Tracking Causality in Distributed Systems:
A Suite of Efficient Protocols

JEAN-MICHEL HELARY
IRISA, University of Rennes 1, France

GIOVANNA MELIDEO
DIS, University of Rome and University of L'Aquila, Italy

MICHEL RAYNAL
IRISA, University of Rennes 1, France

Abstract

Vector clocks are the appropriate mechanism to track causality among the
events produced by a distributed computation. Traditional implementations
of vector clocks require application messages to piggyback a vector of
integers (whera is the number of processes).

This paper considers the tracking of the causality relation on a subset of
events (hamely, the events that are defined as “relevant” from the applica-
tion point of view). It first proposes simple and efficient implementations of
vector clocks where the size of message timestamps can be less, tinan
a context where communication channels are not required Az and
where there is no a priori information on the connectivity of the commu-
nication graph or the communication pattern. Then, it presents a protocol
that provides a correct timestamping of the relevant events in presence of the
following constraint: a message timestamp can piggyback at mesent
identifiers (wherév is a predefined constarkt,< b < n). To ensure this con-
straint, processes can be forced to produce additional “null” relevant events.
Finally, the paper presents and proves correct a protocol that tracks (on-the-
fly and without the help of an external observer) the immediate predecessors
of each relevant event.

This set of protocols defines a suite of protocols that, in addition to their
efficiency, provides a comprehensive view of causality tracking in distributed
systems.

Keywords

Asynchronous System, Causality Tracking, Dependency Vector, Hasse Diagram,
Immediate Predecessor, Message-Passing, Timestamp, Vector Clock.

2 Proceedings Sirocco 2000

1 Introduction

A distributed computation consists of a set of processes that cooperate to achieve
a common goal. A main characteristic of these computations lies in the fact that
the processes do not share a common global memory, and communicate only by
exchanging messages over a communication network. Moreover, message transfer
delays are finite but unpredictable. This computation model defines what is known
as theasynchronous distributed system models particularly important as it
includes systems that span large geographic areas, and systems that are subject to
unpredictable loads. Consequently, the concepts, tools and mechanisms developed
for asynchronous distributed systems reveal to be both important and general.

Causalityis a key concept to understand and master the behavior of asyn-
chronous distributed systems. More precisely, given two eweatsl f of a dis-
tributed computation, a crucial problem that has to be solved in a lot of distributed
applications is to know whether they are causally related, i.e., if the occurrence of
one of them is a consequence of the occurrence of the other. Events that are not
causally dependent are said to be concurrent. Vector clocks have been introduced
to allow processes to track causality (and concurrency) between the events they
produce. The timestamp of an event produced by a process is the current value of
the vector clock of the corresponding process. In that way, by associating vector
timestamps with events it becomes possible to safely decide whether two events
are causally related or not.

In many applications, detecting causal dependencies (or concurrency) on all
events is not desirable. More precisely, when analyzing a distributed computation,
one is interested only in a subset of events calledale/antevents. This paper
concentrates on the tracking of the causal relationship on such events. It proposes
a suite of protocols that realize such a tracking, in a context where communication
channels are not required to bBEO, and where there is no a priori information
on the communication graph connectivity or the communication pattern. It first
presents an efficient implementation of vector clocks where the size of message
timestamps can be less thar(the number of processes). Then, it introduces a
protocol that provides a correct timestamping of the relevant events in presence
of the following constraint: a message timestamp can piggyback atbrexsnt
identifiers (wherd is a predefined constarit,< b < n). To ensure that this con-
straint is never violated, this protocol can force a process to produce an additional
“null” relevant event just before it sends a message.

Due to its definition, the partial order defined by the causality relation on the
relevant events includes transitivity. Said another way, given only the vector times-
tamp associated with an event it is not possible to determine which events of its
causal past are its immediate predecessors. Yet, some applications require to as-
sociate (on-the-fly and without additional messages) with each relevant event the
set of its immediate predecessor relevant events. The paper presents and proves

Tracking Causality in Distributed Systems 3

correct a protocol that provides each relevant event with a timestamp made up
of “pointers” that exactly identify its immediate predecessors. To our knowledge,
this is the first time a correctness proof is presented for an immediate predecessors
tracking protocol.

The protocols are presented in an incremental way. This helps to a better un-
derstanding of their behavior. Moreover, that shows that they actually define a
suite of protocols that, in addition to their efficiency, provides a comprehensive
view of causality tracking in distributed systems.

The paper is composed of six sections. Sections 2 and 3 introduce the compu-
tation model and vector clocks, respectively. Then, Sections 4, 5 and 6 incremen-
tally presents three causality tracking protocols.

2 Computation Model

2.1 Distributed Computation

A distributed program is made up of sequential local programs which commu-
nicate and synchronize only by exchanging messages. A distributed computation
describes the execution of a distributed program. The execution of a local pro-
gram gives rise to a sequential process. {t,P,,...,P,} be the finite set of
sequential processes of the distributed computation. Each ordered pair of commu-
nicating processe$, P;) is connected by a reliable chanmgl through whichP

can send messagesRp We assume a process does not send messages to itself.
Message transmission delays are finite but unpredictable. Moreover, channels are
not necessarilyIFO. Process speeds are positive but arbitrary. In other words, the
underlying computation model is asynchronous.

The local program associated wih can include send, receive and internal
statements. The execution of such a statement produces a corresponding inter-
nal/send/receive event. These events are callizditive eventsLet H be the set
of events produced by a distributed computation, ik thex-th event produced
by proces$?. This set is structured as a partial order by Lampdréippened be-

forerelation [11], denoted? and defined as follows:

(i=jAx+1=y) (local precedencey
e hb e>J/ o (Im:g'=sendm) A e’J’ = receivém)) (message precedence)

O aBg nez™ e!) (transitive closure)

The partial ordeH = (H,ﬂi) constitutes a formal model of the distributed com-
putation it is associated with. Figure 1 depicts a distributed computation using the
classical space-time diagram.

4 Proceedings Sirocco 2000

Figure 1: A Distributed Computation

In the rest of the paper, we will use the following definitions and notations:

e Thecausal pasbf an eventis the set of event$ such thatf LY

e The setf (e) contains the events of the causal past,qfluseitself.

o If X; is a local data structure managed®Bythene.X; denotes the value of
X just after the occurrence efand before the occurrence of the next evenPon

e pred(e) denotes the event immediately precedémn the same process (if
it exists).

e For every procesB, H; denotes the sequence of events produceld by

2.2 Relevant Events

At some abstraction level only some events of a distributed computation are rele-
vant [5, 12] (those events are sometimes catlbservablesvents). The decision

to consider an event as relevant can be up to the process, or triggered by some
protocol. In this paper, we are not concerned by this decision. As an example,
in Figure 1 only the black events are relevant. Ret H be the set of relevant
events. Let— be the relation oR defined in the following way:

V(e f)cRxR:(e—f) e (e ™).

b (1,2) (1,2) 1.3 (1,1) (1,2) (1,3)
L /ﬂqu\\\ /{?Tigxi/’/ﬂggu ?\\>\\\x///’,‘
(2,1) 22)/ (23
P> @1 =4
,1,0 (1,2,0] [1,3,0] (2,2)
(3,1) (32 (31)
o 3432

0,0,1] (1,1,2)
a) b)

Figure 2: a) Relevant Events and their Timestamps. b) Hasse Diagram

The poset(R, —) constitutes an abstraction of the distributed computation,
namely, &communication and relevant event pattdmthe following we consider

Tracking Causality in Distributed Systems 5

a distributed computation at such an abstraction level. Moreover, without loss
of generality we consider that a relevant event is not a communication event (if
a communication event has to be observed, a relevant event can be generated
just after the corresponding communication event occurred). Figure 2.a depicts
an abstraction of the computation described in Figure 1 where only the black
events are relevant. Each relevant event is identified by a pair (process id, sequence
number). Finally, Figure 2.b represents the transitive reduction (Hasse diagram)
associated with this abstractfon
In the following, R, denotes the set of relevant events producef by

3 Vector Clocks

Vector clocks have been empirically used as an ad hoc device to solve specific
problems before being captured and defined as a first class concept with the asso-
ciated theory, simultaneously and independently by Fidge [3] and Mattern [13].

A vector clock system is a mechanism that associates timestamps with events
in such a way that the comparison of their timestamps indicates whether the cor-
responding events are or are not causally related (and, if they are, which one is the
first). More precisely, each proceBshas a vector of integek8G[1..n] such that
VGj] is the number of (relevant) events producedpihat belong to the current
causal past oR. Note thatv Gi] counts the number of relevant events produced
so far byR. When a procesB, produces a (relevant) eveetit associates with
it a vector timestamp whose value (deno&dC) is equal to the current value
of VG. Figure 2 associates its vector timestamp with each relevant event of the
described distributed computation.

Let eVC and f.VC be the vector timestamps associated with two distinct
(relevant) evente and f, respectively. The following property is the fundamental
property associated with vector clocks [3, 7, 13]:

(e— f) < ((vk: eVCK < f.VCK)) A (3k: eVCK < f.VCK]))

(Vvk: eVCK < fVCK) A (Zk: eVCK < f.VCIK]) is denoteceVC < f.VC.
Let B be the process that has produeed his additional information allows to
simplify the previous relation that reduces to [3, 13]:

V(e f) e RxR: (e— f) & (eVCli] < f.VCi])

The traditional implementation of a vector clock system is given in [3, 13].
The major drawback of this implementation lies in in the fact that each message
has to carry an array of integers. It has been shown that, in the worst case, this
is a necessary requirement [1]. Nevertheless, this implementation can be easily

IThetransitive reductiorof a dag includes all its edges except its reflexive edges and its transitive
edges.

6 Proceedings Sirocco 2000

improved in the following way. WheR sends a messageRp, it may piggyback

only the entries that have been modified since its last sending to this picess
This improvement, proposed in [14], requimaso channels. It has a small local
memory overhead, namely, a process has to manage only two additional arrays of
sizen.

4 Efficient Implementations of Vector Clocks

This section provides two protocols implementing a vector clock system that sat-
isfy the following property: a message has not to systematically piggyback the
whole vector clock of its sender. To our knowledge, the proposed protocols are
the first that provide this property (on-the-fly, without additional control messages
and without the help of an external observer), in a context where (1) channels are
not necessarily¥iFo (but, if the channels areiFo, the protocol can still be im-
proved), and (2) there is no a priori information on the communication graph
connectivity or the communication pattern.

In order to attain this goal, each proc&stocally maintains additional control
information, namely, a boolean matri;. The protocol?1 usesM; to reduce
the number of vector clock entries that have to be transmitted. The prcdcol
shows that this number can still be reduced if we allow a message to carry a few
boolean vectors. It follows that the protoeBl’ exhibits a tradeoff in the control
information piggybacked by messages (integatsoolean arrays).

4.1 ProtocolPl

This protocol relies on a very simple idég:has not to transmit to a proceBsan
entry of VG that is already known bf;. To implement it, each proce®shas a
boolean matriXM;. Those matrices are managed in order to satisfy the following

property:
Myc = (V(i,],K): ((Mi[j,kl=1) < (toR’s knowledgeV Cj[k]| >VGK])))

Let us note that, from the definition of vector clocks and the previous property
on M;, we can easily deduce the following invariawt{(i, j) : M;[j,j] =1 and
Mili, j] = 1 (The diagonal and th¢h row of M; remain always equal tb).

For a proces§&, the protocol implementing vector clocks with such matrices
M is defined by the following set of rules:

[RO] Initialization:
-VGI1..n] is initialized to[0, . .., 0],
-V (j,K) : Mi[],K] is initialized to1.
[R1] Each time it produces a relevant event
- P increments its vector clock entyG[i] (VG[i] :=VGJi] + 1),

Tracking Causality in Distributed Systems 7

- B associates witl the timestamgVC=VG,
- B resets théth column of its boolean matrix(j #i: Mi[j,i] := 0 (3.
[R2] When it sends a messageto Pj, P attaches tan the following set
(denotedn.V C) of event identifiers{(k,VGIK]) | Mi[j,k] = 0}.
[R3] When it receives a messagdrom Pj, B executes the following updates:

V(k,VCjk]) € mVCdo:
caseVG[K] < mVCIK then VGK] := mVCK;
Ve, kMK :=0; Mi[j,k =1
VGK = mVCIK then M;j[j,k:=1
VG K > mVCIK] then skip
endcase

The case offFiFo channels. If communication channels arFo, when a pro-
cessh sends a message, in addition to the statements defined in the rule R2, it can
immediately execute the updatk[j, k] := 1. TheFIFO property of channels can
actually reduce the number of pairs piggybacked by messagil|{ifk] = 1 at

the next sending t&;}, VG k] will not be transmitted again t8;).

4.2 Correctness Proof

Due to space limitations, the detail of this proof is omitted. The complete proof
can be found in [8]. It consists in proving, by induction on the pésethe two
following invariants:

Myc = (VeeHi, V(j,k): (eMi[j,k=1) <
((1(e)NR¢=10) Vv (Im sent byP; to B, st. sendm).VC;k| =eVGk]))

VC=(Vi: VeeHi: Vk: |1(e)NR| =eVGIK]).

4.3 Protocol?Pl

The protocol?l’ aims to increase the number of entriesvyfthat are set td,

and consequently decrease the number of g&ildG [k]) that a message has to
piggyback. This is obtained without adding new control information, but requires
messages to piggyback boolean arrays. This shows that, for each message, there is
a tradeoff between the number of paiksV G [K]) that are saved and the number

of boolean vectors that have to be piggybacked.

2Actually, the value of this column remains constant after its first update. Inachi[j,i] can
be set to 1 only upon the receipt of a message fRynincluding (j,VC;[i]). But, asMi,i] = 1, P;
does not senW C[i] to R. So, itis possible to improve the protoeBl (and the protocaP2, Section
5.2), by executing this “reset” of the colunM [,i] only whenP, produces its first relevant event.

8 Proceedings Sirocco 2000

The rules RO and R1 are the same as before. The rules R2 and R3 are modified
in the following way. LetM; [, k] denote thé-th column ofM;.

[R2] When it sends a message to Pj, P attaches to it the following set
(m.VC) of triples (each made up of a process id, an integer antd@olean array):
{(KVG[K,Mi[,K)) | Mi[j.K =0}

[R3] When it receives a messagefrom P, B executes the following up-
dates:

V(k,VC;[k],M;j[K|[1..n]) e mVCdo:
caseV Gk < mVCIK] then VG[K] := mVCIK];
Ve #£1: Mi[¢,K := mM[k, ¢
VG[K =mVClK] then V¢ #i: M;[{,K := maxM;[¢,k],m.M[k, ¢])
VGI[K > mVCIK then skip
endcase

This shows that, in the first case, valldd?, k] (k, ¢ # i) are now updated with
actual values of the sender’s matrix, instead of systematically being reset to 0.
Similarly, in the second case, more values are updated (on the basis of a more
recent information) than in protocatl. The proof of protocolPl’ (left to the
reader) is similar to the previous one. In the rest of the papes;y denotes the
modification that transforms protoc@tl into protocol?’.

5 Bounding the Size of Message Timestamps
5.1 The Problem

This section addresses the problem of associating a timestamp with each relevant
event under the following constrainttFbound” Constraint): a message can pig-
gyback at mosb relevant event identifiers (i.e., pairs of process id + seq number),
whereb is a predefined constarit € b < n).

5.2 Protocol P2

Additional test. A way to solve this problem consists in forcing a process to
generate a “null” relevant event when the timestamp it has to send is about to
have more thab elements. This “null” relevant event acts as a reset that reduces
to 1 the size of the next timestamp. This can be easily realized by adding the
following test to the rule R2 of protoca?l.

[Test] WhenR has to send a messageto Pj, it first computesd = % |
{k : (Mi[j,kl =0)} |. If d > b, thenP generates a “null” relevant event (so,
it executes R1, which resetkto 1), and afterwards attaches noits timestamp
before sending this message.

Tracking Causality in Distributed Systems 9

Dependency vectors. As the numbers of entries that can be transmitted are now
bounded, each vector clock used in proto@alcan no longer be maintained and
has to be replaced by a data structure that “approximates” it, nantgpendency
vector. Similarly to a vector clock/G, a dependency vect®V; tracks causal
dependencies but in a “looser” way. More precisgly# i: DVi[k] <VG]K], and
DVifi] = VGlil.

Protocol P2. In addition to the previous points, an important difference be-
tween protocolPl and protocolP2 lies in the update of the matriM; whenP,
produces a relevant evem(Rule R1).M; is reset in such a way thBt “forgets all

the past”, except the eveatMore precisely, all entries dfl; are set tdl, except
theith column whose entries (bM;|i,i]) are reset t®. The resulting protocaP2

is as follows.

[RO] Initialization:

- DVi[1..n] is initialized to[0, ..., 0],

-V (j,K) : Mi[j,K] is initialized to1.

[R1] Each time it produces a relevant event

- P increments its dependency vector e [i] (DVi[i] := DVi[i] + 1),

- P associates witlke the timestamg.DV = DV,

- B resets the boolean matrix as follows:

* ¥(j,K) such thatj,k # i : Mi[j,K :=1().
*Vj#£i: Mi[],i]:=0.
[R2] When it sends a messageto P;, P does the following:

- B first computesd = Zi.j | {k : (Mj[j,k] =0)} |. If d > b, thenPR,
generates a “null” relevant event (so, it executes R1, which resetd). Then,
before sendingn, B, attaches to it the following set (denotedDV) of event
identifiers:{(k,DVi[K]) | Mi[j,k] = 0}.

[R3] When it receives a messagdrom Pj, B executes the following updates:

V(k,DVj[k]) € mDV do:
caseDVi[k] < m.DV[K] then DV;[k] := m.DVk];
Ve £,k Ml K :=0; Mi[j,k] :=1
DVi[k| = m.DV[K] then M;i[j,k]:=1
DVi[k] > m.DV[K] then skip
endcase

So, protocokP?2 is incrementally obtained from protoc®tl by (1) replacing
VG by DV, (2) extending the reset rule in R1, and (3) adding a test in R2. More-
over, let us note that, as before the transformatiary, can be applied to protocol
P2 to get a protocolP?’.

3Note that theth row of M; has not to be updated as it is always equallio..,1) (see Section
4.1).

10 Proceedings Sirocco 2000

From a dependency vector timestamp to a vector clock timestamp. As we
have seen, for any evemlt eDV is not necessarily equal t@VC (except for
the entryi, namely,DVi[i] = VG]i]). It has been shown in [6] that the vector
clocksV C can be rebuilt form the dependency vectoxs by computing, for each
relevant eveng, the following value:eVC := max|t_e (f.DV). This compu-
tation is iteratively implemented by the following “fixed-point” procedure. The
function max(V1,V2) used in this procedure is defined in the following way:
vee{l,...,n} : max(V1,V2)[{] = maxV1[(],V2[{]).

procedure Vector_Timestamp(var e : relevant event)

(1) VC:=eDV;%VCis an auxiliary vector variable %

(2) repeat oldVC:=VC;

3) vx e {1,...,n} do let f bethe event identifiedx,old_VC[x]);
4) VC:=max(VC, f.DV) enddo

(5) until (VC=o0ldVC);

(6) return (VC) % the final value o¥ C defineseVC %

5.3 Related Work

The particular case where each primitive event is a relevant event and bvhere
corresponds to theirect dependencechnique introduced in [6]. The problem is
easier to solve despite= 1, as all communication events are “visible” (this issue

is discussed at length in [4, 10]). Thecremental trackingechnique introduced

in [10] has been designed to circumvent the limitations of the direct dependency
technique when the relevant events are only a subset of the primitive events. To
attain this goal, the proposed protocol tracks dependency incrementally and man-
ages lists of clock values. As it does not manage special data structures to reduce
timestamp sizes, messages can never carry less control information than in proto-
col P2.

A principle similar to the generation of “null” events has been investigated in
communication-based checkpointipgotocols [9]. Independently from one an-
other, processes takasiccheckpoints (which correspond to relevant events). In
order no basic checkpoint be useless (i.e., any local checkpoint has to belong to
at least one consistent global checkpoint), the checkpointing protocol can force
processes to take additional local checkpoints, narfieetyedcheckpoints (which
correspond to “null” events). The principle to add “null” events is actually very
general (mainly encountered in synchronization problems).

Tracking Causality in Distributed Systems 11

6 Tracking the Immediate Predecessors

6.1 The Notion of Immediate Predecessor

Some applications (e.g., analysis of distributed executions [4], detection of dis-
tributed properties [5]) require to determine (on-the-fly and without the help of
an external observer) the transitive reduction of the relatiorfi.e., we must

not consider transitive causal dependency). This means that we have to asso-
ciate with each relevant eveet an attributee.T S that “points on” all its im-
mediate relevant predecessors and on no other event. As an example, let us con-
sider Figure 2.b). The eveaidentified(1, 3) has a single immediate predecessor,
namely the event identifie(®,2), hencee T S= {(2,2)}. Differently, the event
f=(2,2) has two immediate predecessors, namely, the ey@nls and (1,2),
hencef. TS={(2,1),(1,2)}.

To our knowledge, the distributed determination of immediate predecessors
has been addressed for the first time in [2]. Some of us have also addressed it
[4] to detect properties on the control flows of distributed computations. In both
previous papers, this determination is presented with examples and without a cor-
rectness proof. So, to our knowledge, the proof of Section 6.3 is the first proof of
an immediate predecessor tracking protocol.

The proposed protocol requires each application message to piggyback a com-
plete vector clock. An important issue consists in the design of a protocol that
should allow some messages to piggyback less information, in the same manner
as causality tracking protocols presented above. To our knowledge, this problem
has never been explicitly stated (and no solution has been proposed). This paper
leaves the open problem.

6.2 ProtocolP3

Data structures. Let us consider a relevant evemproduced by a process.
The attributee. T Sis actually another kind adimestampassociated with events.
Such timestamps involve two data structures.

e When it produceg, P has to decide, for everj;, whether the last relevant
event ofP; in the causal past adis an immediate predecessorefThis allows
R to compute which are the members of the timestams i.e., the first part of
each paifj,—) ofeTS

To take a correct decisioR, manages a boolean arrd;, whosejth entry has
the following meaninglP;[j] = 1 means that, if the eveetcurrently produced by
R is relevant, then the last relevant eventRyf known byR, is an immediate
predecessor af.

e The second data structure is a vector clock, which all@vis determine the
second part of each pajr-,x) of eTS

12 Proceedings Sirocco 2000

Protocol £3. The following protocol associates with each relevant event a times-
tamp made of the identifiers of its immediate predecessors [2, 4].
[RO] Initialization:
- BothVG|1..n] andIP;[1..n] are initialized t0[0, .. ., 0].
[R1] Each time it produces a relevant event
- R increments its vector clock entyG[i] (VG[i] :=VGJi]+ 1),
- B associates witke the timestame. TS= {(k,VGIK]) | IR [K =1},
-PresetdPi: Ve #£i: IR :=0;IR[i] :=1.
[R2] WhenP; sends a messageto Pj, it attaches ton the current values of
VG (denotedn.VC) and the boolean arrdf; (denotedn.IP).
[R3] When it receives a messagdrom Pj, B executes the following updates:

vk: caseVGk] < mVCIK| then VG[K :=mVCIK];
IR[K := mIP[K]
VG [k = mVCIK then IP;[K] := min(IP;[k], m.IP[K])
VG[k] > mVCIK] then skip
endcase

6.3 Correctness Proof
Lemma 1l Vi, Vee H;, Vk: eVGK =|1(e)NR].

Proof. The proof follows directly from the fact that the management of the
vectorsV G is the same as the traditional vector clock implementation (a formal
proof can be found in [7]). O

Let e be an event produced B (e € H;). In the rest of the proolastr(e k)
denotes thdeVGK])th relevant event oR. From Lemma 1, we deduce that
lastr(e k) is the last relevant event & that is known byR. Whene € R we
havelastr(e,i) = e.

Lemma?2 LetIP(ek) =
(elRk|=1) < [(eVGIK >0)A(ee R=k=i)A(e¢R= (€ € R: lastr(e k)
hb g 1B e))]. Vi, Ye e Hi, vk, we have:l P(e k).

Proof. The proof is by induction on the posit Due to space limitations, some
parts of the proof are omitted here (see [8]).

Base case. IP(e k) holds ifethe first event of a proce$®. Omitted.

Induction case. Letee H;. The induction assumption igk, Ve € (1(e)—{e}),
the predicatel P(€,k) holds. We have to prove thatk, the predicate P (e k)
holds. We proceed by case analysis.

Tracking Causality in Distributed Systems 13

e eis an internal but not relevant event,eis a send event. Omitted.

e eis arelevant evene(c R). Omitted.

e eis areceive event. Let=receivém) andP; be the sender ah.

Due to rule R3, we consider three cases:
Case 1VG[k] < mVCIK. In that case, we havexV G k| = sendm).VC;[k] >
pred(e).VGIK], from which we conclude thalfastr(e k) = lastr(sendm),k).
Moreover, due to R3, we hawd P;[k] = sendm).IP;[K].

From the previous relations, the induction assumptidtisendm), k) and

sendm) ¢ R, we obtain:

(sendm).IPj[k] = 1) < ((sendm).VG k] > 0)A
(2€ €R: lastr(sendm),k) ™ & ™ sendm))), i.e.,

(elR[K = 1) < ((eVG[K > 0) A (8€ € R: lastr(sendm),k) 2 & 22
sendm))), i.e.,

(elP[K =1) < ((eVGK > 0) A (A€ € R: lastr(e k) 2 & ™ sendm))).

More, by vector clock propertieg,pred(e).VGk] < sendm).VCjk]) =
—(sendm) hb pred(e)) = (A€ € R: sendm) hb g I receivém) = €). Hence,

(elP[K = 1) < ((eVG[K > 0) A (A€ € R: lastr(e k) 2 & ™ ¢)), from
which we conclude, asis not a relevant event, thatP (e k) holds.
Case 2VG k] = mVG[K]. In that case, we have the following equalities:

pred(e).VGIk = sendm).VG k] = eVGIK],

lastr(pred(e),k) = lastr(sendm), k) = lastr(e k).

Moreover, due to the induction assumption, we hd#sendm),k) and
IP(pred(e),k). We consider two cases.

- sendm).IP;j[k] = pred(e).IP;K].
In that case, the second part of tesestatement entails the same behavior as the
first part of rule R3, which has been proved in the previous item (1).
- sendm).IP;[K] # pred(e).IP; K].

In that case, we necessarily havt;[k] = 0 (second part of rule R3). Hence, the
left part of IP(e k) is false. We have to prove that, in this case, its right part is
also false.

Whatever the values of the first sub-predicates of the right part, we concentrate
only on the third one (note thatZ R). There are two sub-cases.

* sendm).IP;j[k] = 0. Due to the induction assumptidrP(sendm), k)
holds, from which we geBi¢ € R: lastr(sendm),k) L sendm). As
lastr(sendm), k) = last(e k), we get:3€ € R: lastr(g k) hb g B sendm) LY
Hence, in that case, both sidesia?(e k) have the same values.

* pred(e).IP;[k] = 0. This case is actually similar to the previous one,
whereIP(pred(e),k) is used instead of ?(sendm), k) andlastr(sendm),k) is
replaced byastr(pred(e), k).

In both cases, both sides dfP(e k) have the same value. Consequently,
I?P(e k) holds.

14 Proceedings Sirocco 2000

Case 3VCG K > mVGk]. Omitted.
Hence, ifeis a receive event, we hav: I?P(ek). O

Theorem 1 The protocolP3 tracks immediate predecessors: for any relevant
evente, the timestamp. T Scontains the identifiers of its immediate predecessors
and no other event identifier.

Proof. Letec R. As (rule R1)e.T Sis defined before the updatel&, we have:
eTS={(k,eVGIK]) | pred(e).IP;[k] = 1}. We have to prove tha&T Sincludes
the identifiers of all the immediate predecessors, @nd only them.

Let us consider a paik,x) € e TS We have first to show thatis the sequence
number of the last relevant event®fthat belongs td (e). This follows directly
from Lemma 1.

We have now to show thatT Sis made up of exactly the immediate predeces-
sors ofe. This can be shown by proving the following statement that characterizes
the property for the everastr(pred(e),k) to be an immediate predecessoreof
(remind thate is an internal event):

(pred(e).IP[K] = 1) « (A€ € R: lastr(pred(e),k) 2 & R g).

Proof of “=". By assumptionpred(e).|P;[K] = 1. There are two cases.

e If pred(e) € R In that case, due to Lemma 2 applied ped(e),
we conclude thak = i. Moreover, aspred(e) is produced byR, we have
lastr(pred(e),i) = pred(e). Finally, due to the definition opred(e), there is no

€ such thatpred(e) ho g B g By combining these assertions, we gé¢ €
R: lastr(pred(e),i) = pred(e) L PYRL Y

o If pred(e) £ R In that caselastr(pred(e), k) = lastr(e,k). From Lemma

2 applied topred(e), we conclude thaie’ € R: lastr(e k) = last(pred(e), k) hb

¢ pred(e) LY
Proof of “<". By assumptionpred(e).IP;[k] = 0. There are two cases.

o If pred(e) € R So, bothpred(e) ande belong toR;. Moreover, due to the
rule R1, we haveVG[i] > pred(e).VG]i] > 0, and:

- If k=i: Due to the update dP[i] to 1 (rule R1) whenpred(e) is pro-
duced, we havered(e).IP;[i] = 1, which contradicts the case assumption. Hence,
this case cannot occur.

- If k£ i: In that case;€ = pred(e) € R: lastr(pred(e), k) Mg e

o If pred(e) ¢ R From Lemma 2 applied tpred(e) ¢ R, we concludele e
R: lastr(pred(e), k) hb g 1 pred(e). Hence 3¢ € R: lastr(pred(e), k) hb g 1
e]

Tracking Causality in Distributed Systems 15

References

[1] B. Charron-Bost. Concerning the Size of Logical Clocks in Distributed Sys-
tems.Information Processing Letter89:11-16, 1991.

[2] C. Diehl, C. Jard, and J-X. Rampon. Reachability Analysis of Distributed
Executions.Proc. TAPSOFTSpringer-Verlag LNCS 668, 629-643, 1993.

[3] C. J. Fidge. Timestamps in Message-Passing Systems that Preserve Partial
Ordering.Proc. 11th Australian Computing Conferené&&-66, 1988.

[4] E. Fromentin, C. Jard, G-V. Jourdan, and M. Raynal. On-the-fly Analysis of
Distributed Computationdnf. Proc. Letters54:267-274, 1995.

[5] E. Fromentin, M. Raynal. Shared Global States in Distributed Computa-
tions. Journal of Computer and System Sciené&g3):522-528, 1997.

[6] J. Fowler, W. Zwanepoel. Causal Distributed BreakpoiRtec. 10th IEEE
Int. Conf. on Distributed Computing Systerhi84-141, 1990.

[7] V. K. Garg. Principles of Distributed SystemKluwer Ac. Press, 1996.

[8] J-M. Heélary, G. Melideo, and M. Raynal. Tracking Causal-
ity in Distributed Systems: A Suite of Efficient Protocols.
http://www.irisa.fr/bibli/publi/2000/1301/1301.html

[9] J-M. Hélary, A. Moséfaoui, R. H. B. Netzer, and M. Raynal.
Communication-Based Prevention of Useless Ckeckpoints in Distributed
ComputationsDistributed Computingl13(1):29-43, 2000.

[10] C. Jard, G-V. Jourdan. Incremental Transitive Dependency Tracking in Dis-
tributed ComputationsParallel Processing Letter$(3):427-435, 1996.

[11] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM1(7):558-565, 1978.

[12] K. Marzullo K., L. Sabel. Efficient Detection of a Class of Stable Properties.
Distributed Computing8(2):81-91, 1994.

[13] F. Mattern. Virtual Time and Global States of Distributed Systemc.
Int. Conf. Parallel and Distributed Algorithmg¢Cosnard, Quinton, Raynal,
Robert Eds), North-Holland, 215-226, 1988.

[14] M. Singhal, A. Kshemkalyani. An Efficient Implementation of Vector
Clocks. Information Processing Letterd3:47-52, 1992.

