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Abstract—This paper proposes a decremental user selection
algorithm based on zero-forcing beamforming when the number
of users K in the network is smaller than the number of antennas
M at a base station. The algorithm is specifically designed for
large-scale multi-user multiple-input multiple-output (MIMO)
downlink channels. While previous user selection algorithms
are based on incremental search that starts from an empty
user set, our proposed delete the minimum lambda (DML)
algorithm starts by selecting all users and then deleting one
user per iteration. DML substantially reduces the computational
complexity as the cardinality of the final user set is close to K.
Simulation results indicate that on average DML achieves an
equal or higher sum rate performance than previous algorithms
with greatly reduced complexity of O(MK2).

Index Terms—Large-scale MIMO, decremental user selection,
multi-user MIMO, zero-forcing beamforming.

I. INTRODUCTION

IN a multi-user multiple-input multiple-output (MIMO)
communication system where zero-forcing beamforming

(ZFBF) is used in downlink transmissions [1], the base station
(BS) has to select a subset of users to maximize the sum rate.
Previous studies on user selection have mostly focused on
the scenario where the number of users K is larger than the
number of antennas M at the BS because of two reasons: 1)
the BS with M transmit antennas can simultaneously serve K
single antenna users without user selection when K ≤M ; 2)
small-scale M was considered in the past such that brute-force
exhaustive search can be utilized to obtain the global optimal
user subset even if user selection is needed. However, in large-
scale MIMO systems where tens or even hundreds of antennas
are equipped at the BS, the ‘Select All’ strategy provides
a poor sum rate performance especially when K → M [2]
and the brute-force exhaustive search has a prohibitively high
complexity. For instance, when K = M = 50 and the transmit
signal-to-noise ratio (SNR) is 20 dB, the ‘Select All’ strategy
on average achieves less than 33.8% of the sum rate of the
globally optimal user subset. On the other hand, exhaustively
searching for the globally optimal user subset with brute-force
involves the evaluation and comparisons of

∑K
i=1

M !
i!(M−i)!

sum rates, which translates to 1015 comparisons for K = M =
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50 and may be prohibitively costly. Thus, a sub-optimal user
selection algorithm with reduced complexity is preferred.

Several user selection algorithms have been proposed for
multi-user MIMO downlink transmission with ZFBF in the
literature, such as zero-forcing with selection (ZFS) [3] and
semi-orthogonal user selection (SUS) [4]. ZFS starts with an
empty user set and adds one user in each step to maximize
the sum rate increment. SUS searches for a user set with
near-orthogonal channel vectors. ZFS provides a higher sum
rates performance than SUS [5], while both algorithms have
a complexity of O(MK3). However, all these algorithms
are based on incremental search that starts from an empty
user set and adds one user in each iteration. In the case
of K ≤ M , the globally optimal user set includes almost
all users, which is influenced by the channel matrix and the
transmit power constraint. As a result, the decremental user
selection algorithm that we propose in this paper is able to
greatly reduce the computational complexity of the algorithm.

In this paper, ZFBF rather than linear minimum mean
square error (MMSE) precoding is considered because a large-
scale MIMO system usually works in the medium to high
SNR region. ZFBF achieves the same sum rate as MMSE in
this region but with lower computation complexity, and ZFBF
does not need the noise covariance matrix that is necessary
for MMSE precoding [6].

Main contribution: We propose a decremental user se-
lection algorithm called delete the minimum lambda (DML)
for K ≤ M that achieves a slightly higher sum rate than
ZFS with a greatly reduced complexity of O(MK2). This
algorithm starts by selecting all users and then deletes one user
that has the minimum effective-channel-gain in each iteration
until the sum rate decreases. DML involves the same level of
complexity as the ‘Select All’ strategy that serves all users
without selection, which will be proved in Section III.

II. SYSTEM MODEL

Consider a single cell quasi-static flat-fading MIMO down-
link channel with M transmit antennas at the BS serving K
(K ≤ M) single antenna users. Let H = [h∗

1, · · · ,h∗
K ]∗ ∈

C
K×M be the channel matrix of all users, where hk =

[hk,1, · · · , hk,M ] ∈ C1×M is the channel vector of user k
and h∗

k is the complex conjugate of hk. Assume the BS has
full knowledge of H and the set of indexes of the selected
users is S = {π(1), · · · , π(|S|)} ⊂ {1, · · · ,K}, where π(n)
is the index of the n-th selected user and |S| denotes the size
of set S. The transmit signal vector x is a linear combination
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of all selected users’ data streams, constructed as

x =
∑
i∈S

wi
√
pisi , (1)

where wi ∈ CM×1 is the ZFBF weight vector, pi is the
transmit power scaling factor and si is the information symbol
of user i. Thus, the received signal at user k ∈ S is given by

yk = (hkwk
√
pk)sk +

∑
i∈S,i�=k

(hkwi
√
pi)si + nk , (2)

where nk is white Gaussian noise with zero mean and unit
variance. The power constraint for the transmitted signal is
E{x∗x} ≤ P . Since the noise has unit variance, P also
represents the total transmit SNR [7].

A. Zero-Forcing Beamforming

ZFBF inverts the channel matrix at the transmitter in order
to create orthogonal channels between BS and users without
users’ cooperation. The ZFBF precoding matrix W for S is
the Moore-Penrose pseudo-inverse of the channel matrix HS

of the selected users

W = [wπ(1), · · · ,wπ(|S|)] = H∗
S(HSH

∗
S)

−1 . (3)

The beamforming vector wi can also be obtained through the
effective channel vector (ECV) νννi defined by [5]

wi =
ννν∗
i

‖νννi‖2
(4)

νννi = hiP
⊥
i , (5)

where P⊥
i = IM−H∗

S\{i}(HS\{i}H∗
S\{i})

−1HS\{i} is the or-
thogonal projector matrix on the subspace Vi = span{hj|j ∈
S, j �= i} [8], IM is the M ×M identity matrix, and HS\{i}
is the row-reduced channel matrix of all the selected users
except user i. S \ {i} denotes the set difference that deletes
the element i from the set S.

The sum rate achieved by S is

R(S) = max
pi:

∑

i∈S

λ−1
i pi≤P

∑
i∈S

log(1 + pi) , (6)

where
λi =

1

‖wi‖2
= ‖νννi‖2 (7)

is the effective-channel-gain of user i [4], and λ−1
i pi =

‖wi‖2 pi is the transmit power allocated to user i. The optimal
pi in (6) can be found by waterfilling

pi = (μλi − 1)+ , (8)

where (x)+ = max{x, 0}, and μ is the water level satisfying∑
i∈S

(
μ− λ−1

i

)+
= P . (9)

The sum rate (6) of ZFBF can be optimized with respect to
the selected user set S. Thus, the user selection problem can
be formulated as

maximize R(S)

subject to S ⊂ {1, · · · ,K} . (10)

III. DML ALGORITHM

The DML algorithm works as follows: it starts by selecting
all users and then deletes the user with the minimum effective-
channel-gain λk in each iteration until the sum rate increment
ΔR = R(S \ {k}) − R(S) < 0, and then calculates the
precoding matrix with ZFBF and waterfilling power allocation.

A. λ updating scheme for decreased user set

Before constructing the DML algorithm, we provide here
an efficient effective-channel-gain updating scheme for all the
remaining users in S\{k} when user k ∈ S with the minimum
λk is deleted from the selected user set S. Denote the updated
effective-channel-gain, ECV and the ZFBF weight vector of
the remaining user i ∈ S\{k} as λ−

i , ννν−i and w−
i , respectively.

An ECV based λ−
i updating scheme is provided in [5] as:

λ−
i =

λ2
i λk

λiλk − |νννiννν∗k|2
(11)

ννν−i =
λiλk

λiλk − |νννiννν∗k|2
(
νννi − νννiννν

∗
k

λk
νννk

)
. (12)

By plugging (4) and (7) into (11) and (12), we can get the
updated λ−

i based on the beamforming vector wi as:

λ−
i =

λi

1− λkλi|w∗
kwi|2 (13)

w−
i = wi − λkw

∗
kwiwk . (14)

B. Construction of DML algorithm

Let S be the index set of selected users. The wi and λi are
respectively the ZFBF weight vector and effective-channel-
gain of selected user i ∈ S. By utilizing the wi based λi

updating scheme in (13) and (14), DML is constructed as
follows.
Step 1) Initialization:

S = {1, · · · ,K}
λi =

1

‖wi‖2
, i ∈ S .

where [w1, · · · ,wK ] = H∗(HH∗)−1.
Step 2) Delete the user with the minimum λ:

k = argmin
i∈S
{λi} (15)

λ−
i =

λi

1− λkλi|w∗
kwi|2 , i ∈ S \ {k} . (16)

If ΔR = R(S\{k})−R(S) ≥ 0, update S, wi, λi by deleting
user k and then go to Step 2).

S ← S \ {k}
wi ← wi − λkw

∗
kwiwk, i ∈ S

λi = λ−
i , i ∈ S .

Otherwise, go to Step 3).
Step 3) Precoding matrix:

W = [
√
μλ(1) − 1w

(1)
, · · · , √μλ(|S|) − 1w

(|S|) ] , (17)

where

μ =
1

|S|

(
P +

∑
i∈S

λ−1
i

)
(18)
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is the water level for power allocation, w
(i)

and λ
(i)

are the
weight vector and effective-channel-gain of the i-th user in S.

Step 1) initializes by serving all users and calculates the
beamforming vector wi and effective-channel-gain λi accord-
ing to (3) and (7). In Step 2), the user k ∈ S with the minimum
effective-channel-gain is deleted from S if the removal of
user k increases the sum rate. However, if the condition
η =

(
P +

∑
i∈S λ−1

i

)
/|S| ≤ λ−1

k is satisfied, the user k is
deleted without calculating ΔR. Because η ≤ λ−1

k indicates
that the user k is allocated with zero transmit power by
waterfilling over λi ∈ S, deleting users with pi = 0 provides
positive sum rate increment [3]. If η > λ−1

k , the sum rate of
S is calculated as

R(S) =
∑
i∈S

log(ηλi) . (19)

The sum rate R(S \ {k}) can also be achieved as in (19)
without the iterative waterfilling if the inequality (20) holds:

1

(|S| − 1)

⎛
⎝P +

∑
i∈S\{k}

1

λ−
i

⎞
⎠ >

1

mini∈S\{k} λ
−
i

. (20)

If (20) does not hold, the user k′ = argmini∈S\{k} λ
−
i is

deleted and the sum rates are compared between S \ {k, k′}
and S, and then the user set with a larger sum rate is selected
for the next iteration.

When DML exits from the user deletion loop in Step 2),
η > (mini∈SDML λi)

−1 is satisfied for the final user set
SDML when entering Step 3). Now every user in SDML is
allocated with positive transmit power after waterfilling power
allocation. According to (9), the water level is calculated as
in (18) and the transmit power scaling factor pi is

pi = μλi − 1 . (21)

The precoding matrix (17) is obtained by plugging (21) into
(2).

C. Complexity analysis

The complexity of DML lies mainly in the initialization step
of the Moore-Penrose pseudo-inverse of H, which involves a
complexity of O(MK2) [8]. We now analyze the computa-
tions involved in the remaining steps of DML and show that
the additional complexity is no larger than O(MK2).

The corresponding λi initialization in Step 1) involves K
2-norms of 1 × M vectors, which include MK complex
multiplications. The updating of wi and λi in Step 2) involves
|S| − 1 vector-vector multiplications and |S| − 1 2-norms,
which include 2M(|S|− 1) complex multiplications. Suppose
the selected user set generated by DML is SDML. The
total complexity is MK +

∑K
n=|SDML| 2M(n− 1), which

is smaller than MK +
∑K

n=1 2M(n− 1) = MK2 and is
asymptotically O(MK) since DML selects almost all users
that |SDML| → K , especially when the transmit SNR is large
and K is small.

We have shown that the complexity of DML is O(MK2),
which is the same as the ‘Select All’ strategy that also has
complexity of O(MK2) due to Moore-Penrose pseudo-inverse
of H. This is a significant improvement over previous user
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Fig. 1. Sum rate performance comparison of DML, ZFS, SUS, ‘Select All’
with ZFBF, TDMA and MMSE beamforming serving a fixed number of users,
with M = 50 and P = 20 dB.

selection algorithms, such as ZFS and SUS, which all have a
complexity of O(MK3) [3], [9].

IV. SIMULATION RESULTS

In this section, we compare the performance of DML,
ZFS, SUS, ‘Select All’ with ZFBF, TDMA and MMSE
beamforming serving a fixed number of users. The BS in the
simulated multi-user MIMO system is equipped with M = 50
antennas. The transmit SNR is 20 dB, and the number of users
K ranges from 20 to 50. All curves are obtained by averaging
over 105 independent channel matrices with each entry being a
zero-mean unit-variance circular symmetric complex Gaussian
random variable.

We compare the sum rate and the number of selected users
in Figs. 1 and 2. TDMA serves the best channel user with
maximum ratio transmission and full power. MMSE1 and
MMSE2 are schemes which serve twenty and min(K, 35) best
channel users with MMSE beamforming, respectively. The
sum rate increases with K for DML, ZFS, TDMA, MMSE1
and MMSE2, while DML provides a slightly higher sum rate
than ZFS on average. The sum rate of ‘Select All’ increases
with K when K ≤ 35 and then drops after K ≥ 40, while
the sum rate variation of SUS highly depends on the choice of
threshold α. From Fig. 2 we see that the number of selected
users increases with K for all the algorithms considered except
TDMA, MMSE1 and MMSE2.

TDMA provides the worst sum rate performance that
achieves only 6.07% the sum rate of ZFS at K = 50,
because it does not exploit the multiplexing gain. The ‘Select
All’ strategy provides a good sum rate before K reaches
30. However, it provides worse sum rate performance when
K ≥ 40. According to Fig. 1, it achieves only 33.8% the sum
rate of ZFS at K = M = 50, and the ratio will decrease
further when the transmit SNR P decreases, indicating that
user selection is crucial even for the scenario K ≤M .

SUS is also not suitable for K ≤M as it is highly sensitive
to the choice of threshold α, and for any given α SUS cannot
guarantee good sum rate performance over the whole range of
K . When α = 0.28, which is the optimum threshold for K =
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Fig. 2. The comparison of the numbers of selected users under DML, ZFS,
SUS, ‘Select All’ with ZFBF, TDMA and MMSE beamforming serving a
fixed number of users, with M = 50 and P = 20 dB.

50, SUS provides low sum rate when K is small; when α is
larger than 0.28, such as α = 0.35 in Fig. 1, SUS provides low
sum rate when K →M ; when α is smaller than 0.28, the sum
rate performance of SUS will decrease in the whole K range
considered. The number of selected users under SUS increases
linearly with K in Fig. 2, where the slope is proportional to
the threshold α.

The sum rate of MMSE1 and MMSE2 increase slightly with
K for K ≥ 20 and K ≥ 35, respectively, because the achieved
multi-user diversity gains increase with K when serving a
fixed number of users. However, since the best user set, which
provide the highest sum rate for a given precoding scheme, is a
compromise between high channel gain and the orthogonality
of different channels, both MMSE1 and MMSE2 have certain
performance loss as they consider only the channel gain factor.
When K ≥ 35, the gaps between MMSE2 and ZFS increase
with K for both the sum rates and the number of selected users
as shown in Fig. 1 and 2.

DML and ZFS achieve a higher sum rate than all the other
schemes considered in Fig. 1. DML achieves a slightly higher
sum rate than ZFS on average, and there is a 0.2 bps/Hz sum
rate increment over ZFS at K = 45. According to Fig. 2, the
numbers of selected users of DML and ZFS increases linearly
when K ≤ 25 because the BS can support all users in this
range; the increment ratio decreases when K → M because
the multi-user interference increases with K and more users
should be deleted to achieve the maximum sum rate.

Fig. 3 shows the complexity ratio of DML over ZFS, which
is defined as the number of multiplications involved in DML
as a faction of that of ZFS, for P = 15, 20 and 25 dB. DML
has a computation complexity that is only 7.5% to 12.5%
of that of ZFS, which favors practical implementation greatly.
The complexity reduction is attributed to three reasons. First, a
smaller number of iterations is involved in DML as most users
are selected; second, DML chooses a user with the minimum
effective-channel-gain λ in each iteration, while ZFS has to
calculate sum rates for all possible user set in each iteration;
third, the weight vector w based λ updating scheme in (13)
and (14) reduces the complexity of user selection in DML. The
complexity ratio increases when K is small or when K →M ,
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Fig. 3. Complexity ratio of DML over ZFS for M = 50 and P =
15, 20 and 25 dB.

because the complexity of ZFS decreases when K is small and
the number of users that need to be deleted increases when
K →M . At higher SNRs, the complexity reduction by DML
is more significant as fewer users are deleted.

V. CONCLUSION

In this paper, we have proposed a decremental user selection
algorithm, DML, which achieves slightly higher sum rate and
much lower complexity than previous user selection algo-
rithms, such as ZFS and SUS, for multi-user MIMO systems
when K ≤ M . DML is useful for large-scale multi-antenna
system as it achieves a high sum rate performance while
incurring a similar complexity as the ‘Select All’ strategy that
does not perform any user selection.
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