
GPU Accelerated Nonlinear Optimization in Radio
Interferometric Calibration

Sarod Yatawatta
ASTRON, the Netherlands

Institute for Radio Astronomy,
Postbus 2, 7990 AA,

Dwingeloo,
The Netherlands.

yatawatta@astron.nl

Sanaz Kazemi
Kapteyn Astronomical
Institute, University of

Groningen,
P.O. Box 800, 9700 AV

Groningen,
The Netherlands.

kazemi@astro.rug.nl

Saleem Zaroubi
Kapteyn Astronomical
Institute, University of

Groningen,
P.O. Box 800, 9700 AV

Groningen,
The Netherlands.

saleem@astro.rug.nl

ABSTRACT

We present the GPU based acceleration of two well known non-

linear optimization routines: Levenberg-Marquardt (LM) and Lim-

ited Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) in ra-

dio interferometric calibration. Radio interferometric calibration is

a heavily compute intensive operation where the same nonlinear

optimization problem has to be solved over many time intervals,

with different data. We achieve a speedup of about 3 times com-

pared with conventional multi-core CPU based optimization by us-

ing GPU accelerated linear algebra routines (CULAtools,CUBLAS).

We present details of our GPU accelerated optimization algorithms

as well as timing comparisons with non-GPU based multi-core CPU

routines.

1. INTRODUCTION
Nonlinear optimization has diverse applications in science, engi-

neering, economics and industry. Such problems are mainly solved

using iterative techniques and are therefore demanding in compu-

tational cost and thus, they are ideal candidates for acceleration

using Graphics Processing Units (GPU). Until recently, few such

attempts have been made. For instance, in [1], a conjugate gradi-

ent method based nonlinear optimization is considered for image

modeling. In [2], a nonlinear optimization method for mesh re-

finement is proposed. Medical imaging applications based on the

GPU accelerated Levenberg-Marquardt (LM) method is considered

in [3, 4].

Note that the general procedure for solving any nonlinear opti-

mization problem is by iteratively solving linear problems multi-

ple times. Linear algebra routines based on GPU acceleration has

grown significantly over the past few years. The CULA toolkit [5]

provides accelerated versions of the standard Linear Algebra Pack-

age (LAPACK) [6]. Moreover, CUBLAS [7] provides the equiva-

lent Basic Linear Algebra Subroutines (BLAS) for the GPU.

In this paper, we consider GPU acceleration of radio interfero-

metric calibration. As shown in Fig. 1, data collected by a radio

interferometer has to be corrected for the corruptions introduced

by the atmosphere (ionosphere, troposphere) as well as the receiver

(beam). These corruptions vary over time and therefore, for a long

observation lasting many hours, these corruptions have to be esti-

mated many times (and over many frequencies). This is a highly

compute intensive optimization problem and some ways of mini-

mizing the computational cost are presented in [8, 9, 10].

In [8, 9], the Space Alternating Generalized Expectation Maxi-

mization (SAGE) algorithm is presented for radio interferometric

calibration. The maximization step of this algorithm is in fact a

Beam

Receiver

Correlator

Celestial Sources

Atmosphere

Figure 1: A basic radio interferometer that correlates the sig-

nals received from far away celestial sources. The signals are

corrupted by the earth’s atmosphere as well as by the receiver

beam pattern.

nonlinear optimization problem.We shall use two optimization rou-

tines for this purpose, and we will present the motivation behind

using two instead of one later. The Levenberg-Marquardt [11, 12]

method is a nonlinear optimization routine with an implicit least

squares cost function. The core of this method is based on solving

a full system of linear equations. On the other hand, the Limited

Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) [13] algo-

rithm is an optimization problem which can take any (smooth) cost

function. Moreover, this method does not solve a full system of

equations and therefore, is more memory efficient. We present the

efficient implementation of both algorithms with combined GPU

acceleration as well as multi-core CPU BLAS routines [14].

We summerize the novelty of this paper: First, as discussed in

[8, 9], the calibration approach presented in this paper has lin-

ear complexity with respect to the number of celestial sources be-

ing solved for, unlike traditional approaches that have quadratic or

cubic complexity. Second, we present a hybrid optimization ap-

proach, unlike existing approaches that basically rely on the LM

algorithm. Thirdly, we present GPU based acceleration of the pro-

posed calibration approach.

The rest of the paper is organized as follows: In section 2, we

present an overview of radio interferometric calibration and the un-

derlying nonlinear optimization problems. Next, in section 3, we

provide details of the nonlinear optimization routines and aspects

of GPU acceleration. Later, in section 4, we provide performance

comparisons. Finally, we draw our conclusions in section 5.

Notation: Matrices are denoted in bold uppercase letters (e.g.

A) and (column) vectors in bold lowercase letters (e.g. v). The

sets of Complex and Real numbers are denoted as C and R respec-

tively. The norm of a matrix or a vector is given by ‖A‖ or ‖v‖

respectively. The identity matrix is given by I and the transpose,

Hermitian transpose and conjugation by (.)T , (.)H and (.)⋆, respec-

tively. The Kronecker product is given by ⊗ while vec(.) reorders a

matrix to a vector.

2. RADIO INTERFEROMETRICCALIBRA-

TION
In this section we give a brief overview of radio interferometry

and calibration. Consider a pair of stations p and q, forming an

interferometer as in Fig. 1. The correlated signal of the two stations

is given by

Vpq =

K∑

i=1

JpiCpqiJ
H
qi + Npq (1)

where Vpq is a 2 × 2 matrix of complex numbers C2×2 representing

the observation (also called the visibilitymatrix) [15]. This signal is

a superposition of electromagnetic radiation emanating from K dis-

tinct celestial sources in the sky. In (1), Cpqi (∈ C
2×2) represents the

source coherency for the i-th source, seen from the interferometer

(or baseline) p-q. The values of Cpqi are well known (and stable)

and can be calculated for any given p, q, i. As shown in Fig. 1, the

electromagnetic radiation from these celestial sources are corrupted

by the atmosphere as well as the instrument. These corruptions are

represented by Jones matrices [15] given by Jpi,Jqi (∈ C
2×2) in (1).

We also have the noise matrix Npq (∈ C
2×2). We provide an image

of the sky made using a radio interferometric simulation in Fig. 2.

The image in Fig. 2 (a) has no corruptions in the data while in Fig.

2 (b), the data is corrupted. The artifacts in Fig. 2 (b) are due to the

corruptions in the data and these corruptions have to be removed

by calibration.

Consider having N stations (or receivers) at distinct locations

on earth. Then, we can form N(N − 1)/2 interferometers which

give data as in (1). Calibration is estimating Jpi for all possible p

and i given the data Vpq. Due to the Earth’s rotation as well as

due to intrinsic variations, the elements in (1) change both with

time as well as with frequency. However, we make a fundamental

assumption that within τ time samples, the values of Jpi remain

constant.

We reformulate the calibration problem as an optimization prob-

lem. As in [8, 9], we first rewrite (1) in vector form as

vpq =

K∑

i=1

spqi + npq (2)

where spqi = (J⋆
qi
⊗Jpi)vec(Cpqi) and vpq = vec(Vpq), npq = vec(Npq).

The parameters in our optimization problem are the elements of

the Jones matrices and since they are complex numbers, we take

the real and imaginary parts separately.

θ = [real(J11[1, 1]), imag(J11[1, 1]), . . .] (3)

Therefore, given N stations and K directions, the number of pa-

rameters becomes N × K × 4× 2 and this is the length of the vector

θ (∈ R8NK). Considering τ time samples (and assuming θ to be

invariant over this time), stacking up (2) with real and imaginary

(a)

(b)

Figure 2: An image of the sky (about one square degree) made

using a simulated interferometric observation (a) without cor-

ruptions (b) with corruptions. The artifacts due to these cor-

ruptions are clearly visible in (b). The causes of these cor-

ruptions are mainly due to the atmosphere (ionosphere, tropo-

sphere) and the instrument (beam shape).

parts separately, we get

si(θ) = [real(sT12i), imag(s
T
12i), real(s

T
13i), . . .]

T (4)

y = [real(vT12), imag(v
T
12), real(v

T
13), . . .]

T

where si(θ) and y are vectors of size N(N−1)/2×8×τ (∈ R
4τN(N−1)).

To sum up: We need to estimate 8NK parameters using 4τN(N−

1) observed data points according to the data model given by (1)

and (2). Exact values for N,K, and τ will vary depending on the

radio interferometer used and other observational parameters in-

cluding frequency, sky coverage, total duration of the observation

etc. We give a detailed example in section 4 and typically, both N

and K will not be greater than a few hundred at the most. The value

for τ depends on the rapidness of the variations of the corruptions

over time. The value of τ can be chosen to be just a few to a few

hundred. It should be noted that a single observation takes data at a

few hundred different frequencies (also called as channels) and the

duration of the observation can last a few hours. Therefore, for a

full observation, the same set of parameters θ has to be estimated

using data taken at different time and frequency intervals.

We reformulate the estimation of θ as a nonlinear optimization

problem. For the LM optimization routine, we define the cost func-

tion as

f(θ) =

K∑

i=1

si(θ) (5)

where f(θ) is a mapping from R8NK to R4τN(N−1). The LM routine

will give the solution for θ that minimizes the cost ‖y − f(θ)‖2. The

additional function required for LM is the Jacobian of f(θ)

J(θ) =
∂

∂θ
f(θ) (6)

where J(θ) is a matrix of size 4τN(N − 1) × 8NK. This can be

calculated in closed form using (1) and (2).

For the LBFGS routine, we have a scalar cost function

f (θ) = ||y −

K∑

i=1

si(θ)||
2 (7)

where f (θ) is a mapping from R8NK to R. Moreover, the extra in-

gredient needed for LBFGS is the gradient of f (θ),

∇ f (θ) = [
∂ f (θ)

∂θ1
,
∂ f (θ)

∂θ2
, . . .]T (8)

where ∇ f (θ) is a vector of size 8NK and θi is the i-th element in θ.

Once again, this can be calculated in closed form using (1) and (2).

As shown in [8, 9], it is possible to consider the elements in

θ corresponding to one direction (say i) to be independent of all

other elements in θ. In other words, the mapping si(θ) in (5) can

be considered to only be a function of the i-th subset of parameters,

which we denote by θi. Using this information and considering

si(θ) = si(θi), we define the Jacobian for the i-th parameter subset

as

Ji(θi) =
∂

∂θi
si(θi). (9)

The function si(θi) is a mapping from R8N to R4τN(N−1) while the Ja-

cobian Ji(θi) is a matrix of size 4τN(N−1)×8N. This enables us to

use the SAGE and Expectation Maximization (EM) algorithms to

reduce the computational as well as memory cost in our optimiza-

tion, as shown in [8, 9].

3. NONLINEAROPTIMIZATIONROUTINES

In this section, we present details of our GPU accelerated calibra-

tion algorithm as well as details of the LM and LBFGS algorithms.

We emphasize that it is possible to select the hardware configura-

tion to get the maximum performance of a given algorithm, for ex-

ample by using more CPUs than GPUs. However, in this work, we

select the converse: In other words, we tune our algorithm to get

the best performance from a given hardware configuration. That

way, the same hardware can be used in other aspects of radio inter-

ferometry with equally optimized algorithms, such as in imaging.

Moreover, we have used GPU equivalents of BLAS and LAPACK

routines (CUBLAS and CULA) as much as possible, rather than

reimplementing them from scratch. The motivation for selecting

CUBLAS and CULA was mainly due to their similarity to classic

BLAS and LAPACK interfaces.

In listing 1, we present our calibration algorithm suitable for a

computer with 2 GPUs. We have selected the parts of the algorithm

that require most amount of computations to be run on the GPUs.

Some computations require significant data transfer between the

host and the GPUs and we have chosen to execute them on the

host.

Listing 1 Calibration

Require: Data y, mappings f(θ), f (θ),si(θi), . . ., Jacobians

J1(θ1),. . ., gradient ∇ f (θ)

1: Initialize θ ← θ0

2: k ← 1

3: while k < max EM iterations do

4: Residual r = y − f(θ)

5: Set of directions D = {1, 2, . . . ,K}

6: while D is not empty do

7: (m, n)← remove two directions from D

8: y1 ← sm(θm) + 0.5r

9: y2 ← sn(θn) + 0.5r

10: Update residual r← r + sm(θm) + sn(θn)

11: LM min‖y1 − sm(θm)‖
2 over θm with sm(θm) and Jm(θm)

12: LM min‖y2 − sn(θn)‖
2 over θn with sn(θn) and Jn(θn)

13: Update θ with new values for θm and θn
14: Update residual r← r − sm(θm) − sn(θn)

15: end while

16: k ← k + 1

17: end while

18: LBFGS min f (θ) over all θ, using current θ as starting point

19: return θ

We make additional comments about listing 1 as follows:

• Line 1: We take initial values such that Jpi matrices are equal

to I. Over time, we initialize them by the solutions obtained

from the previous time interval.

• Line 4: The residual calculation is done on the host.

• Line 7: We select two directions here because we have two

GPUs. If only one GPU is available, we only select one

direction here. Also, if K is odd, for one update, we use

only one GPU. It is straightforward to extend this selection

to more than two in the case we have more GPUs. It is also

possible to schedule multiple LM runs on the same GPU,

provided that it has enough memory and compute capability.

• Lines 8-9: This is actually calculating the conditional mean

and is computed on the host.

• Line 10 and 14: The residual is updated as the parameters θ

are updated by LM, on the host.

• Lines 11-12: Each LM optimization is run concurrently on a

different GPU (see listing 2).

• Line 18: LBFGS uses both GPUs (see listing 3).

Listing 2 Levenberg-Marquardt [16, 17]

Require: Data y, mapping f(θ), Jacobian J(θ)

1: k ← 0; ν← 2; θ ← θ0

2: A← J(θ)TJ(θ); e← y − f(θ); g← J(θ)T e

3: found← (‖g‖∞ < ǫ1); µ← τmaxAii

4: while (not found) and (k < max iterations) do

5: k ← k + 1; Solve (A + µI)h = g

6: if ‖h‖ < ǫ2(‖θ‖ + ǫ2) then

7: found← true

8: else

9: θnew ← θ + h

10: ρ← (‖e‖2 − ‖y − f(θnew)‖
2)/(hT (µh + g))

11: if ρ > 0 step acceptable then

12: θ ← θnew
13: A← J(θ)TJ(θ); e← y − f(θ); g← J(θ)T e

14: found← (‖g||∞ ≤ ǫ1)

15: µ← µmax(1/3, 1 − (2ρ − 1)3); ν← 2

16: else

17: µ← µν; ν← 2ν

18: end if

19: end if

20: end while

21: return θ

In listing 2, we present the LM algorithm, similar to as presented

in [16, 17]. The following additional comments can be made about

listing 2:

• A,e,g,h,θnew as well as a copy of θ are stored in the GPU.

• The initial memory transfers from host to GPU include data

y, initial parameters θ and additional data required to calcu-

late f(θ) and J(θ). This includes source coherencies Cpqi in

(1).

• Line 2: We evaluate both f(θ) and J(θ) on the GPU.

• Lines 2 and 13: We evaluate J(θ)TJ(θ) using DGEMM, J(θ)T e

using DGEMV routines provided by CULAtools [5].

• Line 5: For solving (A + µI)h = g, we use three different

approaches (i) Cholesky Factorization, (ii) QR Factorization

and (iii) the singular value decomposition (SVD), all pro-

vided by CULAtools. The addition of µ to the diagonal of A

is done using a CUDA [18] kernel. Because A is modified

while solving the system of equations, we keep a copy of A

on the GPU. While using the SVD, we use a CUDA kernel

to eliminate singular values close to zero.

• Line 21: The final memory transfer from GPU to host is

mainly the updated value of θ.

• All vector operations and norm calculations are done by us-

ing CUBLAS.

• All conditionals and loops (the while loop on line 4, the if

conditionals on lines 3, 6, 11, 14) are run on the host, using

references to GPU memory locations.

The implementation of LBFGS is given in listing 3, extracted

from [13]. Note that because of memory limitations, we never ex-

plicitly constructHk, instead we calculate this by M pairs of vectors

uk and vk. For additional information, the reader is referred to [13],

chapter 9.

Listing 3 LBFGS [13]

Require: Data y, mapping f (θ) gradient ∇ f (θ), starting point θ0,

memory M > 0

1: k ← 0

2: repeat

3: Choose H0
k

4: pk ← −Hk∇ f (θ)

5: θnew ← θ + αkpk

6: Where αk chosen using line search

7: if k > M then

8: Discard the vector pair uk−M , vk−M from storage

9: end if

10: Compute and save uk ← θnew − θ; vk ← ∇ f (θnew) − ∇ f (θ)

11: θ ← θnew
12: k ← k + 1

13: until convergence or k > max iterations

14: return θ

Additional comments about listing 3 are as follows:

• We run all code on the host, using multi-core GOTOBLAS

routines [14], except the calculation of gradient ∇ f (θ).

• The initial memory transfers from host to GPU include data

y, initial parameters θ and additional data required to calcu-

late ∇ f (θ). This includes source coherencies Cpqi in (1).

• Line 4: The gradient calculation is done using both GPUs.

The cost function (7) can be considered as an inner product

of a vector (of length 4τN(N − 1)). This inner product is

divided into two inner products of length 2τN(N − 1) and

this is calculated using the two GPUs. For each parameter in

(8), we have to calculate this summation (after evaluating the

derivative of each element of the vector in closed form).

• Line 4: The memory transfer from the GPU to the host is

a scalar, one for each parameter in (8). However, for each

iteration, we need to transfer the updated value of θ from the

host to both GPUs.

• Lines 3, 4 and 6: More detail about these steps can be found

in [13], chapter 9.

To wrap up this section, we discuss the motivation behind us-

ing two optimization algorithms in our calibration approach. The

dimension of the Jacobian for the full problem in (6) is 4τN(N −

1) × 8NK, that is prohibitively expensive for GPUs (and even for

a normal computer) for large values of N, K, and τ. Therefore, we

choose the EM algorithm in combination with the LM optimization

to significantly cut down the storage requirement. In the proposed

approach, this memory requirement is only 4τN(N − 1) × 8N and

is feasible for a GPU. The LM algorithm is a combination of both

steepest descent as well as Newton nonlinear optimization meth-

ods. Therefore, when we are far away from the desired solution,

the combination of steepest descent and Newton methods enable us

to reach a point close to the optimal solution, albeit only for a sub-

set of the parameters at a time. At this point, we switch to LBFGS

which is more memory efficient and uses the full parameter space.

In this way, we overcome the limitation of slow convergence of the

LBFGS algorithm. As mentioned before, since we have to solve

the same optimization problem over many time and frequency in-

tervals, we have to keep the computational time spent on a single

calibration fixed. In other words, we have to keep the number of it-

erations fixed, regardless of convergence in our calibration. There-

fore, by the proposed scheme, it is possible to reach a solution that

drives the error below a desired threshold with a fixed number of

iterations.

4. PERFORMANCE EVALUATION
We consider the performance of the proposed algorithm in a

computer with 8 (2 CPUs with 4 cores each) Intel Xeon E5520

cores (with hyperthreading) and two NVIDIA Tesla M1060 GPUs.

The host memory is 12 GB and each GPU has 4 GB memory. For

comparison, we have our algorithm implemented without GPU ac-

celeration and only using GOTOBLAS [14] low level BLAS and

LAPACK routines (using 16 threads). We calibrate a simulated in-

terferometric observation with N = 50 stations while varying the

number of directions K that we calibrate. For each calibration, we

use τ = 120 time samples (corresponding to 20 minutes of data)

and we find the average compute time (wall clock) over different

time and frequency intervals. All computations are done using dou-

ble precision arithmetic.

For the optimization we chose the following parameters, mainly

to reach the required level of accuracy desired with minimum amount

of computation: For the EM stage, we choose 3 EM iterations, with

4 LM iterations within each EM iteration. For the LBFGS stage,

we choose 10 iterations with memory size (size of the past history

used in calculating the step direction) of M = 7. We have also

tested three linear system solvers in the LM stage: (i) Cholesky

factorization, (ii) QR factorization, and (iii) the SVD.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

No. of Directions (K)

C
o
m

p
u

te
 T

im
e
/m

in
u

te
s

GPU−Cholesky

GPU−QR

GPU−SVD

CPU−Cholesky

CPU−QR

CPU−SVD

Figure 3: Timing comparison between GPU accelerated cal-

ibration (dashed-blue lines) and calibration without GPU ac-

celeration (solid-red lines). Both versions have three different

linear solvers in the LM stage. The GPU accelerated version is

about three times faster.

In Fig. 3, we have given the timing results for the full algorithm.

The time of the LM and LBFGS stages are given in Figs. 4 and 5,

respectively. We make a few observations based on these results:

First, the GPU accelerated version is about three times faster than

the one without GPU acceleration. Moreover, the bulk of the com-

pute time is spent on the LM algorithm, where we see a factor of 3

speedup. Since we only calculate the derivative using the GPUs in

the LBFGS stage, the speedup is not significant but the total time

spent on LBFGS is much smaller. Secondly, both CPU and GPU

versions have linear complexity with the number of directions be-

ing calibrated. A more subtle fact is that while the SVD based

linear solver takes more time in the non-GPU based version (as ex-

pected), all three solvers take the same amount of time in the GPU

accelerated version. Generally, the SVD based linear solver is the

most robust of the three and we can use this solver in the LM op-

timization without any additional cost. It should also be noted that

conventional calibration has quadratic (and even cubic) complexity

and the approach proposed in [8, 9] is much faster.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

No. of Directions (K)

L
M

 C
o
m

p
u

te
 T

im
e
/m

in
u

te
s

GPU−Cholesky

GPU−QR

GPU−SVD

CPU−Cholesky

CPU−QR

CPU−SVD

Figure 4: Timing comparison of LM with GPU acceleration

(dashed-blue lines) and without GPU acceleration (solid-red

lines). Both versions have three different linear solvers.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

No. of Directions (K)

L
B

F
G

S
 C

o
m

p
u
te

 T
im

e
/m

in
u
te

s

GPU

CPU

Figure 5: Timing comparison LBFGS with GPU acceleration

(dashed-blue line) and without GPU acceleration (solid-red

line).

5. CONCLUSIONS
We have demonstrated the feasibility of accelerating radio inter-

ferometric calibration using GPUs. We have done this by optimiz-

ing the underlying optimization routines for the GPU. As both GPU

hardware and low level software improves, we hope to increase the

throughput gained by GPU acceleration in the future.

6. ACKNOWLEDGEMENTS
We thank the members of the LOFAR Epoch of Reionization

key science project for valuable comments and suggestions as well

as for providing the GPU computing cluster as a testbed. We also

thank the anonymous reviewers for a careful and insightful review.

References

[1] K. E. Hillesland, S. Molinov, and R. Grzeszczuk, “Nonlinear

optimization framework for image based modeling on pro-

grammable graphics hardware,” in proc. ACM SIGGRAPH,

2003.

[2] S. Dong and M. Garland, “Iterative methods for improving

mesh parameterizations,” in proc. IEEE Shape Modeling In-

ternational Conference, 2007.

[3] B.R. Smith, G. Hamarneh, and A. Saad, “Fast GPU fit-

ting for kinetic models for dynamic PET,” in proc. Interna-

tional Workshop on High-Performance Medical Image Com-

puting for Image-Assisted Clinical Intervention and Decision-

Making (MICCAI HP), 2010.

[4] B. Li, A. Young, and B. Cowan, “GPU accelerated non rigid

registration for the evaluation of cardiac function,” in proc.

Medical image computing and computer assisted interven-

sion, vol. 5242, pp. 880–887, 2008.

[5] J.R. Humphrey, D.K. Price, K.E. Spagnoli, A.L. Paolini, and

E.J. Kelmelis, “CULA: Hybrid GPU accelerated linear alge-

bra routines,” in proc. SPIE Defense and Security Symposium

(DSS), 2010.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK Users’ Guide,

Third Ed., Philadelphia USA: SIAM, 1999.

[7] CUBLAS, http://developer.nvidia.com/cublas.

[8] S. Yatawatta, S. Zaroubi, G. de Bruyn, L. Koopmans, and

J. Noordam, “Radio interferometric calibration using the

SAGE algorithm,” in proc. 13th IEEE DSP workshop, pp.

150–155, Jan. 2009.

[9] S. Kazemi, S. Yatawatta, and S. Zaroubi, “Clustered radio

interferometric calibration,” in proc. IEEE Statistical Signal

Processing Workshop (SSP), Nice, France, Mar. 2011.

[10] S. Kazemi, S. Yatawatta, S. Zaroubi, P. Labropoluos, G. de

Bruyn, L. Koopmans, and J. Noordam, “Radio interferomet-

ric calibration using the SAGE algorithm,” MNRAS, vol. 414,

no. 2, pp. 1656–1666, June 2011.

[11] K. Levenberg, “Amethod for the solution of certain non linear

problems using least squares,” The Quarterly Jnl. of App.

Math., vol. 2, pp. 164–168, 1944.

[12] D. Marquardt, “An algorithm for least squares estimation of

nonlinear parameters,” SIAM Jnl. of App. Math., vol. 11, pp.

431–441, 1963.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, New

York USA:Springer, 1999.

[14] K. Goto and R. van de Geijn, “Anatomy of high-performance

matrix multiplication,” ACM Transactions on Mathematical

Software, vol. 34-3, pp. 1–25, 2008.

[15] J. P. Hamaker, J. D. Bregman, and R. J. Sault, “Understand-

ing radio polarimetry, paper I,” Astronomy and Astrophysics

Supp., vol. 117, no. 137, pp. 96–109, 1996.

[16] M.I.A. Lourakis, “levmar: Levenberg-Marquardt

nonlinear least squares algorithms in C/C++,”

http://www.ics.forth.gr/~lourakis/levmar/,

2004.

[17] K. Madsen, H.B. Nielsen, and O. Tingleff, “Methods for non-

linear least squares problems,” Lecture Notes: Technical Uni-

versity of Denmark, 2004.

[18] CUDA, http://www.nvidia.com/cuda.

