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Abstract—Cutting-edge sequencing systems produce data at
a prodigious rate; and the analysis of these datasets requires
significant computing resources. Cloud computing provides a
tantalizing possibility for on-demand access to computing re-
sources. However, many open questions remain. We present
here a performance assessment of BLAST on real metagenomics
data in a cloud setting, in order to determine the viability of
this approach. BLAST is one of the premier applications in
bioinformatics and computational biology and is assumed to
consume the vast majority of resources in that area.

I. INTRODUCTION

GEnomics is one of the areas where biology and medical
research meet high-performance computing. More or

less complete genomic sequence data sets are rendered into
digital objects in a complicated process involving significant
laboratory and insilico work. Once established, the genomic
sequence of an organism triggers a significant computational
workload to decipher the protein content and form hypotheses
on the lifestyle of this organism.

Gene sequencing systems are quickly growing in fidelity
and detail, producing increasingly large data sets for analysis.
Where sequencing machines produced 500 mega-basepairs
(Mbp) of output last year, the current generation of devices
produce 17 gigabases (Gbp) of output; and 95 Gbp devices
are expected before the end of 2009. (Note that the bp unit
used to measure the quantity of DNA data is equivalent
to a byte in terms of data storage.) In order to use these
outputs, massive analysis, typically using BLAST (Basic Local
Alignment Search Tool) [1] is required. BLAST processing
time scales linearly with input size. Hence, analysis of a 17
Gbp dataset takes 34 times longer then 500 Mbp dataset. While
this application is embarrassingly parallel, its computational
and I/O requirements are substantial.

Metagenomics is a relatively new technique that allows
the analysis of DNA samples taken from a variety of envi-
ronments: marine, terrestrial, and so forth. MG-RAST (Meta
Genome Rapid Annotation using Subsystem Technology) [2]
is currently the leading metagenomics analysis facility. It
is growing quickly, with 700 new datasets added between
January and April 2009 alone. Many of these datasets stem
from previous-generation DNA sequencing technology and
contain on average only 100 Mbp of data. However, the
analysis of these smaller datasets still requires a formidable
amount of computation.

Cloud computing is poised to change the economics of
computation, bringing larger efficiencies of scale to system
infrastructure costs. The Amazon Elastic Compute Cloud

(EC2) is the current leader in this space, but several open-
source cloud provisioning toolkits [3], [4], [5] have adopted
the same interfaces. While the appeal of clouds may be limited
for tightly coupled applications, the MG-RAST suite appears
to be an ideal candidate.

We have performed a feasibility study on the use of cloud re-
sources in the MG-RAST workflow. We have measured several
factors, including cost, performance, and operational consid-
erations. In Section II provides background on metagenomics
and cloud computing background. In Section III, we describe
our experiences both in adapting the MG-RAST workflow
to the cloud and the resulting application performance. In
Section IV, we discuss the implications for groups considering
deploying parallel applications using clouds.

II. BACKGROUND

A. Metagenomics

The latest iteration of traditional genomics is metagenomics
[6], the sequencing of DNA from the constituent organisms
present in an environment. DNA isolation is relatively sim-
ple and inexpensive, and the cost of subsequent sequencing
is decreasing relative to throughput, allowing for greater
data acquisition. Therefore, researchers have been able to
obtain metagenomic data from complex microbial assem-
blages found in marine, terrestrial, and human-derived and
other mammalian-derived environments (e.g. , gastrointestinal
tracts). The questions researchers are trying to answer with
these datasets vary, but normally include which organisms are
present (who is there), what metabolic functions are present
in the DNA (what are they doing), and which variants of the
genes are present and in what relative abundances.

Traditional (first-generation) genomics previously required
months of upstream work (clone library creation) before
DNA sequencing. Also, signicant effort was frequently re-
quired after sequencing (sequence assembly and annotation).
Metagenomics datasets, particularly on the scale generated
from so-called next-generation sequencing technologies, taxes
the computational community even more heavily. Sequence
data is isolated and sequenced within days and usually is
ready for computational analysis within a week. For example
application of metagenomics-oriented tools to medicine has
the great potential to generate massive streams of datasets
as the technology matures into a set of diagnostic tools.
Published research has already highlighted the significant
amount of interpersonal variation between individuals [7], [8],
[9], [10]. Moreover, medical researchers are interested not only
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in disease states (i.e. , comparing healthy to diseased samples)
but in monitoring the progression and treatment of a disease.
A large set of samples can easily be generated from a single
patient simply by introducing a temporal component to the
sampling scheme.

B. MG-RAST

The MG-RAST portal has a straightforward workflow. Users
upload DNA sequences, in the form of standard FASTA
formated queries, to the MG-RAST portal. These queries
are then “BLASTed” against the well curated SEED protein
database [11] as well as other databases (e.g. ribosomal RNA).
In the workflow, basic preprocessing is performed, chunking
the query into smaller pieces and queuing for execution via
Sun Grid Engine [12]. Each unit of this chunked query input
is processed by a discrete BLAST instance against the various
databases. This operation is the most computationally heavy
portion of the workflow.

MG-RAST is currently supported by a cluster consisting of
approximately 500 cores. These resources are unable to cope
with the rapidly increasing demand caused by improvements in
sequencing technology. Elastic computational resources, such
as Amazon EC2, appear to be quite compelling for cases such
as this. Performance in a local versus cloud enviroment is
discussed in detail in Section III. The results are then loaded
into a database for analysis by the users via the portal.

C. BLAST

BLAST is the primary tools used in bioinformatics for
matching sequenced genomic sequence data to existing
databases. The primary problem is that fragments of DNA data
need to be matched against existing data to find similarities.
Because DNA sequencing systems result in partial fragments
of gene sequences encoding for proteins, each of these needs
to be compared with all existing sequences in the database.

This process is time consuming. BLAST implements several
optimizations that allow for improved performance, at the cost
of a small amount of precision. This accuracy level has been
widely accepted in bioinformatics.

BLAST is a computationally bound process. It is em-
barrassingly parallel; the chunking process mentioned above
scales single queries out into a series of work units that take
approximately two hours each to process. In general, a BLAST
run results in 15 times the input length in output.

D. Cloud Computing

EC2 [13] is a cloud computing platform allowing easy
access to a scalable number of server instances with very little
overhead. EC2 uses the Xen hypervisor[14], an open source
virtualization platform, to provide these instances. Instances
are classified based on the resources made available to them
and the corresponding pricing is based on this. Instances are
defined based on the instance type and an Amazon Machine
Image (AMI).

1) Instance Types: Several flavors of instances are avail-
able, ranging from relatively small configurations to extremely
large ones. Computational resources are described in terms of
EC2 compute units (ECUs); each of these is roughly equivalent
to a 1.0-1.2 GHz 2007 vintage Opteron or Xeon processor.
Several instance types are available, which vary the RAM,
number of cores, and ECUs available to an instance. The small
configuration has one core, 2 ECUs, and 1.7 GB of memory,
while the large instance has 8 cores, 16 ECUs, and 16 GB
of memory. High-CPU flavors of these instance types are also
available; these change the ratio of memory to compute power
on the instance.

2) EC2 Pricing: Table I shows the instance types available
from EC2 with pricing data.

TABLE I
INSTANCE TYPES

Name ECUs Memory Reserved (1Y) Demand
S 1 1.7 GB $325 $0.10/hr

$0.03/hr
L 4 7.5 GB $1300 $0.40/hr

$0.12/hr
High-CPU 5 1.7 GB $650 $0.20/hr

Large $0.06/hr
High-CPU 20 7 GB $2600 $0.80/hr

Extra-Large $0.24/hr

Pricing is determined based on a basic rate for the instance
type and whether the instance was reserved or not. Instances
can either be allocated on demand, or reserved in advance.
Reserved instances have an initial fee but a reduced per-
hour cost. Reservation costs range from $325 to $2600 for a
single year reservation, depending on instance type. Three year
reservations range in cost from $500 to $4000. Use of instance
reservations does blunt the effectiveness of EC2’s elasticity,
as scaling beyond the number of reserved instances quickly
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causes the rate of cost to increase considerably. We performed
our tests on several of these configurations.

Network transfers are also billed; Table II shows the cost
structure for data transfers.

TABLE II
DATA TRANSFER COSTS

Direction Cost
Inbound (World to Cloud) $0.10/GB

Outbound (Cloud to World) $0.17/GB

Data transfer costs will be modest. We expect the costs of
computation to overshadow transfer costs by a large margin.

III. EXPERIENCES

The analysis phase is the most computationally expensive
and time-consuming portion of the MG-RAST pipeline. Most
of this phase consists of BLAST analysis. This portion is
the one to which cloud computing resources are most readily
applicable.

A naive implementation of cloud use is adequate for this
pipeline. Once a properly configured AMI is available, it
can be instituted on demand. This AMI contains the BLAST
binaries and registers with SGE to receive work units.

In this section, we describe the basic setup and compare
performance results between cloud instance types and local
cluster nodes.

A. Setup

Instance setup was simple. We started by using a publicly
available CentOS 5 x86 64 AMI. To this, we added a BLAST
database. We also added a BLAST blastall binary built from
NCBI v2.2.0 sources using the Intel 11 compilers. Futher,
we added a FASTA sequence file containing 10 Kbp of
metagenomic data. Several other minor software packages
were also installed.

While this step was simple, it was not entirely turn key.
Some expertise was needed in order to properly configure
the system. A majority of pre-existing AMIs are built with a
large common base of software; some customization is needed
for all but the most basic of use cases. Also, patching is
still needed. Overall, this shows that some amount of system
maintenance effort is required, even for cloud-based systems.

On local system tests, the same BLAST blastall binary,
FASTA sequence file, and BLAST database were used.

Table III describes the various configurations used for test-
ing. We ran full tests using two EC2 instance types: the Large
and High-CPU Extra-Large configurations. We also tried some
EC2 smaller instance types, which gave poor performance
because of lack of resources. Three local systems were tested
as well. Each is a dual-processor quad-core system with 16 GB
of RAM. These systems are of varying ages, with in-service
dates from 2007, 2008, and 2009, respectively.

TABLE III
TESTED CONFIGURATIONS

Name # ECUs/CPUs CPU/ECU type Memory

L 4/2 Opteron 7.5 GB2218 HE

H-CPU XL 20/8 Xeon E5345 7 GB2.33 GHz
N07 8 Xeon E5430 16 GB2007 node 2.66 GHz
N08 8 Xeon X7350 16GB2008 node 2.99 GHz
N09 8 Xeon E5540 16 GB2009 node 2.53 GHz

B. Comparison

We compared BLAST processing rates for each node
evaluated. We determined these by finding the best BLAST
configuration for each node experimentally and then running a
dozen iterations of the timing tests. The timing tests consisted
of enough instances of BLAST in parallel to saturate the
system, each processing a 10 kbp input query. Each node
was otherwise idle during the test. In each of the testing
configurations, all BLAST runs exhibited consistent runtimes.

BLAST has very consistent runtimes for a given input
set and database. Hense, these tests clearly demonstrate the
differences in performance between all of the evaluated con-
figurations.

TABLE IV
MBP PER DAY

Instance Mbp per day
L 1.55

H-CPU XL 8.19
N07 9.56
N08 10.485
N09 11.657

Table IV shows the BLAST times of each node class. These
show an expected trend; BLAST is easily able to benefit
from improved performance on new systems. In terms of raw
performance, the High-CPU Extra-Large EC2 instance appear
to be comparable to a 2006 or 2007 vintage system. The Large
EC2 instance has insufficient resources to be able to compete
effectively with all of the other platforms we evaluated.

These measurements assume that each instance or node is
fully utilized over the course of the measurement interval. This
is the normal operational mode for the current MG-RAST
backend, so we expect it to be similarly feasible on cloud
instances.

Table V shows the expected completion times of sequencing
datasets for each configuration tested and input size based on
the performance observed in our timing tests. These figures are
the most important, as these datasets are the quanta of work for
users of the MG-RAST portal. Because of the parallel nature
of BLAST, one can reduce these times directly by adding more
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TABLE V
PERFORMANCE TIMES IN HOURS

Instance 95 Gbp 17 Gbp .5 Gbp .1 Gbp
L 1,470,943 263,221 7,742 1,548

H-CPU XL 278,403 49,819 1,465 293
N07 238,503 42,680 1,255 251
N08 217,444 38,912 1,144 229
N09 195,594 33,584 988 198

nodes to the computation.

IV. DISCUSSION

Use of clouds for computation-bound applications has much
potential. However, several complex aspects remain. In par-
ticular, clouds are not a panacea; there appear to be several
cases where their use may not always be beneficial. In this
section, we discuss three major issues regarding the use of
cloud computing; cost, data security, and some of the new
capabilities that clouds can bring to application portals.

A. Cost Comparison

Cost savings are one of the primary motivations for cloud
computing. It is expected that large cloud providers will be
able to leverage considerable economies of scale when provid-
ing resources to customers. The open question is whether this
expectation holds true when the applications heavily dependent
on absolute CPU performance.

To properly evaluate the relative costs of cloud computing
versus local resources, we compared a single cloud node with
a comparable performancing local node. Our assumption is
that the local node is operated as a part of a several hundred
node cluster and that the facility space is already available.
We compare node costs, plus power, cooling, system adminis-
tration, and maintenance costs. Note that we use conservative
estimates in this analysis.

1) Local Cost Analysis: A standard rack mount server with
a 500-watt power supply will consume no more than 3180
KWh per year. Using an average rate of $0.0775/KWh [15]
for industrial power in the state of Illinois as of December
2008, the power costs for a single server is not exceed $246.45
annually. Cooling costs are comparable. While facility costs
vary widely, we assume an annual cost of $300 per node as
machine room rent. Note that large up-front costs may occur
when no pre-existing facilities are available.

An experienced system administrator can easily manage a
128-node Linux cluster. A conservative estimate of staffing
costs, including overhead, at $175,000/year results in costs
just shy of $1367 per node per year for management. This
cost typically reduces with increasing system scale. Single
administrators for even larger systems are common. For exam-
ple, an average administrator at Argonne National Laboratory
manages both a 256-node cluster and a 32-node cluster.

Taken together, these costs result in an overall infrastructure
cost of approximately $2,160 per year per cluster node. Adding
an additional $3,000 for a moderately priced cluster node
increases the annual cost to $5,160.

One major benefit of the cloud model is that operational
costs are completely elastic. While Amazon can leverage
economies of scale regardless of which customers are using a
set of instances, this is not true with local management. For
example, costs do not scale locally down to a single node.

2) Cloud Cost Analysis: Cloud costs are much simpler to
calculate. A single high-CPU XL node costs $4,700 for a full
year, considering both reservation and recurring costs. Such a
configuration is capable of analyzing 3.0 Gbp. The inbound
and outbound data transfer costs of these results total $9. The
large node costs $2,350 for a full year, for both reservation and
recurring costs. Such a configuration is capable of analyzing
565 Mbp. The inbound and outbound data transfer costs of
these results total $1.80. This total provides a lower bound to
costs, as the cost of software management and administration
is not included.

TABLE VI
COST

Cost per Mbp
Instance Reserve / Owned On demand

L 1 yr $4.15 / 3 yr $3.03 $6.20
H-CPU XL 1 yr $1.56 / 3yr $1.15 $2.34

N07 1 yr $1.47 / 3 yr $0.91 N/A
N08 1 yr $1.35 / 3 yr $0.83 N/A
N09 1 yr $1.21 / 3 yr $0.74 N/A

Note these reserved and purchased node costs assume full
usage. If either becomes under-utilized, the cost per unit of
data obviously increases because of decrease in throughput.
On-demand costs are only linked to the actual amount of
time used and remain constant. None of the EC2 node pricing
includes data transfer cost to or from the cloud, since they are
negligible in comparison to the computation cost. The cost of
$9 for the data transfer over an entire year’s worth of usage
on the highest throughput EC2 node configuration is hardly a
serious price consideration.

Configuration choice is an important consideration when
using cloud instances, particularly in terms of cost. This is a
key limitation of cloud services. Amazon offers a small num-
ber of fixed instance types. Where slight hardware adaptation
can provide large performance benefits, traditional systems
can provide a large advantage. For example, some BLAST
databases would greatly benefit from 24 GB of RAM, but
such a configuration is not currently available.

3) Costs Discussion: The above analysis clearly demon-
strates that users of cloud services still, as of spring 2009,
pay a premium for cloud services when compared with local
hosting. This premium stems from the fact that currently avail-
able cloud node hardware lags a few years behind currently
available hardware. Unless regular cloud hardware refreshes
keep pace with general hardware and pricing remains constant,
local hardware will continue to have the advantage in terms of
cost. Cloud providers need to consider these improvements if
they wish to make clouds attractive for computationally bound
applications. This is not to say that cloud computing is not a
cost-effective solution under some conditions. In particular,
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there are several situations where this is the case:
• Occasional computation – In the case of infrequent com-

putation, paying for cloud resources can be far more
effective than building all of the infrastructure required
to house and operate systems.

• Computation of unpredictable scale – In the case that
computations occur with widely varying scale, augment-
ing local resources with cloud resources can be productive
and cost effective.

• Time-sensitive computations – When results are time-
sensitive, the elastic quality of clouds can be appealing.
This capability does come at a higher cost, however, since
elasticity is lost with reservations.

In any of these situations, HPC clusters tend to be either
underutilized or overcommitted. Neither condition is desirable:
the former is a waste of money, and the latter is not able
to deliver timely results. When HPC clusters are effectively
utilized, they operate at a lower cost then do cloud resources.
Especially in cases where results are not overly time-sensitive
and the computational needs remain fairly stable.

B. Security

Security is a key factor when considering cloud computing
for computation. As opposed to a local configuration where no
data leaves the trusted local environment, data must be staged
to and from the cloud. Further exposure occurs if data is stored
either in the cloud or inside of AMIs. Amazon’s EC2 security
policy is clearly stated online [16]. It is a comprehensive policy
that covers the important aspects of security in detail. In this
document, Amazon states that customers have built HIPAA
compliant applications using cloud services as a back end. It
should be noted that even though EC2’s security policies are
comprehensive, additional care beyond what is required for
local clusters must be taken in order to ensure data integrity.

C. Operational Model

The operational models of clouds and local resources are
greatly different. In order to fully adapt MG-RAST to EC2,
much more work would need to be done. More sophisticated
scheduling and bookkeeping mechanism would have to be
developed to keep track of the considerable amount of data
that flows through the MG-RAST.

Currently system maintenance mechanisms would undoubt-
edly need to be changed. It is unclear at this point what the
long-term reliability of EC2 instances would be under a heavy
computational workload like BLAST.

A majority of the data housed within the MG-RAST is
private. As with local resources, the AMI would be built from
the ground up, and much more emphasis would have to be
placed on security. Given Amazon’s strong stance on security
this would not be an insurmountable task, but it does require
extra care.

System software maintenance is one area that is not vastly
changed, regardless of the use of cloud computing. Cloud
computing does not remove the need to understand and
perform systems maintenance. Just as local machines need to

be updated from time to time, so will cloud nodes if they
are being used for long periods of time. For cycles shorter
than a few days, maintaining AMIs should be sufficient.
While shutting down and reinstantiating an instance isn’t a
hugely expensive process from the stand point of time, it will
cumulatively affect throughput.

V. CONCLUSIONS

In this paper, we have presented a feasibility study of the
use of cloud resources in the MG-RAST pipeline. Overall,
the cloud, specifically Amazon’s EC2, has appropriately con-
figured resources to provide reasonable BLAST performance.
Three main issues remain. First, costs are slightly higher
to perform computations in the cloud, when compared with
local costs. Second, the pricing of on-demand resources blunts
much of the benefit of EC2’s elasticity. Third, some security
concerns remain to be completely addressed. Given more
appealing pricing, cloud services could grow to provide the
bulk of computation on public datasets. At this point however,
the difference in costs is significant.

Moreover, costs in EC2 for computational capacity are
calibrated against hardware that is several years old. This is
reasonable for many applications, particularly IT-style ones.
Computationally bound applications such as BLAST, however
benefit greatly from the increased performance of each new
generation of hardware. Considering the performance differ-
ences shown in Table IV, the performance gap between EC2
ECUs and real CPUs will continue to grow. Because new
hardware is usually introduced at a similar price point to
last year’s model, this price-performance gap will continue to
grow. We hope that Amazon will revisit their pricing policies
to reflect this.

While our analysis does not suggest that moving the bulk
of the computation stage of the MG-RAST to the cloud is
prudent at this point, in several areas a more restricted use of
cloud computing could be useful.

• By using cloud resources as a scale-out pool for high-
priority jobs, time to solution could be greatly reduced
for important jobs. These improvements would come at
a substantial cost, however, as the use of on-demand
resources incur a large cost penalty.

• If a looser federation mechanism were used for cloud
computational instances, users could associate their cloud
instances with MG-RAST, providing direct support for
their computations. Users would benefit from increased
priority for their jobs.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S.
Department of Energy under contract DE-AC02-06CH11357
and in part by the Department of Energy award DE-FG02-
08ER25835.

Part of this work was also funded by the National Institute of
Allergy and Infectious Diseases, National Institutes of Health,
Department of Health and Human Services, under Contract
HHSN266200400042C.



6

This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract DE-AC02-06CH11357.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool.” J Mol Biol, vol.
215, no. 3, pp. 403–410, October 1990. [Online]. Available:
http://dx.doi.org/10.1006/jmbi.1990.9999

[2] F. Meyer, D. Paarmann, M. D’Souza, R. D. Olson, E. M. Glass,
M. Kubal, T. Paczian, A. Rodriguez, R. Stevens, A. Wilke, J. Wilkening,
and R. A. Edwards, “The metagenomics rast server - a public resource
for the automatic phylogenetic and functional analysis of metagenomes,”
BMC Bioinformatics, vol. 9, pp. 386+, September 2008. [Online].
Available: http://dx.doi.org/10.1186/1471-2105-9-386

[3] Nimbus web site. http://workspace.globus.org/. [Online]. Available:
http://workspace.globus.org/

[4] (2009, April) Eucalyptus web site. [Online]. Available:
http://eucalyptus.cs.ucsb.edu/

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “Eucalyptus: A technical report on an elastic
utility computing architecture linking your programs to useful systems,”
UCSB, Computer Science Technical Report 2008-10, August 2008.

[6] C. on Metagenomics, The New Science of Metagenomics: Revealing the
Secrets of Our Microbial Planet. Natl Academy Pr, 2007.

[7] P. B. Eckburg, E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen,
M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman,
“Diversity of the human intestinal microbial flora,” Science, vol.
308, no. 5728, pp. 1635–1638, June 2005. [Online]. Available:
http://dx.doi.org/10.1126/science.1110591

[8] R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and
evolutionary forces shaping microbial diversity in the human intestine.”
Cell, vol. 124, no. 4, pp. 837–848, February 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.cell.2006.02.017

[9] R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial
ecology: Human gut microbes associated with obesity,” Nature, vol.
444, no. 7122, pp. 1022–1023, December 2006. [Online]. Available:
http://dx.doi.org/10.1038/4441022a

[10] D. Frank, A. S. Amand, R. Feldman, E. Boedeker, N. Harpaz, and
N. Pace., “Molecular-phylogenetic characterization of microbial commu-
nity imbalances in human inflammatory bowel diseases,” Proceedings of
the National Academy of Sciences, vol. 104, no. 34, pp. 13 780–13 785,
2007.

[11] R. Overbeek, T. Begley, R. M. Butler, J. V. Choudhuri, H.-Y. Chuang,
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