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Abstract

Suppose that L is a latin square of order m and P ⊆ L is a partial
latin square. If L is the only latin square of order m which contains P ,
and no proper subset of P has this property, then P is a critical set of L.
The critical set spectrum problem is to determine, for a given m, the set
of integers t for which there exists a latin square of order m with a critical
set of size t. We outline a partial solution to the critical set spectrum
problem for latin squares of order 2n.

The back circulant latin square of even order m has a well-known crit-
ical set of size m2/4, and this is the smallest known critical set for a latin
square of order m. The abelian 2-group of order 2n has a critical set of
size 4n − 3n, and this is the largest known critical set for a latin square of
order 2n. We construct a set of latin squares with associated critical sets
which are intermediate between the back circulant latin square of order 2n

and the abelian 2-group of order 2n.

1 Introduction

Let m be a positive integer and let X = {0, 1, 2, . . . ,m − 1}. A partial latin
square P of order m is a set of ordered triples of elements of X such that

1. if (i, j, k), (i′, j, k) ∈ P , then i = i′,

2. if (i, j, k), (i, j′, k) ∈ P , then j = j′, and

3. if (i, j, k), (i, j, k′) ∈ P , then k = k′.

If (i, j, k) ∈ P we say that entry k occurs in row i and column j. Thus we may
think of P as an m × m array of integers chosen from X in such a way that
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each element of X occurs at most once in each row and at most once in each
column.

If every cell of the array contains an entry then the partial latin square is
termed a latin square: every element of X must occur exactly once in each row
and each column. In other words, given any pair (i, j), (i, k) or (j, k) in X×X,
there exists exactly one element k, j or i respectively such that (i, j, k) ∈ L.
Since a (partial) latin square is defined as a set, the usual set operations apply.
The size of a (partial) latin square P is the quantity |P | (clearly the size of a
latin square of order m is m2).

Suppose that L is a latin square of order m and P ⊆ L is a partial latin
square. If L is the only latin square of order m which contains P , then P is
a uniquely completable set in L, and L is the unique completion of P . If, in
addition, no proper subset of P has this property, then P is a critical set of L.

Here we are concerned with the spectrum of critical sets; that is, the study of
S(m) = {t | there exists a latin square of order m with a critical set of size t}.
See [6], [3], [7] for discussion of this problem. The most important result known
is the following:

Lemma 1.1. ([1] and [4]) There exist critical sets of order m and size t, when-
ever bm2/4c ≤ t ≤ (m2 −m)/2.

In this paper we extend the upper limit on the known spectrum in the case
where the order is a power of 2. See [5], a technical report, for more example
squares and critical sets. We now state our main theorem, for which the proof
is provided in the remainder of this paper.

Theorem 1.2. Suppose that n ≥ 1 and 4n−1 ≤ t ≤ 4n − 3n. Then there exists
a latin square of order 2n which has a critical set of size t.

Note that in the limit as n tends to infinity, the maximum size of the critical
set as a proportion of the latin square tends to 1.

Two (partial) latin squares, L and M say, are said to be isotopic if there
exists permutations α, β, γ on X such that M = {(α(i), β(j), γ(k)) | (i, j, k) ∈
L}. That is, we may rearrange the row, columns and symbols of L to obtain
M . If we apply the same permutations to a critical set of L (in the case where
L and M are latin squares rather than partial latin squares), then we obtain a
critical set of M .

A latin bitrade consists of a pair {T, T ′} of partial latin squares which satisfy
the following property: if there exists a triple (i, j, k) ∈ T , then there exist
distinct triples (i, j, k′), (i, j′, k) and (i′, j, k) in T ′, where i 6= i′, j 6= j′ and
k 6= k′, and if there exists a triple (i, j, k) ∈ T ′, then there exist distinct triples
(i, j, k′), (i, j′, k) and (i′, j, k) in T , where again i 6= i′, j 6= j′ and k 6= k′. Given
a latin bitrade {T, T ′}, we refer to T as a trade, and T ′ as the disjoint mate
of T (and vice-versa). Note that the disjoint mate of a trade is not necessarily
unique. The size of a trade T is the quantity |T |, as for any other partial latin
square, and a trade of size 4, the smallest possible size other than zero, is known
as an intercalate.

We use the following well-known results (see, for example, the discussion
early in [7]):
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Lemma 1.3. Suppose that L is a latin square of order m and P ⊆ L is a partial
latin square. Then P is a uniquely completable set in L if and only if there is
no trade T ⊆ L \ P .

Lemma 1.4. Suppose that L is a latin square of order m and P ⊆ L is a
partial latin square. Then P is a critical set in L if and only if P is a uniquely
completable set in L and, for every x ∈ P , there is a trade T satisfying x ∈ T
and T \ {x} ⊆ L \ P .

In this paper, we will be dealing specifically with latin squares of order
m = 2n, where n is a positive integer. Thus X = {0, 1, 2, . . . , 2n− 1}. It will be
useful to consider the binary representation for the elements of X, and so note
that any u ∈ X can be expressed as u = u1 ·2n−1 +u2 ·2n−2 + . . .+un−1 ·2+un

and represented by u = [u1, u2, . . . , un], where ui ∈ {0, 1} for i = 1, 2, . . . , n. We
define rn to be a permutation on the elements of X such that for all u ∈ X,
rn(u) = rn([u1, u2, . . . , un−1, un]) = [un, un−1, . . . , u2, u1]. Given any element
u of X = {0, 1, 2, . . . , 2n − 1}, u and u + 2n may be regarded as elements of
{0, 1, 2, . . . , 2n+1 − 1}. We have u = [u1, u2, . . . , un] = [0, u1, u2, . . . , un] and
u + 2n = [1, u1, u2, . . . , un], and thus rn+1(u) = 2rn(u) and rn+1(u + 2n) =
2rn(u) + 1.

We shall define two binary operations on the elements of X as follow: For
0 ≤ u, v < 2n with u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn], define

u⊕n v ≡ u + v (mod 2n), 0 ≤ u⊕n v ≤ 2n − 1, and
u⊕ v = [(u1 ⊕1 v1), (u2 ⊕1 v2), . . . , (un ⊕1 vn)].

We are specifically interested in the latin squares corresponding to the cyclic
group and the abelian 2-group of order 2n defined, respectively, as:

Cn = {(i, j, i⊕n j) | i, j ∈ X},
Zn = {(i, j, i⊕ j) | i, j ∈ X}.

At times it will be useful to partition a (partial) latin square into subsquares.
This will be achieved as follows. A (partial) latin square L, of order 2n, may be
partitioned into four separate quadrants L1, L2, L3, L4, each of order 2n−1:

L =
L1 L2

L3 L4
.

We refer to L1, L2, L3 and L4 as the first, second, third and fourth quadrants
of L respectively (to avoid confusion, we do not use subscripts with latin squares
or partial latin squares except to denote quadrants). In general, the quadrants
L1, L2, L3 and L4 will not be (partial) latin squares of order 2n−1, because L
contains entries from X = {0, 1, 2, . . . , 2n − 1} while the entries in a (partial)
latin square of order 2n−1 must belong to the set {0, 1, 2, . . . , 2n−1−1}. However,
if the quadrant Li contains at most 2n−1 distinct entries, then we can obtain a
(partial) latin square of order 2n−1 from Li (and vice-versa) by using a consistent
bijective relabelling of the entries. Note that if M and N are partial latin
squares of order 2n such that M ⊆ N , then Mi ⊆ Ni for i = 1, 2, 3, 4.
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Given a triple (i, j, k) and integers a and b, we define

a(i, j, k) + b = (i, j, ak + b).

Given any (partial) latin square P , we likewise define

aP + b = {(i, j, ak + b) | (i, j, k) ∈ P}.

2 Preliminary constructions

Define

An = {(i, j, rn(i)⊕n rn(j)) | i, j ∈ X} and
Bn = {(i, j, rn(i)⊕ rn(j)) | i, j ∈ X}.

Note that rn is its own inverse, so we may equivalently write

An = {(rn(i), rn(j), i⊕n j) | i, j ∈ X} and
Bn = {(rn(i), rn(j), i⊕ j) | i, j ∈ X}.

Therefore, for all positive integers n, the latin square An is isotopic to
Cn and Bn is isotopic to Zn; in each case the rows and columns have been
rearranged using the permutation rn, but the entries are unchanged. Now
rn(i)⊕ rn(j) = rn(i⊕ j), so we also have

Bn = {(i, j, rn(i⊕ j)) | i, j ∈ X}.

Therefore we may also obtain Bn from Zn by applying the permutation rn to
the entries, while leaving the rows and colums unchanged.

A known critical set of Cn ([2]) is

cr(Cn) = {(i, j, i⊕n j) | 0 ≤ i, j ≤ 2n−1 − 1, i⊕n j ≤ 2n−1 − 1}
∪ {(i, j, i⊕n j) | 2n−1 + 1 ≤ i, j ≤ 2n − 1, i⊕n j ≥ 2n−1}.

Equivalently, using [a, b] to denote the set of integers between a and b in-
clusive (if b < a, then [a, b] = ∅), we may write

cr(Cn) = {(i, j, k) | (i, j, k) ∈ Cn, i + j ∈ [0, 2n−1 − 1] ∪ [3.2n−1, 2n+1 − 2]}.

By symmetry, an alternative critical set of Cn is

cr∗(Cn) = {(i, j, k) | (i, j, k) ∈ Cn, i+ j ∈ [0, 2n−1− 2]∪ [3.2n−1− 1, 2n+1− 2]}.

Both of these critical sets have size 4n−1.
We have shown that An may be obtained from Cn by applying the per-

mutation rn to both rows and columns. If we similarly permute the rows and
columns of cr(Cn), we obtain the partial latin square

cr(An) = {(rn(i), rn(j), k) | (i, j, k) ∈ Cn, i+j ∈ [0, 2n−1−1]∪[3.2n−1, 2n+1−2]}.
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Since cr(Cn) is a critical set of Cn, then cr(An) is a critical set of An. Using
the fact that rn is its own inverse, we may equivalently write

cr(An) = {(i, j, k) | (i, j, k) ∈ An, rn(i)+rn(j) ∈ [0, 2n−1−1]∪[3.2n−1, 2n+1−2]}.

Similarly, the critical set of An corresponding to cr∗(Cn) is

cr∗(An) = {(i, j, k) | (i, j, k) ∈ An,

rn(i) + rn(j) ∈ [0, 2n−1 − 2] ∪ [3.2n−1 − 1, 2n+1 − 2]}.

Example 2.1. If we let n = 3, then X = {000, 001, 010, 011, 100, 101, 110, 111}
(but decimal notation has been used to save space) and A3 and B3 are as
follows: Note that the headline and sideline index the rows and columns and
have been included for ease of checking.

A3 (in base 10 notation) B3 (in base 10 notation)

0 1 2 3 4 5 6 7
0 0 4 2 6 1 5 3 7
1 4 0 6 2 5 1 7 3
2 2 6 4 0 3 7 5 1
3 6 2 0 4 7 3 1 5
4 1 5 3 7 2 6 4 0
5 5 1 7 3 6 2 0 4
6 3 7 5 1 4 0 6 2
7 7 3 1 5 0 4 2 6

0 1 2 3 4 5 6 7
0 0 4 2 6 1 5 3 7
1 4 0 6 2 5 1 7 3
2 2 6 0 4 3 7 1 5
3 6 2 4 0 7 3 5 1
4 1 5 3 7 0 4 2 6
5 5 1 7 3 4 0 6 2
6 3 7 1 5 2 6 0 4
7 7 3 5 1 6 2 4 0

We note that

A3 =
2A2 2A2 + 1

2A2 + 1 2A2 ⊕3 2
, and B3 =

2B2 2B2 + 1
2B2 + 1 2B2 ,

Example 2.2. Recall that we have defined two critical sets of the cyclic group
Cn, namely cr(Cn) and cr∗(Cn), and the corresponding critical sets of An are
cr(An) and cr∗(An) respectively. The critical sets for n=2 are as follows:

cr(C2) cr(A2)

0 1 2 3
0 0 1
1 1
2
3 2

0 1 2 3
0 0 1
1
2 1
3 2
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cr∗(C2) cr∗(A2)

0 1 2 3
0 0
1
2 1
3 1 2

0 1 2 3
0 0
1 1
2
3 1 2

We note that

cr(A3) =
2cr(A2) 2cr(A2) + 1

2cr(A2) + 1 2cr∗(A2)⊕3 2
.

These observations leads to the next lemma.

Lemma 2.3. For all positive integers n, we have

An+1 =
2An 2An + 1

2An + 1 2An ⊕n+1 2
, Bn+1 =

2Bn 2Bn + 1
2Bn + 1 2Bn ,

and cr(An+1) =
2cr(An) 2cr(An) + 1

2cr(An) + 1 2cr∗(An)⊕n+1 2
.

Proof:
The elements of Bn+1 have the form (i, j, rn+1(i) ⊕ rn+1(j)), where 0 ≤

i, j ≤ 2n+1−1. The elements of An+1 have the form (i, j, rn+1(i)⊕n+1 rn+1(j)),
where 0 ≤ i, j ≤ 2n+1 − 1; the elements of cr(An+1) have the same form but
only occur when rn+1(i) + rn+1(j) ∈ [0, 2n − 1] ∪ [3.2n, 2n+2 − 2].

The proof will be split into four separate cases:
Case 1) 0 ≤ i, j ≤ 2n − 1,
Case 2) 0 ≤ i ≤ 2n − 1 and 2n ≤ j ≤ 2n+1 − 1,
Case 3) 2n ≤ i ≤ 2n+1 − 1 and 0 ≤ j ≤ 2n − 1,
Case 4) 2n ≤ i, j ≤ 2n+1 − 1.

Case 1: 0 ≤ i, j ≤ 2n − 1. We note that, for any such i and j, where i =
[i1, i2, . . . , in+1] and j = [j1, j2, . . . , jn+1], we have i1 = j1 = 0. Thus rn+1(i) =
2rn(i) and rn+1(j) = 2rn(j). It follows that rn+1(i)⊕n+1 rn+1(j) = 2(rn(i)⊕n

rn(j)), and hence the first quadrant of An+1 is equal to 2An. Furthermore,
rn+1(i) + rn+1(j) ∈ [0, 2n − 1] ∪ [3.2n, 2n+2 − 2] if and only if rn(i) + rn(j) ∈
[0, 2n−1 − 1] ∪ [3.2n−1, 2n+1 − 2], and hence the first quadrant of cr(An+1) is
equal to 2cr(An).

Since i1 = j1 = 0, we also have rn+1(i) ⊕ rn+1(j) = 2(rn(i) ⊕ rn(j)), and
thus the first quadrant of Bn+1 is equal to 2Bn.

Case 2: 0 ≤ i ≤ 2n − 1 and 2n ≤ j ≤ 2n+1 − 1. We note that, for any such
i and j, where i = [i1, i2, . . . , in+1] and j = [j1, j2, . . . , jn+1], we have i1 = 0
and j1 = 1. Thus rn+1(i) = 2rn(i) and rn+1(j) = 2rn(j − 2n) + 1. It follows
that rn+1(i) ⊕n+1 rn+1(j) = 2(rn(i) ⊕n rn(j − 2n)) + 1, and hence the second
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quadrant of An+1 is equal to 2An +1. Furthermore, rn+1(i)+rn+1(j) ∈ [0, 2n−
1]∪[3.2n, 2n+2−2] if and only if rn(i)+rn(j−2n) ∈ [0, 2n−1−1]∪[3.2n−1, 2n+1−2],
and hence the second quadrant of cr(An+1) is equal to 2cr(An) + 1.

Since i1 = 0 and j1 = 1, we also have rn+1(i)⊕ rn+1(j) = 2(rn(i)⊕ rn(j −
2n))⊕ 1 = 2(rn(i)⊕ rn(j − 2n)) + 1, and thus the second quadrant of Bn+1 is
equal to 2Bn + 1.

Case 3: This case follows as in Case 2.

Case 4: 2n ≤ i, j ≤ 2n+1 − 1. We note that, for any such i and j, where
i = [i1, i2, . . . , in+1] and j = [j1, j2, . . . , jn+1], we have i1 = j1 = 1. Thus
rn+1(i) = 2rn(i − 2n) + 1 and rn+1(j) = 2rn(j − 2n) + 1. It follows that
rn+1(i)⊕n+1 rn+1(j) = 2(rn(i− 2n)⊕n rn(j− 2n))⊕n+1 2, and hence the fourth
quadrant of An+1 is equal to 2An ⊕n+1 2. Furthermore, rn+1(i) + rn+1(j) ∈
[0, 2n − 1] ∪ [3.2n, 2n+2 − 2] if and only if rn(i − 2n) + rn(j − 2n) ∈ [0, 2n−1 −
2] ∪ [3.2n−1 − 1, 2n+1 − 2], and hence the fourth quadrant of cr(An+1) is equal
to 2cr∗(An)⊕n+1 2.

Since i1 = j1 = 1, we also have rn+1(i)⊕rn+1(j) = 2(rn(i−2n)⊕rn(j−2n)),
and thus the fourth quadrant of Bn+1 is equal to 2Bn.

Hence the result is true for all cases.

Definition 2.4. We iteratively define a partial latin square cr(Bn) of order 2n

as follows:
(i) cr(B1) = cr(A1) = {(0, 0, 0)}.
(ii) For n ∈ Z+,

cr(Bn+1) =
2cr(Bn) 2cr(Bn) + 1

2cr(Bn) + 1 2Bn .

Example 2.5. We give cr(B3):

cr(B3)

0 1 2 3 4 5 6 7
0 0 2 1 3
1
2 2 0 4 3 1 5
3 4 0 5 1
4 1 3 0 4 2 6
5 4 0 6 2
6 3 1 5 2 6 0 4
7 5 1 6 2 4 0

Lemma 2.6. For all n ∈ Z+, cr(Bn) is a critical set of Bn. Further, |cr(Bn| =
4n − 3n.
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Proof: This follows by induction on n, using the doubling construction in
[8].

Note that [8] gives a critical set for the abelian 2-group which has size 4n−3n,
and cr(Bn) is a version of this construction.

3 Main construction

We now give the principle construction, proving Theorem 1.2 for critical sets of
size s where s ≡ 1 (mod 3) and 4n−1 ≤ s ≤ 4n − 3n.

For every n ∈ Z+, and every s satisfying s ≡ 1 (mod 3) and 4n−1 ≤ s ≤
4n−3n, we iteratively define a latin square Dn,s of order 2n, and a partial latin
square cr(Dn,s) ⊆ Dn,s, with |cr(Dn,s)| = s.

In the case n = 1, we have s = 1, and we define

D1,1 =
0 1
1 0

= {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},

cr(D1,1) = {(0, 0, 0)}.

Note that D1,1 = B1 = A1, and cr(D1,1) = cr(B1) = cr(A1).
For n ≥ 1, we use one of two iterative definitions of Dn+1,s and cr(Dn+1,s),

depending on the value of s. By definition s ≡ 1 (mod 3) and 4n ≤ s ≤
4n+1 − 3n+1. We consider the two cases 4n ≤ s ≤ 7.4n−1 − 3 and 7.4n−1 ≤
s ≤ 4n+1 − 3n+1. If n = 1, then 3n − 1 = 2.4n−1, and hence inductively
3n − 1 ≤ 2.4n−1 for all n ≥ 1. Rearranging gives the inequality 7.4n−1 − 3 ≤
13.4n−1 − 3n+1. Therefore if 4n ≤ s ≤ 7.4n−1 − 3 we have

3(4n−1) + 4n−1 ≤ s ≤ 3(4n − 3n) + 4n−1.

In the second case, 7.4n−1 ≤ s ≤ 4n+1 − 3n+1, we can write

3(4n−1) + 4n ≤ s ≤ 3(4n − 3n) + 4n.

Definition 3.1. If 4n ≤ s ≤ 7.4n−1 − 3, and s ≡ 1 (mod 3), we choose integers
s1, s2, s3 satisfying s1 + s2 + s3 + 4n−1 = s, with 4n−1 ≤ si ≤ 4n − 3n and
si ≡ 1 (mod 3), for i = 1, 2, 3. We define

Dn+1,s =
2Dn,s1 2Dn,s2 + 1

2Dn,s3 + 1 2An ⊕n+1 2
,

cr(Dn+1,s) =
2cr(Dn,s1) 2cr(Dn,s2) + 1

2cr(Dn,s3) + 1 2cr∗(An)⊕n+1 2
.

Definition 3.2. If 7.4n−1 ≤ s ≤ 4n+1 − 3n+1, and s ≡ 1 (mod 3), we choose
integers s1, s2, s3 satisfying s1 + s2 + s3 + 4n = s, with 4n−1 ≤ si ≤ 4n − 3n

and si ≡ 1 (mod 3), for i = 1, 2, 3. We define

Dn+1,s =
2Dn,s1 2Dn,s2 + 1

2Dn,s3 + 1 2Bn ,

cr(Dn+1,s) =
2cr(Dn,s1) 2cr(Dn,s2) + 1

2cr(Dn,s3) + 1 2Bn .
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It remains to prove that cr(Dn,s) is a critical set of Dn,s, for all n ∈ Z+,
and every s satisfying s ≡ 1 (mod 3) and 4n−1 ≤ s ≤ 4n − 3n.

Example 3.3. We have noted that if n = 1 then s = 1 and Dn,s = Bn = An,
and cr(Dn,s) = cr(Bn) = cr(An). Using the iterative construction, we can
obtain Dn+1,s = D2,s. We have 4n = 4 and 4n+1 − 3n+1 = 7. Since s ≡ 1
(mod 3), the only possibilities are s = 4 and s = 7. If s = 4 then Definition
3.1 applies, and we obtain D2,4 = A2 and cr(D2,4) = cr(A2). If s = 7 then
Definition 3.2 applies, and we obtain D2,7 = B2 and cr(D2,7) = cr(B2).

Putting n = 2, we can now use the iterative construction to obtain Dn+1,s =
D3,s. We have 4n = 16 and 4n+1 − 3n+1 = 37. Thus there are 8 possible values
of s; we illustrate the construction for 2 cases, s = 22 and s = 31. If s = 22 then
s ≤ 7.4n−1 − 3 = 25, so Definition 3.1 applies. We let s1 = s2 = 7 and s3 = 4;
note that s1 +s2 +s3 +4n−1 = 22. If s = 31 then s ≥ 7.4n−1 = 28, so Definition
3.2 applies. We let s1 = 7 and s2 = s3 = 4; note that s1 + s2 + s3 + 4n = 31.

cr(D3,22) cr(D3,31)
0 1 2 3 4 5 6 7

0 0 2 1 3
1
2 2 0 4 3 1 5
3 4 0 5 1
4 1 3 2
5 4
6 3
7 5 4 6

0 1 2 3 4 5 6 7
0 0 2 1 3
1
2 2 0 4 3
3 4 0 5
4 1 3 0 4 2 6
5 4 0 6 2
6 3 2 6 0 4
7 5 6 2 4 0

Note that if Definition 3.1 is used at every stage of the iterative construction,
then we will have Dn,s = An and cr(Dn,s) = cr(An). If, on the other hand,
Definition 3.2 is used at every stage of the iterative construction, then we will
have Dn,s = Bn and cr(Dn,s) = cr(Bn). In general, Dn,s and cr(Dn,s) will be
in some sense intermediate between An and cr(An) on the one hand and Bn

and cr(Bn) on the other. We express this property in the following result:

Lemma 3.4. For all n ∈ Z+, and every s satisfying s ≡ 1 (mod 3) and 4n−1 ≤
s ≤ 4n − 3n, we have

Dn,s \ cr(Dn,s) ⊆ An \ cr(An), (1)
Bn \ cr(Bn) ⊆ Dn,s \ cr(Dn,s). (2)

Proof:
The proof is by induction. Recall that if n = 1 then s = 1, and further

D1,1 = B1 = A1, and cr(D1,1) = cr(B1) = cr(A1). It follows that equations
(1) and (2) hold in the case n = 1.

Now assume that equations (1) and (2) hold in the case n = k, for some
k ≥ 1. Consider Ak+1 \ cr(Ak+1). Using the iterative expressions for An+1 and
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cr(An+1) given by Lemma 2.3, we have

Ak+1 \ cr(Ak+1)

=
2Ak \ 2cr(Ak) (2Ak + 1) \ (2cr(Ak) + 1)

(2Ak + 1) \ (2cr(Ak) + 1) (2Ak ⊕k+1 2) \ (2cr∗(Ak)⊕k+1 2)

=
2(Ak \ cr(Ak)) 2(Ak \ cr(Ak)) + 1

2(Ak \ cr(Ak)) + 1 2(Ak \ cr∗(Ak))⊕k+1 2
.

Similarly, using the iterative expressions in Lemma 2.3 and Definition 2.4,
we have

Bk+1 \ cr(Bk+1) =
2(Bk \ cr(Bk)) 2(Bk \ cr(Bk)) + 1

2(Bk \ cr(Bk)) + 1 ∅ .

If s ≤ 7.4k−1 − 3, then by Definition 3.1 we have

Dk+1,s \ cr(Dk+1,s) =
2(Dk,s1 \ cr(Dk,s1)) 2(Dk,s2 \ cr(Dk,s2)) + 1

2(Dk,s3 \ cr(Dk,s3)) + 1 2(Ak \ cr∗(Ak))⊕k+1 2
.

If s ≥ 7.4k−1, then by Definition 3.2 we have

Dk+1,s \ cr(Dk+1,s) =
2(Dk,s1 \ cr(Dk,s1)) 2(Dk,s2 \ cr(Dk,s2)) + 1

2(Dk,s3 \ cr(Dk,s3)) + 1 ∅ .

In quadrant 4, equations (1) and (2) hold trivially. In the other three
quadrants, the result follows inductively.

We use this result to prove that cr(Dn,s) is a critical set of Dn,s.

Lemma 3.5. For all n ∈ Z+, and every s satisfying s ≡ 1 (mod 3) and 4n−1 ≤
s ≤ 4n − 3n, the latin square Dn,s is the unique completion of cr(Dn,s).

Proof: We know that cr(Dn,s) ⊆ Dn,s. Thus by Lemma 1.3, Dn,s is the
unique completion of cr(Dn,s) provided there is no trade T ⊆ Dn,s \ cr(Dn,s).
But if such a trade exists, then by equation (1) of Lemma 3.4 we also have
T ⊆ An \ cr(An), contradicting the fact that cr(An) is a critical set of An.

Lemma 3.6. For all n ∈ Z+, and every s satisfying s ≡ 1 (mod 3) and 4n−1 ≤
s ≤ 4n − 3n, cr(Dn,s) is a critical set of Dn,s.

Proof:
We prove this by induction on n. Recall that if n = 1 then s = 1, and

further D1,1 = B1 = A1, and cr(D1,1) = cr(B1) = cr(A1). We know that
cr(A1) is a critical set of A1, hence cr(D1,1) is a critical set of D1,1. We now
assume that the result holds for n = k, where k ≥ 1, and prove that it holds
for n = k + 1.

By Lemma 3.5, Dk+1,s is the unique completion of cr(Dk+1,s). Using Lemma
1.4, we just have to show that for any x ∈ cr(Dk+1,s), there exists a trade T
with x ∈ T and T \ {x} ⊆ Dk+1,s \ cr(Dk+1,s).
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Suppose that x occurs in the first quadrant of cr(Dk+1,s) (and thus also
in the first quadrant of Dk+1,s). By either Definition 3.1 or Definition 3.2,
the first quadrant of Dk+1,s is 2Dk,s1 , while the first quadrant of cr(Dk+1,s) is
2cr(Dk,s1). By assumption, cr(Dk,s1) is a critical set of Dk,s1 . Therefore we
have x = 2x′, where x′ ∈ cr(Dk,s1), and there is a trade U satisfying x′ ∈ U
and U \ {x′} ⊆ Dk,s1 \ cr(Dk,s1). It follows that 2U is a trade satisfying x ∈ 2U
and 2U \ {x} ⊆ Dk+1,s \ cr(Dk+1,s), and we are done (if U ′ is the disjoint mate
of U , then 2U ′ is the disjoint mate of 2U).

If x occurs in the second or third quadrants of Dk+1,s, the result follows
similarly. If x occurs in the fourth quadrant and Definition 3.1 applies, then
the result also follows similarly, since we know that cr∗(Ak) is a critical set of
Ak. We are left with the case where x occurs in the fourth quadrant of Dk+1,s,
and Definition 3.2 applies. Comparing Definitions 3.2 and 2.4, we note that the
fourth quadrant of cr(Dk+1,s) is identical to the fourth quadrant of cr(Bk+1),
and hence x ∈ cr(Bk+1). By Lemma 2.6, cr(Bk+1) is a critical set of Bk+1,
therefore there is a trade T satisfying x ∈ T and T \ {x} ⊆ Bk+1 \ cr(Bk,s). By
Equation (2) of Lemma 3.4, it follows that T \ {x} ⊆ Dk+1,s \ cr(Dk+1,s), and
we are done.

4 Modified constructions

Here we modify the construction in the previous section, in order to produce
critical sets of sizes congruent to 0 and 2 modulo 3. We alter several elements
of Dn,s, and remove one or two of these elements from the partial latin square,
in order to produce critical sets of size s − 1 or s − 2. We start by defining
the modified latin squares and listing some key relationships, then calculate the
values s for which these constructions are well-defined. In the remainder of the
section we prove that the partial latin squares given are, in fact, critical sets.

Let n ≥ 2. Consider the latin square Dn,s of order 2n and its critical set
cr(Dn,s) of size s, as defined iteratively in the previous section. We will assume
that Definition 3.2 is used at the final stage of the iteration, and thus

Dn,s =
2Dn−1,s1 2Dn−1,s2 + 1

2Dn−1,s3 + 1 2Bn−1

and

cr(Dn,s) =
2cr(Dn−1,s1) 2cr(Dn−1,s2) + 1

2cr(Dn−1,s3) + 1 2Bn−1 ,

where s = s1 + s2 + s3 + 4n−1. The fourth (bottom right) quadrants of both
Dn,s and cr(Dn,s) are equal to 2Bn−1, so all elements in the fourth quadrant
of Dn,s occur in cr(Dn,s).

By the original definition of Bn, the set of four elements in the extreme
bottom right of Dn,s is {(2n − 2, 2n − 2, 0), (2n − 1, 2n − 2, 2n−1), (2n − 2, 2n −
1, 2n−1), (2n − 1, 2n − 1, 0)}. These elements are also members of cr(Dn,s). We
modify Dn,s and cr(Dn,s) by swapping the entries in these four triples, and
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then removing (2n − 1, 2n − 1, 2n−1) from the partial latin square. That is,

En,s = Dn,s \ {(2n − 2, 2n − 2, 0), (2n − 1, 2n − 2, 2n−1),
(2n − 2, 2n − 1, 2n−1), (2n − 1, 2n − 1, 0)}

∪ {(2n − 2, 2n − 2, 2n−1), (2n − 1, 2n − 2, 0),
(2n − 2, 2n − 1, 0), (2n − 1, 2n − 1, 2n−1)},

and

cr(En,s) = cr(Dn,s) \ {(2n − 2, 2n − 2, 0), (2n − 1, 2n − 2, 2n−1),
(2n − 2, 2n − 1, 2n−1), (2n − 1, 2n − 1, 0)}

∪ {(2n − 2, 2n − 2, 2n−1), (2n − 1, 2n − 2, 0),
(2n − 2, 2n − 1, 0)}.

Provided that n ≥ 3, we can further modify this construction by replacing
the first quadrant of En,s with a copy of 2En−1,s1 (assuming that En−1,s1 exists).
Recalling that Li represents the ith quadrant of L, for i = 1, 2, 3, 4, define

Fn,s =
2En−1,s1 En,s

2

En,s
3 En,s

4

and

cr(Fn,s) =
2cr(En−1,s1) cr(En,s)2

cr(En,s)3 cr(En,s)4
.

We may regard Fn,s as En,s with a second point of modification added, this
time at the bottom right corner of the first quadrant.

It is easily verified that En,s and Fn,s are latin squares of order 2n, and
cr(En,s) ⊆ En,s and cr(Fn,s) ⊆ Fn,s are partial latin squares of size s− 1 and
s − 2 respectively. We have not yet shown that these partial latin squares are
critical sets. For convenience, we label the two elements which are“removed”
from the partial latin square; let

p1 = (2n − 1, 2n − 1, 2n−1),
p2 = (2n−1 − 1, 2n−1 − 1, 2n−1).

The following relationships follow from the definitions:

En,s \ cr(En,s) = Dn,s \ cr(Dn,s) ∪ {p1}. (3)

Fn,s \ cr(Fn,s) = En,s \ cr(En,s) ∪ {p2} (4)
= Dn,s \ cr(Dn,s) ∪ {p1, p2}. (5)

Before calculating the values of s for which these modified constructions are
well defined, we must impose one extra condition, which is required for Lemma
4.2 below (if this condition did not hold then En,s \ cr(En,s) would contain an
intercalate). Consider, in the case n ≥ 3, the four by four subquare in the upper
left corner of En,s; that is, the triple set {(i, j, k) | (i, j, k) ∈ En,s, 0 ≤ i, j ≤
3}. Since n ≥ 3 this subsquare is identical to the corresponding subsquare in
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Dn,s; thus by the iterative construction of Dn,s (using either Definition 3.1 or
Definition 3.2 at each stage), this subsquare is equal to 2n−2D2,s′

. So s′ is the
number of triples in this subsquare which are placed in cr(En,s). As noted in
Example 3.3, either s′ = 4, in which case D2,s′

= A2 and cr(D2,s′
) = cr(A2),

or s′ = 7, in which case D2,s′
= B2 and cr(D2,s′

) = cr(B2). We impose
the condition that s′ = 7, and thus the entire fourth quadrant of this 4 by 4
subsquare is in the partial latin square; that is, {(i, j, k) | (i, j, k) ∈ En,s, 2 ≤
i, j ≤ 3} ⊆ cr(En,s). We consider the implications of this condition for the
allowed values of s in Lemma 4.1 (i) below. In the case n = 2, this condition is
redundant.

We briefly consider the implications of this condition for Fn,s and cr(Fn,s).
Suppose that n ≥ 4. In order to remain consistent with equation (4), the above
condition must also hold for Fn,s; that is, {(i, j, k) | (i, j, k) ∈ Fn,s, 2 ≤ i, j ≤
3} ⊆ cr(Fn,s). But by definition, the first quadrant of Fn,s is a relabelling of
En−1,s1 . Since n − 1 ≥ 3, it follows that this condition must hold in the first
quadrant, and therefore in Fn,s as a whole, without introducing any further
constraints. In the case n = 3, the set {(i, j, k) | (i, j, k) ∈ Fn,s, 2 ≤ i, j ≤ 3}
comprises the fourth quadrant of the first quadrant of Fn,s. The first quadrant is
a relabelling of En−1,s1 , and thus by the definition of En,s the fourth quadrant
of the first quadrant is contained in cr(Fn,s), except for the triple p2. The
corresponding elements of En,s are all contained in cr(En,s), so this is consistent
with equation (4).

Lemma 4.1. Let En,s, cr(En,s), Fn,s and cr(Fn,s) be as defined above. Then

(i) En,s and cr(En,s) are well-defined for all integers n and s satisfying n ≥ 2,
7.4n−2 + 3 ≤ s ≤ 4n − 3n and s ≡ 1 (mod 3), and also for n = 2, s = 7.

(ii) Fn,s and cr(Fn,s) are well-defined for all integers n and s satisfying n ≥ 3,
31.4n−3 +3 ≤ s ≤ 4n− 3n and s ≡ 1 (mod 3), and also for n = 3, s = 31.

Proof.

(i) We assumed that Definition 3.2 was used at the final stage of the iterative
construction of Dn,s, and hence s = s1 + s2 + s3 + 4n−1 (this assumption
also implies that n ≥ 2). From Definition 3.2 we have 4n−2 ≤ si ≤
4n−1 − 3n−1 and si ≡ 1 (mod 3), for i = 1, 2, 3, which implies that
7.4n−2 ≤ s ≤ 4n − 3n and s ≡ 1 (mod 3). Since no additional constraints
are placed on the second and third quadrants, s2 and s3 may take any
values within the given range. If n = 2 then s1 is similarly unconstrained,
and hence s may take any value within the given range, and we are done.
However, if n ≥ 3 the allowed values of s1 may be restricted by the
condition introduced above. Recall that s′ is the number of triples in the
subsquare {(i, j, k) | (i, j, k) ∈ En,s, 0 ≤ i, j ≤ 3} which occur in cr(En,s).
Normally either s′ = 4 or s′ = 7, but we imposed the condition that s′ = 7
only. Suppose that s1 lies within the given range above, but that s1 is
inconsistent with the condition s′ = 7; that is, we can only construct
Dn−1,s1 with s′ = 4. Then we can construct a Dn−1,s1+3 with s′ = 7. It
follows that, although we cannot have s1 = 4n−2, the values s1 = 4n−2 +3
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and s1 = 4n−1 − 3n−1 are achievable, together with at least every second
value in between (considering only values congruent to 1 modulo 3). Since
we are free to vary s2 and s3 within the constraints imposed above, it
follows that s may take any value satisfying 7.4n−2 +3 ≤ s ≤ 4n− 3n and
s ≡ 1 (mod 3).

(ii) Again we have s = s1 + s2 + s3 + 4n−1, with the same constraints on
s2 and s3. However, the first quadrant of Fn,s is a relabelled copy of
En−1,s1 . It follows from part (i) that n−1 ≥ 2, s1 ≡ 1 (mod 3) and either
7.4n−3 + 3 ≤ s1 ≤ 4n−1 − 3n−1 or else n− 1 = 2 and s1 = 7. Since there
is no other constraint on s, the result follows.

In the remainder of this section, we prove that cr(En,s) is in fact a critical
set of En,s, and cr(Fn,s) is a critical set of Fn,s. We will assume throughout that
these four partial latin squares are well defined, with n and s being arbitrary
integers within the constraints of Lemma 4.1. We begin with the harder part of
the proof, showing that En,s and Fn,s are the unique completions of cr(En,s)
and cr(Fn,s) respectively, but first we need the following results:

Lemma 4.2. There is no intercalate I such that p1 ∈ I and I ⊆ En,s\cr(En,s),

Proof. Suppose that there exists such an intercalate I, with disjoint mate I ′

(we seek a contradiction). Then I and I ′ must have the form

I = {(2n − 1, 2n − 1, 2n−1), (i, j, 2n−1), (i, 2n − 1, k), (2n − 1, j, k)},
I ′ = {(2n − 1, 2n − 1, k), (i, j, k), (i, 2n − 1, 2n−1), (2n − 1, j, 2n−1)},

where i, j, k are some elements of X, not necessarily distinct. By equation (3),
I \ {(2n − 1, 2n − 1, 2n−1)} = I \ {p1} ⊆ Dn,s \ cr(Dn,s) and hence, by equation
(1) of Lemma 3.4, we have I \ {p1} ⊆ An \ cr(An). By definition, the members
of An have the form (x, y, rn(x)⊕n rn(y)). Thus we have rn(i)⊕n rn(j) = 2n−1,
and rn(i) ⊕n rn(2n − 1) = rn(2n − 1) ⊕n rn(j) = k. It follows that rn(i) =
rn(j) ∈ {2n−2, 2n−2 + 2n−1}. Therefore i = j ∈ {2, 3}. But (for n ≥ 3) we
imposed the condition that {(i, j, k) | (i, j, k) ∈ En,s, 2 ≤ i, j ≤ 3} ⊆ cr(En,s).
Thus (i, j, 2n−1), which is a member of I, occurs in cr(En,s). This contradicts
the assumption that I ⊆ En,s \ cr(En,s), so we are done. In the case n =
2, the condition i = j ∈ {2, 3} implies that the intercalate occurs entirely
within the fourth quadrant, which is impossible since p1 is the only member of
En,s \ cr(En,s) in the fourth quadrant.

Corollary 4.3. There is no intercalate I such that p1 ∈ I and I ⊆ Fn,s \
cr(Fn,s).

Proof. Suppose that such an intercalate I exists. If p2 6∈ I, then equation
(4) implies that I ⊆ En,s \ cr(En,s), which is a contradiction by Lemma 4.2;
thus p1, p2 ∈ I. It follows that I = {(2n − 1, 2n − 1, 2n−1), (2n−1 − 1, 2n−1 −
1, 2n−1), (2n − 1, 2n−1 − 1, z), (2n−1 − 1, 2n − 1, z)}, for some z. By equations
(5) and (1), (2n − 1, 2n−1 − 1, z), (2n−1 − 1, 2n − 1, z) ∈ An \ cr(An) and thus
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z = rn(2n − 1)⊕n rn(2n−1 − 1) = 2n − 3. But by the original definition, cr(An)
contains these two triples, giving a contradiction.

Lemma 4.4. The partial latin square cr(En,s) is uniquely completable to En,s.

Proof. Using Lemma 1.3, we need to show that there is no trade T ⊆ En,s \
cr(En,s). We assume that such a trade exists, and seek a contradiction. Let
T ′ be the disjoint mate of T , so that the pair {T, T ′} forms a latin bitrade. If
T does not contain p1, then by equation (3) T ⊆ Dn,s \ cr(Dn,s), which is a
contradiction since we know that cr(Dn,s) is a critical set of Dn,s; thus we can
assume that p1 ∈ T .

Since T and T ′ are partial latin squares of order 2n, we may partition each
of them into quadrants of order 2n−1; so we have

T =
T1 T2

T3 T4
and T ′ =

T ′
1 T ′

2

T ′
3 T ′

4
.

By assumption T ⊆ En,s \ cr(En,s), so Ti is a subset of the ith quadrant of
En,s \ cr(En,s) (and thus of the ith quadrant of En,s), for i = 1, 2, 3, 4.

Let E = {2m | 0 ≤ m < 2n−1 − 1} and O = {2m + 1 | 0 ≤ m < 2n−1 − 1},
so E and O partition X. By the iterative definition of Dn,s (Definition 3.1 or
3.2), the entries in the first and fourth quadrants of Dn,s are in E, while the
entries in the second and third quadrants are in O. Therefore En,s must also
satisfy this property, and hence the entries in T1 and T4 are in E, while the
entries in T2 and T3 are in O.

We know that p1 is an element of T , specifically of T4. Now T4 is a subset
of the fourth quadrant of En,s \ cr(En,s) and by definition, the only triple in
the fourth quadrant of En,s \ cr(En,s) is p1. Therefore T4 = {p1}, and hence
T ′

4 = {(2n − 1, 2n − 1, z)}, where z 6= 2n−1. Since 2n−1 is the only even entry in
row 2n − 1 of T , and hence T ′, z is odd.

Let Ri be row i of T ; that is, Ri is the subset of triples from T with the form
(i, j, k), where j and k are arbitrary. Likewise, let R′

i be row i of T ′. Each row
and each column intersects two quadrants; assume without loss of generality
that i < 2n−1, so Ri intersects T1 and T2, while R′

i intersects T ′
1 and T ′

2 (these
intersections may be empty). Suppose j ∈ X. By the definition of a latin trade,
there is a triple (i, j, k) ∈ T if and only if there is a triple (i, j, k′) ∈ T ′ (we
often express this property by saying that T and T ′ have the same “shape”).
Therefore |Ri ∩ T1| = |R′

i ∩ T ′
1| and |Ri ∩ T2| = |R′

i ∩ T ′
2|. We know that the

entries in Ri ∩ T1 are from E, while the entries in Ri ∩ T2 are from O. But the
total number of even (odd) entries in Ri is equal to the total number of even
(odd) entries in R′

i. It follows that the number of odd entries in R′
i∩T ′

1 is equal
to the number of even entries in R′

i ∩ T ′
2. A similar property holds for every

other row and column.
Rows 2n−1 to 2n − 1 intersect the third and fourth quadrants. The only

triple in T ′
4 is (2n − 1, 2n − 1, z), which has an odd entry. Applying the above

argument to every row from 2n−1 to 2n − 1, we see that there is exactly one
even entry in T ′

3, and it occurs in row 2n − 1. This even entry also occurs in
row 2n − 1 of T , therefore it is 2n−1. Thus we have (2n − 1, y, 2n−1) ∈ T ′, and
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similarly (x, 2n − 1, 2n−1) ∈ T ′, where 0 ≤ x, y < 2n−1, and these are the only
even entries in T ′

3 and T ′
2 respectively.

Applying the same argument on rows 0 to 2n−1 − 1, we see that there is
exactly one odd entry in T ′

1, and it occurs in row x. Similarly (considering
columns 0 to 2n−1 − 1), the only odd entry in T ′

1 occurs in column y. Thus we
have (x, y, z′) ∈ T ′, where z′ is the sole odd entry in T ′

1.
We now use a slightly different argument to prove that z′ = z. For any

i ∈ X, we know that a given entry occurs in Ri if and only if it occurs in R′
i.

Aggregating over rows 2n−1 to 2n−1, it follows that the number of occurrences
of the entry z in T3 ∪ T4 is equal to the number of occurrences of the entry z
in T ′

3 ∪ T ′
4. Let this total be t. Since z occurs 0 times in T4 and 1 time in T ′

4, it
occurs t times in T3 and t− 1 times in T ′

3. Now z does not occur as an entry in
T1, since it is odd, and thus z occurs t times in T1 ∪ T3. By a similar argument
as above, using columns 0 to 2n−1−1, it follows that z occurs t times in T ′

1∪T ′
3,

and hence exactly once in T ′
1. But the only odd entry in T ′

1 is z′, hence z = z′.
We now know that T ′ contains the four triples (2n − 1, 2n − 1, z), (x, 2n −

1, 2n−1), (2n − 1, y, 2n−1), and (x, y, z). These triples form an intercalate, a
trade of size 4. The disjoint mate can be obtained be swapping the entries z
and 2n−1. Thus if we let

T ′′ = T ′ \ {(2n − 1, 2n − 1, z), (x, 2n − 1, 2n−1), (2n − 1, y, 2n−1), (x, y, z)}
∪{(2n − 1, 2n − 1, 2n−1), (x, 2n − 1, z), (2n − 1, y, z), (x, y, 2n−1)},

then T \ T ′′ is a trade, with disjoint mate T ′′ \ T . This trade cannot have
size zero, because that would imply that T is the intercalate {(2n − 1, 2n −
1, 2n−1), (x, 2n − 1, z), (2n − 1, y, z), (x, y, 2n−1)}, in contradiction to Lemma
4.2. But p1 = (2n − 1, 2n − 1, 2n−1) ∈ T ′′. Recalling that T ⊆ En,s \ cr(En,s),
it follows by equation (3) that we have T \ T ′′ ⊆ Dn,s \ cr(Dn,s). This is a
contradiction since we know that cr(Dn,s) is a critical set of Dn,s.

Corollary 4.5. The partial latin square cr(Fn,s) is uniquely completable to
Fn,s.

Proof. Assume that there is a trade T ⊆ Fn,s \ cr(Fn,s) (we seek a contradic-
tion). First consider the case where T contains p1. Since p2 has an even entry,
Fn,s \ cr(Fn,s) has the property (like En,s \ cr(En,s)), that all entries in the
first and fourth quadrants are even, while all entries in the second and third
quadrants are odd. Also p1 is the only element in the fourth quadrant. Using
Corollary 4.3 and the reasoning in the proof of Lemma 4.4, we can deduce the
existence of a non-empty trade (T ′′ \T in the proof of Lemma 4.4) which is con-
tained in Fn,s \ cr(Fn,s) but does not contain p1; thus we may assume without
loss of generality that p1 6∈ T .

Let T ′ be the disjoint mate of T . Since T ⊆ Fn,s \ cr(Fn,s) and p1 6∈ T , the
fourth quadrants of both T and T ′ are empty. The entries in the first quadrant
of T must be even, while the entries in the second and third quadrants are odd.
By the reasoning used in the second half of the proof of Lemma 4.4, it follows
that the entries in the first quadrant of T ′ must also be even, while the entries
in the second and third quadrants are odd. Letting T1 and T ′

1 be the first
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quadrants of T and T ′ respectively, it follows that T1 is a trade with disjoint
mate T ′

1. Since T ⊆ Fn,s \ cr(Fn,s), then T1 ⊆ 2(En−1,s1 \ cr(En−1,s1)). This
is a contradiction, since by Lemma 4.4, cr(En−1,s1) is uniquely completable to
En−1,s1 .

Lemma 4.6. The partial latin square cr(En,s) is a critical set of En,s, with
size s− 1.

Proof. In Lemma 4.4, we proved that En,s is the unique completion of cr(En,s).
Therefore (by Lemma 1.4), we just need to show that for any x ∈ cr(En,s), there
exists a trade T with x ∈ T and T \ {x} ⊆ En,s \ cr(En,s).

If x ∈ cr(Dn,s), then the result follows immediately, since cr(Dn,s) is a
critical set of Dn,s and, by equation (3), Dn,s \cr(Dn,s) ⊆ En,s \cr(En,s). Thus
we may assume that x ∈ cr(En,s) \ cr(Dn,s) = {(2n − 2, 2n − 2, 2n−1), (2n −
2, 2n − 1, 0), (2n − 1, 2n − 2, 0)}. If x = (2n − 2, 2n − 1, 0), then we let

T = {(0, 1, 2n−1), (1, 1, 0),
(2n − 2, 1, 2n − 1), (2n − 1, 1, 2n−1 − 1),
(0, 2n − 1, 2n − 1), (1, 2n − 1, 2n−1 − 1),
(2n − 2, 2n − 1, 0), (2n − 1, 2n − 1, 2n−1)},

and

T ′ = {(0, 1, 2n − 1), (1, 1, 2n−1 − 1),
(2n − 2, 1, 0), (2n − 1, 1, 2n−1),
(0, 2n − 1, 2n−1), (1, 2n − 1, 0),
(2n − 2, 2n − 1, 2n − 1), (2n − 1, 2n − 1, 2n−1 − 1)}.

The partial latin square T is a trade, with disjoint mate T ′. We have x ∈ T ,
but we also need to show that every other triple in T occurs in En,s \ cr(En,s).
By equation (3), we have (2n−1, 2n−1, 2n−1) ∈ En,s \cr(En,s). The remaining
six triples in T each occur in An \ cr(An) (by the original definitions of An and
cr(An)). They all occur in the first or second row, or in the first or second
column. If we compare the iterative form of An and Dn,s (given by Lemma 2.3
and Definition 3.1 or 3.2), and recall that D1,1 = A1, then inductively we see
that the first two rows and first two columns of Dn,s are identical to the first
two rows and first two columns of An. Likewise the first two rows and first two
columns of cr(Dn,s) are identical to the first two rows and first two columns of
cr(An). Therefore the remaining six triples of T occur in Dn,s \ cr(Dn,s) and
hence, by equation (3), in En,s \ cr(En,s). Thus T is the required trade in the
case x = (2n−2, 2n−1, 0). The transpose of this trade is the required trade for
x = (2n−1, 2n−2, 0). Similarly, the required trade for x = (2n−2, 2n−2, 2n−1)
is U , with disjoint mate U ′, where

U = {(0, 1, 2n−1), (1, 0, 2n−1),
(2n − 1, 0, 2n − 1), (2n − 2, 1, 2n − 1),
(0, 2n − 1, 2n − 1), (1, 2n − 2, 2n − 1),
(2n − 2, 2n − 2, 2n−1), (2n − 1, 2n − 1, 2n−1)},
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and

U ′ = {(0, 1, 2n − 1), (1, 0, 2n − 1),
(2n − 1, 0, 2n−1), (2n − 2, 1, 2n−1),
(0, 2n − 1, 2n−1), (1, 2n − 2, 2n−1),
(2n − 2, 2n − 2, 2n − 1), (2n − 1, 2n − 1, 2n − 1)},

Corollary 4.7. The partial latin square cr(Fn,s) is a critical set of Fn,s, with
size s− 2.

Proof. In Corollary 4.4, we proved that Fn,s is the unique completion of cr(Fn,s).
Therefore (by Lemma 1.4), we just need to show that for any x ∈ cr(Fn,s), there
exists a trade T with x ∈ T and T \ {x} ⊆ Fn,s \ cr(Fn,s).

Outside the first quadrant, Fn,s and cr(Fn,s) are identical to En,s and
cr(En,s) respectively. Thus if x ∈ cr(Fn,s) is not in the first quadrant, then
x ∈ cr(En,s) and hence by Lemma 4.6 we have a trade T with x ∈ T and
T \ {x} ⊆ En,s \ cr(En,s). Then by equation (4), T \ {x} ⊆ Fn,s \ cr(Fn,s), so
we are done. This leaves the case where x is in the first quadrant of cr(Fn,s).
By Lemma 4.6, cr(En−1,s1) is a critical set of En−1,s1 , therefore the required
trade exists within the first quadrant.

5 Proof of Theorem 1.2

In Section 3, and in particular Lemma 3.6, we prove Theorem 1.2 for t ≡ 1
(mod 3). The necessary critical set is cr(Dn,s), with t = s. Note that for n = 1,
the only possible value for t is 1; thus we can now assume that n ≥ 2.

In Lemma 4.6 (with Lemma 4.1 (i)), we prove Theorem 1.2 for t ≡ 0 (mod 3)
and t ≥ 7.4n−2 + 2. The necessary critical set is cr(En,s), with t = |cr(En,s)| =
s − 1. We complete the case t ≡ 0 (mod 3) using Lemma 1.1. This lemma
states that there exist critical sets of order m and size t, whenever bm2/4c ≤
t ≤ (m2 − m)/2. Given order m = 2n, this is 4n−1 ≤ t ≤ 22n−1 − 2n−1. Since
(7.4n−2 + 2)− 3 = 22n−1 − 22n−4 − 1 ≤ 22n−1 − 2n−1, for n ≥ 2, we are done.

When t ≡ 2 (mod 3), Lemma 1.1 gives the case n = 2 and t = 5, so we
may assume that n ≥ 3. Corollary 4.7 (with Lemma 4.1 (ii)) gives the required
critical sets for t ≥ 31.4n−3 + 1, and also n = 3, t = 29. The critical set
is cr(Fn,s), with t = |cr(Fn,s)| = s − 2. Combined with Lemma 1.1, which
gives sizes up to 22n−1 − 2n−1, this leaves only the case n = 4 and t = 122
undetermined. This case is given by example in the appendix.

Appendix

The following partial latin square is a critical set of order 24 and size 122.
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0 4 2 6 1 5 3 7

4 0 8 6 2 10 5 7
8 0 10 2 9 11

2 6 3 7 5
4 8 9

6 2 10 4 7
10 2 8 4 12 11 9 13

1 5 3 7 0 8 4 12 2 10 6 14
8 0 12 4 10 2 14 6

5 7 4 12 0 8 6 14 2 10
9 11 12 4 8 0 14 6 10 2

3 7 5 2 10 6 14 0 8 4 12
9 10 2 14 6 8 0 12 4

7 6 14 2 10 4 12 8 0
11 9 13 14 6 10 2 12 4 0
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