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Abstract

Propensity score matching and inverse-probability weighting are popular

methods for causal inference in observational studies. Under the assumption of

unconfoundedness, these methods enable researchers to estimate causal effects

by balancing observed covariates across different treatment values. While their

extensions to general treatment regimes exist, a vast majority of applications

have been confined to a binary treatment. Moreover, applied researchers often

dichotomize a non-binary treatment in order to utilize propensity score meth-

ods. Balancing covariates with respect to the dichotomized treatment, however,

does not imply that they are balanced regarding the original non-binary treat-

ment variable. In this paper, we extend the covariate balancing propensity

score (CBPS) methodology of Imai and Ratkovic (2014) to general treatment

regimes. Specifically, we estimate the generalized propensity score such that

the resulting association between a treatment and covariates is minimized. Two

social science applications are used to demonstrate that the CBPS methodol-

ogy significantly improves covariate balance and offer substantive insights the

original analyses fail to identify. The proposed methodology is implemented

through publicly available open-source software.
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1 Introduction

Propensity score matching/subclassification and inverse-probability weighting are

popular methods for causal inference in observational studies where researchers wish

to infer the causal effects without randomizing treatment assignment (e.g., Rosen-

baum and Rubin, 1983, 1984, 1985; Robins et al., 2000; Hirano et al., 2003). Under

the assumption of unconfoundedness, the propensity score methods aim to balance

observed covariates across different values of a treatment variable (e.g., Imbens, 2004;

Ho et al., 2007).

Despite the popularity of these propensity score methods, a vast majority of ap-

plications have been confined to a binary treatment. This dearth of applications for

non-binary treatments cannot be explained by the unavailability of methodology. To

the contrary, several researchers have extended propensity score methods to general

treatment regimes. For example, inverse-probability weighting can be done with a

multi-valued or even continuous treatment by using the estimated density as a basis of

weights (e.g., Imbens, 2000; Robins et al., 2000). Similarly, Imai and van Dyk (2004)

consider subclassification on the propensity function for general treatment regimes

while Hirano and Imbens (2004) proposes a regression adjustment based on the es-

timated generalized propensity score for a continuous treatment (see also Joffe and

Rosenbaum, 1999; Lu et al., 2001; Rassen et al., 2013; Yang et al., 2014).

All of these promising methods, however, presume the accurate estimation of

an unknown (generalized) propensity score. However, this is not a trivial task. In

fact, scholars have found that even in the case of binary treatment where relatively

straightforward diagnostics tools are available, the empirical results can be sensitive

to model misspecification (e.g., Smith and Todd, 2005; Kang and Schafer, 2007). This

problem is exacerbated for non-binary treatments where checking covariate balance
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is more difficult and less intuitive because the treatment variable takes more than

two values, e.g., a continuum of values.

An important consequence of this complication is that applied researchers often

dichotomize a non-binary treatment in order to utilize propensity score methods for

binary treatments. Because many treatment variables of interest in social and med-

ical sciences are non-binary, this practice of dichotomization can be found across a

number of disciplines (e.g., Donohue III and Ho, 2007; Harder et al., 2008; Boyd

et al., 2010; Nielsen et al., 2011; De and Ratha, 2012). In Section 2, we present two

motivating studies where the original authors recoded three-category and continuous

treatment variables into binary variables and applied propensity score methods. Our

analysis illustrates a general point that balancing covariates with respect to the di-

chotomized treatment variable does not imply that they are balanced regarding the

original non-binary treatment variable. More importantly, the dichotomization of

treatment variable results in the loss of information, which can compromise substan-

tive insights gained from the data analysis.

To address this gap between methodological and applied research, we propose a

new method to estimate the propensity score for general treatment regimes in Sec-

tion 3. Specifically, we address the difficulty of checking covariate balance by directly

minimizing the association between a treatment variable and covariates in order to

estimate the (generalized) propensity score. This extends the covariate balancing

propensity score (CBPS) methodology of Imai and Ratkovic (2014), who demon-

strate the effectiveness of the methodology in the binary treatment case (see also

Wyss et al., 2014), to general treatment regimes.

Once researchers obtain the estimated propensity score using the CBPS methodol-

ogy, they can use a variety of methods to estimate causal effects (e.g., Lu et al., 2001;

Hirano and Imbens, 2004; Imai and van Dyk, 2004; Rassen et al., 2013; Yang et al.,
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2014). In this paper, we focus on the inverse-probability weighting (Imbens, 2000;

Robins et al., 2000), as it is directly related to the covariate balance measure used

in the CBPS estimation. The proposed methods are implemented through publicly

available open-source software CBPS (Fong et al., 2014).

Using the proposed methodology, in Section 4 we reanalyze the two motivating

studies introduced without dichotomizing treatment variables. We first show that

the CBPS reduces the association between the treatment variables and covariates

more effectively than the standard estimation method. We then demonstrate that

additional substantive insights can be obtained by analyzing the original non-binary

treatment variables rather than their dichotomized versions. Finally, we offer con-

cluding remarks in Section 5.

2 Motivating Applications

In this section, we introduce two empirical studies from political science that motivate

our methodology. Both studies share the same problem in that their original analyses

dichotomized non-binary treatment variables in order to apply standard propensity

score methods. We show that this dichotomization yields two important issues. First,

dichotomizing a non-binary treatment variable identifies a different causal quantity

of interest. Second, balancing covariates with respect to dichotomized treatment

variables does not achieve balance across different values of the original non-binary

treatment variables. To illustrate these issues, we provide a brief theoretical overview

and then discuss them in the context of the two motivating applications.
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2.1 The Problems of Dichotomizing a Non-binary Treatment

Variable

We first briefly review the relevant theoretical issues about dichotomizing a non-

binary treatment variable. Comprehensive discussions can be found in Hernán and

VanderWeele (2011) and VanderWeele and Hernán (2013). Suppose that we have

a non-binary treatment Ti for unit i whose support is T . Let T̃i represent the di-

chotomized treatment variable such that T̃i = 1 (T̃i = 0) if Ti ∈ T1 (Ti ∈ T0) where

T1∪T0 = T and T1∩T0 = ∅. Consider the strong ignorability assumption with respect

to the original non-binary treatment variable,

Ti ⊥⊥ Yi(t) | Xi and p(Ti = t | Xi) > 0 for all t ∈ T (1)

where Yi(t) is the potential outcome given the treatment value Ti = t, and Xi is a

vector of observed pre-treatment covariates. Note that the potential outcomes must

be defined with respect to the original treatment variable in order to satisfy the

stable unit treatment value assumption or SUTVA (Rubin, 1990). Furthermore, the

conditional distribution of treatment p(Ti | Xi) is called the generalized propensity

score (Joffe and Rosenbaum, 1999; Imbens, 2000; Hirano and Imbens, 2004; Imai and

van Dyk, 2004). Finally, as part of the SUTVA, we assume no interference among

units.

Now, suppose that researchers compute the difference in average outcome given

the covariates. Under the aforementioned assumptions, this estimator identifies the

following causal quantity,

E(Yi | T̃i = 1, Xi)− E(Yi | T̃i = 0, Xi)

=

∫
T1
E(Yi(t) | Xi)p(Ti = t | T̃i = 1, Xi)dt −

∫
T0
E(Yi(t) | Xi)p(Ti = t | T̃i = 0, Xi)dt

(2)
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That is, when using a dichotomized treatment variable the causal interpretation of

the usual difference-in-means estimator depends critically on the distribution of the

original treatment variable given the dichotomized variable, i.e., p(Ti | T̃i, Xi). This

distribution is used to aggregate the causal quantity for the original treatment vari-

able E(Yi(t) | Xi). Because of this aggregation, the dichotomization may conceal

important causal effects. In addition, external validity may be compromised if this

key distribution, p(Ti | T̃i, Xi), in the sample differs significantly from that in a target

distribution.

Another difficulty associated with the dichotomization of a non-binary treatment

variable concerns the covariate adjustment. In observational studies, the treatment

assignment mechanism is unknown to the researchers. This means that the gen-

eralized propensity score must be estimated from the data. To avoid model mis-

specification, a common diagnostic is to check covariate balance by examining the

association between the treatment variable and the covariates conditional on the es-

timated propensity score (see Hirano and Imbens, 2004; Imai and van Dyk, 2004).

As we demonstrate below with examples, however, balancing covariates with respect

to a dichotomized treatment variable may not balance the covariates regarding the

original non-binary treatment variable. This means that the researchers must accu-

rately estimate the generalized propensity score by modeling the original non-binary

treatment variable. Developing such a method is the primary goal of the current

paper. We now turn to two motivating applications.

2.2 The Effect of Education on Political Participation

Since as early as Berelson et al. (1954)’s foundational study on public opinion, political

scientists have recognized the intimate relationship between education and political

participation. Verba et al. (1995) went further, arguing that education has a special

role in the acquisition of nearly every other facilitating factor of participation. Kam
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and Palmer (2008) challenged this view and maintained that education serves largely

as a proxy for pre-adult experiences and predispositions.

Kam and Palmer conducted a standard propensity score matching analysis. They

used a dichotomous measure of educational attainment, indicating whether a per-

son has attended college or not, and a combined index of participatory acts (such

as voting, donating to a political campaign, and contacting a public official) as the

main outcome variable. For this binary treatment variable, the propensity score was

estimated using the logistic regression with dozens of covariates including opinions

about the efficacy and fairness of government, knowledge of public affairs, participa-

tion in school and community organizations, and family background characteristics.

Recently, others called their results into question, objecting that the original matching

analysis fails to adequately balance the covariates (Henderson and Chatfield, 2011;

Mayer, 2011). These critics employed an alternative matching method to achieve a

better balance and found that attending college actually increases political participa-

tion.

While all of these analyses focus on the binary treatment variable, the original

data set, the Political Socialization Study, also records whether a person graduated

from a college rather than merely whether the person attended it. By dichotomiz-

ing, the researchers ignore a potentially important source of treatment heterogeneity.

Those who graduate college may have significantly different educational experiences

compared to those who attend college but do not graduate. As formally discussed in

Section 2.1, if graduating rather than attending college has an impact, then merging

the two groups might conceal the effect of education.

Using the original computer code used by the authors, we replicate the empiri-

cal results of Kam and Palmer (2008) as well as those of Henderson and Chatfield

(2011). Kam and Palmer included 81 covariates in their standard propensity score
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matching where the logistic regression was used to estimate the propensity score for

the dichotomized treatment. In contrast, Henderson and Chatfield used the genetic

matching of Diamond and Sekhon (2013) and with the same 81 covariates.

We examine the degree to which covariate imbalance remains with respect to

the three-valued treatment variable even after matching adjustment based on the

dichotomized treatment variable. We divide the sample into three treatment groups:

those who did not attend college (no college), those who attended college but did not

graduate (some college), and those who graduated from college (graduated). Note

that we code graduating with an associate degree as “some college.” As a measure

of covariate imbalance, we use the absolute standardized difference in means between

two groups. This measure is defined as follows,

Ik(t, t′) =

√
N − 1∑N

i=1(Xik −Xk)2

∣∣∣∣∑i∈M 1{Ti = t}Xik∑
i∈M 1{Ti = t}

−
∑

i∈M 1{Ti = t′}Xik∑
i∈M 1{Ti = t′}

∣∣∣∣ (3)

where Xk =
∑N

i=1Xik/N and M represents the set of matched observations.

The left plot of Figure 1 presents the covariate imbalance in the original data

(white boxplot), the remaining imbalance after propensity score matching (grey;

Kam and Palmer, 2008), and that after genetic matching (dark grey; Henderson

and Chatfield, 2011). The plot shows that both matching techniques, based on the

dichotomized treatment variable, leave a substantial amount of covariate imbalance

with respect to the original three-category treatment variable. In fact, according to

this particular measure, both matching methods worsen the covariate imbalance for

every pair of treatment groups.

Examining each covariate shows that propensity score matching achieves better

balance on the best predictor of college achievement (i.e., the respondent’s current

post-graduation plan) relative to the original data set. Nevertheless, the method also

exacerbates the imbalance on many other covariates which include moderately strong

predictors, such as the parents’ partisan identification and the student’s involvement
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Figure 1: Covariate Imbalance in the Kam and Palmer (2008) Study and the Urban
and Niebler (2014) Study after Covariate Adjustment with a Dichotomized Treat-
ment. The plot on the left shows the covariate imbalance for the three-valued treat-
ment before any adjustment (white boxplot), after Kam and Palmer’s propensity
score matching (grey), and after Henderson and Chatfield (2011)’s genetic matching
(darkgrey). The plot on the right shows covariate imbalance for the continuous treat-
ment before any adjustment (white boxplot) and after Urban and Niebler’s propensity
score matching (grey). Covariate imbalance with respect to the original treatment
variables remains even after matching adjustment based on the dichotomized treat-
ment variable.

in neighborhood clubs. Genetic matching, on the other hand, optimizes a different

measure of balance and fails to reduce the imbalance in mean differences for many

covariates, including the post-graduation plans variable.

In addition, the dichotomization of the treatment variable may fail to capture

important causal relationships. If a college degree facilitates participation by giving

graduates access to better careers, then there should be a positive effect for com-

pleting college but little effect for attending without finishing college. Conversely,

if attending college socializes an individual to the tastes and habits of the middle

or upper class, then simply attending college may have just as large of an effect as

actually graduating. If college endows students with cognitive skills which are helpful
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for engaging the political world, then attendance might have a positive (but, relative

to graduating, smaller) effect. The dichotomization cannot distinguish between these

causal predictions.

2.3 The Effect of Advertisements on Campaign Contribu-

tions

The second motivating application is the study of political advertisements by Urban

and Niebler (2014). The authors explored the potential link between advertising

and campaign contribution. Presidential campaigns ordinarily focus their advertising

efforts on competitive states, but if political advertising drives more donations, then it

may be worthwhile for candidates to also advertise in non-competitive states. Urban

and Niebler exploit the fact that media markets sometimes cross state boundaries.

This means that candidates may inadvertently advertise in non-competitive states

when they purchase advertisements for media markets that serve competitive states.

By restricting their analysis to non-competitive states, the authors attempt to isolate

the effect of advertising from that of other campaigning, which do not incur these

media market spillovers.

Although the original data set contains the number of advertisements aired in

each zip code, Urban and Niebler dichotomized this political advertising variable by

examining whether a zip code received more than 1,000 advertisements or not. Ac-

cording to this operationalization, 5,230 of 16,265 zip codes are classified as “treated.”

In contrast, the original variable ranges from 0 to 22,379 with the average number

of advertisements being 1,902. Using this dichotomized treatment variable, the au-

thors then conduct a standard propensity score matching method where the logistic

regression is fitted to estimate the propensity score. The authors employ many dif-

ferent matching methods as robustness checks including kernel matching and nearest
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neighbor matching based on propensity score. Our replication of their analysis uses

one-to-one nearest neighbor propensity score matching. As formally argued in Sec-

tion 2.1, such an analysis based on the dichotomized treatment may miss substantive

insights that can be obtained by analyzing the original continuous treatment.

Along with the study described in Section 2.2, this empirical application also

confirms the fact that balancing covariates with respect to the dichotomized treatment

may not improve covariate balance regarding the original treatment. The right plot of

Figure 1 presents the pairwise correlation between the original non-binary treatment

variable and each covariate. The result shows that matching for the dichotomized

treatment fails to balance covariates for the underlying non-binary treatment. On

the whole, matching does not improve the balance of the state-level fixed effects or

the main variables (log population, log income, percent over 65, percent black, percent

Hispanic, percent college graduates, population density, and whether residents can

reasonably commute to another state).

Elsewhere in their analysis, Urban and Niebler (2014) estimate the dose-response

curve using the original non-binary treatment variable without matching. Thus, it is

clear that the authors are interested in the underlying treatment variable rather than

its binary version. For such an analysis, it is important for propensity score matching

to be done with the original treatment variable rather than the dichotomized variable.

The goal of this paper is to develop a method to reliably estimate the generalized

propensity score when the treatment is not binary.

3 The Proposed Methodology

The motivating examples in Section 2 highlight the need for a methodology to esti-

mate the propensity score for general treatment regimes. Currently, fitting a para-

metric model under the framework of maximum likelihood is the most commonly used
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method (e.g., Joffe and Rosenbaum, 1999; Robins et al., 2000; Lu et al., 2001; Hirano

and Imbens, 2004; Imai and van Dyk, 2004; Rassen et al., 2013; Yang et al., 2014).

While, in theory, a semi-parametric or non-parametric method can be applied to the

estimation of generalized propensity score, the high-dimensionality of covariates often

makes such a modeling approach practically difficult.

In this section, we aim to improve the parametric estimation of generalized propen-

sity score. Specifically, we extend the covariate balancing propensity score (CBPS)

methodology of Imai and Ratkovic (2014) to general treatment regimes. The key

feature of the proposed methodology is to estimate the generalized propensity score

such that the resulting covariate balance is optimized. Since checking covariate bal-

ance is often difficult when the treatment variable takes more than two values, the

CBPS should facilitate the use of generalized propensity score methods by applied

researchers.

3.1 Multi-valued Treatment

We first develop the CBPS for a multi-valued treatment, which is applicable to our

first motivating study described in Section 2.2. In this application, we have three

different treatment values, i.e., J = 3 and Ti ∈ T = {0, 1, 2}. The generalized

propensity score is given by the following probabilities that sum up to unity,

πj(Xi) = Pr(Ti = j | Xi) (4)

where j ∈ T and
∑J−1

j=0 π
j(Xi) = 1. We assume, as before, πj(Xi) > 0 for all j ∈ T .

A commonly used parametric model, which we utilize here, is the multinomial logistic

regression,

πjβ(Xi) =
exp

(
X>i βj

)
exp

(∑J−1
j′=0X

>
i βj′

) (5)
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where the normalization constraint β0 = 0 is imposed. The maximum likelihood

estimate of β = {β1, . . . , βJ−1} then is given by,

β̂ML = argmax
β

N∑
i=1

J−1∑
j=0

1{Ti = j} log πjβ(Xi) (6)

where β = (β1, . . . , βJ−1).

In contrast, the CBPS methodology estimates the generalized propensity score

such that the following covariate balancing conditions are satisfied,

E

(
1{Ti = 0}Xi

π0
β(Xi)

)
= E

(
1{Ti = 1}Xi

π1
β(Xi)

)
= · · · = E

(
1{Ti = J − 1}Xi

πJ−1β (Xi)

)
= E(Xi)

(7)

These conditions are based on the inverse-probability weighting where each observa-

tion is weighted by the generalized propensity score so that the covariate distribution

becomes equal across treatment values. In our application, we have three distinct

treatment values and hence we use the following orthogonalized contrasts,

1

N

N∑
i=1

wβ(Ti, Xi) =
1

N

N∑
i=1

21{Ti=0}
π0
β(Xi)

− 1{Ti=1}
π1
β(Xi)

− 1{Ti=2}
π2
β(Xi)

1{Ti=1}
π1
β(Xi)

− 1{Ti=2}
π2
β(Xi)

Xi (8)

These orthogonalized conditions are linearly equivalent to pair-wise comparisons of

the three groups, but make the computation more efficient.

We then obtain the optimal Generalized Method of Moments (GMM; Hansen,

1982) estimator of β by minimizing the following global measure of covariate imbal-

ance,

β̂CBPS = argmin
β

ḡβ(T,X)> Σβ(T,X)−1 ḡβ(T,X) (9)

where ḡβ(T,X) =
∑N

i=1 gβ(Ti, Xi)/N =
∑N

i=1wβ(Ti, Xi)/N is the vector of sample

moment conditions, and Σβ(T,X)−1 is the inverse of the covariance matrix Σβ(T,X).

For the applications in Section 4, we use a two-step estimator, in which we estimate

Σβ(T,X)−1 at the maximum likelihood values of β and fix it at that value for the
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subsequent optimization. This makes our method far faster than continuously up-

dating Σβ(T,X) throughout the optimization, and simulations (not presented here)

suggests that the two-step estimator also achieves superior performance.

It is also possible to use the score condition from the log-likelihood function in

equation (6) as a set of additional moment conditions. The score condition can be

written as,

1

N

N∑
i=1

sβ(Ti, Xi) =
1

N

N∑
i=1


(

1{Ti=1}
π1
β(Xi)

− 1{Ti=0}
π0
β(Xi)

)
∂
∂β1
π1
β(Xi) +

(
1{Ti=2}
π2
β(Xi)

− 1{Ti=0}
π0
β(Xi)

)
∂
∂β1
π2
β(Xi)(

1{Ti=1}
π1
β(Xi)

− 1{Ti=0}
π0
β(Xi)

)
∂
∂β2
π1
β(Xi) +

(
1{Ti=2}
π2
β(Xi)

− 1{Ti=0}
π0
β(Xi)

)
∂
∂β2
π2
β(Xi)


(10)

=
1

N

N∑
i=1

1{Ti = 1} − π1
β(Xi)

1{Ti = 2} − π2
β(Xi)

Xi (11)

The expression in equation (10) provides an alternative interpretation of score condi-

tions as covariate balancing conditions where the derivatives of generalized propensity

score are balanced across three groups. These score conditions can be incorporated

into the above GMM framework by setting

gβ(Ti, Xi) =

sβ(Ti, Xi)

wβ(Ti, Xi)

 (12)

Finally, to obtain the optimal GMM estimator, we derive the covariance of moment

conditions, i.e, Σβ(T,X). This is given by the following (4K×4K) matrix if the score

conditions are included,

Σβ(T,X) =
1

N

N∑
i=1



π1(1− π1) −π1π2 −1 1

−π1π2 π2(1− π2) −1 −1

−1 −1 4
π0

+ 1
π1

+ 1
π2
− 1
π1

+ 1
π2

1 −1 − 1
π1

+ 1
π2

1
π1

+ 1
π2


XiX

>
i

(13)
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where we write πj = πjβ(Xi) for the sake of notational simplicity.

It is straightforward to extend this to the case of more than three treatment values.

We consider here the treatment variable with four different values as an illustration.

The score and (orthogonalized) covariate balancing conditions are given by,

wβ(Ti, Xi) =


1{Ti=0}
π0
β(Xi)

+ 1{Ti=1}
π1
β(Xi)

− 1{Ti=2}
π2
β(Xi)

− 1{Ti=3}
π3
β(Xi)

1{Ti=0}
π0
β(Xi)

− 1{Ti=1}
π1
β(Xi)

− 1{Ti=2}
π2
β(Xi)

+ 1{Ti=3}
π3
β(Xi)

−1{Ti=0}
π0
β(Xi)

+ 1{Ti=1}
π1
β(Xi)

− 1{Ti=2}
π2
β(Xi)

+ 1{Ti=3}
π3
β(Xi)

Xi (14)

sβ(Ti, Xi) =


1{Ti = 1} − π1

β(Xi)

1{Ti = 2} − π2
β(Xi)

1{Ti = 3} − π3
β(Xi)

Xi (15)

These sample moment conditions lead to the following covariance matrix,

Σβ(T,X)

=
1

N

N∑
i=1



π1(1− π1) −π1π2 −π1π3 −1 −1 1

−π1π2 π2(1− π2) −π2π3 −1 −1 −1

−π1π3 −π2π3 π3(1− π3) −1 1 1

1 −1 −1 1
π0

+ 1
π1

+ 1
π2

+ 1
π3

1
π0
− 1

π1
+ 1

π2
− 1

π3

−1
π0

+ 1
π1

+ 1
π2
− 1

π3

−1 −1 1 1
π0
− 1

π1
+ 1

π2
− 1

π3

1
π0

+ 1
π1

+ 1
π2

+ 1
π3

−1
π0
− 1

π1
+ 1

π2
+ 1

π3

1 −1 1 −1
π0

+ 1
π1

+ 1
π2
− 1

π3

−1
π0
− 1

π1
+ 1

π2
+ 1

π3

1
π0

+ 1
π1

+ 1
π2

+ 1
π3


XiX

>
i

where we again write πj = πjβ(Xi) for the sake of notational simplicity.

3.2 Continuous Treatment

Next, we consider the covariate balancing propensity score for a continuous treatment

so that it can be applied to the application described in Section 2.3 (where we treat

a Box-Cox transformation of the number of advertisements plus one as a continuous

variable). To do this, we first center both the treatment variable and each covariate

by subtracting their respective sample means, i.e., T ∗i = Ti −
∑N

i=1 Ti/N and X∗i =

Xi −
∑N

i=1Xi/N , such that E(T ∗i ) = 0 and E(X∗i ) = 0 hold.
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Under this setting, we balance covariates such that weighted correlation between

these two centered variables is minimized. The weight is given by f(T ∗i )/f(T ∗i | X∗i )

where the numerator is a required stabilizing factor (Robins et al., 2000). Formally,

the covariate balancing condition is given by the weighted cross moment between

these centered variables,

E
(

f(T ∗i )

f(T ∗i | X∗i )
T ∗i X

∗
i

)
=

∫ {∫
f(T ∗i )

f(T ∗i | X∗i )
T ∗i dF (T ∗i | X∗i )

}
X∗i dF (X∗i ) (16)

= E(T ∗i )E(X∗i ) = 0. (17)

We follow a common practice of assuming a homoskedastic linear model possibly

after transforming the treatment variable as done in our application (e.g., Robins

et al., 2000; Hirano and Imbens, 2004; Imai and van Dyk, 2004). Then, the generalized

propensity score is given by the following conditional normal density,

fθ(T
∗
i | X∗i ) =

1√
2πσ2

exp

{
− 1

2σ2
(T ∗i −X∗i

>β)2
}

(18)

where θ = (β, σ2). In addition, we follow a typical parametric modeling approach

described by Robins et al. (2000) and assume the marginal distribution to be normal

with mean zero (due to centering). The transformation of the treatment variable

should be chosen such that this distributional assumption is reasonable. Then, the

stabilizing weight is given by,

fσ2(T ∗i )

fθ(T ∗i | X∗i )
= exp

[
1

2σ2

{
−2T ∗i X

∗
i
>β + (X∗i

>β)2
}]

. (19)

Under the GMM framework introduced in Section 3.1, we then have the following

sample moment conditions if both the score and covariate balancing conditions are

included,

gθ(Ti, Xi) =

sθ(Ti, Xi)

wθ(Ti, Xi)

 =


1
σ2 (T ∗i −X∗i >β)X∗i

− 1
2σ2

{
1− 1

σ2 (T ∗i −X∗i >β)2
}

exp
[

1
2σ2

{
−2X∗i

>β + (X∗i
>β)2

}]
T ∗i X

∗
i

 (20)
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In the appendix, we derive the covariance matrix of these sample moment conditions

and the result is given here,

Σθ(T,X) =
1

N

N∑
i=1


1
σ2X

∗
iX
∗
i
> 0 X∗iX

∗
i
>

0 1
2σ4 −X∗i

>β

σ2 X∗i
>

X∗iX
∗
i
> −X∗i

>β

σ2 X∗i exp

(
(X∗i >β)

2

σ2

){
σ2 +

(
X∗i
>β
)2}

X∗iX
∗
i
>


(21)

Finally, we find the value of the parameter vector θ that minimizes the GMM objective

function given in equation (9).

4 Empirical Analyses

We now turn to the empirical analyses of the two motivating examples introduced

in Section 2 and apply the proposed methodology. In both cases, we will show that

weighting with the CBPS substantially reduces the imbalance and enables flexible

estimation of causal effects for non-binary treatments.

4.1 The Effect of Education on Political Participation

We analyze the causal effect of educational attainment using a three-level treatment

variable. The three treatment categories are (1) not attending college, (2) attending

college without graduating (some college), and (3) graduating from college. We apply

the proposed methodology described in Section 3.1. The generalized propensity score

is estimated using the multinomial logit regression model with the covariates listed

in Section 2.2. We compare the inverse-probability weighting based on the CBPS

estimation of this model with that based on the maximum likelihood (ML) estimation.

For all calculations, we use the over-identified CBPS based on both score and covariate

balancing conditions.

Figure 2 displays the resulting pairwise covariate imbalance based on the ML and

CBPS estimation methods using the absolute difference in standardized weighted
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Figure 2: Pairwise Covariate Imbalance using Maximum Likelihood (ML) and Covari-
ate Balancing Propensity Score (CBPS) Estimation Methods across Three Treatment
Values. Each plot compares the absolute difference in standardized means between
each pair of treatment values for the ML (x-axis) and the CBPS (y-axis). The CBPS
reduces imbalance in all three comparisons.

means between each pair of treatment values, which is formally defined as follows,

Ĩk(t, t∗) =

√
N − 1∑N

i=1(Xik −Xk)2

∣∣∣∣∣
∑N

i=1 1{Ti = t}wiXik∑N
i=1 1{Ti = t}wi

−
∑N

i=1 1{Ti = t∗}wiXik∑N
i=1 1{Ti = t∗}wi

∣∣∣∣∣
(22)

where wi is the weight and Xk =
∑N

i=1Xik/N . This is a generalized version of the

measure defined in equation (3). In each of the plots, points below (above) the 45◦

line indicate better balance for the CBPS (ML). The results show that the CBPS

substantially reduces the pairwise imbalance between all pairs of treatment groups,

and especially between those who did and did not graduate (right plot). Averaging

these imbalance measures across covariates, reduces the imbalance from 0.143 to 0.089

for the no college versus some college contrast, from 0.221 to 0.126 for no college versus

graduated, and from 0.200 to 0.058 for some college versus graduated.

The performance of matching and weighting methods tends to be poor when a

small number of observations have extremely large weights (e.g., Kang and Schafer,

2007; Yang et al., 2014). Henderson and Chatfield (2011) raises this concern in the

context of the current application. Figure 3 compares the distribution of weights
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Figure 3: Distribution of Weights for the Covariate Balancing Propensity Score
(CBPS) and Maximum Likelihood (ML) Estimation for Three Different Values of
the Treatment. For each treatment value, we sort the observations by the magnitude
of their weights and then plot the cumulative proportion of weights separately for ML
(dashed lines) and CBPS (solid lines). For ML, a small proportion of the observations
account for an outsized proportion of the weight. The weights for CBPS are more
evenly distributed by comparison.

between the CBPS and the ML by first sorting the observations according to the

size of their weights and then plotting the cumulative proportion of weights for each

treatment value. The figure shows that for ML estimation, 5% of the observations

account for about 40% of the total weight in each of the treatment values. The

problem is most severe for the “graduated” treatment category. By comparison, the

top 5% of observations for the CBPS do not account for more that 20% of the total

weight in any treatment group. This suggests that a small number of outliers are

unlikely to drive the results based on the CBPS.

Next, if the CBPS successfully balances covariates across all three treatment val-

ues, then it also should improve covariate balance with respect to the dichotomized

treatment. We aggregate the estimated generalized propensity score into the esti-

mated binary propensity score by summing the estimated probabilities for the “gradu-

ated college” and “some college” categories. We then weight each observation accord-

ing to these aggregated binary propensity scores and compare the resulting imbalance

with that of propensity score matching (Kam and Palmer, 2008) and genetic match-
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Figure 4: Comparison of Covariate Imbalance with Respect to the Dichotomized
Treatment between Matching and the Multi-valued CBPS. The CBPS weights are
estimated using the original treatment variable with three values and then are ag-
gregated to the dichotomized treatment. Plots compare the absolute difference in
standardized means with respect to the dichotomized treatment (college attendance
vs. no college) for each covariate between the CBPS (y-axis) and various matching
and weighting methods (x-axis). The propensity score and genetic matching are based
on the same procedures used by Kam and Palmer (2008) and Henderson and Chat-
field (2011) in their original analyses, respectively. The multi-valued CBPS weighting
reduces imbalance relative to propensity score matching (left plot), genetic matching
(middle plot), and the ML binary propensity score weighting (right plot).

ing (Henderson and Chatfield, 2011) as well as the binary propensity score weighting

via the ML estimation of the (binary) logistic regression model. Note that when

computing the covariate imbalance measure given in equation (22), for matching the

weights are either one (for matched observations) or zero (for discarded observations).

Figure 4 presents the results. We observe that the aggregated multi-valued CBPS

balances covariates significantly better than propensity score matching (left plot),

genetic matching (middle plot), and binary propensity score weighting with ML es-

timation (right plot). Following Kam and Palmer, all of the weights used in this

comparison estimate the average treatment effect for the treated (ATT) rather than

the average treatment effect (ATE). The multi-valued CBPS weighting leaves an av-

erage covariate imbalance of 0.110, compared to 0.186 for propensity score matching,

0.161 for genetic matching, and 0.135 for propensity score weighting. While each
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Figure 5: The Estimated Average Treatment Effects of Education on Political Partici-
pation Using the Weights based on the Covariate Balancing Propensity Score (CBPS)
and the Maximum Likelihood (ML). Treatment effects are calculated with “No Col-
lege” as the baseline category. 95% confidence intervals are based on 500 iterations
of a non-parametric bootstrap.

method optimizes different measures of covariate balance, these results show that the

multi-valued CBPS improves covariate balance well in this application.

Finally, we estimate the causal effects of education on political participation in

two ways; we first use the original three-value treatment variable and then the di-

chotomized treatment variable. For both analyses, we use the weights based on the

CBPS and ML estimation and compare the results between them. As explained in

Section 2.2, the outcome variable is an index of political participation, ranging from

0 to 8. We fit the weighted linear model to estimate the average treatment effect for

each treatment value where the baseline treatment category is “No college.” For this

linear model, we include the same set of 81 explanatory variables as the propensity

score model. We report the estimates based on the model that adjusts for covariates

because covariate imbalance remains even after weighting. The 95% confidence in-

tervals are computed using 500 replications of non-parametric bootstrap, accounting

for the uncertainty due to the estimation of weights as well as that of the average

treatment effects.

Figure 5 compares the results of the multi-valued analysis to that of the di-
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chotomized analysis. Here, we estimate the ATE rather than the ATT in the di-

chotomized analysis in order to make the results directly comparable to the multi-

valued treatment effects. The multi-valued analysis based on the CBPS weights finds

a small positive effect for attending college and a larger effect for graduating from

college. However, the weights obtained from dichotomizing the CBPS fail to detect

this effect (and we also do not detect an effect if we estimate the ATT, as the orig-

inal authors did). The point estimate of the dichotomized effect is between some

college and graduating from college, as expected, but the confidence interval for the

dichotomized treatment effect is much larger. The analysis based on the ML estima-

tion of weights fails to detect an effect for either the dichotomous or the multi-valued

treatment.

These results clearly show that the analysis of a multi-valued treatment can un-

cover substantively interesting causal effects, which may not have been apparent in

the analysis of dichotomized treatment. The CBPS improves the estimation of gen-

eralized propensity score when the treatment variable is non-binary.

4.2 The Effect of Advertising on Campaign Contributions

In their original analysis, Urban and Niebler (2014) conduct a propensity score match-

ing analysis by dichotomizing a continuous treatment variable of advertisements (more

or fewer than 1,000 advertisements over the course of campaign). As shown in Sec-

tion 2.3, propensity score matching with the dichotomized treatment variable does

not balance covariates well with respect to the original continuous treatment vari-

able. Thus, we apply the proposed methodology to estimate the generalized propen-

sity score. We then estimate the dose response function using the inverse probability

weighting method.

We begin by modeling the treatment variable via the normal linear regression with

the CBPS methodology described in Section 3.2. Recall that our method assumes
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Figure 6: Comparing the Absolute Pairwise Correlations of the Original Contin-
uous Treatment and Covariates when Using Covariate Balancing Propensity Score
(CBPS) and Maximum Likelihood (ML) Estimation Methods. Along with the origi-
nal unweighted correlations, correlations after weighting based on the CBPS and ML
estimates of the generalized propensity score are shown. Solid circles represent the
state fixed effects while open circles are other covariates. The CBPS methodology
significantly improves covariate balance relative to ML estimation.

that the marginal distribution of the treatment is normal. To make this assumption

credible, we take the Box-Cox transformation of the number of advertisements plus

one whose quantiles are most closely correlated with the theoretical quantiles of a

normal distribution. The best transformation achieves a correlation of 0.94, compared

to 0.76 for the original treatment variable. In the propensity score model for this

transformed treatment, we include the covariates listed in Section 2.3. We use the

over-identified CBPS by incorporating score conditions as well as covariate balancing

conditions. The substantive results based on the just-identified CBPS are similar

to those presented here. For the sake of comparison, we also fit the model via the

maximum likelihood (ML).

Figure 6 presents the absolute pairwise correlations between the continuous treat-

ment covariates for each adjustment method along with those calculated using the

unadjusted data set. The plot clearly shows that the CBPS greatly improves the

covariate balance, compared to the weighting based on the ML estimation of the gen-
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eralized propensity score. Quantifying imbalance as the mean of the absolute Pearson

correlations between the treatment and covariates, the CBPS reduces the imbalance

by 66.3% compared to the original sample whereas the ML increases the imbalance

by 4.5%. A similar pattern holds if we focus on non-fixed effects covariates alone. The

CBPS reduces their average imbalance by 93.3% while the ML only reduces imbalance

by 18.4%.

Using the estimated generalized propensity score from the CBPS, we estimate the

dose-response function. In the original analysis, Urban and Niebler (2014) fitted the

linear regression with state and monthly fixed effects using a separate unmatched data

set to estimate a dose response for ads on contributions, altogether separate from their

dichotomized matching analysis. Given that there are a number of zip codes which

report zero contribution, we fit two weighted generalized linear models where weights

are based on the CBPS estimation on the same data set that Urban and Niebler (2014)

used for their matching analysis. First, we fit the logistic regression to model whether

there is any contribution given in each zip code. Second, we use linear regression to

model the amount of contributions in each zip code given that some contributions

are made in that zip code. For this second model, we use the log of contributions

(incremented by one) as the outcome variable. Both models include the quadratic

term of the treatment variable to address possible non-linearity. These two fitted

models can then be combined to calculate the expected amount of contributions as a

function of advertisements, yielding the estimated dose-response curve. Both models

take the zip code’s log of median household income plus one, log of population, log

of advertisements plus one, the percent of the population over 65, the percentage of

blacks, the percentage of Hispanics, the percent of high school graduates, the percent

of college graduates, the population density, state fixed effects, and a dummy variable

measuring whether people can commute from other states as covariates. We construct
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Figure 7: Estimated Dose-Response Curve between Dollar Amount of Contributions
and the Number of Advertisements. The dotted lines indicate bootstrapped 95%
confidence intervals, which incorporate uncertainty about the weights.

a 95% confidence interval around this estimated dose-response curve by taking 1000

non-parametric bootstraps. As in the previous example, we incorporate uncertainty

about both the treatment effect and the weights.

Figure 7 suggests that a small number of advertisements leads to an increase in

campaign contributions. The peak of this effect is at about 44 advertisements, and the

95% confidence interval for the effect at this level is approximately ($870, $4721). The

95% confidence interval for the effect of 1000 advertisements (Urban and Niebler’s

threshold) is ($767, $3543). The magnitude of this effect is considerably smaller than

the effect found in the original analysis, but it is still statistically significant by con-

ventional standards and in the same direction. Moreover, the effect is still sufficiently

large such that it may be profitable to advertise in non-competitive media markets.

Although we fit a quadratic regression model for the dose-response curve, further

analysis could employ an even more flexible outcome model.

Our contribution to Urban and Niebler’s analysis is to offer a simple and effec-

tive framework in which the propensity score methodology is directly linked to the

quantity of interest: the dose response rather than an estimate of a dichotomized
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treatment effect. Most importantly, we find in this context that the CBPS methodol-

ogy for estimating the generalized propensity score yields superior covariate balance

relative to the dominant method of maximum likelihood estimation.

5 Concluding Remarks

Despite some advances in generalizing propensity score methods to non-binary treat-

ments, applied researchers have been using propensity score methods mostly to ana-

lyze binary treatments. Even when the original treatment is non-binary, they often

dichotomize the treatment variable in order to utilize propensity score methods. One

reason for this gap between statistical theory and practice is the absence of a reliable

method for estimating the generalized propensity score. In this paper, we extend the

covariate balancing propensity score (CBPS) of Imai and Ratkovic (2014) to general

treatment regimes. We estimate the generalized propensity score such that the re-

sulting covariate balance is optimized. We demonstrate this idea by applying the

CBPS methodology to multi-valued and continuous treatments. Our empirical anal-

yses show that the proposed methodology results in better covariate balance than the

standard method and can yield substantive insights which may be difficult to obtain

by analyzing the dichotomous treatment. We also find that the CBPS reduces the

sensitivity to misspecification of the propensity score model for a general treatment

regime.

Finally, while in this paper we focused on improving the parametric estimation of

propensity score, future research should develop nonparametric estimation of propen-

sity score for general treatment regimes. Such an extension will further improve the

robustness of CBPS methodology and as a result produce more credible causal infer-

ence in observational studies.
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Appendix: Derivation of Σθ(T,X) for a Continuous

Treatment

Although the derivation of Σβ(T,X) for three and four valued treatments is quite

straightforward, the derivation of Σθ(T,X) for continuous treatments is somewhat

more involved. The log-likelihood is simply the log-likelihood of the normal.

`(β | X,T ) = −1

2

n∑
i=1

{
log(2πσ2) +

1

σ2
(Ti −X∗i

>β)2
}

(23)

This implies the following well-known score conditions,

sβ(T ∗i , X
∗
i ) =

1

σ2
(T ∗i −X∗i

>β)X∗i (24)

sσ2(T ∗i , X
∗
i ) =

(Ti −X∗i β)2

2σ4
− 1

2σ2
(25)

The covariance of these score conditions are well-known, and so we derive the remain-

ing elements of the covariance matrix Σθ(T,X) here,

E[sβ(Ti, Xi)wθ(Ti, Xi)
> | Xi]

=
1

σ2

{∫ ∞
−∞

(T ∗i
2 − T ∗i X∗i

>β)
f(T ∗i )

f(T ∗i | X∗i )
f(T ∗i | X∗i )dT ∗i

}
X∗iX

∗
i
>

=
1

σ2

{
E(T ∗i

2)− E(T ∗i )X∗i
>β
}
X∗iX

∗
i
>

= X∗iX
∗
i
> (26)

E[sσ2(Ti, Xi)wθ(Ti, Xi)
> | Xi]

=

[
1

2σ4

∫ ∞
−∞
{T ∗i

3 − 2T ∗i
2X∗i

>β + T ∗i (X∗i
>β)2 − T ∗i σ2} f(T ∗i )

f(T ∗i | X∗i )
f(T ∗i | X∗i )dT ∗i

]
X∗i

=
1

2σ4

[
E(T ∗i

3)− 2E(T ∗i
2)X∗i

>β + E(T ∗i )
{

(X∗i
>β)2 − σ2

}]
X∗i

= −X
∗
i
>β

σ2
X∗i (27)

E[wθ(Ti, Xi)wθ(Ti, Xi)
> | Xi]

=

(∫ ∞
−∞

T ∗i
2f(T ∗i )2

f(T ∗i | X∗i )2
f(T ∗i | X∗i )dT ∗i

)
X∗iX

∗
i
>

=

[∫ ∞
−∞

T ∗i
2

√
2πσ2

exp
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1

2σ2

{
(T ∗i −X∗i

>β)2 − 2T ∗i
2
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dT ∗i

]
X∗iX

∗
i
>

=
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−∞
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2

√
2πσ2

exp

{
− 1

2σ2
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(T ∗i +X∗i

>β)2 − 2(X∗i
>β)2
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X∗iX

∗
i
>

=
{
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