

Breaking the Barriers to Successful Refactoring:

Observations and Tools for Extract Method

Emerson Murphy-Hill and Andrew P. Black
Portland State University, P.O. Box 751

Portland, OR 97201-0751

{emerson,black}@cs.pdx.edu

ABSTRACT

Refactoring is the process of changing the structure of code

without changing its behavior. Refactoring can be semi-automated

with tools, which should make it easier for programmers to

refactor quickly and correctly. However, we have observed that

many tools do a poor job of communicating errors triggered by

the refactoring process and that programmers using them

sometimes refactor slowly, conservatively, and incorrectly. In this

paper we characterize problems with current refactoring tools,

demonstrate three new tools to assist in refactoring, and report on

a user study that compares these new tools against existing tools.

The results of the study show that speed, accuracy, and user

satisfaction can be significantly increased. From the new tools we

induce a set of usability recommendations that we hope will help

inspire a new generation of programmer-friendly refactoring tools.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;

D.2.6 [Software Engineering]: Programming Environments.

General Terms
Design, Reliability, Human Factors

Keywords
Refactoring, tools, usability, environments

1. INTRODUCTION
Refactoring is the process of changing the structure of a program

without changing the way it behaves. In his influential book on

refactoring, Fowler reports that Extract Method is one of the most

common refactorings that he performs [8, p.110]. Later, Fowler

says that Extract Method is “a key refactoring. If you can do

Extract Method, it probably means you can go on [to do] more

refactorings” [7]. However, as we will demonstrate, successfully

performing an Extract Method refactoring with a tool requires

more than the mere existence of the tool — it requires a tool that

is fast, error-resistant, and pleasant to use.

1.1 Refactoring and Refactoring Tools
Many activities fall under the heading of refactoring: changing

variable names, moving methods or fields up and down a class

hierarchy, and removing dead code, to name a few. Refactoring is

important to software development because it can aid in program

understanding and make it easier to add new features; thus,

refactoring can help programmers to adapt their software to

changing requirements.

However, performing a refactoring is not trivial, even for

seemingly simple refactorings such as changing an instance

variable name. First, you have to check that the new name is not

in use in the defining class, superclass, or subclasses. After

changing the variable name in its declaration, you must be sure to

change every old name to the new name, but not when the old

name appears in string literals, in the middle of other variable

names, or in comments (unless the comment directly refers to the

variable), and not when the old name refers to a local variable.

Some of this complexity arises from preconditions that must be

satisfied before we can be sure that a refactoring is safe. Opdyke

showed that program behavior is preserved when certain

preconditions are satisfied in the C++ programming

language [20]. At about the same time, Griswold defined

preconditions for meaning-preserving program transformations for

Scheme [9]. To automate the error-prone and time-consuming

task of checking preconditions by hand, Roberts and colleagues

developed a tool called the Refactoring Browser that

automatically checks preconditions before refactoring [23].

Although Roberts extolled the virtues of using refactoring tools,

he noted that the original Refactoring Browser was so unpopular

that even the tool’s designers did not use it [22]. After revising the

user interface of the tool, Roberts made three usability

recommendations: tools should be fast, have undo support, and be

tightly integrated into the programmers’ development

environment. Most tools appear to have implemented Roberts’

recommendations; among 16 refactoring tools, we found very

little variation from the revised Refactoring Browser’s user

interface.

Refactoring tools are common in modern development

environments. Nevertheless, programmers do not use refactoring

tools as often as they could [17]. Why not? What can we observe

empirically about the usability of modern refactoring tools? In

addition to Roberts’ three usability recommendations, what

further recommendations will help increase the adoption and

usage rates of refactoring tools? To answer these questions, we

started by studying a non-trivial refactoring.

© ACM, 2008. This is the author's version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The

definitive version was published in the Proceedings of the ICSE 2008.

http://doi.acm.org/10.1145/1368088.1368146

ICSE’08, May 10–18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

boolean canRideToday(){

 boolean tiresOk = !tires.areFlat();__

 boolean spouseOk = !spouse.isUpset();

 return tiresOk && spouseOk;

}

Figure 1. A code selection (above, in grey) that a

tool cannot extract into a new method.

0. The selected code must be a list of statements.

1. Within the selection, there must be no assignments

to variables that might be used later in the flow of

execution. For Java, this can be relaxed to allow

assignment to one variable, the value of which can

be returned from the new method.

2. Within the selection, there must be no conditional

returns. In other words, the code in the selection

must either always return, or always flow

beginning to end.

3. Within the selection, there must be no branches to

code outside of the selection. For Java, this means

no break or continue statements, unless the

selection also contains their corresponding targets.

Figure 2. Preconditions to the Extract Method

refactoring, based on Opdyke’s preconditions [20].

We have omitted preconditions that were not

encountered during the formative study.

1.2 The Extract Method Refactoring
One refactoring that has enjoyed widespread tool support is called

Extract Method. A tool that performs the Extract Method

refactoring takes a sequence of statements, copies them into a new

method, and then replaces the original statements with an

invocation of the new method. This refactoring is useful when

duplicated code should be factored out and when a long method

contains several code segments that are conceptually separate.

We will study the Extract Method tool in the Eclipse

programming environment [4]. We reason that the Extract Method

tool in Eclipse is worthy of study because it is a mature, non-

trivial refactoring tool and because most refactoring tool user-

interfaces are very similar.

To use the Eclipse Extract Method tool, the programmer first

selects code to be refactored, then chooses a refactoring to

perform, then configures the refactoring via a “refactoring

wizard,” and then presses “OK” to execute the refactoring. If there

is a precondition violation, the browser then presents the user with

a generic textual error message. Figure 1 displays an example of

such an error message in Eclipse. Figure 2 lists several

preconditions for the Extract Method refactoring.

In this paper we demonstrate that user-interface changes to

refactoring tools can both reduce the number of errors

encountered by programmers and improve the programmers’

ability to understand the remaining errors.

1.3 A Formative Study in Refactoring
In our personal experience, error messages emitted by existing

tools are non-specific and unhelpful in diagnosing problems. We

decided to undertake a formative study to determine if these

messages arise in practice and whether other programmers also

find them unhelpful.

We observed 11 programmers perform a number of Extract

Method refactorings. Six of the programmers were Ph.D. students

and two were professors from Portland State University; three

were commercial software developers.

We asked the participants to use the Eclipse Extract Method tool

to refactor parts of several large, open-source projects:

• Azureus, a peer-to-peer file-sharing client [3];

• GanttProject, a project scheduling application [25];

• JasperReports, a report generation library [12];

• Jython, a Java implementation of the Python programming

language [11]; and

• the Java 1.4.2 libraries [24].

We picked these projects because of their size and maturity, not

because they were particularly in need of refactoring.

Programmers were free to refactor whatever code they thought

necessary. To give some direction, the programmers were allowed

to use a tool to help find long methods, which can be good

candidates for refactoring. However, the programmers chose on

which projects to run the long-method tool, and which candidates

to refactor. Each refactoring session was limited to 30 minutes,

and programmers successfully extracted between 2 and 16

methods during that time.

The study led to some interesting observations about how often

programmers can perform Extract Method successfully:

• In all, 9 out of 11 programmers experienced at least one error

message while trying to extract code. The two exceptions

performed some of the fewest extractions in the group, so

were among the least likely to encounter errors. Furthermore,

these two exceptions were among the most experienced

programmers in the group, and seemed to avoid code that

might possibly generate error messages.

• Some programmers experienced many more error messages

than others. One programmer attempted to extract 34

methods and encountered errors during 23 of these attempts.

• Error messages regarding syntactic selection occurred about

as frequently as any other type of error message (violating

precondition 0, Figure 2). In other words, programmers

frequently had problems selecting a desired piece of code.

This was usually due to unusual formatting in the source

code or the programmer trying to select statements that

required the editor to scroll.

• The remaining error messages concerned multiple

assignments and control flow (violations of preconditions 1

through 3, Figure 2).

• The tool reported only one precondition violation, even if

multiple violations existed.

These observations suggest that, while trying to perform Extract

Method, programmers fairly frequently encounter a variety of

errors arising from violated refactoring preconditions. Based on

our observations of programmers struggling with refactoring error

messages, we conjecture as follows:

• Error messages were insufficiently descriptive. Especially

among refactoring tool novices, programmers may not

understand an error message that they have not seen before.

When we asked what an error message was saying, several

programmers were unable to correctly explain the problem.

• Error messages were conflated. The errors were all presented

as graphically-identical text boxes with identically formatted

text. At times, programmers interpreted one error message as

an unrelated error message because the errors appeared

identical at a quick glance. The clarity of the message text is

irrelevant when the programmer does not take the time to

read it.

• Error messages discouraged programmers from refactoring at

all. For instance, if the tool said that a method could not be

extracted because there were multiple assignments to local

variables (Figure 1), the next time a programmer came across

any assignments to local variables, the programmer didn’t try

to refactor, even if no preconditions were violated.

This study revealed room for two types of improvements to

Extract Method tools. First, to prevent a large number of errors in

the first place, programmers need support in making a valid

selection. Second, to help programmers successfully recover from

violated preconditions, programmers need expressive,

distinguishable, and understandable feedback that conveys the

meaning of precondition violations.

2. NEW TOOLS FOR EXTRACT METHOD
In this section, we describe three tools that we have built for the

Eclipse environment that address the problems demonstrated in

the formative study. Although built for the Java programming

language, the techniques embodied in these tools apply to other

object-oriented and imperative programming languages. You can

download the tools and view a short screencast at our website:

http://www.multiview.cs.pdx.edu/refactoring.

2.1 Selection Assist
The Selection Assist tool helps programmers in selecting whole

statements by providing a visual cue of the textual extent of a

program statement. The programmer begins by placing the cursor

in the white space in front of a statement. A green highlight is

then displayed on top of the text, from the beginning to the end of

a statement, as shown in Figure 3. Using the green highlight as a

guide, a programmer can then select the statement normally with

the mouse or keyboard.

This tool bears similarities to tools found in other development

environments. DrScheme, for example, highlights the area

between two parentheses in a similar manner [5], although that

highlighting disappears whenever cursor selection begins, making

it ineffective as a selection cue. Vi and other text editors have

mechanisms for bracket matching [13], but brackets do not

delimit most statements in Java, so these tools are not always

useful for selecting statements. Some environments, such as

Eclipse, have special keyboard commands to select statements,

but during this project, nearly every programmer under

observation seemed to prefer the mouse. Selection Assist allows

the programmer to use either the mouse or the keyboard for

selection tasks.

2.2 Box View
We designed a second tool to assist with selection, called Box

View, which displays nested statements as a series of nested

boxes. Box View is a panel shown adjacent to program text that

displays a uniform representation of the code, as shown in

Figure 4. Box View represents a class as a box with labeled

method boxes inside of it. Inside of each method are a number of

nested boxes, each representing a nested statement. When the

programmer selects a part of a statement in the editor, the

corresponding box is colored orange. When the programmer

selects a whole statement in the editor, the corresponding box is

colored light blue. When the programmer selects a box, Box View

selects the corresponding program statement in the program code.

Like Selection Assist, programmers can operate Box View using

the mouse or keyboard. Using the mouse, the programmer can

click on boxes to select code, or select code and glance at the

boxes to check that the selection includes only full statements

Figure 3. The Selection Assist tool in the Eclipse

environment, shown covering the entire if statement, in

green. The user’s selection is partially overlaid, darker.

Figure 4. Box View tool in the Eclipse environment, to

the left of the program code.

Figure 6. Refactoring Annotations display an

instance of a violation of refactoring precondition 1

(goOnVacation), precondition 2 (curbHop), and

precondition 3 (goForRide), described in Figure 2.

(contiguous light blue). Using the keyboard, the programmer can

select sibling, parent and child statements. Box View was inspired

by a similar tool in Adobe GoLive [1] that displays an outline of

an HTML table.

Box View scales fairly well as the level of statement nesting

increases. In methods with less than 10 levels of nesting, Box

View requires no more screen real estate than the standard Eclipse

Outline View. In more extreme cases, Box View can be expanded

horizontally to enable the selection of more deeply nested code.

2.3 Refactoring Annotations
Refactoring Annotations display control- and data-flow for the

Extract Method refactoring. Annotations overlay program text to

express information about a specific extraction. Each variable is

assigned a distinct color, and each occurrence is highlighted, as

shown in Figure 5. Across the top of the selection, an arrow

points to the first use of a variable that will have to be passed as

an argument into the extracted method. Across the bottom, an

arrow points from the last assignment of a variable that will have

to be returned. L-values have black boxes around them, while r-

values do not. An arrow to the left of the selection simply

indicates that control flows from beginning to end.

These annotations are intended to be most useful when

preconditions are violated, as shown in Figure 6. When the

selection contains assignments to more than one variable, multiple

arrows are drawn from the bottom showing multiple return values

(Figure 6, top). When a selection contains a conditional return, an

arrow is drawn from the return statement to the left, crossing the

beginning-to-end arrow (Figure 6, middle). When the selection

contains a branch statement, a line is drawn from the branch

statement to its corresponding target (Figure 6, bottom). In each

case, Xs are displayed over the arrows, indicating the location of

the violated precondition.

When code does not meet a precondition, Refactoring

Annotations are intended to give the programmer an idea of how

to correct the violation. Often the programmer can enlarge or

reduce the selection to allow the extraction of a method. Other

solutions include changing program logic to eliminate break and

continue statements; this is another kind of refactoring.

Refactoring Annotations scale well as the amount of code to be

extracted increases. For code blocks of tens or hundreds of lines,

only a few variables are typically passed in or returned, and only

those variables are colored. In the case when a piece of code uses

or assigns many variables, the annotations become visually

complex. However, we reason that this is desirable: the more

variables that are passed in or returned, the less cohesive the

extracted method. Thus, we feel that code with visually complex

Refactoring Annotations should probably not have Extract

Method performed on it. As one developer has commented,

Refactoring Annotations visualize a useful complexity metric.

Refactoring Annotations are intended to assist the programmer in

finding solutions to precondition violations in two ways. Firstly,

because Refactoring Annotations can indicate multiple

precondition violations simultaneously, the annotations give the

programmer an idea of the severity of the problem. Correcting for

a conditional return alone will be easier than correcting for a

conditional return, and a branch, and multiple assignments.

Likewise, correcting two assignments is likely easier than

correcting six assignments. Secondly, Refactoring Annotations

Figure 5. Refactoring Annotations overlaid on

program code. The programmer has selected two

lines (between the dotted lines) to extract. Here,

Refactoring Annotations show how the variable will

be used: front and rear will be parameters, and

trued will be returned.

Table 1. Total number of correctly selected and mis-selected if statements and mean correct selection time, over all

subjects for each tool.

 Total Mis-Selected

if Statements

Total Correctly Selected

if Statements

 Mean

Selection Time

Selection time as Percentage of

Mouse/Keyboard Selection Time

Mouse/Keyboard 37 303 10.2 seconds 100%

Selection Assist 6 355 5.5 seconds 54%

Box View 2 357 7.8 seconds 76%

give specific, spatial cues to problem points that help the

programmer diagnose the violated preconditions.

Refactoring Annotations are similar to a variety of prior

visualizations. Our control flow annotations are visually similar to

Control Structure Diagrams [10]. However, unlike Control

Structure Diagrams, Refactoring Annotations depend on the

programmer’s selection, and include only annotations relevant to

the refactoring task. Variable highlighting is much like the

highlighting tool in Eclipse, where the programmer can select an

occurrence of a variable, and every other occurrence is

highlighted. Unlike Eclipse’s variable highlighter, Refactoring

Annotations distinguish between variables using different colors

and the relevant variables are highlighted automatically. In

Refactoring Annotations, the arrows drawn on parameters and

return values are similar to the arrows in the DrScheme

environment_[6], which draws arrows between a variable

declaration and each variable reference. Unlike the arrows in

DrScheme, Refactoring Annotations automatically draw a single

arrow for each parameter and for each return value. Finally,

Refactoring Annotations’ data flow arrows are like the code

annotations drawn in a program slicing tool built by Ernst [5],

where arrows and colors display the input data dependencies for a

code fragment. While Ernst’s tool uses more sophisticated

program analysis than the current version of Refactoring

Annotations, it does not include a representation of variable

output nor control flow.

3. USER STUDY
Having demonstrated that there are usability problems with

Extract Method tools and having proposed new tools as solutions,

we conducted a study to ascertain whether or not the new tools

overcome these usability problems. The study has two parts. In

the first part, programmers used the mouse and keyboard,

Selection Assist, and Box View to select program statements. In

the second part, programmers used the standard Eclipse Extract

Method Wizard and Refactoring Annotations to identify problems

in a selection that violated Extract Method preconditions. In both

parts, we evaluated their responses for speed and correctness.

3.1 Human Subjects
We drew subjects from Professor Andrew Black’s object-oriented

programming class. Professor Black gave every student the option

of either participating in the experiment or reading and

summarizing two papers about refactoring. In all, 16 out of 18

students elected to participate. Most students had around 5 years

of programming experience and three had about 20 years.

About half the students typically used integrated development

environments such as Eclipse, while the other half typically used

editors such as vi [13]. All students were at least somewhat

familiar with the practice of refactoring.

3.2 Experiment Design
The experiments were performed over the period of a week, and

lasted between ½ and 1½ hours per subject. The subjects first

used three selection tools: mouse and keyboard, Selection Assist,

and Box View (the “selection experiment”), then later the Eclipse

Extract Method Wizard and Refactoring Annotations (the

“precondition experiment”). For the selection experiment,

subjects were randomly assigned to one of five blocks; a different

random code presentation and tool usage order was used for each

block. For the precondition experiment, subjects were randomly

assigned to one of two blocks; a different random code

presentation order was used for each block. In both experiments,

we selected code from the open source projects described in

Section 1.3. Each subject used every tool.

When a subject began the selection experiment, the test

administrator showed her how to use one of the three selection

tools, depending on which block she was assigned to. The

administrator demonstrated the tool for about a minute, told the

subject that her task was to select all if statements in a method,

and allowed her to practice the task using the selection tool until

she was satisfied th at she could complete the task (usually less

than 3 minutes). The subject then was told to perform the task in 3

different methods from different classes, about two dozen if

statements in total. This experiment was then repeated for the two

other tools on two different code sets.

After the selection experiment was complete, the subject

performed the precondition experiment. The test administrator

first showed the programmer how the Extract Method refactoring

works using the standard Eclipse refactoring tool, the Eclipse

Extract Method Wizard. The administrator then demonstrated and

explained each precondition violation message produced by the

Eclipse Wizard; this took about 5 minutes. The subject was then

told that her task was to identify each and every violated

precondition in a given code selection, assisted by the tool’s

diagnostic message. The subject was then allowed to practice

using the tool until she was satisfied that she could complete the

task; this usually took less than 5 minutes. The subject was then

told to perform the task on 4 different Extract Method candidates

from different classes. The experiment was then repeated for

Refactoring Annotations on a different code base.

4. RESULTS OF THE STUDY
Here we present the results of the study, including measurements

of the accuracy in completing the tasks, the time taken to

complete a task, and subjects’ perceptions of the tools1.

4.1 Measured Results
Table 1 shows the combined number of if statements that

subjects selected correctly and incorrectly for each tool. Table 1

also shows the mean time in seconds to select an if statement

across all participants, and the time normalized as a percentage of

the selection time for the mouse and keyboard.

From Table 1, we can see that there were far more mis-selections

using the mouse and keyboard than using Selection Assist, and

that Box View had the fewest mis-selections. Table 1 also

indicates that Selection Assist decreased mean selection time from

10.2 seconds to 5.5 seconds (46% faster), and that Box View

decreased selection time to 7.8 seconds (24% faster). Both speed

increases are statistically significant (p.<..001, using a t-test with a

logarithmic transform to normalize long selection-time outliers).

The top graph in Figure 7 shows individual subjects’ mean times

for selecting if statements using the mouse and keyboard against

Selection Assist. Here we can see that all subjects but one (labeled

‘a’) were faster using the Selection Assist than using the mouse

and keyboard (subjects below the dotted line). We can also see

that all subjects but one (labeled ‘b’) were more error prone using

the mouse and keyboard than with Selection Assist. The

difference in error-rate was statistically significant (p.<..01, using

a Wilcoxon signed ranks test).

The bottom graph in Figure 7 compares the mouse and keyboard

against Box View. Here we see that 11 of the 16 subjects are

faster using Box View than using the mouse and keyboard. We

can also see that all subjects except one (labeled ‘c’) are less error

prone with Box View. The error-rate difference was statistically

significant (p.<..01, using a Wilcoxon signed ranks test).

Table 2 shows two kinds of problems that subjects encountered

during the Extract Method task. “Missed Violation” means that a

subject failed to recognize that one or more preconditions were

being violated. “Irrelevant Code” means that a subject identified

some piece of code that was irrelevant to the violated

precondition, such as identifying a break statement when the

problem was a conditional return.

Table 2 tells us that programmers made fewer mistakes with

Refactoring Annotations than with the Eclipse Wizard. Using

Refactoring Annotations, subjects were much less likely to miss a

violation and to misidentify the precondition violations. The

difference in error-rate was statistically significant (p.<..01, using

a Wilcoxon signed ranks test).

Table 2 also shows the mean time to find all precondition

violations correctly, across all participants. On average, subjects

recognized precondition violations more than three times faster

using Refactoring Annotations than using the Eclipse Wizard. The

recognition time difference was statistically significant (p.<..001

using a t-test with a logarithmic transform to remedy long

recognition time outliers).

1 Preliminary results were presented in an extended abstract at

the 2007 ACM Student Research Competition [16].

3

5

7

9

11

13

15

17

3 5 7 9 11 13 15 17

Mean Selection time (seconds) with Mouse/Keyboard

M
e
a
n
 S
e
le
c
ti
o
n
 t
im
e
 (
s
e
c
o
n
d
s
)
w
it
h
 B
o
x
 V
ie
w

Figure 7. Mean time in seconds to select if statements

using the mouse and keyboard versus Selection Assist

(top) and Box View (bottom). Each subject is represented

as a whole or partial X. The distance between the bottom

legs represents the number of mis-selections using the

mouse and keyboard. The distance between the top arms

represents the number of mis-selections using Selection

Assist (top) or Box View (bottom). Points without arms or

legs represent subjects who did not make mistakes with

either tool.

3

5

7

9

11

13

15

17

3 5 7 9 11 13 15 17

Mean Selection time (seconds) with Mouse/Keyboard

M
e
a
n
 S
e
le
c
ti
o
n
 t
im
e
 (
s
e
c
o
n
d
s
)
w
it
h
 S
e
le
c
ti
o
n
 A
s
s
is
t

Example: Participant A

Performance with Keyboard/Mouse

 Mean Selection Time: 13.8 seconds

 Mis-selections: 1

Performance with Selection Assist

 Mean Selection Time: 6 seconds

 Mis-selections: 0

 c

 a

 b

Figure 8 shows the mean time to identify all precondition

violations correctly for each tool and each user. Note that we

omitted two participants from the plot, because they did not

correctly identify precondition violations for any code using the

Eclipse Wizard. Again, note that the dotted line represents equal

mean speed using either tool. In Figure 8, we notice that all users

are faster with Refactoring Annotations. We also notice that most

users were more accurate using Refactoring Annotations.

Overall, Refactoring Annotations helped the subjects to identify

every precondition violation in 45 out of 64 cases. In only 26 out

of 64 cases, the Eclipse Wizard allowed the subjects to identify

every precondition violation. Subjects were faster and more

accurate using Selection Assist, Box View, and Refactoring

Annotations than using traditional tools.

4.2 Questionnaire Results
We administered a post-test questionnaire that allowed the

subjects to express their preferences for the five tools they tried.

The survey itself and a summary of the responses can be found in

our technical report [15]. Significance levels are reported with

p.<..01, using a Wilcoxon signed ranks test.

Most users did not find the keyboard or mouse alone helpful in

selecting if statements, and rated the mouse and keyboard

significantly lower than either Box View or Selection Assist. The

difference between preferences for both Box View and Selection

Assist over the keyboard and mouse were statistically significant.

All users were either neutral or positive about the helpfulness of

Box View, but were divided about whether they were likely to use

it again. Selection Assist scored the highest of the selection tools,

with 15 of 16 users reporting that it was helpful and they were

likely to use it again.

Subjects were unanimously positive on the helpfulness of

Refactoring Annotations and all subjects said they were likely to

use them again, while the reviews of standard Eclipse Extract

Method Wizard were mixed. Differences in helpfulness and

likeliness to use again were both statistically significant.

Concerning the standard Eclipse Extract Method Wizard, subjects

reported that they “still have to find out what the problem is” and

are “confused about the error message[s].” In reference to the

error messages produced by the Eclipse tool, one subject quipped,

“who reads alert boxes?”

Overall, the subjects’ responses showed that they found the

Selection Assist, Box View, and Refactoring Annotations superior

to their traditional counterparts for the tasks given to them. More

importantly, the responses also showed that the subjects felt that

the new tools would be helpful outside of the context of the study.

4.3 Limitations of Findings
Although the quantitative results discussed in this section are

encouraging, several factors must be considered when interpreting

these results.

In the selection experiment, each subject used every tool on each

code set. Unfortunately, a flaw in the design of our study caused

the distribution of tools to code sets to be uneven. This

unevenness is noticeable in Table 1, where mis-selected and

correctly selected if statements do not sum to the same amount

in each row. In the most extreme instance of unevenness, one

code set was traversed only twice with the mouse and keyboard

while another code set was traversed eight times using Selection

Assist. However, because each code set was chosen to be of

roughly equal content and difficulty, we do not believe this biased

the results in favor of any particular tool.

Table 2. The number and type of mistakes when finding problems during the Extract Method refactoring over all subjects, for

each tool, and the mean time to correctly identify all violated preconditions. Smaller numbers indicate better performance.

 Missed Violation Irrelevant Code Mean Identification Time

Eclipse Wizard 11 28 164 seconds

Refactoring Annotations 1 6 46 seconds

Figure 8. For each subject, mean time to identify precondition violations correctly using the Eclipse Wizard versus

Refactoring Annotations. Each subject is represented as an X, where the distance between the bottom legs represents

the number of imperfect identifications using the Eclipse Wizard and the distance between the top arms represents the

number of imperfect identifications using Refactoring Annotations.

0

100

0 100 200 300 400 500

Violation Indentification Time (seconds) w ith Eclipse Wizard

V
io
la
ti
o
n
 I
n
d
e
n
ti
fi
c
a
ti
o
n
 T
im
e

(s
e
c
o
n
d
s
)
w
it
h
 R
e
fa
c
to
ri
n
g

A
n
n
o
ta
ti
o
n
s

`

In the precondition experiment, every subject first used the Eclipse

Extract Method Wizard and then used Refactoring Annotations. We

originally reasoned that the fixed order was necessary to educate

programmers about how Extract Method is performed because our

tool did not transform the code itself. Unfortunately, the fixed order

may have biased the results to favor Refactoring Annotations due to

a learning effect. In hindsight, we should have made more of an

effort to vary the tool usage order. However, the magnitude of the

differences in errors and speed, coupled with the strong subject

preference, suggest to us that Refactoring Annotations are clearly

preferable to refactoring error dialog boxes.

Our experiment tested how well programmers can use tools to select

code and recognize preconditions, but tool usability is also affected

by factors that we did not test. For example, while Box View is

more accurate than Selection Assist, Box View takes up more screen

real estate and requires switching between views, which may be

disorienting. In short, each tool has usability tradeoffs that are not

visible in these results.

Finally, the code samples selected in these experiments may not be

representative. We tried to mitigate this by choosing code from

large, mature software projects. Likewise, the programmers in this

experiment may not be representative, although the subjects

reported a wide variety of programming experience.

4.4 Discussion
Programmers can use both Box View and Selection Assist to

improve code selection. Box View appears to be preferable when

the probability of mis-selection is high, such as when statements

span several lines or are formatted irregularly. Selection Assist

appears to be preferable when a more lightweight mechanism is

desired and statements are less than a few lines long.

Refactoring Annotations are preferable to an error-message-based

approach for showing precondition violations during the Extract

Method refactoring. The results of this study indicate that

Refactoring Annotations communicate the precondition violations

effectively. When a programmer has a better understanding of

refactoring problems, we believe the programmer is likely to be able

to correct the problems and successfully perform the refactoring.

5. RECOMMENDATIONS FOR FUTURE

TOOLS
The tools described in this paper are demonstrably faster, more

accurate, and more satisfying to use. However, they represent only a

small contribution: they are improvements to only one out of dozens

of refactoring tools. Nevertheless, we reason that the interaction

techniques embodied in these tools are applicable to all refactoring

tools. Every refactoring tool requires the programmer to select a

piece of code to be refactored and every refactoring tool requires the

programmer to interpret the meaning of a violated precondition.

By studying how programmers use existing refactoring tools and the

new tools that we have described in this paper, we have induced a

number of usability recommendations for refactoring tools. Below,

we describe each recommendation and link it (in italics) to our

experiment and the design of our tools.

The first three recommendations relate to code selection.

• A selection tool should be lightweight. Users can normally

select code quickly and efficiently, and any tool to assist

selection should not add overhead to slow down the common

case. Box View adds context switching overhead from the

editor to the view, which we believe contributed to its relative

slowness and lower likeliness-to-use-again rating, as

compared to Selection Assist.

• A selection tool should help the programmer overcome

unfamiliar or unusual code formatting. Both Box View and

Selection Assist achieve this; in particular, Box View

completely abstracts away formatting.

• A selection tool should be task specific. Because standard

editor selection is task-agnostic, programmers made selection

errors during the experiment. Conversely, because Box View

and Selection Assist are optimized for Extract Method, they

reduced selection errors.

The next seven recommendations relate to displaying violated

preconditions.

• Violated preconditions should be quickly comprehensible: the

programmer should not have to spend significant time

understanding the cause of an error. During the experiment,

error messages required programmers to invest significant

time to decipher the message. Refactoring Annotations

reduced that time by about a third.

• The location(s) of precondition violations should be indicated.

A tool should tell the programmer what it just discovered,

rather than requiring the programmer “to basically compile the

whole snippet in my head,” as one Eclipse bug reporter

complained regarding an Extract Method error message [2]. By

coloring the location of precondition violations in the editor,

programmers could quickly and accurately locate problems

using Refactoring Annotations during the experiment. With

standard error messages, programmers were forced to find the

violation locations manually.

• All violated preconditions should be shown at once. This helps

the programmer in assessing the severity of the violations.

Refactoring Annotations show all errors at once, so that

during the experiment, programmers could quickly find all

violated preconditions, whereas using standard error

messages programmers had to fix one violation to find the

next.

• Programmers should be able to easily distinguish precondition

violations (showstoppers) from warnings and advisories.

Programmers should not have to wonder whether there is a

problem with the refactoring. Simply looking for X s in the

Refactoring Annotations allowed programmers to quickly

distinguish errors from other types of information.

• Some indication should be given about the amount of work

required to fix violated preconditions. The programmer should

be able to tell whether a violation means that the code can be

refactored after a few minor changes, or whether the

refactoring is nearly hopeless. Counting the number of X s

using Refactoring Annotations gives programmers an estimate

of the degree of the problem, whereas the error messages do

not, for instance, indicate how many values would need to be

returned from an extracted method.

• Precondition violations should be displayed relationally, when

appropriate. Violations are often not caused at a single

character position, but arise from a number of related pieces of

source code. Relations can be represented using arrows and

colors, for example. Refactoring Annotations group variables

by color, allowing the programmer to analyze the problem one

variable at a time.

• Different types of violations should have distinguishable

representations. Programmers should not conflate errors and

waste time tracking down and trying to fix a violation that does

not exist. In the experiment, programmers using error

messages confused one kind of violation for another kind.

Programmers using Refactoring Annotations—which use

distinct representations for distinct errors—rarely confused

different kinds of violations.

While these recommendations may seem self-evident, they are rarely

implemented in contemporary refactoring tools.

6. RELATED WORK
Many tools provide support for the Extract Method refactoring, but

few deviate from the wizard-and-error-message interface described

in Section 1.2. However, some tools silently resolve some

precondition violations. For instance, when you try to extract an

invalid selection in Code Guide, the environment expands the

selection to a valid list of statements [19]. You may then end up

extracting more than you intended. With Xrefactory, if you try to

use Extract Method on code that would return more than one value,

the tool generates a new tuple class [26]. Again, this tool makes

strong assumptions about what the programmer wants.

O’Connor and colleagues implement Extract Method using a graph

notation to help the programmer recognize and eliminate code

duplication [21], but they do not specify what happens when a

precondition is violated. This approach avoids selection mistakes by

presenting program structure as an abstract syntax tree, where nodes

are the only valid selections.

Mealy and colleagues [14] have compiled a list of 38 usability

guidelines for building refactoring tools. Unlike our research, which

is empirical, the Mealy and colleagues’ guidelines are derived

theoretically by refining existing guidelines and using general

human-computer interaction models. Our goals also differ: Mealy

and colleagues’ goal is to build tools that support all of the

refactoring process, while ours is to identify and remedy usability

deficiencies.

7. FUTURE WORK
In the future, we plan on generalizing our selection tools and

Refactoring Annotations. While we have shown that these tools are

useful for one particular refactoring, they are worth learning only if

they are applicable to all refactorings. We are currently investigating

how Box View can be overlaid on code like Selection Assist and

how it can be made applicable to all refactorings. We will also use

techniques similar to Refactoring Annotations to communicate

violations of preconditions for other refactorings.

After generalizing our tools to other refactorings, we should be able

to validate our recommendations for those tools. For instance, it will

be useful to determine which other violated preconditions should be

displayed relationally. In the process, we expect that new

recommendations will emerge.

We also plan to expand our recommendations by addressing other

stages of the programmers’ refactoring process. For example, we

have been investigating how to improve the process of configuring

refactorings [18].

Finally, we would like to evaluate our tools in a larger case study.

Our small experiments are useful in evaluating some aspects of our

tools, but a long-term case study can help us evaluate how

programmers’ behavior changes with more usable tools. We hope

that more usable tools will, over time, foster increased adoption and

use.

8. CONCLUSIONS
We have presented three tools that help programmers avoid

selection errors and understand refactoring precondition violations.

With Selection Assist and Box View, we were able to reduce code

selection errors by 84 percent and 95 percent. Likewise, with

Refactoring Annotations, we were able to improve the diagnosis of

precondition violations by between 79 percent and 91 percent, as

well as speeding up the diagnoses by 72 percent. For each of our

new refactoring tools, user satisfaction was significantly increased.

We were surprised to see that such simple improvements to existing

refactoring tools yielded dramatic usability improvements.

However, the contribution of this research is not the tools

themselves, but the qualities embodied in the tools that produce the

demonstrated benefits. Therefore, to increase the usability of new

refactoring tools, we have distilled our observations into a set of

usability recommendations. We hope that builders of future

refactoring tools will heed our recommendations and build tools that

help programmers refactor quickly, pleasantly, and without error.

9. ACKNOWLEDGMENTS
For their reviews and advice, we would like to thank Barry

Anderson, Robert Bauer, Paul Berry, Iavor Diatchki, Tom Harke,

Brian Huffman, Mark Jones, Jim Larson, Chuan-kai Lin, Ralph

London, Philip Quitslund, Suresh Singh, Tim Sheard, and Aravind

Subhash. Special thanks are due to participants in the user study and

our anonymous reviewers for detailed, insightful criticism. We also

thank the National Science Foundation for partially funding this

research under grant CCF-0520346.

10. REFERENCES
[1] Adobe Systems Incorporated. 2007. Adobe GoLive.

http://www.adobe.com/products/golive.

[2] Andersen, T.R. 2005. “Extract Method: Error Message Should

Indicate Offending Variables.”

https://bugs.eclipse.org/bugs/show_bug.cgi?id=89942.

[3] Azureus Incorporated. 2005. Azureus.

http://azureus.sourceforge.net.

[4] The Eclipse Foundation. 2007. Eclipse. http://eclipse.org.

[5] Ernst, M. D. 1994. Practical Fine-grained Static Slicing of

Optimized Code. Technical Report. MSR-TR-94-14, Microsoft

Research.

[6] Findler, R., Clements, J., Flatt, M., Krishnamurthi, S., Steckler,

P., and Felleisen, M. 2002. “DrScheme: A Programming

Environment for Scheme.” Journal of Functional

Programming, vol. 12, pp. 159-182.

[7] Fowler, M. 2001. “Crossing Refactoring's Rubicon,”

http://martinfowler.com/articles/refactoringRubicon.html.

[8] Fowler, M. 1999. Refactoring: Improving the Design of

Existing Code. Addison-Wesley Longman Publishing Co., Inc.

[9] Griswold, W. G. 1991. Program Restructuring as an Aid to

Software Maintenance. Doctoral Thesis. UMI Order No.

GAX92-03258., University of Washington.

[10] Hendrix, T. D., Cross, J. H., Maghsoodloo, S., and McKinney,

M. L. 2000. Do visualizations improve program

comprehensibility? Experiments with control structure

diagrams for Java. In Proceedings of the Thirty-First SIGCSE

Technical Symposium on Computer Science Education.

(Austin, Texas, United States, March 07 - 12, 2000). ACM

Press, New York, NY, 382-386.

[11] Hugunin, J. and Warsaw, B. 2005. Jython,

http://www.jython.org.

[12] JasperSoft Corporation. 2005. JasperReports,
http://jasperreports.sourceforge.net.

[13] Joy, W. and Horton, M. 1984. “An Introduction to Display

Editing with Vi.”

[14] Mealy, E., Carrington, D., Strooper, P., and Wyeth, P. 2007.

Improving Usability of Software Refactoring Tools. In

Proceedings of the 2007 Australian Software Engineering

Conference (April 10 - 13, 2007). ASWEC. IEEE Computer

Society, Washington, DC, 307-318.

[15] Murphy-Hill, E. 2006. Improving Refactoring with Alternate

Program Views. Research Proficiency Exam, TR-06-086,

Portland State University,

http://multiview.cs.pdx.edu/publications/rpe.pdf, Portland, OR.

[16] Murphy-Hill, E. 2006. Improving usability of refactoring tools.

In Companion to the 21st ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages, and

Applications (Portland, Oregon, USA, October 22 - 26, 2006).

OOPSLA '06. ACM, New York, NY, 746-747.

[17] Murphy-Hill, E. and Black, A. 2007. Why don’t people use

refactoring tools? In Proceedings of the 1st Workshop on

Refactoring Tools. ECOOP ’07. TU Berlin, ISSN 1436-9915.

[18] Murphy-Hill, E. and Black, A. 2007. High velocity refactorings

in Eclipse. In Proceedings of the 2007 OOPSLA Workshop on

Eclipse Technology Exchange (Montreal, Quebec, Canada,

October 21 - 21, 2007). ETX '07. ACM, New York, NY, 1-5.

[19] Omnicore Software. 2007. CodeGuide.

http://www.omnicore.com.

[20] Opdyke, W. F. 1992. Refactoring Object-Oriented

Frameworks. Doctoral Thesis. UMI Order Number: GAX93-

05645., University of Illinois at Urbana-Champaign.

[21] O'Connor, A., Shonle, M., and Griswold, W. 2005. Star

diagram with automated refactorings for Eclipse. In

Proceedings of the 2005 OOPSLA Workshop on Eclipse

Technology Exchange (San Diego, California, October 16 - 17,

2005). ETX '05. ACM Press, New York, NY, 16-20.

[22] Roberts, D. B. 1999. Practical Analysis for Refactoring.

Doctoral Thesis. UMI Order Number: AAI9944985.,

University of Illinois at Urbana-Champaign.

[23] Roberts, D. B., Brant, J., and Johnson, R. 1997. A refactoring

tool for Smalltalk. Theory and Practice of Object Systems 3, 4

(October 1997), 253–263.

[24] Sun Microsystems Incorporated. 2005. Java 1.4.2 Standard

Libraries, http://java.sun.com/j2se/1.4.2/.

[25] Thomas, A. and Bareshev, D. 2005. GanttProject,

http://ganttproject.sourceforge.net.

[26] Xref-Tech. 2005. Xrefactory, http://www.xref-tech.com.

