed-memory paradigm
is merely a matter of choice between instruction interface abstraction levels. O

Example 4.8 In this example we analyze the effective performance yield of non-blocking
communication. In earlier systems, the effective overlap of computation and commu-
nication can be disappointing. For example, consider a non-blocking nearest-neighbor
communication of [data units in which cpu acts as sender. For simplicity assume that the
receiver has already posted its recv call such that the effect of condition synchronization
can be ignored. Let the blocking send be modeled by

send(l) = use(cpu, 7,) ; par (1 = 1,[[/W]) using (cpu) zfer(W)

where 7, represents software (call) overhead. For simplicity in this model we only con-
sider the [parameter. Due to the absence of (multi-hop) pipelining (nearest-neighbor
communication), the model simply reduces to

send(l) = wuse(cpu,ty) ; seq (i =1, [{/W]) using (cpu) afer(W)
= use(cpu,Ts) ; use(cpu, [[/W]|Wr.)

as a result of serialization, where 7, is the transfer time per data element. Thus all the
communication workload is attributed to the CPU.
Let L represent local computation modeled by

L = use(cpu, y)

92 CHAPTER 4. MODELING TECHNIQUE

In this case, attempting to overlap the computation with communication yields no speedup
at all as

nbsend(l) ; L ; nbtest = L || send(l)
= use(cpu,7y) || send
= use(cpu,7y) || use(cpu,7s) ; use(cpu, [[/W]Wr,)
= use(cpu, s + 75 + [[/W]|WT,)

Note that epu is PS type.
On the other hand, consider a transputer architecture where the actual data transfer
is performed through DMA. The send model is given by

send(l) = use(cpu, 7,) ; use(dma, [[/W|Wr,)

where dma represents the link DMA device (dma = 1, PS type at multipacket level). It
follows

nbsend(l) ; L ; nbtest = use(cpu,Ty) || use(cpu,t,) ; use(dma, [{[/W]|WT,)
= use(cpu, 7y + 1) | use(dma, [[/W|Wr,)

Serialization analysis yields
W = max(7; + 75, [[/W]7e)

Provided software startup overhead is small, computation can indeed be overlapped with
communication. O

Example 4.9 In this example we develop a communication bandwidth model for a
Parsytec T800 transputer mesh?. In contrast to the earlier examples this study involves
modeling and measurement of actual machine hardware in which most of the principles
described earlier are demonstrated. The model provides a good first-order performance
approximation of large data transfers in the presence of simultaneous communications.
The bandwidth model will be used in a case study in which the execution times of a
number of applications running on the T800 mesh are compared with our predictions.
Although the model is based on a number of (simplifying) assumptions the predictions
prove to be quite accurate as is shown later on. The message-passing interface considered
is based on the “virtual link” service, that provides a dedicated logical channel between
a sender and receiver task. Since the virtual link topology needed to connect senders and
receivers is setup in the prologue of the actual application discussed above, link setup
times need not to be considered. The communication mode selected is “asynchronous” in
terms of the machine interface, which, in reality however, implies a non-blocking mode in
our modeling terminology (sender unblocks before transfer has completed). The commu-
nication mode selected does not involve buffer copying at the sender, nor at the receiver
(direct copy from user address = to y as described previously). In terms of the message-
passing interface the communication functions correspond to ARecv, and ASend calls,

9Kindly made available by the Interdisciplinary Center for Computer-based Complex systems research

Amsterdam (IC3A).

4.4. DISTRIBUTED-MEMORY SYSTEMS 93

respectively [115]. In contrast to the address parameters used earlier, in the following we
will consider bmove(s,r,[) where s and r denote sender and receiver node, respectively.
The virtual link service of the transputer system is based on a multiplexing scheme
in which each 120 bytes of the message is packetized. Each packet is statically routed
through the mesh in a pipelined fashion. Unlike the T9000, the virtual link service is still
emulated by the T800 node kernel. Consequently, each transfer not only induces workload
at all the hardware links in the circuit but also at software level on each forwarding
node. Traditional communication models only characterize communication performance
in terms of a point-to-point model that typically accounts for latency and bandwidth
only [9, 18, 70]. In terms of PAMELA this implies a linear delay model according to

bmove(s,r,) = delay(rs + I7.)

where 7, denotes the startup time (typically including a dependency on the number of
hops between s and r) and 7. denotes the inverse bandwidth. For a 4 x 4 mesh partition
Fig. 4.14 shows the execution time as measured on the mesh. Note, that in the above
linear model the effects of packetization are ignored (the small increments per 120 bytes
shown in the figure).

2000 T T T T T T T T T

-
(us)

1800 - L

1600 >hops,

1400 2hops

e

1200 - g 1
1000 A 1 hop]
800 | |
800 0 hops |
awot o 1

200 F ’,,/,/,;;’;;/,r i

O 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

— | (bytes)

Figure 4.14: Point-to-point communication time of the T800 transputer mesh

In contrast to this delay construct we express the additional knowledge concerning
the potential contention delay in terms of use constructs referring to the limited number
of services available. With each physical link between neighboring transputers we will
associate a service complex comprising a subsystem of physical (e.g., DMAs at both link
ends) and/or semi-logical (software servers at both ends) resources. Without any loss of
generality, we project the service complex at the receiving node of each link, as shown
in Fig. 4.15. In the following we consider the communication system at the packet level

94 CHAPTER 4. MODELING TECHNIQUE

which is the smallest level of granularity with respect to resource sharing. Although the
service complex at each link comprises several software/hardware components, it can be
modeled as to provide two services at the packet level that are subsequently denoted e
and f (see Fig. 4.15).

The first service e represents the reception service at the packet destination involving
the exclusive transfer of one packet across the link, including the software overhead at both
ends (e.g., moving, handshaking). The second service f represents the forwarding service
(including intermediate storage and protocol overhead) required for a packet destined for
a different node. Consequently, compared to e, f includes additional routing/forwarding
workload. In general, a packet transfer from node s = n; to r = ng will require for-
warding at ng...ng_1 (according to static x-y routinglo) and one reception service at
ng. Both services are based on an underlying service, represented by the resource x that
represents the basic link service that has to be shared. Consequently, e and f are logical
resources (kernel servers) sharing the underlying link service. Apart from sharing link
transfer service x supplied by the sending and receiving DMA resources for each channel,
e and f are mapped onto the CPU resources as well since receiving a packet, and, most
notably, forwarding a packet involves a number of CPU cycles. However, the effective
CPU bandwidth as available for regular computation is hardly affected by the occurrence
of data transfers (up to approximately 20 % CPU bandwidth degradation when all four
reception or forwarding services are simultaneously active). Furthermore, communication
bandwidth is also not affected by the number of links that are simultaneously active.
Consequently, in our approximate model we simply ignore the impact of e and f on the
CPU performance (and therefore on neighboring e and f services as well''). Thus, the
model is expressed in terms of the logical services e and f (as if supported by independent
physical servers) and a physical link (DMA) service . Typical for the PAMELA method-

=

©
I

@
N

—
w

T H
&) =H falx

-y
N
a ‘
N
> -
w w

\ \a‘
w
OSD

-

Figure 4.15: Message-passing service model of the T800 transputer mesh

YO0First, |(s/4) — (r/4)] nodes in the sender column are traversed after which |(s mod 4) — (r mod 4)]
nodes in the receiver row are traversed (in terms of row-major node numbers).

1A possible explanation for this relative absence of CPU interference is that the (high-priority) CPU
kernel involved with supporting e and f is based on a (busy waiting) scheme such that a number of
cycles are spent anyway, regardless of the presence of (useful) service activity (e and f). The effective
CPU bandwidth as experienced by user threads is therefore a relatively constant fraction of the total CPU
power available. As no information on the kernel was available the exact reason could not be investigated.

4.4. DISTRIBUTED-MEMORY SYSTEMS 95

IE E [[T [T]
(0) (1) 0.9 [0.9]0.9
(0) (2) 15 | 15| 1.5
(0,0) (1,1) 1.8 | 1.8 0.9
(0,0) (2,2) 3.0 3.0 15
(0,0) (1,2) 18 | 18| 1.5
(0,0,0) (1,1,2) 2.7 |27 15
(0,0,0) (1,2,2) 33 (33|15
(0,0,0,0,0,0) | (1,1,1,2,22) | 6.0 | 5.4 | 1.5

Table 4.1: Results for 10° byte concurrent communications (s)

ology, we use a material-oriented approach to model packet propagation, as this approach
is conducive to our analytic method. In the following we model the transfers on a packet
level rather than on a byte level. However, the error is negligible in view of the large data
transfers we will consider in the case study.

In order to model the pipelined packet propagation we model the entire transfer as a
parallel operation (cf. Example 3.5.). Let ny = s...r denote the index of the K nodes
involved in the pipeline route. Then the PAMELA model is given by

bmove(s,r,l) = par (i = 1,1/120) {
seq (k=2,K —1) {
use({ fry, Tny }» 7);
use(fu,,7y)
b

use({e,, .}, 7;)

Note that this model ignores startup delay and the fact that [mod 120 represents a
half packet on average. However, for large data communications this model suffices to
accurately capture the effective bandwidth degradation when many virtual links are si-
multaneously active.

The contention model has been validated for many types of concurrent communications
(equal message lengths) as well as random patterns (as discussed later on). From the
point-to-point measurements as well as from the bandwidth measurements for concurrent
communications it follows that 7, = 108 us (link transfer) and 7, = 73 us (intermediate
forwarding). Table 4.1 shows a few typical results for (10° byte) data transfers involving
only the first row of the mesh (nodes 0, 1, 2, and 3). In the table only the most significant
digits are displayed for the ease of interpretation. The nodes that are simultaneously
sending are expressed by the s vector, while the receivers are expressed by the r vector.
Each pair (s,,r,) corresponds to one communication. Apart from the measured value 7™
and the simulation result 7' the traditional static prediction 7" is listed to demonstrate
the prediction errors that may occur. The results for 17" show that the bmove model
is quite accurate for a first-order approximation. Only in a very few situations a limited
deviation is measured (cf. last row). This optimistic prediction is due to the precise packet

96 CHAPTER 4. MODELING TECHNIQUE

scheduling that is left undetermined in the PAMELA model. In contrast to practice, this
non-determinism sometimes leads to assuming a more efficient schedule than the actual
implementation.

As mentioned earlier, the above model is merely intended as a first-order approximation
of realistic communication bandwidth. Hence, many phenomena are not accounted for,
such as the influence of concurrent communication in reverse direction on the (duplex) link
performance, as well as the communication overhead on the CPU. Both phenomena may
introduce errors in the order of 20 % as shown by measurements. The second phenomenon
influences the computation performance, rather than communication performance (com-
munication tasks by the CPU are run at high priority while computation threads have
low priority). The first phenomenon, however, directly relates to communication perfor-
mance. Duplex communication essentially degrades communication performance. Fach
data transfer on a link induces acknowledgement traffic on the reverse link (2 bits per
11 bit datum [74]). Consequently, when data transfers are performed concurrently in
both directions, effective link bandwidth drops with approximately 18 %. For instance, a
concurrent communication (0,1) — (1,0) of 10° bytes is indeed measured to take about
1.06 s instead of 0.9 s. O

4.5 Summary

In this chapter we have presented the approach to modeling parallel computer systems
using PAMELA. A key concept is the use of a material-oriented paradigm in combination
with structured mutual exclusion operators because of the advantages in analytical sense
as explained in the previous chapter. The constraints imposed by this modeling approach
with respect to the ability to accurately model parallel computer systems are quite ac-
ceptable, a fact that may be illustrated by the longstanding use of queuing networks (i.e.,
structured mutual exclusion) in this area. As shown by the examples for most instruction
models this approach does not introduce inherent limitations as long as the resource pos-
session across the system components is perfectly nested and the synchronization protocols
between the components can be expressed in terms of one thread of control. While the
first requirement is typically met, the second one requires that components (i.e., different
processes acquiring different components) cannot engage in a two-way synchronization as
required when finite buffers are involved. The problem has already been introduced in
the pipeline and producer-consumer example (Section 3.3) and has been discussed in the
context of modeling switches with finite buffers. Of course, a (message-oriented) solution
is to use individual P/V operators that provides the additional modeling power, at the
expense of analyzability (i.e., appropriate for simulation). A solution more in the flavor of
the PAMELA methodology, however, is to accept the “under-specification” in view of the
overall analysis technique (see Section 3.3). As mentioned earlier, only the principles have
been outlined. In actual systems more detailed models may be necessary than the simple
memory, cache, and switching models discussed thus far. However, our modeling examples
do account for the most important behavioral aspects in terms of delay and contention
at a level of abstraction as typically found in modeling approaches based on queuing net-
works. Indeed, Example 4.9 shows that even with simple models good accuracy can be
obtained (also when used in actual applications as we shall see in Section 5.3).

4.5. SUMMARY 97

The material-oriented approach to parallel systems modeling implies that a paral-
lel program and machine are viewed in the same way in terms of a chain of re-active
subroutines that are called by some root process that represents the algorithm. Fach
subroutine involves the use of resources and, possibly, the use of additional processes in
order to express some form of asynchronous behavior (e.g., non-blocking communication).
However, similar to resource usage, the use of subordinate processes is structured due to
the par construct. This approach to machine modeling in terms of service layers (e.g.,
processors, switches, memories) has lead to the unification of distributed-memory and
shared-memory machine modeling. While at software level the distributed-memory archi-
tecture is accounted for by an additional message-passing layer, at machine “load/store”
level both machines only differ in terms of the processor-memory interconnection net-
work. Note that this implies somewhat a departure from the “traditional” perspective on
interconnection networks that distinguishes between shared-memory machine networks
and distributed-memory machine networks. A representative example is the terminol-
ogy due to Feng [42] in which a distinction is made between “dynamic” topologies, i.e.,
shared-memory machine networks where link paths are dynamic, and “static” topologies,
i.e., distributed-memory machine networks where the (point-to-point) links cannot be re-
configured for direct connection between other processors. From our perspective, both
categories are dynamic, the only difference being that for distributed-memory machines
the number of network switches equals the number of processors, the unification being
the overall non-uniform memory access (NUMA) model. A framework for the unified
description and analysis of machine networks is presented in [19].

In this chapter we have shown how the various networks can be expressed in terms of
the same (load/store) modeling concepts. From a taxonomic perspective this material-
oriented approach offers an interesting alternative to the description of parallel com-
puter architectures which is traditionally “structure-oriented” (e.g., [35] and the references
therein). Consider a cache connected to a memory. In terms of our “behavior-oriented”
modeling approach we describe the architecture in terms of its (load/store) behavior. Let
C', and M denote the PAMELA models. Let M’ denote the cached memory system. As
shown in this chapter we can characterize the model in terms of some functional de-
scription formalism M’ = C(M) where C is a higher-order function that maps memory
functionality between various layers in the memory hierarchy (same applies to switches).
Such a description not only represents the structural link between the components but also
describes its behavior. If we tacitly assume this “higher-order PAMELA script” language
to include operators for replication, selection, etc. (e.g., D¥ represents P data processors),
a machine could be represented in a concise (hierarchic) format, analogous to the graph-
ical representation technique used in this chapter. This formalism would offer the ability
to automatically compile performance models from the description, rather than deriving
performance behavior through human-like inference only.

98

CHAPTER 4. MODELING TECHNIQUE

Chapter 5

Case Studies

5.1 Introduction

In contrast to the small examples presented thus far, in this chapter we shall discuss a
number of more elaborate case studies in which we touch upon various aspects of the
PAMELA methodology. In Section 5.2 we will demonstrate the application of the calculus
in automatically compiling PAMELA models into analytic performance models using two
case studies. While in these cases the PAMELA models themselves are not based on actual
implementations, in Section 5.3 we will describe the modeling of a real application on
a distributed-memory machine. in which we show that actual application performance
can be modeled with relatively simple PAMELA models. Thus far, we have distinguished
simulation modeling (numeric) and analytic modeling (symbolic). In Section 5.4 we ex-
plore alternative approaches to numeric performance prediction. Being a performance
prediction technique, an important application of PAMELA is system optimization. In
Section 5.5 we show how the PAMELA calculus can be used in parallel program synthesis.
Finally, in Section 5.6 the main points are summarized.

5.2 Performance Compilation

5.2.1 Introduction

In Chapter 3 we have defined the analysis through which PAMELA models can be trans-
formed into symbolic time domain models. In fact, the transformation process can be
perceived as compiling time domain models from PAMELA models, which is a purely me-
chanical process. In order to show that the compilation procedure and the inherent reduc-
tion that can be applied in the process is not only feasible for toy problems only, we present
two case studies. The first case study involves a matrix factorization on a multiple-bank
shared-memory system. The second case study involves a matrix-vector multiplication on
a distributed-memory machine. Parts of this work have appeared in [50, 51].

From an automated point of view some of the model reductions that will be applied in
the course of the analysis may not be immediately obvious, in particular those that relate
to the partitioning of the index space (see the next section). The information needed for

100 CHAPTER 5. CASE STUDIES

the recognition of these few situations, however, can safely be assumed available as part
of the knowledge of the (index) partitioning process.

5.2.2 Preliminaries

In many cases we consider a computation that is partitioned over M identical resources
m = 0...M — 1 (e.g., processors). Let S be a statement called for ¢ = a...b. Let
f(2) = et + d be some linear index generated by S that references a resource m according
to the partitioning function m = 7 (z). Then the visit count on resource m is given by

Vin = Z: [7(ci + d) = m]

In the following we give reductions for block and cyclic partitioning functions. Some
background is given in Appendix B.

Definition 5.1 Let

denote the block partitioning function where
b—a+ 1w

M
denotes the block size. Then

B=|

Vm = ﬁm — Oy + 1
where

Bm — alD7 8,0 = min(b, [B(m—l— 1)—d

C C

oy = max(a, [

a

Definition 5.2 Let
7(¢) =i mod M
be a cyclic partitioning function. Then

Vo 0, (m — d) mod ged(e, M) = 0;
" Bm—an + 1, otherwise.

where

4 — L b+1—1, M
m = | —17 =
K [[K W " ged(e, M)

o =

and t,, is the smallest solution of the diophantine equation ci + kM = m — d such that
tym > a. O

5.2. PERFORMANCE COMPILATION 101

5.2.3 Matrix Factorization

In this case study we consider the factorization of an N x N matrix (a;;) without pivoting,
parallelized for a P processor shared-memory machine. The parallelization is based on
a column-wise cyclic partitioning of the column updates over processors p=0...P — 1.
The implementation is characterized by the following C-style pseudo code, i.e.,

for k =0 .. N-2 {
scale pivot column k;
forall p=0 .. P-1
update columns k+1 .. N-1 assigned to p;

b

Let the underlying machine interface be defined in terms of just the following two instruc-
tions, 1.e.,

o flop, that symbolizes all floating point operations, including possible local register
traffic,

e move(i, j), that represents a global memory load or store of the data word associated
with the matrix element a;;.

When (multiprocessing) overhead is ignored, the PAMELA model is given by

L=seq(k=0N—-2){
move(k, k); flop;
seq(i=k+1,N—=1){ ! scale
move(i, k);
flop;
move(i, k)
I
par (p=0,P —1)
seq (t =t,,t3) { ! update
J=p+1p;
move(k, j);
seq(u=k+1,N—-1){
move(i, j);
move(i, k);
flop; flop;

move(t, j)

}

where t,, {5 are given by

k+1—p
R LA TR L

102 CHAPTER 5. CASE STUDIES

as a result of Definition 5.2 (t, = a,,t3 = ,). Let the multiprocessor’s global memory
consist of M interleaved memory banks b,,,m = 0...M — 1 (b,, = 1). Without loss of
generality, the interconnection is assumed ideal'. Then the machine model is given by

flop = delay(ry)
move(i,j) = use(by,)

where 7; and 7, represent delays due to floating point and memory access instructions,
respectively, and m = (i + Nj) mod M, thus taking a column-wise storage scheme into
account.

First, we consider the application of Eq. (3.14) to the parallel section which we will
denote Li. With respect to ¢(Ly) by Egs. (3.1) through (3.10) it holds

tg N-1
p(Lr) = max > (tm+ Y (31 +27f))
p=0...P—1 —te P

From Definition 5.2, it follows that the maximum number of columns assigned to a pro-
cessor is given by

max (tg— ta +1) = (;1

p=0...

in which n = N — k — 1. Hence ¢(Ly) reduces to
n
P(Le) = [51(7m +1(370 + 274))

For the analysis of w(Ly) (Eq. (3.12)) we must consider M resources b,, with workload
Om,m =0... M—1 according to the cyclic distribution. For the purpose of explaining the
analysis of ¢,,, we will treat each move statement separately. The work load on memory
bank b, generated by the move(k, j) statement in the ¢ loop is given by

P-1 tg

ZZ [(k+ Nj)mod M = m] 7,

p=0 t=tq

where j = p+ tP. By definition of {, and {g, this immediately reduces to

N-1
5%’” = Z [(k+ Nj)mod M =m] 7,
7=k+1

By Definition 5.2, this form reduces corresponding to the parameters

M
—k+1.b=N-1¢c=N.dek = —o
a —|_7 7c 2 7li ng(N7M)
to the subtraction
4 N —u, k+1—u,
500 = ([2—tm] — EES 0 L (r — k) mod ged (N, M) # 0] 7,

KR KR

!The above model characterizes many practical system configurations. The case M = 1 also applies
to a single (circuit-switched) bus system.

5.2. PERFORMANCE COMPILATION 103

The work load due to both move(s, j) statements is given by

P-1 tg -

—ZZZ Z [(24+ Nj) mod M = m] 7,

p=0 t=tq i=k+1

which, by definition of {, and {5, immediately reduces to

N-1 N-1
=2 Z Z (1 + Nj) mod M =m]| 7,
7=k+1 i=k+1

By Definition 5.2, the i loop is reduced corresponding to the parameters
a=k+1,6=N—-1,¢c=1,d=Nj, t,,=m—Nj, k=M
to the form
N—I—N]— k+1+Nj—m
) =2 — D7
b3yl T - 14

7=k+1

Similarly, the work load due to the move(i, k) statement is given by

: Nl N+ Nk—m k+1+Nk—m
(ka): E - @@ | =

j=k+1

Since b, = 1 1t follows

o) = max (869 4 809 4 5)

m=0...M—1
Including the sequential fraction as well as the outer k loop, by Eq. (3.15) it follows

N-2 N-1

T'=3 (rm+7i4+ Y (27w +74) + max(p(Ly), w(Lx)))

k=0 i=k+1
that reduces to

I = (¥ — D7)+ N(N — 1)2(2% +ry) Z (L)L)

Effectively, the computation complexity of T' is O(N*M) due to the w term. In
the spirit of the approximative nature of serialization analysis as well as in the interest
of efficiency we investigate the quality of a less complicated approximation that results
from assuming equal memory load balance due to the interleaving scheme. Formally, this
corresponds to redefining the move model in terms of one single memory resource b with
b= M according to

move(i, j) = use(b, 7,)
As a result of this simplification it immediately follows

3 i (T + 0504 370)
M

w(Lg) =

104 CHAPTER 5. CASE STUDIES

which, by definition of ¢, and ¢z immediately reduces to

n 4+ 3n?)r,
w(Lk):i(M)
in which n = N —k — 1. Hence
N(N —1)(27,
T = (N 1)ty 4 SN =D F 1)

2

N- 2
3n°) Ty,

Z max({Tm + n(37, + 27)}, 7(71 +3n)r)
M

Furthermore, 1f, at this stage, we neglect the dependency on n (i.e., approximating > max

by max}_) we obtain the following expression?, i.e.,

N(N = 1)(27y, + 1) N

T! = (N = 1)(7m +7¢) + 5

N-— N-— 2
3 m
max(Z {Tm + n(37, + 27¢) } Z %)

Without loss of precision, this O(N) expression can be further reduced to an O(1) ex-

pression using standard discrete mathematics. The reductions of the expressions

S [5] and Y [Hln

are described in Appendix C.
Figures 5.1 and 5.2 each show three speedup results,
Tp= gt — TJtD:1 gl — TJID:1

S pu—
? t {
Tpsy Ths, Ths,

based on the predictions 7' (simulation), T* (traditional prediction, based on ¢ only), and
our lower bound prediction T, respectively. Figure 5.1 shows the speedup for M = 2
while Fig. 5.2 shows the speedup for M = 4. In both cases 7y = 107,,. The results
clearly illustrate the added value of serialization analysis compared to the traditional
approach, that yields far too optimistic predictions for large values of P. The M values
have deliberately been chosen small to demonstrate the effects contention may have on
performance (for M = 1, T' and T practically coincide). For increasing M values the plots
more or less blow up as a result of the simple scaling laws that can be directly derived by
our approach to contention analysis. Let P* denote the saturation point. For P = P*,
the total memory work load in the parallel loop equals the traditional execution time. For
not too small problems this implies

37 3T + 275

M P~

27’f
PP=(—+1)M=~T7TM
(3Tm +1)
which implies that (memory) performance degradation is determined by the ratio of P

and M as can be seen from the figures.

2This establishes a lower bound of somewhat less quality. Results show, however, that the dependence
on n is indeed negligible, resulting in a deviation that is less than a few percents over the total range.

5.2. PERFORMANCE COMPILATION 105

50 50

2] s' | 30 1 / st ot
20 s' : 20 t ,,/,;f;,’,’,”ff.f'

10 \ 1 0+ / s

1 10 20 50 —= P 100 1 10 20 50 —= P 100

Figure 5.1: Speedup for N =100, M =2 Figure 5.2: Speedup for N =100, M =4

5.2.4 Matrix Multiplication

In this case study we consider an N x N matrix vector update y = y + Ax on a P
node multicomputer according to simple block partitioning in which we assume P|N. In
order to emphasize the role of interprocessor communication (contention), an intentionally
suboptimal column-wise partitioning is chosen, while z is evenly distributed over all nodes.
Moreover, the implementation is based on a naive application of the “owner-computes”
convention [26] to the result vector y (note, that less communication-intensive schemes
exist for column-wise partitioning but, again, this is not the issue here). The result
is characterized by the following C-style SPMD pseudo code (p is the node id), where
b = N/P, and the indexing is kept in terms of the (original) global data space, for
simplicity.

for 1 = 0 .. b*p-1
for j = b*p .. b*(p+1)-1
send(i/b,A[11[j]1);
for i = bx(p+1) .. N-1
for j = bxp .. bx(p+1)-1
send(i/b,A[11[j]1);
for i = b*xp .. bx(p+1)-1 {
for j = bxp .. bx(p+1)-1
y[il = y[il + ATi1[5] * x[j];
for j =0 .. b¥p-1
y[i] = y[i] + recv(j/b) * x[j];
for j = bx(p+1) .. N-1
y[il = y[i]l + recv(j/b) * x[j];
t

In this code, send(q) moves a datum from node p to node ¢, while recv(q) returns a
datum sent by node ¢

106 CHAPTER 5. CASE STUDIES

With respect to the communication of data we assume an asynchronous model. Also,
we only model the send statement, assuming that the recv operation only accounts
for synchronization and local data transfers. Furthermore, we assume that the data
transfers are finished at the time the recv operations are executed, thus allowing condition
synchronization to be ignored. (Note that this simplification is only made for the purpose
of this example. Formally, we should take into account that the data transfers may not
be finished in time.) Consequently, we can use a send model to completely account for
the work load associated with the communication. Thus the PAMELA model becomes

L=par(p=0,P—1){
seq (1 =0,bp —1)
seq (j =bp,b(p+1)—1)
send(i/b);
seq (1 =b(p+1),N —1)
seq (j =bp,b(p+1)—1)
send(i/b);
seq (1 ="bp,b(p+1) —1) {
seq (J=0bp,b(p+1)—1){
flop;
flop
b
seq (j = 0,0p—1) {

Jlop;
Jlop
b
seq (j =b(p+1),N —1){
Jlop;
Jlop

}

which immediately reduces to

L=par(p=0,P—1){
seq (1 =0,bp —1)
seq (j =bp,b(p+1) —1)
send(i/b);
seq (1 =b(p+1),N —1)
seq (j =bp,b(p+1) —1)
send(i/b);
seq (1 = 0,2bN)
flop
}

With respect to the message-passing interface we assume a unidirectional ring of P point-
to-point link resources ly...[p_1. In this arbitrary, simple model each scalar transmission

5.2. PERFORMANCE COMPILATION 107

involves a forwarding copy by each link processor in the path between sender and receiver.
Hence we assume the following simple machine model:

flop = delay(ry)
send(q) = seq (k=0,K —1) use(lpirymoar, 1)

where K = (P + (¢ — p)) mod P denotes the number of links involved in the transmission
(in this case study, forwarding costs at CPU level are ignored).

Since the parallel section is located on the outermost loop level we simply apply
Eq. (3.14). Critical path analysis yields

bp—1b(p+1)—-1 K—1 N-1 bp+1)-1K-1 20N
= max Z o2 nt > > Zn+er
= Jj=bp k=0 i=b(p+1) J=bp k=0

where
K=(P+ L%J — p)mod P
Since it follows from Definition 5.1 that for any f
i Lt
> A=Y S0
;)

@ reduces to

p—1 P-1
© =b* max (Z(P—I—p’ —p) mod P+ Z (P4 p' —p) mod P)r 4+ 2bN 74
p=0...P—1 210 —
which equals
P-1
2
e=b p:rg.l%(_l(p;(lj +p' —p) mod P)r + 26N
Finally, since
= PP -1
S (P+p —p)mod P = Zp ()
p'=0 2
@ reduces to
P(P—-1
992627()Tl—l—ZbNTf

In order to derive w we compute the work loads on links ly...lp_;. From the structure
of L and send it immediately follows

—_

512132_:1(27_16_1](_ [(p+ k) mod P=1[]+ Zl bz_ihz_:l p—l—k)modP:l])T

p=0 1=0 7=0 k=0 i=b(p+1) 7=0 k=0

108 CHAPTER 5.

CASE STUDIES

where
K=(P+ L%J — p)mod P

Again, since
bp—1 i p—1
> A=Y S0
=0 p'=0

0; eventually reduces to

P-1P-1K'-1

51—6222 Z (p+k)mod P=1] 7

p=0 p'=0 k=0

where
K' =(P+p —p)mod P

Given the fact that K’ is cyclic with respect to p/, it holds

P-1 P-1+p

DME) = f(K)

p'=0 p'=p
Hence,

P-1P-14p K'—-1

_bzz Z Z [(p+ k) mod P =1] 7

p=0 p'=p k=0
Let p” = p’ — p. Then
K' =(P+p")mod P = p”

and

P—1 P-1p"-1

51:622 Z Z [(p+ k) mod P=1] 7

p=0 p""=0 k=0

Now, we exploit the cyclic nature of the term (p 4+ k) mod P = [with respect to p. By

Definition 5.2,

Pl P—l+k 0—I[+k
> [(p+k)mod P =1] = [———5——=] [—]

p=0

=1

and it follows

P-1
P(P—-1
51 — b2 Z p”Tl — b2 ()Tl
H— 2
p"=0
As a result
PP -1
w=b? (T

5.2. PERFORMANCE COMPILATION 109

which is independent of [. This, of course, agrees with the communication symmetry
(note, however, that this knowledge has not been used in the above mechanical derivation).
Hence

P(P—1) P(P—1)

Tl = max(62 71+ QbNTf, bz 5 Tl)

which implies

P—-1 2
T+ —57s)

Tl: :N2
7 (=P P

At first glance, the fact that T' = ¢ irrespective of P may be surprising. It is explained,
however, if one realizes that the number of (link) resources scales linearly with the number
of processors, thus maintaining balance.
The two plots in Fig. 5.3 each show two speedup results, i.e.,
S = TP:I Sl — T]ljzl
TPEI 7 T11321
where T' is the simulation value. The communication-to-computation ratio is parameter-
ized according to
T
A= —
Tf

where X is chosen 0.1 and 0.5 in both figures, respectively. The results show a consider-

30 | | ‘ |

S A=0.1 S -
,w’/""/ S

15 | ,,,,,,/"' | 15 7

1 8 16 32 ——= p 64 1 8 16 32 ——= p 64
Figure 5.3: Simulation vs. predicted speedup for N = 64

able deviation between simulated and predicted speedup. This illustrates the fact that
serialization analysis yields a lower bound that may still deviate considerably from 7T'.
For small P the deviation is small as the effect of contention is limited. For large P the
communication dominates (O(1) versus O(P~') computation) which implies 7! = ¢ = w.
As in earlier examples for cases where ¢ ~ w the deviation between 1" and 1" can be
significant. This point will be elaborated further in Chapter 6. The fact that serialization

110 CHAPTER 5. CASE STUDIES

analysis does not introduce an extra order term, like in the factorization case (O(N?) in
addition to the traditional O(N?/P) 4+ O(N?)), indicates the problem’s potential to run
relatively contention-free on the given machine architecture. Indeed, it turns out that
when the communication schedule of the algorithm is modified by simply reversing the
direction in which the 7 loops are executed, yields completely conflict-free execution?.

Although the analyses in both case studies somewhat reflect a human touch, the initial
compilation procedure (i.e., compiling the raw, unreduced 7" model) can be mechanized.
While compiling the visit count expressions is straightforward, the subsequent process
of reducing them involves the repeated application of discrete calculus as shown in the
workload analysis of the processor, memory, and link resources. In this reduction phase
sometimes a judicious approximation (e.g., memory workload balance) can be helpful in
the derivation of cheaper expressions, especially when the emphasis lies on asymptotic
analysis. To which extent this reduction process can be mechanized is, of course, a differ-
ent matter that lies outside the scope of this work. However, it is clear that the need for
“reduction engines” in discrete mathematics is as general an issue as the need for reduc-
tion tools in standard calculus, something which is illustrated by the rapid developments
in mathematical tooling. With respect to the implementation of the PAMELA compila-
tion process this implies that PAMELA provides the tool to derive raw time expressions,
intended to be reduced using separate mathematical tools.

5.3 Macro Data Flow Computation

5.3.1 Introduction

In order to validate our methodology in terms of actual measurements we present a case
study in which the measured execution times of 15 synthetic programs on a distributed-
memory machine are compared with our predictions based on both simulation and our
analytic technique. One of the aims of the case study is (once again) to demonstrate the
necessity of accounting for contention. It will be shown that traditional static techniques
yield severe prediction errors. Parts of this section has appeared in [53].

The programs involve a macro data flow-style execution of random computation task
graphs that are mapped on a 4 x 4 mesh partition of the Parsytec GCel T800 transputer
system mentioned earlier in Example 4.9. The computation task graphs, that represent the
user application, are SP graphs generated by a random generator that will be described
in Chapter 6. For each graph the number of computation tasks is given by N = 100.
Each task ¢;, ¢ =1,..., N is statically mapped onto a random processor p; according to a
uniform distribution between 1 and P = 16 (p denotes the task mapping vector). Thus,
on average, 100/16 tasks are mapped onto the same processor. Each task is executed by a
separate (lightweight) thread that is scheduled dynamically by the node’s run-time kernel.
In order to enable true data flow execution, after each task has been executed, the (same)
produced data set is asynchronously broadcasted (non-blocking communication) to each
successor task (thread) except when a successor resides locally. The dynamic resource

3In terms of the original pseudo code this implies the sequence i = bp — 1,...,0, etc. Consequently,
the successive resource access sequences of the send calls do no longer conflict. This phenomenon was

first observed by Jonkers [79].

5.3. MACRO DATA FLOW COMPUTATION 111

sharing approach is partly inspired by the fact that recent technological developments in
the use of lightweight threads makes it increasingly justified* to use dynamic scheduling
at the processor level, both for computation and communication tasks (i.e., data flow,
using non-blocking send/recv calls) while the overall mapping is static. Furthermore, the
parallel slackness (multiple concurrent tasks per processor, cf. Valiant’s BSP model [151])
increases the average utilization of the processing and communication resources. A typical
example of the proposed approach is described in [96] where task graphs representing finite
element computations are statically mapped (based on a domain decomposition) such that
the number of tasks per node is much larger than one.

Due to the dynamic approach towards task computation and communication, the case
study (intentionally) provides an excellent example of the added value of serialization
analysis compared to conventional static prediction techniques. While static analysis in-
herently ignores the additional delay incurred by tasks sharing the same processor, our
approach naturally accounts for this delay by modeling task execution in terms of “proces-
sor contention”. Apart from processor contention, the use of non-blocking communication
introduces the possibility of link contention as multiple task communications may share
the same communication links. Again, conventional static analysis makes no provision
to account for the additional queuing delay, that may easily dominate performance (as
will be shown, later on). In our aim just to demonstrate the impact contention analy-
sis may have, we simply consider coarse grain task execution where each task entails a
large amount of computation (O(10°) floating point operations) as well as communication
(O(10°%) byte transfers). As will be shown, without loss of accuracy we can therefore
concentrate on computational and communication bandwidths rather than startup times
(and other sources of overhead), which simplifies the modeling discussion.

In order to allow for the execution of arbitrary task graphs a simple, generic SPMD
interpreter program is developed that accepts a task graph description file, executes the
task graph, and records the execution time. Thus, the 15 random programs that are
modeled is essentially the SPMD program, instantiated with each of the 15 random task
graphs. The execution time recorded from the SPMD program is compared to our pre-
dictions. The task graph description is based on a simple abstract data type. For each
task 2 = 1,..., N the data type specifies

e pred(i,k): predecessors (k = 1 .. fanin(i))
e succ(i,k): successors (k = 1 .. fanout(i))
e node(i): processor it is mapped onto (p;)

e work(i): amount of computation (w;)

e size(i): amount of data produced (;)

After each task has executed, the (same) produced data set is broadcasted to each suc-
cessor except in case the successor resides locally. In the following, we sketch the global
architecture of the SPMD application where p denotes the node index.

Note that our only interest is just a reasonably realistic case study, not to prove any point with
respect to the interesting issue of task graph mapping or scheduling.

112 CHAPTER 5. CASE STUDIES

spmd (p) :
fori=1 .. N
if node(i) = p
create task(i);

task(i):

for k 1 .. fanin(i)
j pred(i,k);
nrecv(j,size(j));

for k = 1 .. fanin(i)
j = pred(i,k);
await(j);

comp(i);

for k = 1 .. fanout(i)
j = succ(i,k);

nsend(j,size(i));

The data flow style implementation assumes a non-blocking message-passing interface
based on individual (logical) channels (links) between each task pair (7, j). The nrecv loop
enables concurrent reception of input data, while the await loop implements the task’s
synchronization barrier. The nsend loop yields a concurrent broadcast of the task’s output
data. Apart from programming convenience this approach retains maximum potential
parallelism in the communication structure (whether or not actually supported is machine-
dependent). Thus unnecessary sequentialization at the task level is avoided (analogous to
the dynamic task scheduling approach). When, as usual, the implementation is based on
multiplexing logical links on a smaller number of physical links, the effective bandwidth
reduction is naturally accounted for in terms of a link contention model.

The message-passing interface used for the implementation is based on the “virtual
link” service, that provides a dedicated logical channel between a sender and receiver task.
The virtual link topology needed to connect predecessor and successor tasks is setup in the
prologue of the actual program. (Thus link setup times are not measured.) The communi-
cation mode selected is “asynchronous” in terms of the machine interface which, in reality,
implies a non-blocking mode®. The communication mode selected does not involve buffer
copying. In terms of the message-passing system interface the above three communication
functions are implemented by ARecv, ASync, and ASend calls, respectively [115].

5.3.2 Computation Model

Let G denote the task graph to be executed, consisting of tasks ¢;,2 = 1,..., N. From the
SPMD program it follows that the execution of G is modeled by

L=par (p=1,P)par (i =1,N)if (p; =p) task(s)

in which task(z) models the task thread. The first parallel section is due to the SPMD
parallelism while the second parallel section is due to the simultaneous creation of the

>The difference between asynchronous and non-blocking sends has been discussed in Chapter 4.

5.3. MACRO DATA FLOW COMPUTATION 113

task threads at initialization time. Clearly, we may also write
L =mpar (1 =1,N) task(i)

We do not account for the overhead involved with the creation of threads or virtual links
since the measurement only involves the actual task execution times.

Based on the fact that each nrecv and nsend call is implemented by a separate
thread [115] (also see Example 4.8), the task model is given by

task(i) = par (k =1, fanin(i)) {

J = pred(i, k);
recv(7,1;)

b

comp(p;);

par (k =1, fanout(1)) {
J = suce(i, k);
send(j,1;)

where send and recv represent the actual (synchronous) communication tasks (addressed
in terms of task indices), and comp denotes the computation model in terms of the ap-
propriate processor. Note that the implicit barrier in the first par construct accounts for
the explicit barrier in the program code (the await loop). The parallel send and recv
sections express the concurrency involved in the non-blocking communications. Note that
while a non-blocking send essentially involves a separate thread of control, a non-blocking
receive actually may just involve a simple subroutine (e.g., some initialization for the fu-
ture communication). Consequently, it would seem that the above parallel model for the
nrecv loop might not always reflect the actual implementation. In reality, however, the
approach does cover the complete spectrum of thread-based as well as subroutine-based
implementations. In case of a subroutine, the work involved is simply charged to a single
resource (processor). Consequently, the parallel loop will automatically be serialized (both
in terms of simulation and serialization analysis) as if the calls were made in sequence.
Hence, the performance result is essentially the same.

Because all the receives are already posted during task initialization, the data transfers
initiated by the send calls effectively execute asynchronously (i.e., do not incur any ad-
ditional condition synchronization delay), corresponding to the philosophy of macro data
flow. Hence, the communication interface model is effectively given by

send(j,l) = bmove(p;,p;,l) ; signal(c;)

recv(y,l) = wait(c;)

that corresponds to the model for one-only (unbounded buffer) communication (Sec-
tion 4.3) in which ¢;; corresponds to the specific communication channel (“virtual link”)
between task ¢ and j. The bmove model represents the actual data transfer activity.
Consequently, the task model is given by

114 CHAPTER 5. CASE STUDIES

task(i) = par (k =1, fanin(1)) {

J = pred(i, k);
Wait(cij)

b

comp(p;);

par (k =1, fanout(1)) {
J = suce(i, k);
bmove(pi, p;, 1;);
signal(c;;)

Due to the message-passing synchronization, at the task level, L is topologically similar
to . (This, of course, corresponds to the fact that the SPMD program correctly executes
(i.) The only difference is that it is expressed in a message-oriented style rather than a
procedure-oriented style, as described earlier. For the purpose of analysis, however, it is
more attractive to use (i as the basis for a model for the SPMD message-passing program®
rather than the message-passing version of L. For instance, consider the simple task graph
G =11 ; t3. According to the message-passing approach it follows

L = {comp(p1) ; bmove(py,p2,11) ; signal(eiz)} || {wait(ciz); comp(ps)}

However, as G is an SP graph, a material-oriented approach simply yields

L = comp(p1) ; bmove(pi,pa,l1) ;5 comp(ps)

Thus in the procedure-oriented approach L is constructed by simply expanding every arc
in G with a bmove model. Consequently, L can be directly compiled into an analytic
performance model based on the application of Eq. (3.15).

The comp model represents the actual task computation. For the purpose of the case
study each task just executes a meaningless computation according to to

for 1 = 1 .. work(i)
1.0 * A[i mod 1000];

r

that generates integer and floating point computations as well as memory access, the total
work load parameterized by w;. In our aim to evaluate the prediction accuracy in the
face of processor and network contention, we refrain from modeling the above code in
detail and simply measure it as a whole. For the amount of work we consider (10*...10°
loops) the execution time increases linearly with w; according to 6.1 us per iteration”. The
execution time including queuing delay due to processor sharing is accurately expressed
by the following simple model (expressed in pus)

comp(pi) = use(cpu,,. 6.1

5Note that it might seem obvious to use G for the performance model in the first place. Formally,
however, we must deal with the fact, that L. must represent the SPMD program of which the performance
i1s measured, not its data wmput. Hence, we must adopt this line of reasoning.

"Without any form of (compile-time) optimization. In the coefficient, the (small) effect of multithread-
ing overhead is automatically accounted for since during the measurement the above code 1s run as a

thread.

5.3. MACRO DATA FLOW COMPUTATION 115

where cpu,, is of PS-type. As an example, consider the following 6-tasks graph
G =1t ; par (1 =2,5) t ; g

with a task mapping given by p = (p1,...,ps). According to the procedure-oriented
modeling procedure, the PAMELA model of the SPMD program is given by

L = comp(p1);
par (1 =2,5) {
bmove(py, pi,11);
comp(p;, Ti);
bmove(p;, pe, ;)
b

comp(pe; 7o)

Note that any SP graph G always maps to an SP model L. Let p = (0,0,1,0,1,0). When
the bmove model is ignored (discussed in the next section) Eq. (3.15) yields

T = 6.1(w1 + max(ws, ws, wy, ws, Wy + W4, W3 + ws) + We)

Indeed, for large computations and zero communication, the above prediction not only
equals T (i.e., the simulation result) but also closely matches the actual execution time
measured (within a few percents, as shown later on). Note that even for this simple
example conventional static analysis may already yield an error up to 100 %.

5.3.3 Communication Model

As discussed in Example 4.9 the bmove model is given by (expressed in us)

bmove(s,r,l) = par (1 = 1,1/120) {
seq (k=2,K —1) {
use({ fur 0y}, 108);
use(f,,,73)
’
use({e,, z, }, 108)

where s and r denote sender and receiver, respectively.

Because of the simultaneous resource usage, the above model (and hence L) is not
amenable to the application of Eq. (3.15). Thus, we consider an approximation using
transformation Eq. (3.17) discussed in Section 3.6 (see Fig. 3.10). It follows

use({f.,, xn, },108) ; use(f,,,73) — use(f,,,108) || use(x,,,108) ; use(f,,,73)
while the second use term immediately reduces to

use({e,, x,.},108) — use(x,, 108)

116 CHAPTER 5. CASE STUDIES

IE E EREREE
(0) (1) 0.9]0.9]0.9
(0) (2) 151515
(0,0) (1,1) 1.8 [1.8]0.9
(0,0) (2,2) 3.0(3.0]15
(0,0) (1,2) 18 (18|15
(0,0,0) (1,1,2) 2727|115
(0,0,0) (1,2,2) 33(3.0]15
(0,0,0,0,0,0) | (1,1,1,2,2,2) | 5.4 | 5.4 | 1.5

Table 5.1: Results for 10° byte concurrent communications (s)

since e, 1s not used anywhere else in the par expression. After applying the additional
(lower bound) reduction

use(f,,,108) || use(x,,,108) ; use(f,,,73) — use(f,,,181) || use(x,,, 108)

the bmove model is approximated by

bmove(s,r,l) = par (1 = 1,1/120) {
seq (k=2,K —1) {
use(f,,,181) ||
use(z,,, 108)
’
use(z,, 108)

Effectively, this model accounts for the fact that 7' cannot be less than the largest work
load on either an f or x (or e) server. Note that this leads to a somewhat less tight bound
because the approximate model involves less synchronization constraints than the earlier
model. For the experiments described in Example 4.9 (cf. Table 4.1) Table 5.1 shows a
comparison of T' (based on the above model) and 7" that is based on the approximation.
The static prediction T is added for reference. The table shows that, the approximation is
quite acceptable, especially in view of the overall modeling approximation in which various
communication aspects have been ignored (see Example 4.9). Hence, the approximation
is used for the overall prediction experiment.

5.3.4 Results

In this section we present the measurement results for the execution of the 15 random
SP graphs Gy ...Gq5 on the 4 x 4 transputer mesh. As mentioned earlier, each graph
comprises N = 100 tasks that are randomly i.i.d. (independent identically distributed)
uniformly over the 16 processors. The computational work load w; is i.i.d. uniformly over
[10%,10°] which corresponds to an average total problem size of 305 s in terms of the comp
code presented earlier. In order for the communication to have a significant impact, the
data size sent by each task to its successors is also i.i.d. uniformly over [10* 10°] which

5.3. MACRO DATA FLOW COMPUTATION 117

¢ [] 7] 7] 1) [¢ [T] L] T[] T[] %]
G | 118.7 | 114.7 | 83.7| 25.9 G 38.7 | 389 | 21.3|94.7 | 88.7| 5.3
Gy 93.9 | 925 | 574 | 21.2 Gy 46.3 | 46.5 172 1 67.3 | 61.9| 4.3
G's 95.6 | 928 | 63.1| 258 G's 36.1 | 36.2 | 228 | 77.6 | 69.8 | 4.2
Gy 94.1 | 874 | 61.2] 31.5 Gy 483 | 48.1 | 274 | 732|644 | 58
Gs 73.4 | 709 | 46.8 | 30.3 Gs 54.9 | 553 | 254323]30.0| 4.8
Ge | 105.8 | 103.9 | 583 | 58.3 G 79.1 79.4 | 476 | 42.5 | 394 | 10.6
Gz 98.4 | 87.0| 522 | 474 Gz 58.2 | 584 | 39.7|49.2 427 | 9.8
G's 89.2 | 87.1| 59.2 | 52.5 G's 63.7| 64.0 | 44.2|36.2 | 34.0 | 11.2
Gy 87.6 | 844 | 65.8| 65.7 Gy 757 76.2 | 56.4 1| 19.5 | 17.5| 10.2
Gho | 109.5 | 106.4 | 79.8 | 79.5 Gio| 82.6| 828 | 654|493 |45.6 | 16.4
Gy | 141.2 | 138.4 | 120.5 | 107.6 Gy | 114.8 | 1154 | 91.2 | 37.3 | 33.2 | 19.6
Gz | 1495 | 144.8 | 126.0 | 125.0 Gz | 113.0 | 113.5 | 103.3 | 44.8 | 42.7 | 22.2
Ghs | 165.9 | 163.2 | 140.4 | 140.2 Ghs | 130.8 | 131.1 | 119.3 | 41.2 | 38.5 | 23.5
Ghq | 1723 | 171.0 | 165.4 | 165.4 Ghq | 138.2 | 139.1 | 136.3 | 44.2 | 42.5 | 28.9
G5 | 188.6 | 186.8 | 173.4 | 174.3 Gs | 145.8 | 146.5 | 145.0 | 47.5 | 46.1 | 33.2
Table 5.2: T"™ vs. predictions Table 5.3: Results for f-mode and e-mode

corresponds to an average communication delay between 450 ms and 750 ms per isolated
transfer. The 15 graphs are generated such that they cover the entire spectrum from
relatively parallel graphs (corresponding to low (7 indices) to relatively sequential graphs
(corresponding to high 7 indices). Table 5.2 summarizes the main results for each of the 15
programs. 1™ denotes the measured execution time (s). T denotes the simulation result
(s) of the PAMELA model L. T denotes the result (s) of applying Eq. (3.15) to the PAMELA
model version based on the approximate bmove model (in terms of simulation, the overall
difference with the exact model is practically negligible). The total number of resources
involved in the simulation and analysis is M = 144 (p = P = 16, f = @ = 4P = 64).
The T value (i.e., ¢) has been included to demonstrate the (severe) prediction error of
traditional static analysis.

The results show that the performance of the SPMD program is indeed captured by
the PAMELA model with reasonably good accuracy. On average, T" under-estimates T
by about 4 % which is entirely due to the fact that the communication model ignores
the effects of reverse communication and the additional CPU load (as discussed in Exam-
ple 4.9; this will also be shown in the next table). The results for T* follow the general
trend as discussed earlier in the MRM, pipeline, matrix factorization and multiplication
case studies. For w > ¢ (low G indices) as well as for w < ¢ (high & indices) T" ap-
proaches T', while the deviation is maximal when both terms are of the same order. An
extensive discussion of this important phenomenon will be presented in the next chapter.

In order to evaluate the PAMELA model in more detail, each of the 15 graphs is also
executed under a mode f in which all communication (except task synchronization) is
switched off ([= 0), and a mode ¢, in which all computation has been disabled (w = 0).
Thus each original measurement 7™ is complemented by a communication-less version

T and a computation-less version T7", representing both ends of the communication

118 CHAPTER 5. CASE STUDIES

spectrum. Table 5.3 shows a comparison of 7™, T, and T" for both execution modes.
The results show that the inaccuracy of T'is indeed due to the bmove model as explained
before. The average accuracy of the PAMELA model for f-mode execution lies well within
1 % (indicating the correctness of the comp model), whereas the ¢-mode model under-
estimates communication delay by 8 % on average. Note that the results automatically
demonstrate the general validity of the (approximate) communication model for various
random concurrent communication patterns (in addition to the test patterns shown in
FExample 4.9). Finally, note that for a high communication density the error in 77 becomes
quite spectacular.

5.4 Simulation Revisited

5.4.1 Introduction

Thus far, a distinction has been made between simulation and the lower bound analytic
technique. As mentioned in Chapters 2 and 3, simulation relates to direct model evalu-
ation in the PAMELA domain while the analytic technique is based on evaluation in the
time domain model that is compiled from the PAMELA model. While both modes are
equivalent for contention-free models in terms of the evaluation result (7" = ¢), in the
presence of contention both techniques differ in the way mutual exclusion is approached
(T > T"). Although, especially for contention models, simulation is generally much more
time-consuming than the analytic technique (highly iterative procedure, process over-
head), there exist cases in which the actual computation time involved with simulation
is comparable (in big-O terms) with the lower bound technique while the result (7') is
essentially better. This coincides with the fact that there are models that are amenable
to an alternative, numeric technique rather than just the lower bound approach. Like in
the case of simple critical path analysis, whether the evaluation mode should be coined
simulation or analytic has become more or less a technical matter. In this section we shall
explore the difference between the analytic technique and simulation in somewhat more
detail.

As an introduction to the problem we start with an application of our analytic tech-
nique by compiling a performance model from a dynamic message-passing program.

Example 5.1 Consider a simple data parallel operation on an N element vector x ac-
cording to the pseudo code

0 .. N-1
comp(x[£(1)]);

forall 1
y[il]

where comp denotes some unary computation and f denotes some index function. Consider
a simple SPMD parallelization of the above program on a P processor distributed-memory
machine using a cyclic partitioning scheme (x and y are aligned). In the following we will
derive a simple performance model of the SPMD code.

For the purpose of the example, we assume a naive SPMD code generation model for
an asynchronous communication interface according to the following pseudo code

5.4. SIMULATION REVISITED 119

for 1 0 .. N-1+4
s = £(1i) mod P;
r = 1 mod P;

if r '=p and s = p
send(r,y[£(1)]);
if r = p and s !'=p
y[i] = comp(recv(r));
if r = p and s = p
y[il = comp(y[£()1);
+

where p denotes the processor index (“owner-computes” model), the computation and
communication are still expressed in terms of the global data (index) space (cf. matrix
multiplication in Section 5.2). Furthermore, note that various optimizations have been
(intentionally) neglected (e.g., index space partitioning, message vectorization) given the
objective of the example.

Let the asynchronous message-passing interface be given by the following simple model
(unbounded buffer, see Section 4.2)

send(r,a) = signal(cy)

recv(s,a) = wait(es;)

where ¢, represents the communication channel between sending processor s and receiver
r during iteration ¢ (the address a is immaterial). Thus the processor network is thought
ideal. Let the computation model be simply given by

comp = delay(7.)

Consequently (ignoring various overhead terms as usual) the PAMELA model of the SPMD
program is given by

L=par(p=0,P—1)
seq (1=0,N—1){
s = f(i) mod P;
r = ¢ mod P;
if (r£pAs=p)
signal(c,,);
if (r=pAs#p){
wait(cs,);
delay(7.)
)
if (r=pAs=yp)
delay(7.)

}

Note that the above model is not an SP model. Hence, we cannot simply apply Eqgs. (3.4)
through (3.10). However, since the model is amenable to our functional analysis approach
(as a result of the absence of P/V operators), we can use the basic mapping rules as given

120 CHAPTER 5. CASE STUDIES

in Eq. (3.1) through Eq. (3.3). By associating a (single assigned) variable with each task
(if) statement, the following set of (conditional) equations is derived.

T = max T'p
p:o...P_l
Vp: r, = ryn_1
. 0 1 = 0;
Vp,i: Tpoi0 = ’ -
b, it rpi-1,2, otherwise.
Vp,i: ¢ = Tpio
Vp 1 Ty = max(rp7i7ovcsi) + 7, T=pAs 7£ b;
s Tpy, Fpi0s otherwise.

Vp.i - ' - Tpidl +Tey T=pAs=p;
Pl Tpio = th .
T'pi,1 otherwise.

where s = f(i) mod P and r = ¢ mod P. O

While, the above system of equations can be evaluated by obeying their data depen-
dencies (rearranging some equations), it is clear that the above model is not amenable to
a straightforward computation on a sequential machine. The following algorithm shows
a simple technique that dynamically evaluates the data dependencies between the above
equations while evaluating the equations where possible.

while (true) {
for(p=1...P—1){
for(i1=1...N—-1){
if (—ep,) {
if (r#pAs=p)
Csi = T'p;
if (r=pnrs#p){
if (csi # —1) {
1y = max(ry.)
Tp = Tp + Te
}
break;
}
if(r=pAs=p)
Ty =Tp+ Te;
€pi = Lrue;
e=¢e—+1;
done = (e = PN);

5.4. SIMULATION REVISITED 121

The algorithm scans each equation according to the above p and ¢ loop and tests whether
the equations corresponding to loop instance (p,7) (i.e., r,.0,...,7pi2) can be evaluated
(using the condition €, ; corresponding to the equations r,;0,...7,;2). The primary time
variable is r,. All variables are assumed initially zero, except the ¢, that have an initial
value of -1 to encode their definition status (task completion). When a loop instance (p,)
cannot be completed, the algorithm switches context (using the break construct that has
similar semantics as the construct in C) to another instance of the higher level loop (in
this case the p loop). The top level while loop guarantees that all equations are evaluated.
Note that the above computation is guaranteed to terminate since the SPMD program
may be assumed deadlock-free (i.e., the program is assumed correct). The above algorithm
has been verified to produce the same results as those obtained by direct simulation of
the PAMELA model.

Clearly the resemblance between the structure of the analysis algorithm and the orig-
inal PAMELA model is obvious. In fact, the sequential computation can be compiled from
the PAMELA model using a mechanical scheme where (apart from the extra variables) each
par maps to a for loop along with a while-break mechanism in order to correctly resolve
the data dependencies between each (task) equation. Consequently, in this example the
analysis method may well be thought of as simulation, although the sequential computa-
tion is formally an implementation of the (intermediate) analytic model on a sequential
computer. It may therefore seem that the above analytical process

SL - DG —- SE — SC

where we now explicitly include the final sequential computation SC (SL denotes the
original PAMELA model), is a somewhat elaborate way of describing the process

SL — SC

which is quite comparable to a simulation approach. However, unlike real simulation,
everything is now directly compiled into the time domain instead of interpreted by some
run-time state machine for the ultimate time domain evaluation. Of course, there are
more differences. The “analytical” route only applies to the subset of models that do not
include the notion of state (as discussed in Chapter 3). Furthermore, because of this, a
much more optimized computation can be generated than the general simulation approach
that uses an interpreter. The most significant example is the compilation of SP models
into just one single expression.

5.4.2 Alternative Techniques

As mentioned earlier, the major differences between the “analytic” and “simulation” tech-
nique are determined by

e evaluation domain
While simulation corresponds to interpretation in the PAMELA domain using some
state machine (e.g., a discrete-event simulator), the analytic method corresponds to
interpretation (evaluation) in the time domain based on a (symbolic) model that is
compiled from a PAMELA domain model.

122 CHAPTER 5. CASE STUDIES

o determinism
While the numerical simulation result typically represents a mere draw from the
result distribution due to model non-determinism of time and control flow (e.g.,
mutual exclusion), the analytical method yields a deterministic result (e.g., for non-
deterministic models a mean value).

As shown above, in practice the differences with respect to the evaluation domain tend to
be less rigid as, like simulation, the analytic approach typically gives rise to the compilation
of an “interpretation” system that controls the evaluation order.

In this section we will simply unify the notion of analytic technique and simulation by
assuming a run-time system that maintains a list of (PAMELA) processes of which the next
time domain equation (i.e., PAMELA statement) can be executed. By introducing the list
as an abstract data type, the distinction between the analysis algorithm and simulator
has practically disappeared (note that many analytic methods or “algorithms” are based
on lists, e.g., task event lists).

In the following, we will simply refer to the technique as “simulation”, whether or not
the actual evaluation takes place in the PAMELA domain or not. In general, it is tacitly
assumed that the run-time system is compiled as a part of the model rather than linked
based on a PAMELA domain interpreter (i.e., the classical simulator). Although from this
perspective the choice of terminology has become arbitrary, we use the term simulation
rather than analytic because of the fact that, given the above criteria, simulation admits
a possibly non-deterministic result although in many cases the outcome is (practically)
exact as we shall see.

Up until now, we have considered contention-free models where a comparison between
simulation mode and analytic mode is appropriate due to the fact that in both cases T’
is computed. In the following we will consider more general cases involving contention.
As in this dissertation we concentrate on the problem of analyzing mutual exclusion, we
will (again) assume that non-determinism due to task variance and/or conditional control
flow is negligible.

Although, from a static (symbolic) analysis point of view, contention models do induce
non-determinism with respect to the symbolic compilation, from a numeric (simulation)
point of view, for many contention models, the actual non-determinism is non-existent.
Hence, for these models a single simulation run suffices to provide T' (the matrix factor-
ization model is an example of this). Consider the following model

L — Ll H L2
Ly = delay(n); use(r,m2)
Ly = delay(rs); use(r,7s)

where r is an FCFS-type resource. In order to compile a symbolic time domain model for
T we must evaluate the precedence order between both contending tasks which depends
on the actual value of 7y and 73 (unless, of course, we were willing to accept a conditional
model for T', which, in general, is not a practical option). On the other hand, simulation,
essentially being a numeric evaluation technique, simply evaluates the precedence relation
dynamically in the course of its evaluation algorithm. For instance, the following model

5.4. SIMULATION REVISITED 123

L — Ll H L2
Ly = delay(l) ; use(r,2)
Ly = delay(2) ; use(r,1)

yields the deterministic result 7' = 4. Note that the evaluation algorithm can equally
be called analytic as the algorithm only manipulates a simple event list and yields a
deterministic result at basically the same time complexity as a critical path algorithm (in
fact, it is an enhancement to the CP algorithm that accounts for tasks being blocked by
use operations as well as by delay operations). Thus in terms of the ultimate numeric
result, the analysis algorithm performs better than the lower bound algorithm. While
Eq. (3.14) yields T' = 3 the numeric algorithm yields 7" = 4 at comparable cost (of
course, T' is a symbolic result with all the associated advantages).

While in many cases simulation provides a deterministic result, there are cases that in-
volve “true” non-determinism, e.g., as a result of the generally non-deterministic outcome
of a conflict arbitration. For example, consider the following model

L — Ll H L2
Ly = wuse(r,1); delay(2)
Ly = wuse(r,2); delay(1)

Depending on the conflict arbitration it follows either T' = 4 (L scheduled prior to L), or
T =5 (L scheduled prior to L1). However, for many systems, the actual non-determinism
is relatively small compared to the total amount of contention, especially for larger systems
where the average influence of fine grain non-determinism is negligible compared to the
overall (partly mutually exclusive) workload. Typical examples include models such as the
macro data flow example where the variance in 7' is in the order of percents. Although
non-deterministic, in such cases it is worthwhile to consider the outcome T' of a single
numeric pass instead of just using 7", especially in an approximative application context.
In fact, the extremely small variance of the simulation results in the macro data flow
example has lead us to introduce an important optimization in the simulation model that
yields significant speedup. In the model the granularity in terms of individual contentions
is extremely high compared to the aggregate service demand. For instance, the unit of
computational contention (service time) is the scheduling time slice (O(107°) s) whereas
each (macro) task corresponds to a service demand of O(1) s. The same applies to the
communication grain size as one transfer involves O(10?) individual packet transmissions.
Consequently, the variance in T' is negligible. As there is no point in deriving high-quality
simulation results with practically no variance, based on a model of which the accuracy is
inherently limited, the service time associated with the individual contentions is increased
such that the number of contentions per macro task drops to O(10%). While the variance
in T increases to O(1) % (with no appreciable difference in terms of the mean value of
T), the simulation time decreases by orders of magnitude. An important side effect of
this optimization is that the simulation cost becomes independent of the total work load
involved in the application.

Due to the fine granularity involved the macro data flow model serves as a good
example to demonstrate the advantages of models based on PS-type resources rather than
FCFS-type resources. While FCFS-type contention may introduce a large variance (cf.

124 CHAPTER 5. CASE STUDIES

difference between lower bound and upper bound on 7' in the 4-tasks example mentioned
earlier), for PS-type contention the variance becomes zero. Again, consider

L — Ll H L2
Ly = wuse(r,1); delay(2)
Ly = wuse(r,2); delay(1)
If r is PS-type it follows T' = 4 regardless of the non-deterministic conflict arbitration as

shown in Fig. 5.4 (light shaded area denotes sharing, dark shared area denotes exclusive
access). For applications like the macro data flow example this approach yields excellent

L, | 2 | 2
L. |2 [17]

Figure 5.4: Trace of L for PS-type resource

results. First of all, due to the high granularity of computation and communication (as
discussed above) modeling in terms of PS-type resources is appropriate. Furthermore, the
cost of the above technique (“coarse grain PS”) is much smaller than simulation based
on “fine-grain FCFS”. Thus, apart from the optimization discussed earlier, this technique
offers an alternative optimization that yields a deterministic result at less computation
time. The analysis algorithm simply involves updating the projected finish time for all
current (PS) resource accesses for the event of either a new access or the event of finishing
an ongoing access. The integration of the update algorithm in the critical path (simu-
lation) algorithm is straightforward. A description in terms of the PAMELA Run-Time
Library call pam_use() has appeared in [109]. Table 5.4 shows a comparison between
the result 7™ based on simulating the original, fine grain FCFS model (the unoptimized
original), T® based on the first optimization in which the service times are increased,
and T® based on simulating the coarse grain PS model. The actual measurements (77)
have been included for reference. On average, the evaluation of 7" takes O(10°) s (on
a Sun IPX workstation) while the standard deviation is given by ¢ ~ 1072. Both the
approximations 73 and T are within a few percents of T™). On average, the evalu-
ation of T® takes O(10) s while ¢ & 1. On average, the evaluation of T®) takes O(1)
s while, of course, ¢ = 0. Consequently, PS-type models offer significant possibilities for
alternative algorithms for the numerical estimation of T' that are highly efficient compared
to traditional approaches to simulation. Note, of course, that the limited accuracy of the
simulation model itself is an important justification of the use of such an approximate
technique.

5.4.3 Virtual Barrier

An interesting property of the analysis of PS-type models is that it can be expressed in
terms of a symbolic technique. Assuming fair scheduling (as usual) the fact that multiple
processes access to a PS-type resource implies that the processes are (infinitely) closely

5.4. SIMULATION REVISITED 125

‘ G ‘ Tm ‘ 7 ‘ 7 ‘ T7®) ‘
Gqp | 118.7] 116.8 | 114.7 | 115.8
Gy 9391 954 | 925 93.9
G 95.6 | 934 | 92.8| 934
Gy 94.1 | 89.2 | 87.4 | 887
G 734 722) 70.9| 714
Ges | 105.8 | 104.9 | 103.9 | 104.7
Gr 984 | 893 | 87.0| B87.7
G 89.2 | 86.6 | 87.1| 86.6
G 87.6 | 87.0| 84.4 | 87.0
Gio | 109.5 | 108.4 | 106.4 | 107.6
Gq1 | 141.2 | 139.4 | 138.4 | 139.0
Gz | 149.5 | 147.5 | 144.8 | 145.5
Gz | 165.9 | 164.3 | 163.2 | 163.7
Ghq | 172.3 | 171.7 | 171.0 | 171.3
G5 | 188.6 | 187.2 | 186.8 | 187.8

Table 5.4: Three different simulation techniques compared (taken from [109])

synchronized. This additional knowledge can be exploited as can be seen in the 4-tasks

example.

L
Ly
L,

However,

Again, consider

= Li || Ly
= wuse(r,7); delay(n)

= use(r,m3) ; delay(rs)

the service demands are not known numerically. Currently, our only method to

compile the model to a symbolic expression is by applying Eq. (3.14) that yields

!
T" = max(7 + 72,73 + T4, 71 + T3)

However, the fact that under the PS discipline the service bandwidth of r is exactly halved

during the time L; and Ly share access (i.e., min(7y,73)), we can transform L into the

following model

L
Ly
L,

Ly || Lo
= use(r,7,) ; use(r,max(r — 7,,0)) ; delay(m)

= use(r,7,) ; use(r,max(m — 7,,0)) ; delay(my)

where both original use tasks are divided into a phase in which r is shared (duration
7s = min(7y, 73)) and a phase in which r is owned exclusively. Due to the fact that both

use(r, 75)
L

Ly
Ly

tasks finish at the same time we may write

= (use(r,7) || use(r, 7)) 5 (Ly[| L2)
= use(r,max(m; — 7,,0)) ; delay(n)

= wuse(r,max(7; — 7,,0)) ; delay(ry)

126 CHAPTER 5. CASE STUDIES

where this phenomenon is expressed by including the explicit barrier synchronization
between both phases. Clearly the model reduces to

L = wuse(r,275); (L1 L2)
Ly = use(r,max(m —7,,0)) ; delay(m)

Ly, = use(r,max(m; — 7,,0)) ; delay(my)

Although the model is equivalent, lower bound analysis now yields a tighter bound. For
the numeric model instance mentioned earlier it now holds 7' = T = 4 whereas for the
original model T = 3. The additional barrier is called a virtual barrier because it does
not exist as a result of explicit synchronization in the model but as a result of the inter-
process synchronization due to the intimate (fair) resource sharing between the threads.
The above analysis technique is, of course, similar to the numeric algorithm mentioned
earlier. In many practical cases the analysis technique used will be numeric rather than
symbolic in order to avoid the delayed evaluation of the extra 'min’ and 'max’ terms that
need to be generated in the course of the transformation. Nevertheless, the inclusion
of virtual barriers in models where there exists significant resource sharing is a valuable
extension of our symbolic analysis approach, especially with respect to its robustness in
terms of worst case accuracy. This property will be further discussed in Chapter 6.

5.5 System Optimization

5.5.1 Introduction

In this section we will discuss how our performance modeling method can be applied to
program optimization decisions such as the vectorization of computations or communi-
cations, or the choice between various data partitioning strategies. When the program
involved is (sufficiently) static these optimization decisions can be made at compile-time.
However, even when the parameters involved are not numerically known at compile-time,
still a symbolic decision can be compiled given our low-cost, symbolic approach to per-
formance modeling.

In order to illustrate our methodology we start with a simple example that shows how
the optimization problem is addressed in the case of vectorization.

Example 5.2 Consider the following vector operation

forall i
x[1]

The vectorization decision typically depends on whether N is large enough to sufficiently

1 .. N
a * x[i];

amortize the startup overhead of the vector operation. If we ignore memory traffic for
simplicity, the operation can be modeled by

L=wpar (1:=1,N) flop

where flop denotes the scalar multiplication. Execution on a scalar processor would be

modeled by

flop = use(s, 7y)

5.5, SYSTEM OPTIMIZATION 127

where 7y denotes the instruction delay of the scalar floating point unit s. It follows
Ls =par (1 =1, N) use(s,7y)

which, by Eq. (3.14), yields Ts;, = N7s. On the other hand, execution on a vector processor
would be modeled by using an S stage pipeline (cf. Example 3.5)

flop=seq (1 =1,5) use(uj,)

where u; denotes stage j of the vector unit and 7. denotes the cycle time. Note that in
reality the startup time will be determined by more factors than just the pipeline hardware
stages, e.g., call overhead, memory latency (cf. Example 4.5). However, the above model
does account for the startup and bandwidth parameters as measured in practice simply
by (re)defining the pipeline as a combined software/hardware pipeline such that S and 7.
satisfy (fit) the performance measurements. It follows

L,=par (1=1,N)seq (j =1,95) use(uj,)

which, by Eq. (3.16), vields T, = (S + N — 1)7. = 7, + N7. where 7, = (S — 1)7. denotes

the startup overhead. Consequently, the (boolean) vectorization decision v becomes

T, <T,
s+ N1. < N7y

V2|5
Ty — Tc

N >N,

a

The example shows two aspects. First, it demonstrates the abstract approach towards
the two choices of mapping the (inherently) parallel algorithm onto the scalar or vector
machine while merely by discussing alternative flop models using the same algorithmic
description. (Note that the typically sequential implementation of the algorithm in the
scalar case has not been modeled explicitly.) The advantages of the abstract modeling
method will become clear later on. Second, it shows how the optimization problem is
addressed in terms of applied PAMELA calculus. If N is known at compile-time, v can be
evaluated. Even when NN is only known symbolically the above expression can be compiled
and evaluated at run-time. The compile-time decision then reduces to the question if it
is worth while to generate the integer test N > N, considering the additional cost.

Formally, the above optimization problem can be expressed by the following 0-1 integer
programming problem

T =T, + (1 = [])T;

where T' is to be minimized, v is the boolean variable and T, and T, denote the perfor-
mance models of the alternatives described earlier. As shown above, this simple optimiza-
tion problem can be solved symbolically yielding v = (N > N,). In general, however,
optimization will involve many decisions (e.g., various loop transformations, remapping)

128 CHAPTER 5. CASE STUDIES

all of which are not independent, i.e., cannot be evaluated locally. Hence, the optimiza-
tion problem needs to be expressed by an integrated performance model at global level
in terms of which the dependency of the various optimizations can be expressed. An
interesting example of the approach is presented by Kremer [88] in which the remapping
decisions that can be taken between various phases of a program are expressed in terms of
a 0-1 integer programming problem (note that each remapping decision affects remapping
decisions between later program phases). In the following we will describe the principles
involved in applying the PAMELA approach to program optimization. Based on our per-
formance calculus, we will also refer to this specific application by the term “optimization
calculus”.

5.5.2 Optimization Calculus

In this section we will discuss the specific modeling approach that is most appropri-
ate for the purpose of performance optimization. Note that performance modeling for
obtaining (accurate) execution time predictions and modeling for the sole purpose of
optimization do not necessarily imply the same approach. In many of the examples pre-
sented thus far performance prediction feedback has been based on modeling the code
that is effectively generated by the compiler in the course of the translation process,
i.e., usually in terms of optimized (partitioned) index loops and possibly explicit syn-
chronizations (shared-memory systems, cf. matrix factorization in Section 5.2) or explicit
message-passing instructions (distributed-memory systems, cf. matrix multiplication in
Section 5.2). Although many optimization aspects are thus captured in the feedback loop
the examples show that predictions are not always easily compiled, especially when the
code generation paradigm is (i.e., has become) message-oriented, instead of the original
procedure-oriented style in which the algorithm is typically expressed.

We will illustrate the problem with respect to analyzability (and subsequent optimiz-
ability) by a simple example. Consider a (simplified) line relaxation algorithm fragment [2]
applied to an N x N matrix A according to

for 1 =1

n =

. N-2
forall j 0 .. N-1
ATi10j] = A[i-1103] + A[i+110;];

that constitutes the phase in which the relaxation sweep direction is in the ¢ direction
(typically followed by a sweep in the j direction but which is not considered now). In
the parallelization for a P processor distributed-memory machine we consider the choice
between two regular block partitioning strategies, i.e., either along the ¢ axis or along the
J axis (a choice, by the way, that is clearly trivial).

Of course, we could model the corresponding (SPMD) code in order to determine
which alternative has the lowest execution time. For the j axis partitioning the code
would be characterized by

for i =1 .. N-2
for j = L(p) .. U(p)
ATi10j] = A[i-1103] + A[i+110;];

5.5, SYSTEM OPTIMIZATION 129

where p denotes the processor index and L and U denote the processor-specific index
bounds (U(p) — L(p) = O(N/P)). Although the above code clearly reveals the speedup
gain, this does not apply to the alternative partitioning. For the i axis partitioning less
straightforward code is generated (again, following the “owner-computes” convention)
according to the following SPMD code (only shown for processors p=1,..., P —2), i.e.,

send (p-1,A[L(p)][:1);

recv(p-1,tempvec_1); ! recv A[L(p)-1][:]
recv(p+l,tempvec_u); ! recv A[U(p)+1][:]
for i = L(p) .. U(p) {

if i = L(p)

for j =0 .. N-1
ATi]1[j] = tempvec_1[j] + A[i+1]1[j];
if 1 > L(p) and i < U(p)
for j =0 .. N-1
A[i1[3] = Ali-11053] + AQi+1105];
if i = U(p)
for j =0 .. N-1
A[i1[j1 = ATi-11[j] + tempvec_uljl;
}
send (p+1,A[U(p)]1[:1);

Like in earlier examples, the code is expressed in terms of the original (shared) data
structure for simplicity. Note that the j loops are vectorizable.

While the first code can be easily compiled into a symbolic performance model, the
second code illustrates the potential difficulties involved when compiling generated SPMD
code into a performance model. Especially in the case of the above code, symbolic com-
pilation is typically impossible as discussed earlier. Although the local bounds on the ¢
loop are reduced by a factor P compared to the original algorithm, the message-passing
scheme still serializes the entire computation. As discussed in Section 3.3 the “thread
of condition synchronization” that determines the critical path now runs through each
process that makes it hard to detect this in terms of a symbolic expression. However,
this critical path is nothing but the result of the explicit sequential ¢ loop at algorithm
level. Consequently, it is much more advantageous to consider a modeling approach at
algorithm level (i.e., procedure-oriented level) rather than at implementation level (i.e.,
message-oriented level).

In order to abstract from the actual partitioning implementation (either for shared-
memory or distributed-memory systems) we will model the original computation with its
full (potential) parallelism while each mapping decision is expressed in terms of a con-
tention model. In fact, this is the same material-oriented “contention modeling” approach
as in the vectorization example where the potential parallelism of the vector operation is
expressed while the machine resources determine the actual parallelism. The performance
model of the relaxation algorithm is expressed according to

seq (i = 1, N —2) par (j = 0, N — 1) flop(i,)

130 CHAPTER 5. CASE STUDIES

where flop(i,7) denotes the update of element A;; (ignoring data transfers for the mo-
ment). Let the mapping function p(7,7) denote the processor resource responsible for the
update of A;;. Then the machine model is given by

flop(i, j) = use(cpuy i), 7s)

where 77 denotes the computation time associated with the update of A;;.
For the j axis partitioning it holds u(z,5) = j/B where B = N/P denotes the block
size (for simplicity assume P|N). It follows

seq (i = 1, N —2) par (j =0, N — 1) use(cpu;p, ;)

For each parallel section (instance i) Eq. (3.14) yields (m = p denotes the resource index)

N-—
p= max T; w= mMax Z_: j/ B =m]r

Note that in contention models w is typically much larger than ¢. Consequently, Eq. (3.15)
yields

corresponding to the speedup found earlier. For the 7 axis partitioning it holds p(i,7) =
i/B. 1t follows

seq (1=1,N —2) par (j =0, N — 1) use(cpu;/p, 7y)

which directly reveals the algorithm’s sequential nature. Indeed, by Eq. (3.15) (and all
the equations called within) it follows

N-=2 N-1
B ; 0.1]Z:;J /B =m]ry = (N = 2)N7;

Thus by exploiting the knowledge of the algorithm’s inherent sequentialism as still present
in the algorithm description, from simple serialization analysis it directly follows that an
i axis partitioning will not yield any speedup®. In contrast to the SPMD implementa-
tion, the inherent sequentialism is still easily detectable. Note that the entire analysis is
symbolic, whereas a comparison of predictions at implementation level would practically
involve simulation (the relation between analytical models and simulation models is dis-
cussed in Section 5.4). Although many optimization decisions will have to be evaluated
numerically (at run time), this implies that the expressions that need to be evaluated are
highly optimized themselves, possibly to the extent that it becomes feasible to compile
the optimization decision as a part of the run-time code (cf. Example 5.2).

8This property only holds for the current algorithm. Later on, we will consider a modified version of
the algorithm in which ¢ axis partitioning does yield speedup.

5.5, SYSTEM OPTIMIZATION 131

5.5.3 Line Relaxation

The choice of material-oriented modeling at the algorithmic level for the purpose of opti-
mization makes it easy to reason about much more optimizations than just the choice of
partitioning and/or vectorization. As an example we will discuss the line relaxation al-
gorithm in somewhat more detail. We will consider a two-phase algorithm corresponding
to the example discussed in [2]. In the first phase the line relaxation is swept along the ¢
axis, after which the relaxation is swept along the j axis. The algorithm is given by

for 1 =1 .. N-2 ! sweep vertical
forall j =0 .. N-1
A[i1 03] = A[i-11[3] + AQi+11[35];
for j =1 .. N-2 ! sweep horizontal
forall 1 =0 .. N-1

ACi1[3] = A[i1[j-11 + A[i][j+1];

Let L, and Lj, denote the PAMELA models of the vertical and horizontal phase, respec-
tively. Let u(i,7) = j/B denote the initial data layout. Let r denote the decision to remap
after the vertical phase, and let 1/(i,7) = ¢/ B denote the resulting map. Let L, denote
the PAMELA model of the remapping. In terms of PAMELA optimal system performance
is given by

Ly(p) 5 if (r) L, ; if (r) Ly(p') else Ly(p)

Given optimal designs for L,(p), Ln(p), and Lp(p'), the mapping decision follows from
the solution of the minimization problem

To() + [P)(T + Tiu')) + [=r]Th(pe)

where T, denotes the lower bound time estimate of L,, © € {v,h,r}. In the following
we will investigate the various lower bound estimates. In order to avoid unnecessary
complicated expressions we will use order terms only.

We start with L,. In terms of PAMELA the vertical sweep phase is given by

L,=seq(t=1,N —2)
par (j=0,N—1) {
move(pu(i — 1,7
move(pu(t + 1,7
flop(p(z, 7))

(.7))7

0]
i,7));

)7
)

7
i

in which we now explicitly account for data accesses that (especially for distributed-
memory machines) may involve data movement between processors (according to the
“owner-computes” model). We will only account for non-local data transfers in which we
assume that any associated condition synchronization (e.g., due to some message-passing
implementation) is negligible (as in previous case studies). Let

flop(p) = use(cpuy, 7¢)

132 CHAPTER 5. CASE STUDIES

as before, and let

move(p, q) = use(l,, [p # qlmn) || use(ly, [p # ¢)7m)

which accounts for both work load at sender and receiver. Note, that this is just an
abstract model. However, it does account for the fact that a node can neither send nor
receive data in parallel without (proportionally) increasing the associated time complexity
(cf. the macro data flow example). Since (i, 7) = j/B by straight-forward substitution
it follows

L,=seq(t=1,N —2)
par (j=0,N—1) {
{use(lj/p,[1/B # j/B]7w) || use(ljp,[i/B # j/B]mm)};
{use(lj/p, [1/B # j/Bl7w) || use(ljp, [/ B # j/Blmm)};

use(cpuj/B,)

which yields

N-2 N— N2
T, = Z max Z [7/B = MTf—O(?)Tf

The horizontal phase is given by

L,=seq(j=1,N—2)
par (1 =0, N—l){
move(u(i, g — 1), u(,7));
move(p(i, j + 1), u(i, 7));
flop(p(i, 7))

which equals

L,=seq(j=1,N—2)
par (1 =0,N —1){
{use(lj_1ym, (1 —1)/B # 3/ B]r) |l
} use(lj/p,[(J —1)/B # j/Bl7n)
{use(lrays: [+ 1)/B # j/Blr) |
} use(l;/p,[(J +1)/B # j/Blry)
us’e(cpuj/B,Tf)

}

which yields (after a few reductions)

Th == O(PN)Tm + O(Nz)Tf

5.5, SYSTEM OPTIMIZATION 133

Clearly, it is interesting to evaluate the remapping cost. Remapping A implies a transpo-
sition according to

L, = par (i =0,N — 1) par (j = 0, N — 1) move(ju(i. j). u(j.)

Given the mapping p(i,7) = 7/ B it follows

L, =par (1=0,N—1)
par (j=0,N —1)
{use(lj/p, [j/B # i/ Bl7in) || use(lyp, [j/ B # i/ Bltn)}

which yields

—-1N-

T, pamax > 2 (U B=mlli/BFi/Bl+[i/B=m]j/B #i/B])tm

,_.

As Ty, (p') = T, (1), the combined performance model becomes

N? N? N? 5
oy + 110Cm: + 05)m) + (0PN, + 0(N)1))
The solution for r is given by

N? N?

?)Tm + O(?)Tf < O(PN)7,, + O(N*)1¢

Clearly there exists a value for P for which remapping is justified (depending on 7 and
T)

Thus far, we have considered remapping while assuming that the same algorithm would
have to be used for the horizontal phase. However, for the horizontal phase the algorithm

r=0(

can be optimized that puts the whole issue of remapping in a different perspective. The
optimization we consider is based on pipelining the computation across the processors
which is explained at length in [2]. Recall the original algorithm for the horizontal phase,
le.,

for j =1 .. N-2
forall 1 =0 .. N-1
ACi1[3] = A[i1[j-11 + A[i][j+1];
that corresponds to

seq(j=1,N-=2)par 1 =0, N —1) use(cpuj/B,Tf)

where we ignore moves for simplicity. By reversing the ¢ and j loop the algorithm can be
expressed as

forall 1 = 0 .. N-1

for =1 .. N-2
ACi1[3] = A[i1[j-11 + A[i][j+1];

134 CHAPTER 5. CASE STUDIES

Instead of running sequential, each ¢ loop is pipelined such that the next processor executes
a different ¢ loop instance concurrently, yet obeying the j sequence [2]. Thus we assume
a schedule such that the next ¢ loop is executed when the previous j loop has traversed
exactly one processor (a block of B indices). Note, that the above algorithm does not
include this additional scheduling constraint which is hard to express without resorting
to an explicit (and complicated) synchronization scheme if expressed in a conventional
paradigm (see Section 3.3). However, the pipelining behavior is easily captured in terms
of a PAMELA model due to our contention modeling approach. The following PAMELA
model essentially expresses the intended pipelining optimization, i.e.,

Ly =par (1=0,N—1)seq (p=0,P — 1) use(cpu,, Bry)

The j loop is stripmined in terms of a p loop such that all B individual 7 accesses local
to processor p are expressed by the same use statement (i.e., the lower level j loop local
to p is reduced to a single use statement). The reason for this modification is that this
model does express the intended schedule whereas the model

par (1t =0,N —1)seq (7 =1,N —2) use(cpu;/p,Ty)

would not represent the pipelining behavior at all because of the virtual barrier effect?.
The loop reversal according to L, potentially has a great effect on performance as it holds

N—-1P-1 N2
Th/ = m:%l.?g_l ; pZ:;J [p = m]BTf = O(?)

Thus, by loop reversal, the same (order) of performance can be achieved as in the first
phase, without remapping the data. Of course, Lj: ignores the additional pipeline startup
delay as well the additional communication overhead as the need for communication is still
present. Especially when multiple sweeps are performed in both phases remapping can
still be appropriate. Let s denote the pipelining optimization (swap loops). In general,
the optimization problem is given by

To(p) + [P)(Te 4 (=] T + [s1The(p)) + [=r)([=s]Thlp) + [s1Th (1)

which expresses the mutual dependency between the remapping decision r and the pipelin-
ing decision s. Clearly, for single sweeps in the vertical and horizontal phase the solution
is given by (r,s) = (0,1). Note, that in this particular problem it holds r = —s.

The discussion of the line relaxation example illustrates the advantage of the material-
oriented modeling approach when applied at algorithmic level in order to express compile-
time (i.e., symbolic) optimizations. The symbolic analysis permits the optimizations to
be expressed in terms of an overall symbolic expression that is subject to minimization,
e.g., by 0-1 integer programming. In many cases (like in the above examples) low-cost
solutions can be derived which implies that the optimization decisions can be compiled
and evaluated at run-time.

9Because of the general assumption of fair scheduling the (i, j) accesses would still be selected according
to a column-major scheme rather than the intended row-major scheme. All parallel ¢ loops experience
mutual synchronization that causes P virtual barriers. Thus, the model would effectively behave the
same as the original (without loop reversal).

5.6. SUMMARY 135

Of course, there are cases where the choice to abstract from the actual code may
induce a considerable error as the code generation model (i.e., compiler) is not included
in the prediction. This applies in particular to the generation of message-passing code
for distributed-memory machines. For instance, a naive message-passing code generation
model can completely sequentialize an inherently parallel operation'?. Clearly, the above
prediction method will not take this into account (note that inherent sequentializations
at algorithmic level are accounted for, though). However, a code generation model may
be assumed that does not introduce pathological schedules (a simple inspector/executor
model already solves the problem) which implies that the algorithmic level abstraction
will not introduce an error larger than the inherent error of the lower bound technique.

Of course, the lower bound technique itself introduces a certain inaccuracy with respect
to which optimization will actually yield better performance. On the other hand, the
limitation on the inaccuracy (discussed at length in the next chapter) guarantees that if a
wrong optimization is applied, the performance decrease is also limited. This is acceptable
if one realizes that compile-time optimization must cover a large search space where
(first-order) comparisons must be made in extremely short time rather than extremely
accurately.

5.6 Summary

In this chapter we have presented an elaborate discussion on various aspects of the
PAMELA methodology, involving applications of the analytic technique, modeling an ac-
tual application, a discussion of alternative analytic techniques, and applications of our
methodology in the field of system optimization.

In the first case study, we have discussed the application of our analytic prediction
technique to a matrix factorization algorithm on a shared-memory machine and a matrix-
vector multiplication on a distributed-memory machine, thus involving somewhat more
complex models than the small examples discussed before. Rather than demonstrating the
modeling technique itself we have concentrated on the mechanics of compiling the PAMELA
models into analytical performance models. It is shown that the greatest challenge in
this process is not the transformation into the time domain model itself but rather the
subsequent reduction into low-cost versions without (additional) loss of accuracy.

In the second case study, we have presented a performance model of macro data
flow applications running on a distributed-memory machine that is compared with the
measured execution times. Through this case study we have demonstrated the PAMELA
approach towards modeling real applications as well as the high accuracy of the PAMELA
models that is achieved in practice. Asin the previous case study the analytical predictions
T! are typically within 50 % of T' whereas conventional static techniques entail severe
errors. Once again, the case study demonstrates the necessity of integrating contention
analysis within analytical techniques. Especially now that multi-threaded computation
and communication are becoming common place there is an increasing need for machine

0For example, consider a simple computation y; = f(z;_1) where each element of x and y are mapped
onto a separate processor (z and y aligned). A naive, scalar “owner-computes” scheme in which each
processor (sequentially) traverses the entire index space in the positive ¢ direction (cf. Example 5.1) will
completely sequentialize the computation.

136 CHAPTER 5. CASE STUDIES

contention models, useful in an analytic context, that account for the limited number of
resources actually available. Our modeling approach delivers the accuracy needed where
conventional static models fail.

In the third case study we have explored alternative solution techniques for PAMELA
models based on a numeric process rather than a symbolic process. While simulation in the
sense as introduced in earlier chapters only serves as the default technique, especially when
PAMELA models are relatively deterministic this numeric approach provides a simple,
solution technique that outperforms T at comparable cost. The fact that for many (fine
grain) models the variance in T is very small offers the opportunity of significant model
reduction, yet retaining accuracy. Furthermore, it has been shown that approximations
in terms of PS-type resource models also yield considerable speedup. Another advantage
of PS-type models is the applicability of a symbolic preprocessing phase that improves
the robustness of the lower bound technique by the detection of so-called virtual barriers
in the model.

In the last case study we have demonstrated the use of the PAMELA methodology in
system optimization, which, as mentioned in Chapter 1, is an essential motivation for
our work. We have shown that, in order to enable optimization in an analytical, low-
cost framework, the system must be modeled at algorithmic level rather than at imple-
mentation level. This requirement especially applies to message-passing implementations
because of the loss of analyzability associated with the transformation from the procedure-
oriented to the message-oriented paradigm as also discussed in Chapter 3. Apart from
increased analyzability another reason for the abstraction is the fundamental problems
associated with the performance modeling of the compiler-specific code generation as well
as the unpredictable influence of the run-time environment. Although both aspects may
introduce considerable variance, they are of no consequence as long as performances are
only compared. We have illustrated the use of our optimization calculus by considering
optimizations such as vectorization, choosing data mappings, as well as other algorithmic
transformations. It is shown, that our symbolic approach delivers extremely low cost as
well as sufficient discriminatory power needed to serve as an appropriate tool for system
optimization.

Chapter 6

Accuracy

6.1 Introduction

In some of the previous examples such as the MRM, pipeline, matrix-vector multiplication,
and the macro data flow computation, it has been shown that the difference between 1!
and T' can be as much as 50%. In general, the question that arises with the introduction of
the approximate lower bound technique is how tight 7" is compared to 7'. In this chapter
we will investigate some of the properties of 7! in relation to 7. We will show that the
prediction error of 7" is limited and predictable. These properties of T are an essential
justification of our approximate, analytical approach to performance modeling. Parts of
this work have been presented in [54, 55].

As mentioned earlier, in general the execution time of a PAMELA model is stochastic
with a finite distribution between a lower bound 7" and an upper bound 7%. For models
with coarse grain contention the likelihood of 7' being close to 1" or 1™ is relatively high.
Hence, for these models the absolute range of T' relative to T' is an important measure
with respect to the accuracy of 1. For fine grain models, on the other hand, the variance
of T"is much more limited. As the typical probability of T' being near to T™ is extremely
small (as we will show), the difference between the mean value of T relative to T' is a
much more appropriate measure to characterize the accuracy of T°.

In this chapter we will investigate the accuracy of T' for both coarse grain and fine
grain models. First, we investigate the properties of T" which, in turn, yields information
on the maximum absolute deviation between 7" and T that may be anticipated. Theory
and experiments suggest that for a large class of systems the maximum deviation between
T and T" is limited by a constant. Next, we investigate the properties of the mean value
of T through a number of simulation experiments which show that the average deviation
between T and T for large systems is quite limited (a factor 2 in the worst case).

It serves to note that earlier results on the bounds of T' by Graham [58], and later
by Sarkar [137], and Eager, Zahorjan, and Lazowska [39] do not apply to our problem.
Their results' apply to parallel systems where resources are allocated according to a work
conserving scheduling discipline [85]. This implies that there is no unforced idleness,
very much unlike the statically mapped systems we consider (we assume no resource
multiplicity) where many resources need not be used although tasks are ready.

Tt has been shown that 7% < 27 for any schedule as long as there is no unforced idleness.

138 CHAPTER 6. ACCURACY

Hence, our work is relatively new. While the results on the average deviation of 7" can
be interpreted in terms of results known from queuing theory (and, in a sense, in terms of
the scheduling results just mentioned above), this particularly applies to the research into
the absolute accuracy of T!. As the analysis into the properties of T is quite complicated
(especially for the derivation of a tight bound, in contrast to T"), we only present a number
of conjectures and associated experiments. The motivations for including this introductory
work are threefold. First, for coarse grain models the probability for T' being close to T™
are simply quite real (as will be shown). A second motivation is that knowledge on T,
rather than 7", is a requirement when time constraints need to be verified (e.g., in real-
time designs). A third motivation is that this introduction may inspire more work to be
performed in what appears to be an interesting field.

6.2 Absolute Accuracy

6.2.1 Introduction

While the influence of fine grain contention (at the subtask-level) can be accounted for
in terms of probabilistic models (next section), for cases with coarse grain (task-level)
contention the likelihood of T' reaching values in the neighborhood of the upper bound
T* can not be ignored. Examples are statically (and poorly) scheduled/programmed
systems that may exhibit quite disappointing execution time results when compared with
predictions based on an average or a lower bound. An example of this phenomenon
has been shown in the matrix-vector case study in which a simple (communication) loop
reversal reduced communication time by as much as a factor 2 due to the elimination of
link contention. Similar observations are reported by Culler et al. [31]. As an example of
the effect of non-determinism at the task level due to contention, consider the coarse-grain
model

L — Ll H L2
Ly = wuse(ry,1); use(ry,99)
Ly, = wuse(r,99); use(ry, 1)

where r; = ry = 1. As ¢ = w = 100 it follows 7" = 100. This prediction is accurate as
long as [takes priority over Ly with respect to ri. However, if the inverse were true, T
would nearly double (7% = 199). In this section we investigate T" in order to assess the
absolute deviation between 1" and 7",

Because of the exponential complexity involved with deriving T* (i.e., identifying the
worst schedule possible) for any model, in the following we will only consider a parallel
section L that cannot be further decomposed into a straight sequence of subsections (i.e.,
Eq. (3.14) applies). Furthermore, we only consider a section without any precedence
relations between the P parallel processes within the section. Thus L can be written as

L=par(1=1...P) L,

We also assume that no knowledge is available (or practically useful at compile-time) on
the precise structure of each parallel process L, other than that it involves accesses to

6.2. ABSOLUTE ACCURACY 139

maximally M resources ri,...,rp (r; = 1, 7 = 1,...,M). Let A = (§;;) denote the
P x M demand matriz where ¢;; denotes the service demand of process ¢ on resource
j. First, we study the behavior of parallel sections in which each process accesses each
resource exactly once. Consequently, if we define the access permutation in terms of the
P x M schedule matrix S, the parallel section can be expressed by

L=par(1=1...P)seq(j=1...M) use(r, b)

Clearly, there are schedules that realize 7' = T, and there are schedules that realize

T = T*. In order to characterize the range between 7! and T, we introduce the ratio

b
n = T"/T! for which we derive a number of properties. As in general a sharp upper bound
cannot be computed, we consider a number of specific cases that allow for computational
tractability as well as provides an interpretation for practical situations.

In general, the analysis on the ratio of 7" and 1™ can be stated as a problem, solely
characterized by the demand matrix (including its dimension) or, more practically, by a
tuple (P, M), where P denotes the number of concurrent processes, and M denotes the
maximum number of resources involved in any of the processes. Thus, the above example

is denoted the (2,2) problem for which it will be proven that

Nz,2) < 2

The general (P, M) problem, given A, can be solved by finding the permutations S’ and
S% that minimizes 7' and maximizes T%, yielding the upper bound on N(P.M)-

Before discussing the (P, M) problem, we revisit the (2, 2) problem, for which we derive
a lower and upper bound as a function of A and subsequently prove that 72 < 2. We
will present two proof versions. In the first proof we derive the expressions for 7" and T
for arbitrary A, from which we infer the conditions for which n — 2. In the second proof
we simply introduce the optimum value of A and the related schedules, which we show to
be optimal. The second proof style will be used frequently in the sequel.

First Proof
Consider a (2,2) problem, with a given resource demand matrix A. Clearly,
k1
I _
(1)

will produce a lower bound schedule, where k. [are given by

1, k=2
ke {1,2}, l_{27 P

The result for k = 1 is represented by Fig. 6.1, which illustrates that, in general, the A
elements need not be equal. As can be seen from the trace, it immediately follows

T! = max(d1x, da1) + max(dys, dax)
that implies that 7" is independent of k. On the other hand,

W (K
=)

140 CHAPTER 6. ACCURACY

Ll‘ 1 ‘2‘

L [2 |

Figure 6.1: Lower bound schedule trace

will produce an upper bound schedule. Let

1, m=2;
m€{172}7n:{27 m = 1.

The upper bound schedule is determined by values of m,n where the overlap of using
resources r, (by Li) and r,, (by Lg) is minimized (m encodes the order by which the
initial conflict is resolved). The result for k = 1 is illustrated by Fig. 6.2, corresponding

L1 ‘ 1 ‘2‘
L, | 1 | 2 |

Figure 6.2: Upper bound schedule trace

to the assumption that min(dyg, de1) < min(di1,da2) (i.e., m = 1). It is easily seen, that
the choice for m is independent of k. Hence, without loss of generality, let

Lo (12
#=(13)
Let m be chosen such that min(d1,, d2,,) is minimal. Then

T = 1 + max(d1n, 02) + d2n

which, given the choice of m, is maximal. We now derive an solution for 7, based on the
analysis of 7. Since 1" is independent of k, in summary, we have

T" = 01y + 02, + max(dy,, d2,n)
T = max(d1m, 02) + Max(dyn, d2m)

Hence, n has the form

B at+c+b <9
12.2) = max(a,c) 4+ b

reaching its upper bound when ¢ = ¢ and b — 0, the latter implying that the condition
for m is indeed necessary.

6.2. ABSOLUTE ACCURACY 141

Second Proof

While in the above proof expressions were derived for 7% and 1T as a function of arbitrary
demand matrices, in the second proof we directly derive the bound on 7, 2). As suggested
by the above result, the demand matrix, for which the maximum value of 7 is obtained,
is given by

A =lim A, Ab:(“ b),a>0
b—0 b a

For a more practical value of @, the lower bound trace is given in Fig. 6.3, while the

L. ‘ 1 ‘2‘
L, ‘ 2 ‘1‘

Figure 6.3: Lower bound schedule trace

corresponding upper bound trace is given in Fig. 6.4. From the traces it can be seen that

L1 ‘ 1 ‘2‘
L, 1] 2 |

Figure 6.4: Upper bound schedule trace

A indeed produces the extreme schedules since, in the limit, the lower bound schedule
exhibits 0 idleness (i.e., 100 % utilization), and the upper bound schedule exhibits 0
overlap (i.e., 100 % serialization). Hence, 1,2 < 2.

6.2.2 General Bound

In this section we derive a general bound on 7 when no information is available other than

P and M.

Theorem 6.1 Let [= par (i = 1...P) L; denote a parallel section involving M re-
sources. Then

n < min(P, M)

Proof: We prove the theorem by presenting the solution for A, and the lower and upper
bound schedules that generate this bound on 7. Subsequently, we show that the solution
is optimal. First, we consider the case M = P. The optimal, diagonal-dominant demand
matrix is given by

a b . b b
b a ... b b
A:hmAb,Ab: ,a>0
b—0
b b a
b b b a

142 CHAPTER 6. ACCURACY

Figure 6.5 shows both lower bound and upper bound schedules for (P, M) = (3,3). Each

shaded box denotes the resource index involved in the access. It is easily seen that these

Ly | 1 23]
L, 2 ER
Ly | 3 1]2]
TI
Ly | 1 23]
L. 1] 2 3

Ls H 3

TU

Figure 6.5: Lower (S') and upper bound (5*) schedules for (P, M) = (3,3)

schedules are optimal since S' minimizes process idle time, while S* minimizes process
overlap when b — 0. Thus, n is maximal. As, forb — 0, 7% = Paand T' = p = w = a, it
holds < P. Next, we show that in order to attain this maximum ratio, A must indeed
be “balanced”, which in this sense means that

M P
\V/Z Z(Si7]:997 \V/] Z(Si7]:w
7=1 =1

Thus both the row sums and column sums must be equal which, for M = P, implies
¢ = w. We show the optimality as follows. If any of the service demands ¢; ; were to be
increased with an amount ¢, under the balanced condition 7" will also increase by €. Since,
T cannot increase more than e, n will decrease. Next, we consider the case M > P. From
the above argument, it is easily seen that adding resources will not improve n but rather
decrease the ratio unless the associated demands are equal to b. Hence, the above bound
also holds for M > P. Finally, we consider the case M < P. While it can be shown,
that an upper bound schedule is still possible in which process overlap approaches zero,
i.e., T" = Pa, the lower bound now increases as access conflicts between processes can no
longer be avoided. As w = [£]a, it follows < M. Hence, it holds 5 < min(P, M) which
concludes the proof. O

The above theorem states the intuitive fact that, without additional knowledge on the
parallel section, its execution may range from fully sequential to fully parallel. In the
latter case, the actual parallelism is either limited by the number of resources or by the
number of processes. Again, note that the result of Theorem 6.1 illustrates the difference
between statically mapped systems and work conserving systems where it would hold
n < 2, regardless of P and M. When the number of accesses per resource is higher
than one, the theorem still holds, applying to the case when these multiple accesses
would be concatenated to a single, non-preempted access (note that this, of course, is
highly improbable for larger systems which is essentially the reason for the “mean value”
approach discussed in Section 6.3).

6.2. ABSOLUTE ACCURACY 143

Clearly, the above result does not tighten the upper bound on the range of possible
prediction outcomes. In the next section, however, we will analyze the situation for more
practical values of A.

6.2.3 Adding Knowledge

In the previous section it was shown, that, without any knowledge on A (and S) there
is no guarantee that the execution time is bounded, else than between the default range,
i.e., from full parallelism to full sequentialism. In this section, we will study a number of
more practical cases that involves additional knowledge on the nature of A.

Many practical situations are far from being represented by demand matrices that
exhibit such a large number of near-zero entries. In the following we will assume that the
ratio between a and b is limited by a constant 7. Using the construction method of the
upper bound schedule discussed in the above theorem, we conjecture on the bound on 5
for this case, in which we also assume M = P since this has been shown to provide the
maximum value for n (M > P is not interesting).

Conjecture 6.1 Let L = par (1 = 1...P) L; denote a parallel section involving P
resources. Let A be given as in the above theorem with the additional constraint that the

ratio between a and b is limited according to v = a/b. Then for v > 2 it is conjectured
that

P(v+2)-3

6.1
TP 1 (6.1)

ne,py <
Argument: While 7' = a + (P — 1)b = (y + P — 1)b, we conjecture that an upper
bound schedule is constructed as illustrated in Fig. 6.6 for P = 8. Consequently T* =
Pa+ (P —2)2b+b= (P(y+2)—3)b, that leads to the conjectured result for . For small

L. | 1 [2[3456[7]8|

Lo 1] [3 | [8[24]5[6[7]

Ls 3l [8 | [724]56]

Ly |7 [245¢]

Ls 7] [_4 [2sl6

Le

L

Le 6 2]

Figure 6.6: Upper bound schedule for P = 8 (conjectured)

P the above bound on 7 has indeed been verified for various values (integer and real) of
~ by conducting simulation experiments in which all possible schedules are enumerated.
Due to the exponential complexity of the exhaustive search, however, this computational
proof has only been obtained for P < 4. A partial search for P = 5 has shown exactly
the same phenomenon. For v < 2 a slight increase of T (b) has been observed. Hence,

144 CHAPTER 6. ACCURACY

the conjecture applies to v > 2. Note that much more schedules apply than just the
particular one illustrated in Fig. 6.6, as shown by the experiments. However, in all cases
the value of T" proves to be the same. O

Essentially, the above conjecture suggests that for large P, 1 is limited by ~. For large
values of P and « it holds n = min(P,v) (for ¥ — oo the conjecture corresponds to
Theorem 6.1). Note that although the above conjecture applies to M = P, the general
bound given by Theorem 6.1 still holds. For example, consider a parallel section with
M = P. Let P be large and v = 2. According to the conjecture, n < 4. Now consider
another parallel section with equal 7" in which ~ is increased to P — 1 such that M = 2.
From Theorem 6.1 it follows n < 2. Thus, n decreases, contrary to what the conjecture
might suggest.

Although we have no rigid proof based on the construction of the schedule, an alter-
native schedule shown in Fig. 6.7 constructed through a strategy that continuously aims
to maximize the length of the schedule constructed so far, performs even worse. Although

Li [12345/67 8 |

Lo 824 6

Ls

La 6

Ls 6

Ls 6

Ly 6

Ls 84 o

Figure 6.7: Alternative upper bound schedule for P = 8

for P < M, this algorithm clearly produces higher T* values, for P = M (i.e., the worst
case), this alternative method is still outperformed by the first one, due to integer effects.
Going from top-left to bottom-right, each a-segment ¢, ¢ = 1... P is directly preceded by
| =L | b-segments. Hence,

Py+ |55+ 55+
nep) < TPl

which does equal the previous result, but only when P — 1 is a power of 2 (in fact, all
alternatives based on the same approach but only differing in the relative location of the
a-segment, only equal the previous result under certain conditions).

So far, the analysis applies to parallel sections where in each process each resource is
used only once. In general, however, the resource access pattern of many practical parallel
sections is characterized by loops. The loop model on which the following analysis will be
based is a direct extension of the PAMELA model described earlier, i.e.,

L=par (:=1,P)seq(n=1N)seq (j=1,M)use(rs, ,d,)

6.2. ABSOLUTE ACCURACY 145

where N denotes the number of loop iterations involved. Note, that this deterministic
loop model still differs from the “random” model involving multiple, randomly permuted
resource accesses, which will be discussed in Section 6.3. However, the bound on 7 is
expected to be somewhat lower than the previous case.

Intuitively, it is clear that the upper bound schedule can not be constructed by a
mere concatenation of transient schedules without mutual overlap. Yet, a fully sequential
schedule appears to be achievable up to a high degree. For P = 2, the schedule, shown
in Fig. 6.8, is conjectured to be optimal, illustrating the fact, that generating a chain of
a-segments at least involves 1 b-segment per a-segment. From the figure, it is seen that,

L
Lo

Figure 6.8: Upper bound schedule for the (2,3) problem (conjectured)

unlike the transient schedule, in order to maintain periodicity, a third resource (denoted
x) is required. A (3,3) alternative to the above (3,2) scheme does not produce a higher

2

n, since this, in turn, would require yet another resource”. Hence, the schedule, shown

in Fig. 6.9 for the (5,5) problem, is conjectured to produce the upper bound. Again, the

Ly
L
Ls
L
Ls

Figure 6.9: Upper bound schedule for P =5 (conjectured)

sequential chain is determined by the first 4 processes, while the fifth process does not
add to the upper bound (but neither to the lower bound). From the figure, it is easily
seen, that

T = (P = 1)y +)b
Thus we conjecture

(P=Dy+1)
v+ P -1

nEp) < (6.2)
Compared to Eq. (6.1), the introduction of the loop decreases n by only a fraction.
From the above results, it would seem that the upper bound for deterministic loop
systems is not fundamentally different from the case N = 1, apart from some parameter
decrements. The maximum difference is a factor 2, that results from the following case.

?This essentially applies to the impossibility of inserting an extra a-segment. Even if some extra
b-segments could still be inserted, in the limit, the P — 1 factor would still dominate.

146 CHAPTER 6. ACCURACY

L, | 1 2 1 2 1]2

L. i 2 J1 2 [if 2 |

L1 ‘ 1 ‘ 2 ‘

L2 [1] 2 |

Figure 6.10: Loop vs. transient upper bound schedule

Consider the (P, P) loop system, where 5 is given by Eq. (6.2). If the loop enforcement
were to be lifted in favor of a transient alternative, Eq. (6.1) would apply. In this alter-
native arrangement, all requests to the same resource would be concatenated together,
rather than spread across the loops. It directly follows, that the ratio o between the upper
bounds of this transient alternative and the original loop version is given by

B P(v+2)-3
C(P=1D(v+ 1)

which reaches a maximum value for v — oo, and P = 2, i.e.,

a < P
T (P-1)

<2

For v = 6, both cases are shown in Fig. 6.10 for N = 3, which indeed suggests the above
phenomenon for large N.

6.2.4 General Conjecture

Although the derivations of the upper bound schedules have not been based upon rigorous
proofs, there is experimental evidence to indicate that the results are at least close to
reality. Apart from showing that the bound on 7 is limited by v as well as P, the schedule
of Conjecture 6.1 also suggests that approximately 3(P — 1) resource accesses are involved
in the determination of 7. Also in more general cases, it may be assumed that the
largest segments will be involved in the upper bound schedule. Note that this also applies
for demand matrices that are not balanced. For example, consider a column-dominant
demand matrix in which j-th column dominates. Figure 6.11 shows an upper bound
schedule for P = 5 (where 5 = 1). Although in this case only 2P — 1 segments are

L. |1 [234]

L |1 2345

Ls 1 [2345]

La |1 [23/45]

Ls |1 [2[34]g

Figure 6.11: An upper bound schedule in column-dominant case (P = 5)

6.2. ABSOLUTE ACCURACY 147

|Run | T* | k=6]k=T7T[k=8]k=9]k)]

1 5.55 | 4.64 | 517 | 5.58 | 6.16 | 8
2 6.02 | 487 | 547 | 6.05 | 6.61 | %
3 4.27 | 4.00 | 445 | 482 | 5.07 | T
4 594 | 446 | 513 | 5.80 | 6.44 |9
5 5.06 | 443 | 484 | 524 | 5.61 | R
6 5981 5.06 | 5.71 | 6.27 | 6.81 |8
7 585 571 | 5.34 | 5.79 | 623 |9
8 5.09 | 450 | 5.08 | 5.59 | 6.06 |8
9 510 4.38 | 495 | 538 | 5.79 | 7
10 583 | 554 | 6.22 | 6.58 | 6.92 | 7

Table 6.1: T vs. Eq. (6.3) for k=6...9 (P =4), and the applicable k value

involved, Conjecture 6.1 essentially provides a sharp bound. Because the v model used
thus far is much to restrictive for practical applications we will now generalize the results
obtained in terms of the following general conjecture.

Conjecture 6.2 Let [= par (1 = 1...P) L; denote a parallel section involving P
resources. Then

T < Z (Sij, k= 3(P - 1) (63)
(i.7)€€(k)

where £(k) denotes the set of k largest elements in A. O

Thus, the upper bound on 7 can be simply determined by the size and structure of A,
without explicit knowledge of special metrics like 4. Note that in general, the segments
that determine the critical path need not exactly be the k largest segments. However,
practically all the largest will be involved. In cases where v is large, the error will be-
come negligible. For diagonal-dominant cases it follows 7% = 51! where 7 is given by
Theorem 6.1, while for column or row-dominant matrices 7% simply approaches 1"

In order to test the above conjecture, for P = 4 we have run a series of 10 experiments
based on random, balanced (i.e., worst case) A matrices where each element ¢, ; is i.i.d.
uniformly® over the interval [0,1]. Again, each experiment is based on exhaustive search.
For all cases T is measured in agreement with Eq. (3.14). The results for T are shown in
Table 6.1, compared to Eq. (6.3) for different values of k. Conjecture 6.2 is indeed verified
to produce an upper bound that is reasonably sharp (partial results for P =5 also agree
with the conjecture).

The fact that Eq. (6.3) provides a reasonable estimator for T allows for a simple,
first-order assessment of the average value of the upper bound of 7 in the above case of
a A matrix with uniformly distributed elements. In the analysis, for T, we will assume
the worst case, 1.e., kK = 3P — 3, in order to guarantee a valid upper bound. The analysis

3Note that the distribution applies to the overall demand matrix A, not to individual service times
(which are deterministic). The choice for a uniform distribution is somewhat arbitrary. However, its low
implementation cost 1s attractive considering the huge number of simulations involved.

148 CHAPTER 6. ACCURACY

is based on results from order statistics [36]. In Appendix D, it is shown that the mean
of the upper bound can be estimated by

P?(P? 1) — (P? =3P +3)(P? — 3P + 4)
2(P?2+1)

while for large P it holds E(T") ~ 3P.

In the appendix it is also shown that the mean of the lower bound can be estimated

by
E(T" = g +0.4y/Plog P

Since for large P it holds E(T') = P/2, a coarse approximation® of the bound on 7 is
given by

E(T") =

i pp) < 6 (6.4)

Thus, lifting the + constraint by allowing elements to be uniformly distributed down to
even zero, results in a mere doubling of 7, compared to the fixed case of v = 1. For
small values of P the bound is much lower. For P = 4 the bound on 7 is predicted to be
2.1 which agrees with the measurements of 7% and 7% of the above random matrix case
(average bound 2.1). Figure 6.12 shows a histogram of the measured 5 values over the 10
runs. Apart from the fact that n < 2, the figure clearly demonstrates that the mean value

16 T

% -
14 +]
12 -

10 r

Figure 6.12: Distribution of 744y for random A (uniform)

of 1 1s typically much less than the upper bound.

*Of course, considering the division of the two mean values has no formal justification. Hence the use
of the word “coarse approximation”.

6.2. ABSOLUTE ACCURACY 149

As discussed earlier, for loop models, the situation slightly improves. As discussed
in the previous section, the maximum number of largest segments involved in the upper
bound schedule would be k = 2P — 2 per iteration. Hence, for large N we have

P*(P*+41)—(P?—=2P +2)(P*—2P +3)
2(P?2+1)

while for large P it holds E(T") ~ 2P. The mean lower bound remains

P
E(TY = 7+ 0.4/ P log P

Consequently

E(T") =

1 <
Alm npp) < 4 (6.5)

Again, for small values of P the bound is much lower. For P = 4, n is predicted to be
1.6 which reasonably agrees with a series of 10 measurements (conducted for N = 100,
average bound 1.42). Similar to the former (transient) case, the estimation for k appears
to be about 1 unit higher than observed in practice which indicates that Conjecture 6.2
is quite reliable. Figure 6.13 shows the results which, again, illustrates that, on average,
n is much smaller than the upper bound.

40
% -
35
30
25 |
20
151

10 ¢

1 1.2 14 1.6 18 2
Figure 6.13: Distribution of 74 4), for the loop model

6.2.5 Applications

In the following we show the use of the above results for an application to the matrix
factorization and the matrix-vector multiplication case studies presented in the previous
chapter.

150 CHAPTER 6. ACCURACY

First, recall the parallel LU factorization of an N x N matrix on a multiprocessor with
P processors and M interleaved memory banks. Let A denote the P x M memory bank
resource demand matrix. Let P* denote the saturation point, i.e., the value of P after
which memory bank saturation occurs. For small P, A is row-dominant, while for large P,
A is column-dominant. Hence for those cases n = 1 which agrees with the high accuracy
of T! for these P values. For values of P close to P* the largest deviation occurs between
T and T'. This corresponds with the fact that A is neither row-dominant, nor column-
dominant. Because, due to the interleaving, A is neither diagonal-dominant, of the results
derived in the previous section, Eq. (6.2) is the most characteristic for the above situation
for v & 1. It follows (large P) n < 2 which agrees with the measurements. The measured
ratio is smaller, partly due to the fact that the floating point delays, scattered in between
the resource accesses, have not been accounted for®.

Next, recall the parallel matrix-vector update of an N x N matrix on the P node
distributed-memory machine with a unidirectional ring of P point-to-point links [...[p_;.
Let A denote the P x P link resource demand matrix. As mentioned in the case study,
for large P the communication phase dominates the performance and it holds ¢ &~ w. For
P = N = 4, the resource access pattern is given by

1 =0: 1= 1: 1= 2 1 =3
p=20: - 0 0,1 0,1,2
p=1 1,2,3 - 1 1,2
p=2: 2,3 2,3.,0 - 2
p=3: 3 3,0 3,0.1 -

A typical trace of the link resource usage in the message-passing phase is shown in
Fig. 6.14. In the following we only consider the case P = N. The communication phase

Lo [O0fof1fo] [1]2]

L [a]2] [38]1] [1]2]
Lo 2] [38]2] [38]o] [2]
ls | 8]/3]o] [3]o] [1]

Figure 6.14: Communication phase for P = N =4

is represented by the following P x P demand matrix, i.e.,

P-1 P-2 ...
0 P—-1 ... 1
A =
pP-2 P-3 ... P-1

% An extension of the analysis in the previous sections through the involvement of delay terms is beyond
the scope of this initial study. However, it is clear that, inherently being wnert operations, their effect is
a decrease of 7.

6.3. AVERAGE ACCURACY 151

|7 | P=4]|P=8[P=16|P=32|P=04

TH 9 49 225 961 3969
T 9 43 207 900 3822
T! 6 28 120 496 2016

Table 6.2: Timing results of the message-passing phase for P = N

Again, A is balanced and, to a slight extent, diagonal-dominant. Yet, it is not unrealistic
to assume v & 1 which, by Eq. (6.2) for large P implies n < 2. For 7, = 1, Table 6.2
compares actual timing results 7' with 7" given by

P(P —1)

Tl = T
2
and T based on Eq. (6.2) for v = 1 given by
T = ——=T
P

From the table it would follow that 7" is near to T™. Note, however, that the assumption
~ =1 is a bit conservative considering the near-zero entries far from the diagonal of A.

6.3 Average Accuracy

6.3.1 Introduction

In the previous section we have investigated 7™ in order to assess the absolute deviation
between T and T' in the case of coarse-grain (task-level) contention. In this section, we
study the effects of fine-grain (subtask-level) contention in terms of the average of T since
for practical systems, typically featuring frequent, random resource access, the actual vari-
ance in 7' is much less compared to the above situation (although the histograms already
provide an indication to this effect). As in the previous section, we only consider task
graphs that do not comprise a sequence of subgraphs (such that Eq. (3.14) applies rather
than Eq (3.15)). In contrast, however, we now consider any model structure comprising
N tasks and M resources possibly involving parallel nestings.

As illustrated by, e.g., Example 3.7 and Example 3.8, for models in which the resource
demand is reasonably uniform during the entire computation (i.e., in contrast to models
such as in Example 3.10), 7" approaches the mean value of T either when ¢ >> w (critical
path dominates) or when ¢ < w (queuing dominates). Thus, in many cases the average
error of the analytic prediction may be assumed to be quite acceptable (as results will
show later on). As already mentioned in Example 3.7 the choice of the lower bound
as a practical estimate is also inspired by similarities between the execution of L and
interactive queuing systems. Although, formally, the resemblance is extremely remote it
is interesting to relate the lower bound approach to the asymptotic bound analysis of an
(operationally) comparable interactive queuing system® (see Fig. 6.15). If we define 7 as

5Note that the comparison is purely intuitive as we disregard many details, e.g., the fact that each
task should map to a unique job class; possible transient phases like startup and shutdown are ignored;

the task graph should be cyclic in order to have steady state execution, etc.

152 CHAPTER 6. ACCURACY

D+Z7

Figure 6.15: MRM cycle time interpretation in queuing theory and in PAMELA

the think time [93], D as the total service demand and D,,,, as the service demand at the
bottleneck device, we can interpret ¢ as the horizontal cycle time asymptote D + Z (7
accounts for task synchronization delay), while w corresponds to the N D,,,, asymptote.
The largest deviation occurs at the saturation point, where D + 7 = ND,, ..

As a result of the above observations we propose to use an operational metric called
“serialization index” or “contention index” that characterizes the degree of contention
within a system. The metric is defined by

0 = log (g) (6.6)

The use of # is to characterize a model as to the likelihood of 7" being an accurate
prediction. For models with large || the average accuracy of 1" is expected to be better
than for models where |#] &~ 0. Note that 6 bears a direct relationship with A since it
holds

M P
= max 0;:, W= max O; 5
L S JZ_; 7 1M ZZ_; 4

Thus a balanced or diagonal-dominant matrix (worst cases) indeed corresponds with 6 = 0.

6.3.2 Experiments

In this section we report on an experiment involving 1000+ random SP models in which
the predictions 7" are compared to the simulation results 7. The models are generated
such that the 6 values lie around the (worst case) region of interest (|6| ~ 0). Apart
from the fact, that many computations of interest are SP structured”, the choice for SP

"Note that the application range of PAMELA SP models is essentially greater than just SP task graphs.
For instance, pipelining is also expressed in terms of a parallel section of contending tasks (cf. Exam-

ple 3.5).

6.3. AVERAGE ACCURACY 153

models is also motivated by the fact that it enables an evaluation of the improvement
of Eq. (3.15) on the accuracy compared to Eq. (3.14). Each model comprises N = 100
tasks while the number of resources involved varies from M = 2...150. The graphs are
generated by a simple algorithm that iteratively adds a new task ¢; to a random selected
task ¢; within the graphs generated up to that moment (j is determined in each iteration).
The probability that ¢; is placed in series or parallel with ¢; is determined by an input
parameter, denoted s. Fach task ¢; is characterized by a unique service demand vector
d; = (8i1,-..,0;a) in which each element is i.i.d. uniformly over [0,1]. Thus, balanced
systems are generated (on average). Experiments have verified that this choice indeed
provides the worst case with respect to the accuracy of T'. Each resource m is accessed
multiple times based on the existence of some deterministic service time 7. Thus each
task executes d; ,,/7 accesses to resource m. The order in which the resources are visited
is random. In order to minimize simulation time (many models are simulated), 7 is chosen
such that the mean of T' does not deviate significantly from results for 7 — 0 (in practice,
values in the order of 1 % of the largest service demand &, ,, (i.e., & 100 visits) have been
found to suffice®). As N is fixed (N = 100), the parameters M and s determine the
(mean) @ value of the generated models. As ¢ is proportional to M, large values of M will
generate models with a negative §. For low s, however, many parallel tasks are created
on average which has a positive influence on 6.

Figure 6.16 shows the ratio T"/T based on 1200 random models exhibiting 6 values
ranging from —2 < 6 < 2. Both the prediction ratios based on Eq. (3.14) and Eq. (3.15)
are shown (« and 3, respectively). Each data point of both series of 120 points represents
an average value based on 10 random draws in order to reduce noise (for fixed generator
parameters 10 models are generated). The results clearly reveal a high correlation between
(ar, 3) and € in which the deviation from unity is indeed maximal for models that exhibit
6 = 0. Thus, for random graphs the diagnostic value of the operational parameter 6
appears to be quite significant, especially when considering the fact that two graphs with
comparable # values usually have quite a different structure. While the essential necessity
of Eq. (3.15) has already been demonstrated (cf. Example 3.10), even for the models with
uniform resource demand (in time) as produced by the random generator, its application
still yields an improvement for models with highly parallel subsections (e.g., § > 0). In
the following we will only consider «. In the above experiments the models are generated
for s = 0.1 with M varying from M = 2 (6 ~ 2) to M = 150 (§ ~ —2). Models with 6 ~ 0
are generated for M = 20. For each value of M the variance of 8 is approximately 0.05
which accounts for the reasonably continuous plot. Although no extensive experiments
have been performed for different values of N, initial measurements indicate that the «a
curves tend to be more 'v’-shaped for small NV, corresponding to the fact that the scale
of 8 is still somewhat dependent on the problem size. However, N = 100 also appears to
be quite representative for larger models? as well. Additional measurements indicate that
the minimum value of o at § = 0, i.e., *, highly correlates with M. For instance, each

8The justification is that for large visit counts the change in task-level variance proves to be small. This
phenomenon has been observed for both exponential and deterministic service times. This optimization
has been introduced in Section 5.4.

9For N = 10 the range of interest is —0.5 < 6 < 0.5, whereas for N > 1000 the range is still around
-2 <0<

154 CHAPTER 6. ACCURACY

1 T T T T T T
v 53
G,B N +:<>
L N +++++¢» o
080§$$$®® +#ﬁj+ m?m
8t o B o A+ o B
*8% -, ++:; s 0080
¢ 8% A 0&?0
R 7 RS AL
2° oy + o ©
gg& + o®
0.6 0o & i
RAEISY o
©
04l |
a o
0.2 + B+
0 1 1 1 1 1 1
-2 15 1 0.5 0 0.5 1 1.5 2

Figure 6.16: T' accuracy (a, 3) for 120 random SP models (N = 100)

of the following set of parameter tuples, i.e.,
(N, M,s) €{(30,8,0.1),(100,8,0.3),(300,8,0.5)}

generates models with 0] & 0 that yield o &~ .6 on average. The correlation is shown in
Fig. 6.17 that plots a series of a* values for various N, M, and s values. Each value is
derived from an average of 20 random draws except for N = 1000 due to the computational
costs involved. The results agree with the earlier observation that the o« plot for N = 100
is quite typical for larger systems. The figure suggests the existence of a horizontal
asymptote given by o &~ 0.5. Again, it is tempting to compare this upper bound on
the (mean) deviation with the result from asymptotic bounding analysis of interactive
queuing systems. For instance, consider the MVA recursion for an M server balanced
system [160] with total service demand D, given by

D R(N-1)
M RIN-1)+2Z

where R(N) denotes the response time as a function of the number of jobs in the system
(N). Let C(N) = R(N)+7 denote the mean cycle time (comparable to T'). From Eq. (6.7)
it follows that for small N the slope of R(N) is less'® than the asymptotic value D/M for
N — oo. Consequently, at the saturation point N = N*, for which the deviation between
C(N) and its lower bound C' = D + Z is the largest, it holds C(N*) < O+ (D/M)N*.
With N* = (D+Z)/(D/M) it follows C(N*) < 2C!, that corresponds to the lower bound
on . Generating models with large M also implies a large value for D. In terms of the
analogy this implies a relatively decreasing 7. Indeed, from Eq. (6.7) it is easily seen that
limy_o C(N*) = 2C"

R(N)=D+ (N —1) (6.7)

10An accurate analysis of the balanced upper bound is given by Zahorjan et al. [160]. However, for our
purpose the above analysis suffices.

6.3. AVERAGE ACCURACY 155

1 T T T T T T
a*
T 0.8 % 1
®
06 Wl o . E
2 %0 $0,88 °§§0
8 8 8 g
04 r 8
0.2 | 1
O L L L L L L
0 20 40 60 80 100 120 140
M

Figure 6.17: o* vs. M for N =10...1000 and s =0.1...0.5

6.3.3 Applications

In the following we demonstrate the use of the above results by an application to the matrix
factorization and the matrix-vector multiplication case studies presented previously as well
as the macro data flow case study.

As mentioned earlier, the diagnostic value of A is also reflected in §. Like the MRM
the results of the factorization case study (in fact, an MRM-type model with M resources)
are a good demonstration of the diagnostic value of §. For |P/P*| > 0 (|0] > 0) o (T*/T)
is close to 1, whereas for P ~ P* (# ~ 0) the deviation is maximal (note that «* is
much greater than 0.5 because of the few resources involved). The metric also predicts
the deviation of T' for the matrix-vector multiplication. For large P (i.e., § = 0 as
the communication phase dominates) o approaches 0.5 as predicted by Fig. 6.17 (large
number of link resources).

Next, recall the macro data flow case study that involved the discussion on the mea-
surement results for the execution of 15 random SP graphs ;... G5 on the 4 x 4 trans-
puter mesh. Table 6.3 shows the results of 7' in terms of a (applying Eq. (3.14) and 3
(applying Eq. (3.15)) as well as 6 for the 15 graphs. The results for o and 3 indeed show
that the average prediction error of serialization analysis is limited to a factor 2 while for
models with || > 0 the predictions tend to approach the simulation results. However,
the increase in accuracy for positive § appears to be less when compared to the simula-
tion results in Section 6.3. This phenomenon will be discussed later on. As expected, for
relatively parallel graphs, the 3 values tend to be somewhat better than the « values.

As shown by the measurement results (Table 5.2) the accuracy of T is such that it is
indeed acceptable to evaluate the accuracy of 7! by comparison to T only (as has been
the basis for the previous correlation experiments). Since, simulation proves to be more

156

CHAPTER 6. ACCURACY

G| Ga| Gs| Gy Gs
a | 0.66 | 0.53 | 0.60 | 0.53 | 0.56
B | 0.73] 0.62] 0.68| 0.70 | 0.66
0 | 1.08| 0.85| 0.76 | 0.37 | 0.27

Ge | Gr| Gs| Go| Gio
a | 0.55] 0.54 | 0.61| 0.78] 0.75
B | 0.55] 0.60 | 0.68 | 0.78 | 0.75
6 |-0.19 | -0.28 | -0.35 | -0.73 | -0.91

Gll G12 G13 G14 G15
a| 0.80 [0.87 | 0.86 | 0.96 | 0.94
B | 0.87| 0.87 | 0.86 | 0.96 | 0.94
0 |-1.23 | -1.51 | -1.62 | -1.70 | -1.74

Table 6.3: G5

Correlation between «, 3 and 8 for Gy, ...

convenient than actually executing the graphs on the transputer mesh we have evaluated
the accuracy of T! for an additional 150 graphs. The results are shown in Fig. 6.18 for a
and Fig. 6.19 for 5. Unlike the theoretical plot of Fig. 6.16 each point now represents

1 T T T
o
a 5
o
0% 0%0 o ©
L o o i
0.8 <><?><><>Q0 0<><><<,>°%<>
8 & e
© Q00 o A o
oo
o G 0R° 0o 6 © o O ©
0 w000 500 0% o
8 G g 00 @ @
RSN B RN 0g 0 O
0.6 | % o o §0<> bo0 ; & 80 io b
@® © 3
00 00§§®%%00§>% ©®8 o . e
o S o
S goipo o § ook
o & o8 %0 o
04 | SB08° %%y |
. Lo 9
o
02 r B
0 1 1 1
-2 -1 0 1 2 3
— 0

Figure 6.18: T' accuracy (a) for 150 random SP models (N = 100)

Unlike Table 6.3 the plots give a

good impression of the practical accuracy of T'. Like in the original case study, each of

an individual measurement, hence the noisy plots.

the 150 graphs was also executed under a mode f in which all communication (except
task synchronization) is switched off, and a mode ¢, in which all computation has been
disabled. Figure 6.20 and Fig. 6.21 show the 7" accuracy for the f-mode execution,
while Fig. 6.22 and Fig. 6.23 show the T" accuracy for the c-mode execution. The results

6.3. AVERAGE ACCURACY 157

1 T T T
B o
°
o
o ©
00
o 000%0000 M % ©
08 00%000%%0 o O 00 ¢)
o & o o
00
0083 00 o O O o °
C oy 00 o % e
& o
o B 9% 0 L 6l O e O O
o x0%ad 9 S °
0o © §o © o
o % P %o ° o
o ¢ .8 ° o
L oo Caloy o © o0 o
06 LRSS R o g
: ® o o
© @ 2 o 0oy o
Co 06500 8 %02 g © °©
68 o0 %@ o @
R © %o
® 50
0.4 $ e
0 1 1 1

Figure 6.19: T' accuracy (3) for 150 random SP models (N = 100)

confirm the simulation experiments which indicate that the average deviation between 1!
and T' is typically limited to o & 0.5 in the worst case (§ = 0, note that M = 144).

From the plots it is clear that the limited increase in accuracy for positive # as men-
tioned earlier is due to the communication. (The computation plots, in contrast, com-
pletely agree with the correlation experiments.) Likewise, it are the communication mode
graphs that exhibit quite some samples with o < 0.5. This is caused by the fact that par-
allel communications involving the same resources may occur at relatively concentrated
points in time, combined with the fact that the communication system interleaves packet
transfers sharing the same links. The virtual barriers caused by this multiple interleaving
across the same resources are not accounted for by 7' which yields a less tight bound
than might be expected. We show the mechanism involved through a simple example (see
Section 5.3 for modeling details). Consider the following task graph

G =tlo; par (1 = 1, N) ti; Inta

where p = (0,1,...,1,0). Let [= (10°,...,10°0) and w = 0. Then L is effectively given
by

L =par (i =1,N) {bmove(0,1,10°) ; bmove(1,0,10%)}

The fanout phase (node 0 — 1) involves service e; while the subsequent fanin phase (node
1 — 0) involves service eg. The lower bound corresponds to a schedule in which service
requests to ey and e; would be (partially) overlapped as a result of an initial skewing
during the fanout phase. It follows 7! = 0.9N s. In reality, however, this overlap does not
occur due to the fact that the bmove(0,1,...) tasks (as well as the bmove(1,0,...) tasks)
execute simultaneously as a result of the interleaving at packet level (fair scheduling).

158 CHAPTER 6. ACCURACY

1 s T T T
a % . . °
6.8 Q<<;}><> 81; 080 000
MRS | gi@gwo B
0.8 ¢ o000 ¢ <>®§<>§€§> é b
Oy o0%0 o o®o
< @ 0@9&0 o & S
o%& PSS o ©
BEL Rp 9 008 °
AT R S
¢ %oy %8 ©s
0.6 r PN i
R °
ol o
04 r R
02 r B
0 1 1 1
-2 1 0 1 2 3

Figure 6.20: T' accuracy (a) for 150 random SP models (N = 100) in f-mode

Indeed it holds 7' = 1.8 N s which is also measured in practice. (The PAMELA simulation
model accounts for this phenomenon, of course.) Thus, while 4 is large (log N/2) the value
of avis still 0.5 (for w # 0 the situation becomes much better). Effectively, the interleaved
execution of the bmouve tasks can be approximated by a virtual barrier (see Section 5.4)
according to the following model

L =par (i =1,N) bmove(0,1,10%) ; par (i = 1, N) bmove(1,0,10°%)

It follows 7" =T = 1.8 N s. For the 15 test graphs as well as the 150 additional graphs we
have included the barrier synchronization at the end of the concurrent broadcast for each
task as described above. Indeed the results for 3 greatly improved in accordance with the
correlation experiments (3* = 0.7 instead of 0.45).

6.4 Summary

In this chapter we have studied the absolute accuracy as well as the mean accuracy of
T! relative to 7. The results are based on theory, simulation studies, as well as actual
machine measurements.

With regard to the absolute deviation between 1" and T, for parallel sections, it is
conjectured that the ratio n between the lower bound and the upper bound is always
less than a constant factor, depending on the total resource demand, characterized by the
demand matrix A. Thus, given a lower bound prediction, the bounded value of n indicates
within what range the actual execution time might differ from the prediction. Without
specific information on A, it is shown that n may range between 1 and min(P, M), i.e.,
parallel sections may run fully sequential up to fully in parallel. However, given a ratio

6.4. SUMMARY 159

1
& ‘ w0’ &% o o ° '
B &ng Co © g;%g%&%
R 0800 00000 B 0o®
@0@% %%Q%Qo%«» oo g@gmgo °
08 r 000 00200020008 0@00@0 3 b
To e ©
$Ss Ko ©
o 0% % 8
8
06 | o]
04 r R
02 r B
0 I I I
-2 1 0 1 2 3

Figure 6.21: T' accuracy (3) for 150 random SP models (N = 100) in f-mode

~ between the largest and smallest resource demands, for large P, M, it is shown that
n only scales linearly with . All results have been verified by measurements, up to
P, M < 4, in view of the huge computation costs involved. Although the results are in
terms of n, they correspond to equivalent results on the upper bound T", thus providing
a rudimentary tool for real-time system constraint verification. In order to obtain at least
some insight for more “practical” cases, a simple statistical analysis is presented, assuming
a A matrix with uniformly distributed elements, thus lifting the + constraint. Again, the
results suggest that, in practice, n is bounded by a constant, irrespective of P and M.
Based on these results for n, by Eq. (6.3), a general estimator for the upper bound T" is
proposed, which, in particular, has been used in the above, statistical analysis. Although
the estimator is correct for all synthetic cases, in random cases the value of its parameter k
has only been validated for P = 4. Although experiments for P > 4 would provide crucial
evidence in support of the conjecture, that & ~ 3P for a generally valid upper bound,
in the present workstation environment the associated computation costs proved to be
prohibitive. If the estimator would indeed prove to be a reasonably tight upper bound
this might be an important step towards the derivation of an upper bound for general
task graphs. The proof of upper bounds on 7 is also useful in order to justify various
reductions as described in the previous chapter. For instance, the (frequent) reduction of
N similar use statements into one single statement, is allowed because the difference in
resulting execution time (corresponding to the different schedule spaces) will be limited:
both the lower bound and upper bound stay valid (the upper bound of the N statement
case equals the single statement case considering the possibility of a schedule that exactly
concatenates the N statements). This initial study only derives some basic results in what
appears to be a very interesting area. Many more questions remain to be answered as the

160 CHAPTER 6. ACCURACY

1 T T T
o
0y ©
8 °
Q@ oo
° o ° °
°og o
PR S
0.8 Q w0 RO %%
o ¢ o 2o 0%00 o
° @ g o °° 8o @
o 88000% % O o e
< o o o
o ° Koo, © °
LN %Q%Q . ° 0 %0
06 r o % @ % oo o0 %o]
o ° ° °
050 O 0o 08
o o o o
©8,%° Swo 4 %o 0
%o %o 0 % oy o @
o
> o 5 & o
o o% 8o o
04 + & XS ® -
P °
°
°
02 r B
0 1 1 1
-2 1 0 1 2 3

Figure 6.22: T! accuracy («) for 150 random SP models (N = 100) in c-mode

road towards a n framework for arbitrary task graphs is clearly a long one.

In this chapter we have also studied the average deviation between 17! and T both
through a simulation study involving 10004 random SP graphs as well as through mea-
surements of 15 random SP graphs executed on a 16 node transputer mesh. Results of
both case studies, show that the worst-case penalty for large random task systems is a
mere 50 % under-estimation on average. Moreover, it is shown that for large random par-
allel sections the error of T compared to the average execution time can be predicted by
the serialization index 6, that is symbolically compiled as a side result of 7. However, like
A, this metric should be used judiciously. The simulation study shows that for sufficiently
random systems 7" approaches T' except when || is small. While this generally holds for
low contention levels, the communication experiments show that for high contention levels
T'! may still deviate from T due to the “virtual barrier” effect. Nevertheless, its diagnostic
value is shown to be considerable for systems in which the resource demand is more or less
distributed across a parallel section. Especially for large systems (in terms of the number
of resource accesses) the shape of o can be interpreted in terms of the results of asymp-
totic bound analysis in queuing theory. This implies that the task-level synchronizations
do not dominate overall synchronization behavior. Consequently, the performance of a
large parallel task section with fine grain contention can be approximated by a queuing
model in which the task synchronizations are (necessarily) ignored. Also note, that for
large random systems where the (fine grain) resource accesses are uniformly distributed
across the entire computation the factor 2 difference between T and 7' also has a remote
correspondence with the factor 2 result from scheduling theory mentioned in the intro-
duction. Because of the uniform distribution of the resource usage, for systems with § > 0
there is relatively little unforced idleness in the utilization of each resource, which implies

6.4. SUMMARY 161

1 T T T
o
B RS
o °
° o ® % o
o <>§ LN
o o o
0.8 © 4 ¢ o ® SR T © 4
< o Lo ° 8 o o °8 o
% © 0000 |0 D 0.5 00 .20 % ° @ ©
0o o Fo 0 %00
o 0040 <><§8<> &0 . % °
o °© o < %% o 7 00 o
I 2 P N 0y 8o M
o ISAI'S Y/ o & 7o
0.6 | o & % o 3 7
o <$<?<> % oo © C0 o o %
&@o@ 0, 60 o 0%
@ © o
o %S o
So o9 O
o o N ©
04 o i
02 r B
0 1 1 1
-2 -1 0 1 2 3

Figure 6.23: T' accuracy (3) for 150 random SP models (N = 100) in c-mode

that the actual schedules are effectively work conserving.

162 CHAPTER 6. ACCURACY

Chapter 7

Conclusion

7.1 Contributions

In this dissertation we have discussed methods for the performance modeling of parallel
computer systems. In order to resolve our conflicting goals that the model should have
an explicit, analytical form, have an extremely low solution cost, and at the same time
be reasonably accurate, we have introduced a modeling approach based on a new rep-
resentation formalism that features certain restrictions with respect to the modeling of
synchronization. Because of these restrictions, a static analysis technique can be applied
yielding low-cost analytic models that are robust in terms of accuracy across the entire
parameter space. Essentially, our approach is to emphasize the analyzability criterion
rather than choosing for the appealing features of full modeling power. Throughout this
dissertation we have shown that the subset of parallel computer systems that can be ad-
equately modeled using our restricted approach does not differ substantially from those
using alternative methods. Consequently, the approach strikes a good balance between
the modeling power needed for a reasonable accuracy at PAMELA level as well as the
subsequent analyzability needed for a reasonable accuracy of the resulting models in the
time domain.
In summary, our major contributions can be stated as follows

e Formalism
The introduction of the performance modeling language PAMELA. Although featur-
ing all constructs for full modeling power (for compatibility with alternative analysis
techniques) the language is specifically designed towards supporting the structured
modeling of synchronization. Examples are the fork/join construct for condition
synchronization (par), and the structured form for mutual exclusion (use).

e Paradigm
The introduction of a parallel computer systems modeling methodology that is based
on the use of a material-oriented paradigm in combination with highly structured
synchronization operators, especially with regard to mutual exclusion. Results show
that the sacrifice of modeling power due to the enforcement of structure is well
balanced against the limited accuracy of the underlying analysis technique.

164 CHAPTER 7. CONCLUSION

e Analysis
The introduction of an analysis technique that integrates an approximate analysis
of mutual exclusion within a conventional condition synchronization analysis tech-
nique. As a result, PAMELA models can be compiled into low-cost, analytic models
that have a sustained minimum prediction accuracy with respect to both forms of
synchronization across the entire parameter range.

The novelty of the approach is that it integrates the above concepts in a balanced way
within one single methodology. As the language embodies these concepts by its program-
ming paradigm and underlying compile-time calculus, we coin the overall approach the
PAMELA methodology.

Apart from presenting this mathematical framework for the description and perfor-
mance analysis of parallel systems the following contributions have been made

o Related work

We have presented a survey of the main approaches to performance modeling of
parallel systems, employing a taxonomy based on the various representation for-
malisms that are used. An essential aspect of this taxonomy is the distinction of
three forms of control flow, i.e., condition synchronization, mutual exclusion, and
conditional control flow. We have shown that the alternative approaches either (1)
have a solution cost which is too high (e.g., Petri nets, process algebras, hybrid
queuing networks), or (2) have a modeling power that is too low (e.g., queuing net-
works, task graphs), or (3) yield non-deterministic results (e.g., simulation). (Note,
that each approach can be in more than one category.)

e Modeling approach

We have presented our unified, top-down approach toward modeling shared-memory
as well as distributed-memory (vector) programs and machines. Unlike many ap-
proaches, all software and hardware resources are treated exactly the same in terms
of a chain of concurrent subroutines called by some root process that represents
the algorithm. We have shown that the use of our restricted modeling paradigm
allows us to capture the most important performance aspects that are relevant in
the context of our approximate analysis.

o (Case studies

We have discussed a number of modeling case studies and small examples showing
the use of the analysis technique in compiling PAMELA models into performance
models. The data flow application study has shown that application behavior as
measured in practice can be captured with reasonable accuracy even by simple
PAMELA models. While discussing the concept of simulation we have presented
extensions to our analytic technique as well as alternative (numeric) solution tech-
niques.

e System optimization
We have demonstrated the use of the PAMELA methodology in system optimization.
We have shown that our contention modeling approach provides sufficient predic-
tion power and yields low-cost, symbolic optimization solutions that can be easily

7.1. CONTRIBUTIONS 165

compiled and evaluated at run-time. In general, this implies that any intermediate
(or even programming) language that is subject to automatic optimization proce-
dures also be best defined in terms of a procedure-oriented paradigm with structured
synchronization constructs.

e Accuracy

We have investigated the accuracy of our static technique with respect to the ap-
proximation of the effects of mutual exclusion. With regard to the absolute variance
of T (and hence, with regard to our lower bound T") we have presented a number
of conjectures implying that the absolute variance can be computed as a function
of the system demand matrix. With regard to the typical average deviation of 7"
relative to T" we have shown that for systems with random resource access patterns
the worst-case deviation due to contention is limited to 50 %, throughout the entire
parameter range. In view of the attractive cost features, this model robustness forms
the ultimate justification of our approach.

With respect to related techniques our approach can be distinguished as follows.

e Modeling

Unlike formalisms such as Petri nets and process algebras, the modeling power due
to the use operator in PAMELA is limited. Both Petri nets and process algebras
associate with a synchronization paradigm where mutual exclusion is expressed in
terms of the basic non-deterministic control flow mechanism (conflicts in Petri nets,
alternative composition in process algebras). While the choice for this low level
construct necessitates state space analysis, our higher-order construct allows the
use of our low-cost, symbolic analysis technique.

Unlike approaches based on queuing networks or task graphs (stochastic or deter-
ministic), PAMELA offers operators to account for both types of synchronization.
This provides the minimum modeling power needed to realistically capture parallel
system performance. Unlike hybrid queuing approaches, PAMELA does not distin-
guish separate formalisms to model programs and machines. Our unified approach
allows the expression of both synchronization types for both programs and machines.

Like process algebras and simulation languages PAMELA features composition oper-
ators that facilitate model construction. Unlike both formalisms, however, PAMELA
features a symbolic analysis technique that really takes advantage of the possibility
to describe parameterized models.

e analysis
Unlike prediction techniques based on simulation languages, PAMELA extends tra-
ditional performance simulation approaches by offering a compile-time calculus that
offers the opportunity of various forms of optimizations.

Unlike stochastic approaches based on Petri nets, process algebras, queuing networks
and stochastic task graphs, our analysis technique is not based on a state space
analysis that entails both a costly and essentially numeric process. While trading
exponential analysis complexity for a typically linear complexity, at the same time

166 CHAPTER 7. CONCLUSION

the average relative prediction error due to mutual exclusion synchronization is
limited to a small constant.

The advantage of using structured mutual exclusion constructs has been recognized
in queuing theory as can be seen by the existence of alternative solution techniques
that have polynomial complexity. Although our lower bound technique is reminis-
cent of the bounding analysis in traditional queuing theory, our approach accounts
for the effect of condition synchronization as it incorporates a critical path analysis.

Unlike the critical path analysis techniques associated with stochastic or determin-
istic task graphs that account for the effects of condition synchronization, our ap-
proach to static (compile-time) analysis incorporates an approximation of the effect
of mutual exclusion, yet without entailing any increase in analysis complexity.

In summary, PAMELA combines many insights from related approaches to the perfor-
mance modeling of parallel systems, i.e., simulation modeling approach, process algebraic
description, providing sufficient, yet limited modeling power enabling a low-cost, symbolic
performance compilation technique inspired by static path analysis from task graphs and
bounding analysis from queuing theory. The various ingredients are chosen in such a way
that analytical performance models can be compiled that evaluate at the lowest possible
cost, while the loss of accuracy due to the limited modeling power as well as the approx-
imate analysis is kept to an acceptable level for first-order system design. To the best of
our knowledge, this specific blend has not yet been introduced.

7.2 Improvements

The work we have described touches upon many fields such as concurrency, languages,
simulation, scheduling, compile-time analysis, probability, discrete mathematics, com-
plexity theory. As the main purpose of this dissertation is to argue that our approach to
performance modeling of parallel systems satisfies the requirements as mentioned in the
introduction, none of the above aspects have been treated in great depth. Clearly, the
possible improvements to this work is numerous.

Apart from the obvious necessity of performing much more validation studies based
on an extensive set of real-world applications modeling, some of the most important
improvements of the current approach are the following.

e Modeling technique

— Thus far, the trade-off between the machine-oriented and the material-oriented
paradigm with respect to analyzability has been discussed rather informally.
Because of the potential implications of an increased analyzability with respect
to system design, this issue warrants a much more fundamental treatment in
terms of concurrent formalisms in general, and models of parallel computation
in particular.

— Also the implications of the use restriction with respect to modeling concurrent
systems that require a two-way synchronization (e.g., bounded buffers) has
only been touched upon briefly. Being the essential restriction upon which our

7.2. IMPROVEMENTS 167

static analysis approach is based, its implications must be investigated more
thoroughly.

e Analysis accuracy

— Merely intended to show that there exists a correlation between § and «a (/)
the simulation experiments used to investigate the average accuracy of 1" have
been necessarily brief. More experiments are necessary including the use of
actual system measurements as well as extending the experiments to non-SP
graphs, possibly with conditional control flow.

— Although in many cases, an analysis result in terms of a (u, o) tuple provides
sufficient information, in specific cases the absolute range in which T lies can be
of interest (e.g., real-time systems). While the conjectures with respect to T
as presented do provide insight in the basic properties of contention models,
they only apply to simple parallel sections, and are supported by only few
experiments. Clearly, the approach reveals an area where there is ample room
for much improvement and where interesting results can be expected.

e Analysis technique

— As a consequence of our focus on the effects of synchronization, one of the
most important flaws of our approximate technique is the fact that task time
variance (due to conditional control flow or mutual exclusion) is not accounted
for. Especially, the offset of the mean value due to barrier synchronization
may become quite large for high variance levels. By incorporating (symbolic)
approximations for the offset, a better version of the static analysis may be
developed where each task time parameter is represented by a (u,o) tuple
rather than by a one (mean) value alone.

— As shown by a number of examples and case studies, the PS-like resource shar-
ing at aggregate level may cause an inaccurate lower bound estimate since the
extra “virtual barriers” are not considered by the (default) lower bound tech-
nique. Hence, a preprocessing phase must be added to account for the synchro-
nization effects that are essentially due to our assumption of fair scheduling.

— As discussed, there are many cases in which a simulation run of a PAMELA
contention model yields a result with only a small variance (assuming negligible
conditional control flow variance). For these cases, it is possible to formulate
an “analytic” technique for any PAMELA P/V model (i.e., not only use models
as in the symbolic technique), based on manipulating resource queues. While
the solution complexity of the technique is comparable to T' (not considering
possible reductions), the prediction accuracy is essentially better.

— While the above alternative analysis techniques are not specific to PAMELA,
neither are the techniques that are associated with alternative representation
formalisms. For example, the above techniques could be complemented by
defining a Markov analysis for PAMELA models, or a mean value analysis tech-
nique for the PAMELA equivalent of separable queuing networks, or extending

168 CHAPTER 7. CONCLUSION

our static technique based on the analysis principles used in hybrid queuing
networks. With its mixture of unstructured and structured synchronization
operators, PAMELA could host a large variety of analysis techniques, thus of-
fering a more flexible trade-off between cost and accuracy in the performance
modeling of parallel systems.

Next to the above improvements, recommendations for future work clearly include the
development of tools (e.g., PAMELA compiler) in order to support the application of the
PAMELA methodology.

Appendix A

PAMELA Language Semantics

A.1 Introduction

In this appendix we will describe the semantics of the most important PAMELA statements
in terms of Deterministic and Stochastic Petri Nets (DSPN [6]). The choice for this
formalism is motivated as follows. Because of the necessity to describe time as well
as synchronization, traditional concurrency formalisms (e.g., CSP) are not appropriate,
unless some ad hoc enhancements were introduced. As explained in Chapter 2, neither
QN. SG, or DG have sufficient modeling power. In contrast, DSPN readily provides a
simple means to express the semantics of the PAMELA constructs as far as synchronization
and time are concerned.

Because of the simple semantics of the language we will only model the most important
constructs. The order of appearance of each construct is the same as in Chapter 3. As
usual, thin bars denote immediate transitions, whereas thick bars denote timed transitions
(either stochastic or deterministic). The action associated with each PAMELA construct is
expressed by one or more transitions. Each DSPN representation of a PAMELA construct
always ends with a place. As a result, like the composition of PAMELA constructs in
a large model, each DSPN representation can be directly interconnected to form the
DSPN representation of the PAMELA composition. DSPN representations of composite
models (representing, e.g., Ly or Ly) are depicted by boxes. Corresponding to the above
convention, each box internally starts with a transition and ends with a place. Tokens
either represent the thread of control of each PAMELA process, or represents the amount
of resources that are available. For simplicity, in the DSPN models tokens have been
omitted, i.e., all resources are assumed to have a zero value (r; = 0). As each model starts
with a transition, the transition is assumed to be enabled, without the presence of tokens
being required.

170 APPENDIX A. PAMELA LANGUAGE SEMANTICS

A.2 Time

PAMELA construct DSPN representation

delay(7) ———

A.3 Control Flow

PAMELA construct DSPN representation
PAMELA construct DSPN representation

Ly || Ly

PAMELA construct DSPN representation

if (¢) Ly else L,

With respect to the if statement, ¢ denotes a boolean computation which, in general,
involves an extended PN (e.g., DSPN extended with inhibitors). Note that a stochastic
choice would be implemented using two immediate transitions only (i.e., without the ¢
subnet) specifying the appropriate switching distribution [5].

A.4. CONDITION SYNCHRONIZATION

171

A.4 Condition Synchronization

PAMELA construct

DSPN representation

wait({c1, 2 })

cl c2

()

PAMELA construct

DSPN representation

signal({¢1, c2})

A.5 Mutual Exclusion

PAMELA construct ‘

DSPN representation

P({ry,r1,72})

PAMELA construct ‘

DSPN representation

V({ri,r1,r2})

I r2

172 APPENDIX A. PAMELA LANGUAGE SEMANTICS

PAMELA construct DSPN representation
rl r2
AN
use({ry,ri, 2}, 7) o[12
T

Note, that the above use construct applies to (regular) FCFS resources. As defined
in Chapter 3, for PS resources the number of sequential replications is infinite while 7
approaches zero. Also the using construct is defined in terms of the above constructs, as

defined in Chapter 3.

Appendix B

Partitioning Index Spaces

B.1 Introduction

In this appendix we derive expressions pertaining to the block-wise and cyclic partitioning
of an indexed computation over M resources m =0... M — 1. Let

[={ila<i<b}

be an index set. Let f(i) = ¢i 4+ d be an affine index function generating the references
fla), fla+1),..., f(b) associated with the computation. Let 7 denote the partitioning
function. Then the index partition associated with resource m is given by

In=Hi]a<i<b A nw(f(i)) =m}

In the following we will give some reductions of the above set enumeration to a less
complex form for block and cyclic partitioning.

B.2 Block Partitioning

Let

denote the block partitioning function where

b—a+1

B= [

denotes the block size. Then [,, comprises the solution of the equation

ch;— dJ -
This implies
+d
B < |t < Bmt+1)—1

B

174 APPENDIX B. PARTITIONING INDEX SPACES

and it follows

Bm —d B 1)—d
== Wﬁiﬁ[&w—l
c c
subject to
a<1<b

Hence, in terms of a consecutive series j, [, is given by
[m:{l|am§]§6m}

where

Bm —d

c

Bm+1)—d

1| = min]

a,, = max [a, [

B.3 Cyclic Partitioning
Let
7(¢) =i mod M
denote the cyclic partitioning function. Then [, is the solution of the diophantine equation
ca+kM=m—d, a<1<5b
where k is some integer variable. If no solution in 7 exists, i.e.,
(m — d) mod ged(e, M) =0
then I, = O, else I,, is given by the monotonic series
Ly = {tmytm + 0,0 +26,...}

where ¢,, > a denotes the smallest solution in ¢ of the diophantine equation, and the
solution period is given by

s M
~ ged(e, M)

In terms of a consecutive series j, [, is given by

[m:{bm+5j | amg]ﬁﬁm}
where

4 — L b4+1—1,
o = [T, = [P0

B.4. GENERAL RESULTS 175

B.4 General Results

Since
M-1
I = U L.,
m=0
it holds

M-1
Zﬁm—am—l—lzb—a—l—l
m=0

An important measure is the maximum partition size, i.e.,

S= max [(n,—a,+1
m=0..M—1
For block partitions this simply reduces to S = B. For cyclic partitions, a situation in
which the partition [, is a member of the larger power set occurs when ¢, = a (i.e., the
first index is a direct hit). Let m’ be the solution to the above condition. Then

b—a+ 1w

)

For the simple linear function f(¢) = ¢ a simple expression can be obtained for a cyclic
partitioning. It follows ¢ = 1,d = 0 which implies ¢, = m —d = m, and § = M. Thus [,

S:ﬁm/—am/—l-l:[

is given by
[m:{m+Mj | Oémgjgﬁm
in which

a—m b+1—m
Tl o

1-1

o =

176 APPENDIX B. PARTITIONING INDEX SPACES

Appendix C

Reduction of Summation Terms

In this appendix we derive reductions for the expressions
N —1[n :
P

n=1

and

z

s

[

1

1n

n

We proceed by subdividing the range n = 1,..., N — 1 in subranges where the term
o
is constant and larger than 0. Let

7 =172

denote the total number of full subranges, and let
K = (N —-2)mod P

corresponding to the highest index of the entries (0,..., K') in the highest subrange in
the case the subrange does not contain P entries. With respect to the first expression, it

follows

N-1 J—1
SI51=D_JP+(K+1)J
n=1 P 7=0

which reduces to
N-1 n 1

3
Il
—

With respect to the second expression it follows

K

Z_:Z_: (L4+ G =P+ K+ DT+ (J = 1)P)+ Tk

k=0

N-1

n
P

—_

n=

178 APPENDIX C. REDUCTION OF SUMMATION TERMS

which reduces to

5 J(J —1)(P =P+ P(P—-1)/2) J(J—-1)(2J —1)P?

-1
n
n; Il = 2 * 6
K(K+1)M
2

(K +1)J(1 4 (J-1)P) +

Appendix D

Bounds for Random Parallel Sections

D.1 Introduction

In this appendix we derive expressions for the mean of 7% and 7" for a P x P demand
matrix of which the elements are uniformly distributed over the interval (0,1). First, we
define some basic terminology from the field of order statistics [36]. Let

X(l) < X(g) <...< X(n)

denote n variates Xy, ..., X, each with a cumulative distribution function P(x), arranged
in ascending order. Then X (7) is called the ith order statistic. The cumulative distribution
function F,.(z) of X(,) is given by
- n i n—i
R =3 (1) P - pe)

i=r

Let f, denote the probability density function of X(,.). Then the mean of X, is given by

oy = /_T: of,(¢)de = n (Zj) /:o P Y (@)(1 — P(«)) " dP(x)

D.2 The Upper Bound

Since the upper bound is approximated by
(1.) €€ (k)

we will derive the mean s(k) of the sum of the first k order statistics for a sample of P?
from the uniform distribution.
Let p(z) be uniform in (0,1). Then g, reduces to

n—1 ! r n—r _ r
Uy = n(r_l)/ox(l—x) dw_n—l—l

180 APPENDIX D. BOUNDS FOR RANDOM PARALLEL SECTIONS

Let s(k) denote the sum of the k largest order statistics. Since the mean distributes over
sums, we have

Ba) = 3w

- o [Zr—;]
nn+1)—(n—k)(n—k+1)
2(n+1)

Taking n = P? and k = 3P — 3, it follows

P?(P? 1) — (P? =3P +3)(P? — 3P + 4)
2(P?2+1)

E(T") =

Since
nn+1)—(n—k)(n—k+1) B Ink — k2 + k
2(n 4 1) 2+ 1)

for large n and k& < n it holds

. 2nk — KP4+ k
hm —_— = k

it follows that for large P it holds

E(T") =3P — 3

D.3 The Lower Bound

Since the lower bound is given by
P M
T = max max Z i max, Z
i= =1 j=1

we will derive the mean p,, of the highest order statistic for a sample of 2P row and
column sums of uniformly distributed elements.

While for general distributions, the moments of order statistics can not be character-
ized by simple expressions, a general upper bound on the extremal is given by

n—1

n< T
fn S P 5

where p and ¢? are mean and variance, respectively. In the case of a symmetric distribu-

g

tion (like for the normal distribution) this limit can be narrowed down to

n
Mn§u+§a

D.3. THE LOWER BOUND 181

While for small n this limit proves to be a relatively accurate predictor for u,, for normal
distributions, an approximation [60] which yields better results for larger n is given by

tn = p+1/21og 0.4n o

Since the mean and variance distribute over sums, for the sum of P uniformly distributed
elements we have i = P/2 and o? = P/12. Taking n = 2P, for not too small P it follows

P
E(TY ~ T+ 0.4/ P log P

in which it is tacitly assumed that for larger P the row sums and column sums of A may
be considered independent and normally distributed.

182 APPENDIX D. BOUNDS FOR RANDOM PARALLEL SECTIONS

Appendix E
PAMELA Run-time Library

E.1 Introduction

This appendix describes the main features of the PAMELA run-time library that has been
used for the experiments described in this dissertation (Version 1.2). Although primarily
intended as the run-time system for the future PAMELA compiler, the library comprises
a general-purpose, stand-alone performance simulation kernel. The library has been used
for all the simulation experiments that are mentioned in this dissertation.

The PAMELA run-time library is the latest development in a series of discrete-event
simulation kernels, aimed to provide a concurrent, general-purpose performance simulation
interface, based on the procedure-oriented (“P/V-style”) paradigm [8]. The kernel is
directly mapped onto light-weight threads, yet extending this concurrent layer with the
notion of wvirtual time. Partially inspired by the need for this temporal enhancement,
typically not present in most thread, task, or class packages, the choice for yet another
in-house development is further motivated by:

e Simplicity

Partially intended as an educational tool, the library should be extremely simple
to use. This rules out, e.g., CT* class libraries, which assume a working knowledge
of CT*. Furthermore, the interface should provide only a small, orthogonal kernel,
directly corresponding to the user’s basic needs and understanding of the concept
of processes and semaphores. Featuring a straightforward C implementation, the
PAMELA run-time library is instantly usable for any average user who is familiar
with basic concurrency.

e Portability
While many thread libraries are hardware-specific, the choice for a separate layer
provides the possibility to abstract from the actual platform, without significant
performance loss. Mapped in terms of only a few macros, the PAMELA run-time
library is easily ported to different processors.

e Maintenance
An in-house development, the PAMELA run-time library is well-documented which
eases maintenance and, especially, the development of functional enhancements.

184 APPENDIX E. PAMELA RUN-TIME LIBRARY

o Accessibility
Intended to deliver public domain software, the PAMELA project aims to minimize
the use of third-party software, which is either costly, non-portable, or does not
deliver sufficient functionality. Given the relatively small investment, the advantage
of a proprietary kernel simply outweighs any alternative.

The development path towards the PAMELA run-time library has been marked by a num-
ber of historic events. Although an official implementation was never been released, the
initial concept of a “P/V”-style performance simulation interface on top of a light-weight
process kernel has been introduced in [48]. The first version was released as part of the
“CPE” performance modeling technique [132]. Subsequently, its successor, an optimized
version called the “VOP library” [124], has been in use, up to the release of the PAMELA
run-time library. Although the VOP library offers the functionality needed for basic
performance simulation, the implementation is not sufficiently engineered towards exten-
sibility and portability over alternative light-weight processing packages. As the VOP
library is hard-coded in terms of Sun’s LWP library, the need for versions on other types
of PCs and workstations, as well as the need for additional functionality, has inspired
the development of its successor (the PAMELA run-time library includes advanced fea-
tures, not present in its predecessor, such as an interrupt mechanism to implement e.g.,
timeouts). The PAMELA library runs on SunOs 4.x [147], as well as on individual nodes
under the Amoeba operating system [16, 149]. Recently, a fully portable version has been
released (Version 1.3 [109]) which has been successfully installed on various 80x86-based
PCs (DOS/Linux) as well as HP workstations.

In the following, we describe some of the main features of the library. An elaborate
description including the more specialized functions (like the timeout mechanism) can be

found in [52, 109].

E.2 System Architecture

The library is defined in terms of the following two data types:

e Process type pam_proc
With each process entity, a lightweight thread of control is associated which executes
a user function, passed at creation. Each process has a local time stamp which is
used to store the (global) time, either at which it has been suspended (in the past)
or at which it has been scheduled to resume (in the future). The time stamps are
used to implement the discrete event simulation mechanism, discussed later on.

e Semaphore type pam_sema
With each semaphore is associated a queue in which processes are stored whose exe-
cution has to be suspended. Queued processes are ordered by increasing time stamp.
Apart from storing processes, blocked on a user semaphore, the queue mechanism
is also used to implement the event list (or ready list) which contains the runnable
processes, scheduled to resume execution according to their time stamp.

At any time, only one process can be running. Its time stamp value is interpreted as the
current time. All other processes are either runnable, i.e., scheduled for future execution

E.2. SYSTEM ARCHITECTURE 185

at the time designated by their time stamp, of blocked, i.e., waiting on a semaphore until
another process lifts this block by executing a pam_V() operation.

The concurrent execution of PAMELA threads revolves around a queue of runnable
processes, implemented by a system semaphore, called pam_sched, i.e., the system sched-
uler queue (or event list), allocated upon library initialization'. A reference diagram
is depicted by Fig. E.1, showing the scheduler queue pam_sched, along with one user

semaphore queue s.

pam del ay(1)

pam swi t ch()

b
running: @%‘@@@
pam sched @ process
pam V(s)
‘@@@@ t timestamp
S T [semaphore

pam P(s)

Figure E.1: System Operation

Like most thread libraries, PAMELA threads are scheduled non-preemptively. Thus, ex-
ecution of the current process continues until it voluntarily relinquishes control. Apart
from process deletion, this can only occur when the following three library routines are
invoked (illustrated in the figure):

e pam_delay()
The process stays runnable but is rescheduled (suspended) to be resumed after the
designated interval.

e pamn_P()
If the semaphore credit value is zero, the process becomes blocked in the semaphore
queue, only to be released through execution of a pam_V() call which reschedules
the process as a runnable one with its time stamp made equal to the current time.

e pam_switch()
By this explicit request for a context switch, the running process is traded for a
runnable process which has an equivalent time stamp.

In all cases, the runnable process at the head of the pam_sched queue is selected to become
the next running process, which (with exception of pam_switch()) results in an increment
of the global time.

!The fact, that system scheduling is performed through a semaphore queue, symbolizes the contention
of (logical) PAMELA threads for the single (physical) processing resource (i.e., the single CPU responsible
for the interleaved execution of all thread programs).

186 APPENDIX E. PAMELA RUN-TIME LIBRARY

E.3 Library Functions

In the following we briefly list the most relevant library functions. For brevity, the in-
terrupt and exception handling functions have been omitted. In all cases the header file
pam.h must be included.

o Initialization
void pam_init(char *name), the very first library function to be invoked, turns
the caller into a PAMELA thread, with user name name (see pam_name()). The
function initializes various internal data structures, amongst which the scheduler
(semaphore) ready queue pam_sched. Upon invocation the following conditions

hold:

— pam_time() = 0.0, i.e., zero global virtual time
— pam_level(0), i.e., library-level debugging off
— pam_trap(NULL), i.e., default debugging on exception

void pam_quit () unconditionally returns control to the shell.

e Processes

pam_proc *pam_fork(char *name, void (*func) (), int args) creates a new
thread in suspended state which is enqueued in the ready queue pam_sched for
eventual execution. A thread handle is returned for reference purpose (alternatively,
this handle may be obtained by calling pam_me()). The name argument specifies a
user-defined string which is intended for debugging purposes. func specifies the
address of the actual code which is to be executed. As no arguments are supplied
to this function, args specifies a user-defined integer which is intended to provide a
very basic way of parameter passing using the pam_args() facility (see elsewhere).
During the execution of func(), invoked by p = pam_fork(name,func,args), the
following equalities hold:

— pam_me() = p

— pam_name(p) = name

pam_args(p) = args

pam_mode(p) = pam_sched

void pam_kill(pam_proc *p) deletes the thread specified by the handle p.
void pam_exit () deletes the calling thread, i.e., pam_kill (pam_me()).

int pam_switch() performs a context switch to another runnable thread which has
an equal time stamp. In case of multiple candidates with equal time, the one at
the head of pam_sched is chosen. Thus, pam_switch() operates in a round robin
fashion. If no context switch could be performed, a 0 value if returned. In view of
the non-preemptive scheduling discipline, in some situations, calls to pam_switch()
are necessary in order to avoid starvation.

E.3. LIBRARY FUNCTIONS 187

o Identification
pam_proc *pam_me() returns a handle to the calling thread similar to the one orig-
inally returned by pam_fork().

char *pam_name(pam_proc *p) returns a pointer to the user-defined name string,
originally passed through pam_fork(). The string is used by the debugging monitor
for referencing purpose.

int pam_args(pam_proc *p) returns a user-defined args string, originally passed
through pam_fork(). The integer is not used by the library software and is intended
to provide a basic parameter passing scheme (as shown in the examples presented
earlier).

pam_sema *pam_mode(pam_proc *p) returns the semaphore handle with respect to
which the thread p is queued. The handle can take the following values

— NULL, i.e., the thread is the caller, which is not blocked
— pam_sched, i.e., the thread is runnable and scheduled

— s, otherwise, when the thread is blocked on a user semaphore s.

e Timing
pam_proc *pam_delay(double delta) suspends the caller’s execution for delta
time units. If other threads are scheduled at earlier times, the caller is enqueued
in pam_sched to be resumed at the designated time. Otherwise, the caller stays
in control and system time is simply incremented by delta time units. A process
handle is passed on return. Possible values are

— pam_me (), if the delay was normally executed

— otherwise, if the thread was prematurely unblocked by a timeout interrupt (null
process). The return value refers to this handle.

double pam_time() returns the system time.

void pam_reset () resets the system time to zero. In iterative simulation runs the
value of pam_time() may become very large. This may cause resolution problems
in which small increments (due to pam_delay()) are no longer properly accounted
for. By periodically resetting system time to zero, these problems can be avoided.

e Semaphores
pam_sema *pam_alloc(char *name, int cred) returns the handle of a newly cre-
ated counting semaphore with a user-defined string name for debugging purposes.
The semaphore is initialized to the value of cred (i.e., the number of initial pam_P ()
calls that will not block).

void pam_free(pam_sema *s) deletes the semaphore specified by handle s.

pam_proc *pam_P(pam_sema *s) decrements semaphore s. If zero on invocation,
the caller is suspended and put in the queue associated with the semaphore. Once
queued, the thread can only be resumed as a result of a pam_V(s) call by another
thread, which handle is returned by pam_P (). Possible return values are

188 APPENDIX E. PAMELA RUN-TIME LIBRARY

— pam_me(), i.e., the caller was not blocked

— otherwise, i.e., the handle of the process lifting the block, either by pam_V(),
or through timeout interrupt (null process).

void pam_V(pam_sema *s) increments semaphore s unless threads are queued for
s, in which case one thread is dequeued and scheduled for future execution. The
dequeue selection is according to a FIFO discipline, where, in case of multiple can-
didates with equal time, one is randomly chosen.

int pam_T(pam_sema *s) returns the current credit of semaphore s. If smaller
than 0, the value indicates the number of blocked processes. The call can be used
to test if a subsequent pam_P() call would block.

e Debugging

The void pam_debug(char *prompt, int level) break point facility provides a
simple and effective means of selectively tracing the execution of PAMELA threads.
By invoking a debugging monitor, all existing threads and semaphores can be tem-
porarily examined before program execution is continued (for a full description,
see the manual). When invoked, the monitor prompts for command input using
the string specified by prompt which typically comprises some tracing information.
Whether the monitor is actually invoked depends on the value of 1evel, which must
be smaller than or equal to the system value set by the last pam_level() call. If
level is greater than this value, pam_debug() has no effect. This feature enables
applications to be instrumented with many pam_debug() calls in a selective tracing
hierarchy. The PAMELA run-time library, itself, is instrumented with pam_debug()
calls which offers tracing at library call entry level. Currently, the following levels
are implemented:

0 no tracing (i.e., first level upwards, user-available)

1 trace pam_fork(), pam_exit (), pam_kill(), pam_switch(),
pam_quit ()

2 In addition to level 1, trace pam_delay(), pam_P(), pam_V(),
pam_T(), pam_reset ()

3 In addition to level 2, trace pam_alloc(), pam_free()
4 In addition to level 3, pam_post (), pam_cancel()
In addition to level 4, trace internal context and queue operations

(for maintenance only)

void pam_level(int level) sets the system trace level to the value specified by
level.

E.4 Programming Example

To give a quick impression of the ease of programming, we show a listing of a simple im-
plementation of the MRM example, discussed throughout the dissertation (Example 3.4).
Declarations have been omitted for brevity.

E.4. PROGRAMMING EXAMPLE 189

void

void

main()
int P;

pam_init("main");
server = pam_alloc("server",1);
barrier = pam_alloc("barrier",0);

/* create clients ("par (p = 1, P)")
*/
for (p = 1; p <= P; p++)
pam_fork("client",client,p);

/* main blocks; clients unblock
*/
for (p = 0; p < P; p++)
pam_P(barrier);

/* clients finished; main unblocks

*/
printf("Cycle time %e\n",pam_time()/N);
pam_quit () ;

client ()
int i;

/* cycle through network ("seq (i = 1, N)")
x/
for (1 = 1; 1 <= N; i++) {

/* compute locally ("delay(\tau_1)")
x/
pam_delay(exprnd(10.0));

/* request service ("use(s,\tau_s)")
*/

pam_P(server) ;
pam_delay(exprnd(1.0));
pam_V(server) ;

t

pam_V(barrier);

pam_exit () ;

190 APPENDIX E. PAMELA RUN-TIME LIBRARY

E.5 Debugging

The PAMELA run-time debugging monitor provides a basic mechanism to examine all
existing threads and semaphores, through an interactive command line interpreter. The
monitor is automatically invoked by the pam_debug() break point facility (see above). At
invocation, the following prompt is generated

<time> (Kname>) <trace> >

in which <time> is the current time, <name> is the name of the invoking thread (defined
at creation), and <trace> is the trace message argument of the responsible pam_debug()
call. For example, consider the following code, i.e.,

main()

{
int £(0);
pam_init("main");
s = pam_alloc("s",0);
pam_fork("f",f,1);
pam_delay(2.0);
pam_debug("checkpoint 2",0);
pam_V(s);

}

£(0)

{
pam_delay(1.0);
pam_debug("checkpoint 1",0);
pam_P(s);

}

the following prompt is generated
1.000000e+00 (f) checkpoint 1 >

With the i command (”inspect”) the current contents of all existing semaphores are listed
in the following format, i.e.,

<semaphore>: <process> (<time>) <process> (<time>)

<semaphore>: <process> (<time>) <process> (<time>)

where <semaphore> denotes its name, <process> and <time> denote process name, and
time stamp, respectively. In any case, the (scheduling) semaphore pam_sched is listed,
which is created at initialization. If a semaphore queue is empty, the current semaphore
count value is listed according to

E.5. DEBUGGING 191

‘ Command ‘ Description ‘ Library function ‘
‘ i ‘ Inspect semaphore queues ‘ (explained above) ‘
c Continue program execution | (explained above)
1 <level> set tracing Level pam_level(<level>)
q Quit PAMELA system pam_quit ()
d <itv> ‘ Delay current process ‘ pam_delay(<itv>) ‘
k <name list> | Kill list of processes pam_kill(<proc>)
f <name list> | Fork another monitor pam_fork(<name>)
s Switch context pam_switch()
X eXit current process pam_exit ()
a <name> <crd> | Allocate semaphore pam_alloc(<name>,<crd>)
p <name> apply P operation pam_P (<sema>)
v <name> apply V operation pam_V (<sema>)
e <name list> | frEe semaphores pam_free(<sema>)
o <name> <itv> | pOst interrupt pam_post (<proc>,<itv>)
n caNcel interrupt pam_cancel (<proc>)

Table E.1: Monitor command menu

<semaphore>: <+<value>>
In the above example, i would generate

pam_sched: main (2.000000e+00)
s: <+0>

With the ¢ command (”continue”), the monitor is left, after which program execution
continues. In the above example, the second breakpoint would generate

2.000000e+00 (main) checkpoint 2 >
Now, i would generate

pam_sched: <+0>
s: £ (1.000000e+00)

corresponding to the fact that £() is blocked by pam_P(s).

Apart from inspecting semaphores and continuing execution, the monitor offers com-
mands to create and delete threads and semaphores, in order to experiment with the
library on a command line interpreter basis. Table E.1 lists the commands which are
supported in the current release. In the commands, a process or semaphore is referenced
by the name, passed as argument to the creation command. Hence, <proc> and <sema>
are the handles associated to the corresponding <name> arguments (in the n command,
<proc> refers to the first association with the null process pam_null).

Due to the complexity of a generic scheme to supply a user-defined function pointer,
the fork command simply forks a thread which executes an internal dummy function,

192

APPENDIX E. PAMELA RUN-TIME LIBRARY

which, in turn, calls pam_debug("monitor",0), invoking another monitor instantiation,
running in an infinite loop. Thus, multiple copies of the monitor may be active during the
debugging session, each instantiation identifiable by the process name argument, passed
at the creation command. The following session illustrates the educational value of the

debugger. The program is given by

main()
{
pam_init("main");
pam_debug("monitor",0) ;
pam_exit () ;
}
The following is a record of an interactive console session upon execution of the above
program:
0.000000e+00 (main) monitor > f pl p2

0

.000000e+00 (main) monitor > i

pam_sched: pl (0.000000e+00) p2 (0.000000e+00)

.000000e+00 (main) monitor > a s1 0
.000000e+00 (main) monitor > i

pam_sched: pl (0.000000e+00) p2 (0.000000e+00)
sl: <+0>

.000000e+00 (main) monitor > 4 1
.000000e+00 (p1) monitor > i

pam_sched: p2 (0.000000e+00) main (1.000000e+00)
sl: <+0>

.000000e+00 (p1l) monitor > p si
.000000e+00 (p2) monitor > i

pam_sched: main (1.000000e+00)
sl: p1l (0.000000e+00)

0.000000e+00 (p2) monitor > d 2

.000000e+00 (main) monitor > i

pam_sched: p2 (2.000000e+00)
sl: p1l (0.000000e+00)

.000000e+00 (main) monitor > p sl

2.000000e+00 (p2) monitor > i

E.5. DEBUGGING 193

pam_sched: <+0>
si: pl (0.000000e+00) main (1.000000e+00)

2.000000e+00 (p2) monitor > d 1
.000000e+00 (p2) monitor > v si1
3.000000e+00 (p2) monitor > i

w

pam_sched: pl (3.000000e+00)
s1: main (1.000000e+00)

3.000000e+00 (p2) monitor > s
.000000e+00 (p1l) monitor > v si1
3.000000e+00 (pl) monitor > i

w

pam_sched: p2 (3.000000e+00) main (3.000000e+00)
sl: <+0>

3.000000e+00 (pl) monitor > k p2
3.000000e+00 (pl) monitor > i

pam_sched: main (3.000000e+00)
sl: <+0>

3.000000e+00 (pl) monitor > c
3.000000e+00 (main) monitor > i

pam_sched: <+0>
sl: <+0>

3.000000e+00 (main) monitor > g

194 APPENDIX E. PAMELA RUN-TIME LIBRARY

Bibliography

1]

2]

[10]

[11]

V.S. Adve, Analyzing the Behavior and Performance of Parallel Programs. PhD
thesis, University of Wisconsin, Madison, WI, Dec. 1993. Tech. Rep. #1201.

V.S. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, J. Mellor-Crummey, S. Warren and C-W. Tseng, “Requirements for data-
parallel programming environments,” IKEFE Parallel and Distributed Technology,
July 1994, pp. 234-239.

V.S. Adve and M.K. Vernon, “The influence of random delays on parallel execution

times,” in Proc. 1993 ACM SIGMETRICS Conf. on Measurement and Modelling of
Computer Systems, May 1993, pp. 61-73.

M. Ajmone Marsan, G. Balbo and G. Conte, “A class of Generalized Stochastic
Petri Nets for the performance analysis of multiprocessor systems,” ACM Tr. on
Comp. Syst., vol. 2, May 1984, pp. 93-122.

M. Ajmone Marsan, G. Balbo and G. Conte, Performance Models of Multiprocessor
Systems. MIT Press, 1986.

M. Ajmone Marsan and G. Chiola, “On Petri nets with deterministic and exponen-
tially distributed firing times,” Lecture Notes in Computer Science, vol. 266, no. 24,
1987, pp. 132-145.

F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh and V. Sarkar, “A framework
for determining useful parallelism,” in Proc. 1988 Int. Conf. Parallel Proc., IEEE,
Aug. 1988, pp. 207-215.

G.R. Andrews and F.B. Schneider, “Concepts and notations for concurrent pro-
gramming,” Computing Surveys, vol. 266, no. 24, 1983, pp. 132-145.

M. Annaratone, C. Pommerell and R. Ruhl, “Interprocessor communication and
performance in distributed-memory parallel processors,” in Proc. 16th Symp. on

Comp. Archit., ACM, May 1989, pp. 315-324.

D. Atapattu and D. Gannon, “Building analytical models into an interactive pre-
diction tool,” in Proc. Supercomputing ‘89, ACM, 1989, pp. 521-530.

J. Baeten and P. Weijland, Process Algebra. Cambridge Univ. Press, 1990.

196

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

D.H. Bailey, “Vector computer memory bank contention,” IFEE Transactions on

Computers, vol. C-36, Mar. 1987, pp. 293-298.

V. Balasundaram, G. Fox, K. Kennedy and U. Kremer, “A static performance esti-
mator to guide data partioning decisions,” in Proc. 3rd ACM SIGPLAN Symposium
on PPoPP, Apr. 1991.

Y. Bard, “Some extensions to multiclass queueing network analysis,” in Performance
of Computer Systems (M. Arato, A. Butrimenko and E. Gelenbe, eds.), North-
Holland, 1979.

F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, “Open, closed, and mixed
networks of queues with different classes of customers,” Journal of the ACM, vol. 22,

Apr. 1975, pp. 248-260.

R. Bhoedjang and T. Ruhl, “PAMELA-Amoeba macro package.” Personal Commu-
nication.

L.N. Bhuyan, Q). Yang and D.P. Agrawal, “Performance of multiprocessor intercon-
nection networks,” Computer, Feb. 1989, pp. 25-37.

L. Bomans and D. Roose, “Benchmarking the iPSC/2 hypercube multiprocessor,”
Concurrency—Practice and Fzrperience, vol. 1, Sept. 1989, pp. 3—18.

M. Bontekoe, “Generalizing interconnection network models,” Tech. Rep. 1-68340-
28(1994)26, Delft University of Technology, Delft, The Netherlands, Sept. 1994.

LY. Bucher and D.A. Calahan, “Access conflicts in multiprocessor memories queue-
ing models and simulation studies,” in Proc. Jth ACM Int. Conf. on Supercomputing,
1990, pp. 428-438.

LY. Bucher and M.L. Simmons, “A close look at vector performance of register-
to-register vector computers and a new model,” Performance Evaluation Review,

vol. 15, no. 1, 1987, pp. 39-45.

P. Buchholz, “Hierarchical Markovian models: Symmetries and reduction,” in Proc.
6th Int. Conf. Modelling Techniques and Tools for Comp. Perf. Fval., Edinburgh,
Sept. 1992.

D.A. Calahan, “An analysis of vector startup access delays,” IEEFE Transactions on
Computers, vol. 37, Sept. 1988, pp. 1134-1137.

D.A. Calahan, “Characterization of memory conflict loading on the CRAY-2,” in
Proc. 1988 Int. Conf. Parallel Proc., IEEE, Aug. 1988, pp. 299-302.

D. Callahan, K.D. Cooper, R.T. Hood, K. Kennedy and L. Torczon, “ParaScope:
A parallel programming environment,” Int. Journ. of Supercomp. Applic., vol. 4,

no. 2, 1988, pp. 84-99.

BIBLIOGRAPHY 197

[26]

[27]

28]

[29]

33]

[34]

[35]

[36]

37]

38]

39]

[40]

D. Callahan and K. Kennedy, “Compiling programs for distributed-memory multi-
processors,” The Journal of Supercomputing, no. 2, 1988, pp. 151-169.

R. Candlin and J. Phillips, “A statistical study of factors that affect the performance
of a class of parallel programs on a MIMD computer,” in Proc. Int’l. Conf. on

Decentralized and Distributed Systems (IFIP Transactions A-39), Palma, 1993.

T. Cheung and J.E. Smith, “A simulation study of the CRAY X-MP memory sys-
tem,” IFEFE Transactions on Computers, vol. C-35, July 1986, pp. 631-622.

M.J. Clement and M.J. Quinn, “Multivariate statistical techniques for parallel per-
formance prediction,” in Proc. 25th Hawaii Int. Conf. on System Sciences, Vol. 11,
[EEE, Jan. 1995, pp. 446-455.

M.E. Crovella and T.J. Leblanc, “The search for lost cycles: A new approach to
parallel program performance evaluation,” in Proc. Supercomputing ‘94, ACM, 1994,

pp. 600-609.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-
nian and T. von Ficken, “LogP: Towards a realistic model of parallel computation,”

in Proc. jth ACM SIGPLAN Symposium on PPoPP, May 1993, pp. 1-12.

R. Cytron, “Doacross: Beyond vectorization for multiprocessors,” in Proc. 1986 Int.

Conf. Parallel Proc., IEEE, Aug. 1986, pp. 836-844.

0O.J. Dahl and K. Nygaard, “Simula - an ALGOL-based simulation language,” Com-
munications of the ACM, vol. 9, no. 9, 1966, pp. 671-678.

F. Darema, D.A. George, V.A. Norton and G.F. Pfister, “A single-program-multiple-
data computation model for EPEX/FORTRAN,” Parallel Computing, vol. 7, 1988,
pp. 11-24.

S. Dasgupta, “A hierarchical taxonomic system for computer architectures,” Com-
puter, Mar. 1990, pp. 64-74.

H.A. David, Order Statistics. John Wiley & Sons, 1970.

E.W. Dijkstra, “Cooperating sequential processes,” in Programming Languages

(F. Geunys, ed.), Academic Press, 1968, pp. 43—112.

A.N. Dunlop, A.J.G. Hey, D.A. Nicole and D.J. Pritchard, “Performance estimating

for parallel performance optimisation,” Supercomputer, vol. 66, 1995.

D.L. Eager, J. Zahorjan and E.D. Lazowska, “Speedup versus efficiency in parallel
systems,” IEEFE Transactions on Computers, vol. 38, Mar. 1989, pp. 408-423.

W. Ewinger, O. Haan, E. Haupenthal and C. Siemers, “Modelling and measurement
of memory access in SIEMENS VP supercomputers,” Parallel Computing, vol. 11,
1989, pp. 361-365.

198

BIBLIOGRAPHY

[41]

[49]

[50]

T. Fahringer and H.P. Zima, “A static parameter-based performance prediction tool
for parallel programs,” in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo, July
1993, pp. 207-219.

T. Feng, “A survey of interconnection networks,” Computer, Dec. 1981, pp. 12-27.

A. Ferscha and A.D. Maloney, “Performance-oriented development of irregular, un-
structured and unbalanced parallel applications in the N-MAP environment,” in
Computer Performance FEvaluation: Modelling Techniques and Tools (LNCS 977)
(H. Beilner and F. Bause, eds.), Berlin, Springer-Verlag, Sept. 1995, pp. 340-356.

P. Flajolet and J-M. Steyart, “A compexity calculus for recursive tree algorithms,”

Math. Systems Theory, vol. 19, 1987, pp. 301-331.

S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Proc. 10th
Annual Symp. on Theory of Comput., 1978, pp. 114-118.

K. Gallivan, W. Jalby, A. Malony and H. Wijshoff, “Performance prediction of loop
constructs on multiprocessor hierarchical-memory systems,” in Proc. 3rd ACM Int.
Conf. on Supercomputing, 1989, pp. 433-442.

E. Gelenbe, E. Montagne, R. Suros and C.M. Woodside, “Performance of block-
structured parallel programs,” in Parallel Algorithms and Architectures (M. Cosnard

et al., eds.), North-Holland, 1986, pp. 127-138.

AJ.C. van Gemund, “Research notes on processor modeling,” Tech. Rep.
90 ITT 2031, TNO Institute of Applied Computer Science, Delft, The Netherlands,
Dec. 1990.

A.J.C. van Gemund, “Performance prediction of parallel processing systems: The
PAMELA methodology,” in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo,
July 1993, pp. 318-327.

A.J.C. van Gemund, “Compile-time performance prediction with PAMELA,” in Proc.
4th Int. Workshop on Compilers for Parallel Computers, Delft, The Netherlands,
Dec. 1993, pp. 428-435.

A J.C. van Gemund, “Compiling performance models from parallel programs,” in

Proc. 8th ACM Int. Conf. on Supercomputing, Manchester, July 1994, pp. 303-312.

A J.C. van Gemund, “The PAMELA run-time library version 1.0,” Tech. Rep. 1-
68340-44(1994)03, Delft University of Technology, Delft, The Netherlands, Apr.
1994.

A.J.C. van Gemund, “Predicting contention in distributed-memory machines,” in
Proc. Second Workshop on Automatic Data Layout and Performance Prediction
(tech. rep. CRPC-TR955/8), Rice University, Houston, Apr. 1995.

BIBLIOGRAPHY 199

[54]

[55]

[58]

[59]

[60]

[61]

[64]

[65]

[66]

[67]

A J.C. van Gemund, “On the accuracy of compile-time performance prediction,”
in Proc. Fifth Workshop on Compilers for Parallel Computers, Malaga, June 1995,
pp- 157-166.

A.J.C. van Gemund, “Compile-time performance prediction of parallel systems,” in
Computer Performance FEvaluation: Modelling Techniques and Tools (LNCS 977)
(H. Beilner and F. Bause, eds.), Berlin, Springer-Verlag, Sept. 1995, pp. 299-313.

A. Gibbons, Algorithmic Graph Theory. Cambridge University Press, 1988.

N. Gotz, U. Herzog and M. Rettelbach, “Multiprocessor and distributed system
design: The integration of functional specification and performance analysis using
stochastic process algebras,” in Performance Fvaluation of Computer and Commu-
nication Systems (Combined Tutorial Proceedings SIGMETRICS93 and PERFOR-
MANCE"93, LNCS 729) (L. Donatiello and R. Nelson, eds.), Springer, 1993.

R.L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math.,
vol. 17, no. 2, 1969, pp. 416-429.

V.A. Guarna, D. Gannon, D. Jablonowski, A.D. Maloney and Y. Gaur, “Faust: An
integrated environment for parallel programming,” Software, July 1989, pp. 20-27.

E.J. Gumbel, “Statistical theory of extreme values (main results),” in Contributions
to Order Statistics (A.E. Sarhan and B.G. Greenberg, eds.), John Wiley & Sons,
1962, pp. 56-93.

M. Gupta and P. Banerjee, “Compile-time estimation of communication costs of

programs,” in Proc. Second Workshop on Automatic Data Layout and Performance

Prediction (tech. rep. CRPC-TR95548), Rice University, Houston, Apr. 1995.

B. van Halderen, “A tool for application performance prediction,” Master’s thesis,
University of Amsterdam, Amsterdam, Sept. 1995.

F. Hartleb and V. Mertsiotakis, “Bounds for the mean runtime of parallel pro-
grams,” in Proc. 6th Int. Conf. Modelling Techniques and Tools for Comp. Perf.
Fval., Edinburgh, Sept. 1992, pp. 197-210.

K. Harzallah and K.M. Sevcik, “Predicting application behavior in large-scale
shared-memory multiprocessors,” in Proc. Supercomputing 95, ACM, 1995.

P. Heidelberger and K.S. Trivedi, “Analytic queueing models for programs with
internal concurrency,” IEEE Transactions on Computers, vol. 32, Jan. 1983, pp. 73—
82.

T. Hickey and J. Cohen, “Automating program analysis,” Journal of the ACM,
vol. 35, Jan. 1988, pp. 185-219.

J. Hillston, A Compositional Approach to Performance Modelling. PhD thesis, Uni-
versity of Edinburgh, 1994.

200

BIBLIOGRAPHY

[68]

78]

[79]

[30]

[81]

[82]

[83]

[84]

S. Hiranandani, K. Kennedy and C-W. Tseng, “Compiling FORTRAN-D for MIMD
distributed-memory machines,” Communications of the ACM, vol. 35, Aug. 1992,
pp. 66-80.

C.A.R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.

R.W. Hockney, “Performance parameters and benchmarking of supercomputers,”
Parallel Computing, vol. 17, 1991, pp. 1111-1130.

R.W. Hockney and I.J. Curington, “(fi/2): A parameter to characterize memory
and communication bottlenecks,” Parallel Computing, vol. 10, 1989, pp. 277-286.

R.W. Hockney and C.R. Jesshope, Parallel Computers 2 - Architecture, Program-
ming and Algorithms. Adam Hilger, 1981.

J. Hollingsworth and B.P. Miller, “Parallel program performance metrics: A com-
parison and validation,” in Proc. Supercomputing '92, ACM, 1992.

INMOS Limited, The Transputer Databook, 1989. Doc. No. 72 TRN 203 01.
K.E. Iverson, A Programming Language. Wiley, 1962.

K.K. Jain and V. Rajaraman, “Lower and upper bounds on time for multiprocessor
optimal schedules,” IEEFE Transactions on Parallel and Distributed Systems, vol. 5,
Aug. 1994, pp. 879-886.

K. Jensen, “Coloured Petri nets: A high level language for system design and analy-
sis,” in High-level Petri Nets: Theory and Application (K. Jensen and G. Rozenberg,
eds.), Springer-Verlag, 1991, pp. 44-122.

H. Jonkers, Performance Analysis of Parallel Systems: A Hybrid Approach. PhD
thesis, Delft University of Technology, The Netherlands, Oct. 1995.

H. Jonkers, A.J.C. van Gemund and G.L. Reijns, “Efficient performance evaluation
of parallel systems,” in Massively Parallel Processing Applications and Development

(L. Dekker et al., eds.), Delft, North-Holland, 1994, pp. 389-396.

H.F. Jordan, “The Force,” in The Characteristics of Parallel Algorithms (L.H.
Jamieson, D. Gannon and R.J. Douglas, eds.), MIT Press, 1987, pp. 395-436.

A. Kapelnikov, R.R. Muntz and M.D. Ercegovac, “A modeling methodology for
the analysis of concurrent systems and computations,” Journal of Parallel and Dis-

tributed Computing, vol. 6, 1989, pp. 568-597.
A H. Karp, “Programming for parallelism,” Computer, May 1987, pp. 43-57.

A.H. Karp and R.G. Babb, “A comparison of 12 parallel FORTRAN dialects,” Soft-
ware, Sept. 1988, pp. 52-67.

C.W. Kessler, Automatische Parallelisierung numerischer Programme durch Mus-
tererkennung. PhD thesis, Universitat Saarbricken, Germany, 1994.

BIBLIOGRAPHY 201

[85] L. Kleinrock, Queueing Systems: Vol. 2, Computer Applications. Wiley, 1976.

[86] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr. and M. Zosel, The High-
Performance Fortran Handbook. MIT Press, 1994.

[87] C. Koelbel and P. Mehrotra, “Compiling global name-space parallel loops for dis-
tributed execution,” IFFE Transactions on Parallel and Distributed Systems, vol. 2,
Oct. 1991, pp. 440-451.

[88] Ulrich Kremer, “NP-completeness of dynamic remapping,” in Proc. 4th Int. Work-
shop on Compilers for Parallel Computers, Delft, The Netherlands, Dec. 1993,
pp. 135-141.

[89] W. Kreutzer, System simulation, programming styles and languages. Addison-

Wesley, 1986.

[90] C.P. Kruskal and A. Weiss, “Allocating independent subtasks on parallel proces-
sors,” [FEFE Transactions on Software FEngineering, vol. 11, Oct. 1985, pp. 1001-
1016.

[91] S.S. Lavenberg, Computer Performance Modeling Handbook. Academic Press, 1983.
ISBN 0-12-438720-9.

[92] D.H. Lawrie, “Access and alignment of data in an array processor,” IEEFE Transac-
tions on Computers, vol. 24, Dec. 1975, pp. 1145-1155.

[93] E.D. Lazowska et al., Quantitative System Performance: Computer System Analysis
Using Queueing Network Models. Prentice-Hall, 1984.

[94] K.Y. Lee, W. Abu-Sufah and D.J. Kuck, “On modeling performance degradation
due to data movement in vector machines,” in Proc. 1984 Int. Conf. Parallel Proc.,

IEEE, Aug. 1984, pp. 269-277.

[95] B.P. Lester, “A system for computing the speedup of parallel programs,” in Proc.
1986 Int. Conf. Parallel Proc., IEEE, Aug. 1986, pp. 145-152.

[96] H.X. Lin and H.J. Sips, “Parallel direct solution of large sparse systems in finite
element computations,” in Proc. 7th ACM Int. Conf. on Supercomputing, Tokyo,
July 1993, pp. 261-270.

[97] M. Maeckawa, A.E. Oldehoeft and R.R. Oldehoeft, Operating Systems, Advanced
Concepts. Benjamin/Cummings, Ca., 1987.

(98] V.W. Mak and S.F. Lundstrom, “Predicting performance of parallel computations,”
IEEFE Transactions on Parallel and Distributed Systems, vol. 1, July 1990, pp. 257—
270.

[99] A.D. Maloney, V. Mertsiotakis and A. Quick, “Automatic scalability analysis of
parallel programs based on modeling techniques,” in Computer Performance Fvalu-
ation: Modelling Techniques and Tools (LNCS 794) (G. Haring and G. Kotsis, eds.),
Berlin, Springer-Verlag, May 1994, pp. 139-158.

202

BIBLIOGRAPHY

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

O.A. McBryan, “An overview of message-passing environments,” Parallel Comput-
ing, vol. 20, 1994, pp. 417-444.

P. Mehra, C.H. Schulbach and J.C. Yan, “A comparison of two model-based
performance-prediction techniques for message-passing parallel programs,” in Proc.
ACM SIGMETRICS Conf. on Measurement and Modelling of Computer Systems,
Nashville, May 1994, pp. 181-189.

C.L. Mendes, J-C. Wang and D.A. Reed, “Automatic performance prediction and
scalability analysis for data parallel programs,” in Proc. Second Workshop on Auto-

matic Data Layout and Performance Prediction (tech. rep. CRPC-TR955/8), Rice
University, Houston, Apr. 1995.

J.F. Meyer, A. Movaghar and W.H. Sanders, “Stochastic activity networks: Struc-
ture, behavior, and application,” in Proc. of the Int. Conf. on Timed Petri nets,

Torino, July 1985, pp. 106-115.

M.K. Molloy, “Performance analysis using stochastic Petri nets,” IFEFE Transactions
on Computers, vol. C-31, Sept. 1982, pp. 913-917.

H.L. Muller, Simulating Computer Architectures. PhD thesis, Department of Com-
puter Systems, University of Amsterdam, Amsterdam, The Netherlands, 1993.

D. Miller-Wichards, “Performance estimates for applications: An algebraic frame-

work,” Parallel Computing, vol. 9, Dec. 1988, pp. 77-106.

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the

IEEFE, vol. 77, Apr. 1989, pp. 541-580.

K.M. Nichols and J.T. Edmark, “Modeling multicomputer systems with PARET.”
Computer, May 1988, pp. 39-48.

M. Nijweide, “The PAMELA run-time library version 1.3: Extensions and applica-
tions,” Tech. Rep. 1-68340-27(1995)06, Delft University of Technology, Delft, The
Netherlands, June 1995.

A. Norton and G.F. Pfister, “A methodology for predicting multiprocessor perfor-
mance,” in Proc. 1985 Int. Conf. Parallel Proc., IEEE, Aug. 1985, pp. 772-781.

S.F. Nugent, “The iPSC/2 direct-connect technology,” in Proc. 3rd Hypercube Con-
ference, ACM, 1988.

W. Oed and O. Lange, “Modelling, measurement and simulation of memory inter-

ference in the CRAY X-MP,” Parallel Computing, vol. 3, 1986, pp. 343-358.

E.M.R.M. Paalvast, Programming for Parallelism and Compiling for FEfficiency.
PhD thesis, Delft University of Technology, Delft, The Netherlands, 1992.

K. Padmanabhan, “Cube structures for multiprocessors,” Communications of the

ACM, vol. 33, Jan. 1990, pp. 43-52.

BIBLIOGRAPHY 203

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Parsytec Computer GmbH, Pariz release 1.2 software documentation, Mar. 1993.

S. Patil, “Limitations and capabilities of Dijkstra’s semaphore primitives for coor-
dination among processes,” tech. rep., MIT, Feb. 1971.

J.L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

C.A. Petri, Kommuntkation mit Automaten. PhD thesis, Institut fur Instrumentelle
Mathematik, Bonn, Germany, 1962.

C.A. Petri, “Communication with automata,” Tech. Rep. RADC-TR-68-305, Griffiss
Air Force Base, New York, 1966. (Translation of [118]).

A. Pimentel, J. van Brummen, T. Papathanassianis, P.M.A. Sloot and L.O.
Hertzberger, “Mermaid: Modelling and evaluation research in Mimd Archltecture

Design,” in Proc. HPCN Conf. (LNCS), Springer, 1995, pp. 335-340.

B. Plateau, J.M. Fourneau and K.H. Lee, “PEPS: A package for solving complex
Markov models of parallel systems,” in Proc. jth Int. Conf. on Modelling Tech-
niques and Tools for Computer Performance Fvaluation, Palma, Mallorca, Sept.

1988, pp. 341-360.

C.D. Polychronopoulos and U. Banerjee, “Speedup bounds and processor allocation
for parallel programs on multiprocessors,” in Proc. 1986 Int. Conf. Parallel Proc.,

IEEE, Aug. 1986, pp. 961-968.

C.D. Polychronopoulos, M. Girkar, M.R. Haghighat, C.L. Lee, B. Leung and
D. Schouten, “Parafrase-2: An environment for parallelizing, partitioning, synchro-
nizing, and scheduling programs on multiprocessors,” in Proc. 1989 Int. Conf. Par-

allel Proc., IEEE, Aug. 1989, pp. 11:39-48.

R. Pulleman, “Simulation of VOP models,” Tech. Rep. 92 TPD-ZP 938, TNO In-
stitute for Applied Physics, Delft, The Netherlands, Sept. 1992.

B. Qin, H.A. Sholl and R.A. Ammar, “Micro time cost analysis of parallel compu-
tations,” IKEE Transactions on Computers, vol. 40, May 1991, pp. 613-628.

C.V. Ramamoorthy, “Discrete Markov analysis of computer programs,” in 20th

ACM National Conference, Cleveland, ACM, 1965, pp. 386-391.

C.V. Ramamoorthy and G.S. Ho, “Performance evaluation of asynchronous concur-
rent systems using Petri nets,” IEEF Transactions on Software Engineering, vol. 6,

Sept. 1980, pp. 440-449.

S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis and D.A. Wood,
“The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers,” in Proc.
1993 ACM SIGMETRICS Conf. on Measurement and Modelling of Computer Sys-
tems, May 1993, pp. 48-60.

204 BIBLIOGRAPHY

[129] M. Reiser and S.S. Lavenberg, “Mean value analysis of closed multichain queueing
networks,” Journal of the ACM, vol. 27, Apr. 1980, pp. 313-322.

[130] W. Reisig, Petri Nets. Springer Verlag, 1985.

[131] J.T. Robinson, “Some analysis techniques for asynchronous multiprocessor algo-
rithms,” ITEFEE Transactions on Software Engineering, vol. 5, Jan. 1979, pp. 24-31.

[132] M.R.T. Roest, “The CPE modelling technique,” Tech. Rep. 91 ITI 1675, TNO
Institute of Applied Computer Science, Delft, The Netherlands, Nov. 1991.

[133] J.F. de Ronde, A.W. van Halderen, A. de Mes, M. Beemster and P.M.A. Sloot,
“Automatic performance estimation of SPMD programs on MPP,” in Massively
Parallel Processing Applications and Development (L. Dekker et al., eds.), Delft,
North-Holland, 1994, pp. 381-388.

[134] R.A.Sahner and K.S. Trivedi, “SPADE: A tool for performance and reliability evalu-
ation,” in Modelling Techniques and Tools for Performance Analysis ‘85 (N. Abu El
Ata, ed.), Elsevier Science Publishers, 1986, pp. 147-163.

[135] W.H. Sanders, W.D. Obal, M.A. Qureshi and F.K. Widjanarko, “The UltraSan mod-
eling environment,” Performance Evaluation Journal, special issue on Performance
Modeling Tools, 1995.

[136] V. Sarkar, “Determining average program execution times and their variance,” in
Proc. 1989 ACM SIGPLAN Conf. on Prog. Lang. Des. and Impl., 1989, pp. 298-312.

[137] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Pit-
man, 1989.

[138] P. Schweitzer, “Approximate analysis of multiclass closed networks of queues,” in
Proc. of International Conf. on Control and Optimization, Amsterdam, 1979.

[139] H. Schwetman, “Object-oriented simulation modeling with C++/CSIM17,” in Proc.
1995 Winter Simulation Conference, 1995.

[140] A.C. Shaw, “Deterministic timing schema for parallel programs,” in Proc. 5th Int.
Parallel Processing Symposium, IEEE, 1991, pp. 56-63.

[141] M. Siegle, “Using structured modelling for efficient performance prediction of paral-
lel systems,” in Parallel Computing: Trends and Applications (G.R. Joubert et al.,
eds.), North-Holland, 1994, pp. 453-460.

[142] A. Sivasubramaniam, A. Singla, U. Ramachandran and H. Venkateswaran, “An
approach to scalability of shared memory parallel systems,” in Proc. ACM SIG-
METRICS Conf. on Measurement and Modelling of Computer Systems, Nashville,
May 1994, pp. 171-180.

[143] K. So, A.S. Bolmarcich, F. Darema and V.A. Norton, “A speedup analyzer for par-

allel programs,” in Proc. 1987 Int. Conf. Parallel Proc., IEEE, Aug. 1987, pp. 653~
661.

BIBLIOGRAPHY 205

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

F. Sotz, “A method for performance prediction of parallel programs,” in Proc. CON-
PAR 90-VAPP IV (LNCS 457) (H. Burkhart, ed.), Springer-Verlag, 1990, pp. 98—
107.

P. Stenstrom, “Reducing contention in shared-memory multiprocessors,” Computer,

Nov. 1988, pp. 26-37.

B. Stramm and F. Berman, “Predicting the performance of large programs on scal-
able multicomputers,” in Scalable HPC Conference, Apr. 1992, pp. 22-29.

Sun Microsystems, SunOS 4.1.3 Programming Utilities and Libraries, Mar. 1990.
Part Number 800-3847-10.

V. Sundaram, “PVM: A framework for parallel distributed computing,”
Concurrency—Practice and Fzxperience, vol. 2, Dec. 1990, pp. 315-339.

A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J.
Jansen and G. van Rossum, “Experiences with the Amoeba distributed operating
system,” Communications ACM, vol. 33, Dec. 1990, pp. 46-63.

A. Thomasian and P.F. Bay, “Analytic queueing network models for parallel process-
ing task systems,” IEEF Transactions on Computers, vol. 35, Dec. 1986, pp. 1045
1054.

L. Valiant, “A bridging model for parallel computation,” Communications of the

ACM, vol. 33, Aug. 1990, pp. 103-111.

H. Wabnig and G. Haring, “PAPS - the parallel program performance prediction
toolset,” in Computer Performance FKvaluation: Modelling Techniques and Tools

(LNCS 794) (G. Haring and G. Kotsis, eds.), Berlin, Springer-Verlag, May 1994.

T.A. Wagner, V. Maverick, S.L.. Graham and M.A. Harrison, “Accurate static esti-
mators for program optimization,” SIGPLAN Notices, June 1994, pp. 85-96.

D. Walker, “The design of a standard message passing interface for distributed
memory concurrent computers,” Parallel Computing, vol. 20, 1994.

K-Y. Wang, “Intelligent program optimization and parallelization for parallel com-

puters,” Tech. Rep. CSD-TR 91-030, Purdue University Apr. 1991.

K-Y. Wang, “Precise compile-time performance prediction for superscalar-based

computers,” in Proc. ACM SIGPLAN PLDI’9}, Orlando, June 1994, pp. 73-84.

B. Wegbreit, “Mechanical program analysis,” Communications of the ACM, vol. 18,
Sept. 1975, pp. 528-539.

P. Woodbury, A. Wilson, B. Shein, I. Gertner, P.Y. Chen, J. Barttlet and Z. Aral
“Shared memory multiprocessors: The right approach to parallel processing,”

Proc. COMPCON Spring '89, IEEE, 1989, pp. 72-80.

206 BIBLIOGRAPHY

[159] N. Yazici-Pekergin and J-M. Vincent, “Stochastic bounds on execution times of
parallel programs,” IEEF Transactions on Software Engineering, vol. 17, Oct. 1991,
pp. 1005-1012.

[160] J. Zahorjan et al., “Balanced job bound analysis of queueing networks,” Communi-

cations of the ACM, vol. 25, Feb. 1982, pp. 134-141.

[161] H. Zima, P. Brezany, B. Chapman, P. Mehrotra and A. Schwald, “Vienna Fortran -
a language specification, version 1.1,” Tech. Rep. Interim Report 21, [CASE, NASA
Langley Research Center, Mar. 1992.

Samenvatting

Prestatiemodellering speelt een fundamentele rol in het ontwerp van zowel applicaties als
computers. Dit geldt met name voor parallelle systemen waar de prestatie een primaire
rol speelt. Waar de prestatiemodellering van sequentiéle computers reeds aanzienlijke pro-
blemen oproept, zijn de problemen bij parallelle systemen zo mogelijk nog fundamenteler.
Dit is in essentie het gevolg van de grote rol die processynchronisatie speelt in parallelle
verwerking. Naast de inherente overhead ten gevolge van het parallelliseren, zijn het,
met name voor slecht ontworpen systemen, de synchronisatietijden die tot een enorme
prestatieverlies kunnen leiden.

In parallelle systemen kan men zowel een statische vorm als een dynamische vorm van
processynchronisatie onderscheiden. De statische vorm, genaamd conditie-synchronisatie,
heeft betrekking op precedentierelaties tussen taken die op grond van de parallellisatie
vooraf zijn bepaald. De andere vorm, genaamd wederzijdse uitsluiting, betreft de dy-
namische toewijzing van procesvolgorde als gevolg van de beperkte beschikbaarheid van
software of hardware middelen. Hoewel de aanwezigheid van conditiesynchronisatie reeds
aanzienlijke prestatieanalysekosten met zich mee brengen kunnen de kosten gemoeid met
de analyse van wederzijdse uitsluiting nog veel hoger liggen vanwege het inherente non-
determinisme van deze synchronisatievorm.

Er bestaat een grote verscheidenheid aan methoden voor de prestatiemodellering van
parallelle systemen, waarbij elke methode een specifieke afweging vertegenwoordigt tussen
de nauwkeurigheid van de prestatieanalyse en de rekenkosten die hiermee gemoeid zijn.
Enerzijds bestaan er technieken, gebaseerd op representatievormen zoals Petri-netwerken,
die een dermate hoge modelleerkracht bieden dat elke vorm van synchronisatie nauwkeurig
kan worden uitgedrukt, maar waarvan de prijs een exponenti€le rekencomplexiteit in de
probleemgrootte is. Anderszijds bestaan er goedkopere technieken, zoals die gebaseerd
op simpele taakgraaf representaties, die alleen conditiesynchronisaties verdisconteren.
Hoewel de analyse complexiteit slechts lineair is leidt de verwaarlozing van de verliezen
ten gevolge van wederzijdse uitsluiting tot een zeer beperkte nauwkeurigheid.

Dit proefschrift beschrijft een nieuwe aanpak voor de prestatiemodellering van pa-
rallelle systemen. Vergelijkbaar met sommige bestaande aanpakken richt de methode
zich met name op de beginfase van het ontwerpproces van parallelle systemen waar de
nadruk meer ligt op minimale analysekosten dan op een hoge nauwkeurigheid. In afwij-
king van vergelijkbare goedkope methoden is de nauwkeurigheid echter sterk verbeterd
door naast de analyse van conditiesynchronisatie een benadering van de vertragingstijden
als gevolg van wederzijdse uitsluiting te introduceren zonder de gunstige rekencomplexi-
teit op te offeren. Tevens levert de analysetechniek expliciete analytische modellen op
zodat programma- en machineparameters in symbolische vorm behouden blijven in het

208 SAMENVATTING

model. Behalve de lage evaluatiekosten wordt op deze manier bereikt dat parameter-
studies of mogelijk geautomatiseerde parameteroptimalisaties kunnen worden uitgevoerd
zonder dat opnieuw dient te worden gemodelleerd. Naast de lage rekenkosten is ook dit
een belangrijke voorwaarde voor een optimale ontwerp doelmatigheid.

De aanpak is gebaseerd op het gebruik van een nieuw simulatieformalisme, genaamd
PAMELA (PerformAnce ModEling LAnguage). Hoewel de taal synchronisatieconstructies
bevat teneinde a priori geen onnodige benaderingen te introduceren, bevat PAMELA ook
gestructureerde operatoren, met name voor de beschrijving van wederzijdse uitsluiting.
In combinatie met het gebruik van een materiaal-georiénteerd modelleerparadigma kan
zodoende belangrijke informatie met betrekking tot de aanwezige synchronisatiepatronen
worden behouden. Als gevolg hiervan kan PAMELA, naast simulatie, worden gebruikt als
een brontaal ten behoeve van een automatische vertaaltechniek die een expliciet, ana-
lytisch prestatiemodel oplevert. Het model benadert de prestatieverliezen ten gevolge van
wederzijdse uitsluiting in de vorm van een ondergrens aan de executietijd. Het nieuwe
van de aanpak is de integratie van een taal, een materiaal-georiénteerde paradigma, en
een vertaaltechniek binnen één modelleermethodiek.

Terwijl hoofstuk 1 ingaat op de probleemanalyse en de doelstellingen van het onder-
zoek, geeft hoofdstuk 2 een overzicht van het vele werk dat reeds is verricht op het gebied
van de prestatiemodellering van parallelle systemen, teneinde de aanpak in een juist kader
te plaatsen. Het werk dat aan de orde komt beslaat methodieken gebaseerd op repre-
sentatievormen zoals taakgrafen, wachtrijnetwerken, Petri-netwerken, simulatietalen en
procesalgebra. In het overzicht wordt een eigen categorisatietechniek gehanteerd teneinde
de grote variéteit binnen één raamwerk te kunnen plaatsen.

Hoofdstuk 3 presenteert PAMELA, bestaande uit de modelleertaal en de bijbehorende
analysetechniek. Er wordt aangetoond dat de expliciete en gestructureerde wijze waarop
de materiaal-georiénteerde modelleermethode beide synchronisatievormen tot uitdrukking
brengt grote voordelen biedt met betrekking tot de analyseerbaarheid van het model.
Naast een beschrijving van de analysetechniek worden een aantal kenmerkende voor-
beelden behandeld.

Hoofdstuk 4 beschrijft de principes hoe parallelle computersystemen kunnen wor-
den gemodelleerd met behulp van PAMELA. De methodiek die gehanteerd wordt bij
de modellering van zowel gemeenschappelijk- als gedistribueerd-geheugensystemen wordt
beschreven aan de hand van vele voorbeelden. Fr wordt aangetoond dat, ondanks de
restricties in het modelleren van synchronisaties, de beschrijving van de essentiéle pres-
tatieaspecten voldoende is, gegeven de benaderende analysetechniek.

Hoodstuk 5 presenteert een aantal gevallen waarin diverse kanten van de PAMELA
methodiek worden belicht. De onderwerpen die aan bod komen zijn onder meer voor-
beelden hoe parallelle applicatiemodellen worden vertaald naar analytische modellen,
de modellering van een data flow applicatie op een gedistribueerd-geheugensysteem in-
clusief een vergelijking van de modelresultaten met praktijkmetingen, een beschouwing
van de relatie tussen de analytische techniek en simulatietechnieken, en voorbeelden hoe
de PAMELA methodiek wordt gebruikt ten behoeve van programma-optimalisatie, een van
de uiteindelijke doelstellingen van de methodiek.

Hoofdstuk 6 staat opnieuw stil bij de benaderende analysetechniek en gaat in op de
nauwkeurigheid van de analytische techniek vergeleken met simulatie. Aan de hand van

SAMENVATTING 209

een uitgebreide studie wordt aangetoond dat de ondergrensbenadering een goede schatting
oplevert. Tevens wordt aangetoond dat voor systemen met willekeurige volgordepatronen
van wederzijdse uitsluiting de gemiddelde relatieve afwijking als gevolg hiervan in het
ergste geval nog binnen 50 % ligt, onafhankelijk van de grootte van de systeemparameters.
Gezien de hoge mate van parametrisering van de modellen vormt deze robuustheid de
uiteindelijke rechtvaardiging van de nieuwe aanpak.

Tot slot biedt hoofdstuk 7 een terugblik op het onderzoek en geeft een aantal aan-
bevelingen voor toekomstige verbeteringen.

210 SAMENVATTING

Curriculum Vitae

Arjan J.C. van Gemund was born in Eindhoven, the Netherlands on September 4, 1955.
He received a BSc degree in Physics in 1981, and an MSc degree in Computer Science in
1989 from Delft University of Technology.

In 1981 he joined the R & D organization of a Dutch multinational company as an
Electrical Engineer and Systems Programmer. Between 1989 and 1992 he joined the
Dutch TNO research organization as a Research Scientist where he was actively involved
in various international projects, mostly in the field of high-performance computing.

Currently, he is with the Department of Electrical Engineering of Delft University of
Technology as an Assistant Professor. His research interests are in the area of performance
modeling of parallel systems as well as in the area of parallel programming languages and
compilation techniques.

