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Abstract

Vector clocks are the appropriate mechanism to track causality among the
events produced by a distributed computation. Traditional implementations
of vector clocks require application messages to piggyback a vector ofn
integers (wheren is the number of processes).

This paper considers the tracking of the causality relation on a subset of
events (namely, the events that are defined as “relevant” from the applica-
tion point of view). It first proposes simple and efficient implementations of
vector clocks where the size of message timestamps can be less thann, in
a context where communication channels are not required to beFIFO, and
where there is no a priori information on the connectivity of the commu-
nication graph or the communication pattern. Then, it presents a protocol
that provides a correct timestamping of the relevant events in presence of the
following constraint: a message timestamp can piggyback at mostb event
identifiers (whereb is a predefined constant,1≤ b≤ n). To ensure this con-
straint, processes can be forced to produce additional “null” relevant events.
Finally, the paper presents and proves correct a protocol that tracks (on-the-
fly and without the help of an external observer) the immediate predecessors
of each relevant event.

This set of protocols defines a suite of protocols that, in addition to their
efficiency, provides a comprehensive view of causality tracking in distributed
systems.
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1 Introduction

A distributed computation consists of a set of processes that cooperate to achieve
a common goal. A main characteristic of these computations lies in the fact that
the processes do not share a common global memory, and communicate only by
exchanging messages over a communication network. Moreover, message transfer
delays are finite but unpredictable. This computation model defines what is known
as theasynchronous distributed system model. It is particularly important as it
includes systems that span large geographic areas, and systems that are subject to
unpredictable loads. Consequently, the concepts, tools and mechanisms developed
for asynchronous distributed systems reveal to be both important and general.

Causality is a key concept to understand and master the behavior of asyn-
chronous distributed systems. More precisely, given two eventse and f of a dis-
tributed computation, a crucial problem that has to be solved in a lot of distributed
applications is to know whether they are causally related, i.e., if the occurrence of
one of them is a consequence of the occurrence of the other. Events that are not
causally dependent are said to be concurrent. Vector clocks have been introduced
to allow processes to track causality (and concurrency) between the events they
produce. The timestamp of an event produced by a process is the current value of
the vector clock of the corresponding process. In that way, by associating vector
timestamps with events it becomes possible to safely decide whether two events
are causally related or not.

In many applications, detecting causal dependencies (or concurrency) on all
events is not desirable. More precisely, when analyzing a distributed computation,
one is interested only in a subset of events called therelevantevents. This paper
concentrates on the tracking of the causal relationship on such events. It proposes
a suite of protocols that realize such a tracking, in a context where communication
channels are not required to beFIFO, and where there is no a priori information
on the communication graph connectivity or the communication pattern. It first
presents an efficient implementation of vector clocks where the size of message
timestamps can be less thann (the number of processes). Then, it introduces a
protocol that provides a correct timestamping of the relevant events in presence
of the following constraint: a message timestamp can piggyback at mostb event
identifiers (whereb is a predefined constant,1≤ b≤ n). To ensure that this con-
straint is never violated, this protocol can force a process to produce an additional
“null” relevant event just before it sends a message.

Due to its definition, the partial order defined by the causality relation on the
relevant events includes transitivity. Said another way, given only the vector times-
tamp associated with an event it is not possible to determine which events of its
causal past are its immediate predecessors. Yet, some applications require to as-
sociate (on-the-fly and without additional messages) with each relevant event the
set of its immediate predecessor relevant events. The paper presents and proves
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correct a protocol that provides each relevant event with a timestamp made up
of “pointers” that exactly identify its immediate predecessors. To our knowledge,
this is the first time a correctness proof is presented for an immediate predecessors
tracking protocol.

The protocols are presented in an incremental way. This helps to a better un-
derstanding of their behavior. Moreover, that shows that they actually define a
suite of protocols that, in addition to their efficiency, provides a comprehensive
view of causality tracking in distributed systems.

The paper is composed of six sections. Sections 2 and 3 introduce the compu-
tation model and vector clocks, respectively. Then, Sections 4, 5 and 6 incremen-
tally presents three causality tracking protocols.

2 Computation Model

2.1 Distributed Computation

A distributed program is made up of sequential local programs which commu-
nicate and synchronize only by exchanging messages. A distributed computation
describes the execution of a distributed program. The execution of a local pro-
gram gives rise to a sequential process. Let{P1,P2, . . . ,Pn} be the finite set of
sequential processes of the distributed computation. Each ordered pair of commu-
nicating processes(Pi ,Pj) is connected by a reliable channelci j through whichPi

can send messages toPj . We assume a process does not send messages to itself.
Message transmission delays are finite but unpredictable. Moreover, channels are
not necessarilyFIFO. Process speeds are positive but arbitrary. In other words, the
underlying computation model is asynchronous.

The local program associated withPi can include send, receive and internal
statements. The execution of such a statement produces a corresponding inter-
nal/send/receive event. These events are calledprimitive events. Let H be the set
of events produced by a distributed computation, andex

i be thex-th event produced
by processPi . This set is structured as a partial order by Lamport’shappened be-

fore relation [11], denoted
hb→ and defined as follows:

ex
i

hb→ ey
j ⇔

(i = j ∧x+1 = y) (local precedence)∨
(∃m : ex

i = send(m) ∧ ey
j = receive(m)) (message precedence)∨

(∃ ez
k : ex

i
hb→ ez

k ∧e z
k

hb→ ey
j) (transitive closure).

The partial order̂H = (H,
hb→) constitutes a formal model of the distributed com-

putation it is associated with. Figure 1 depicts a distributed computation using the
classical space-time diagram.
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Figure 1: A Distributed Computation

In the rest of the paper, we will use the following definitions and notations:

• Thecausal pastof an evente is the set of eventsf such thatf
hb→ e.

• The set↑(e) contains the events of the causal past ofe, pluse itself.
• If Xi is a local data structure managed byPi , thene.Xi denotes the value of

Xi just after the occurrence ofeand before the occurrence of the next event onPi .
• pred(e) denotes the event immediately precedinge on the same process (if

it exists).
• For every processPi , Hi denotes the sequence of events produced byPi .

2.2 Relevant Events

At some abstraction level only some events of a distributed computation are rele-
vant [5, 12] (those events are sometimes calledobservableevents). The decision
to consider an event as relevant can be up to the process, or triggered by some
protocol. In this paper, we are not concerned by this decision. As an example,
in Figure 1 only the black events are relevant. LetR⊆ H be the set of relevant
events. Let→ be the relation onRdefined in the following way:

∀ (e, f ) ∈ R×R : (e→ f )⇔ (e hb→ f ).
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Figure 2: a) Relevant Events and their Timestamps. b) Hasse Diagram

The poset(R,→) constitutes an abstraction of the distributed computation,
namely, acommunication and relevant event pattern. In the following we consider
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a distributed computation at such an abstraction level. Moreover, without loss
of generality we consider that a relevant event is not a communication event (if
a communication event has to be observed, a relevant event can be generated
just after the corresponding communication event occurred). Figure 2.a depicts
an abstraction of the computation described in Figure 1 where only the black
events are relevant. Each relevant event is identified by a pair (process id, sequence
number). Finally, Figure 2.b represents the transitive reduction (Hasse diagram)
associated with this abstraction1.

In the following,Ri denotes the set of relevant events produced byPi .

3 Vector Clocks

Vector clocks have been empirically used as an ad hoc device to solve specific
problems before being captured and defined as a first class concept with the asso-
ciated theory, simultaneously and independently by Fidge [3] and Mattern [13].

A vector clock system is a mechanism that associates timestamps with events
in such a way that the comparison of their timestamps indicates whether the cor-
responding events are or are not causally related (and, if they are, which one is the
first). More precisely, each processPi has a vector of integersVCi [1..n] such that
VCi [ j] is the number of (relevant) events produced byPj that belong to the current
causal past ofPi . Note thatVCi [i] counts the number of relevant events produced
so far byPi . When a processPi produces a (relevant) evente, it associates with
it a vector timestamp whose value (denotede.VC) is equal to the current value
of VCi . Figure 2 associates its vector timestamp with each relevant event of the
described distributed computation.

Let e.VC and f .VC be the vector timestamps associated with two distinct
(relevant) eventseand f , respectively. The following property is the fundamental
property associated with vector clocks [3, 7, 13]:

(e→ f )⇔ ((∀k : e.VC[k]≤ f .VC[k])∧ (∃k : e.VC[k] < f .VC[k]))

(∀k : e.VC[k] ≤ f .VC[k])∧ (∃k : e.VC[k] < f .VC[k]) is denotede.VC < f .VC.
Let Pi be the process that has producede. This additional information allows to
simplify the previous relation that reduces to [3, 13]:

∀ (e, f ) ∈ R×R : (e→ f )⇔ (e.VC[i]≤ f .VC[i])

The traditional implementation of a vector clock system is given in [3, 13].
The major drawback of this implementation lies in in the fact that each message
has to carry an array ofn integers. It has been shown that, in the worst case, this
is a necessary requirement [1]. Nevertheless, this implementation can be easily

1Thetransitive reductionof a dag includes all its edges except its reflexive edges and its transitive
edges.
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improved in the following way. WhenPi sends a message toPj , it may piggyback
only the entries that have been modified since its last sending to this processPj .
This improvement, proposed in [14], requiresFIFO channels. It has a small local
memory overhead, namely, a process has to manage only two additional arrays of
sizen.

4 Efficient Implementations of Vector Clocks

This section provides two protocols implementing a vector clock system that sat-
isfy the following property: a message has not to systematically piggyback the
whole vector clock of its sender. To our knowledge, the proposed protocols are
the first that provide this property (on-the-fly, without additional control messages
and without the help of an external observer), in a context where (1) channels are
not necessarilyFIFO (but, if the channels areFIFO, the protocol can still be im-
proved), and (2) there is no a priori information on the communication graph
connectivity or the communication pattern.

In order to attain this goal, each processPi locally maintains additional control
information, namely, a boolean matrixMi . The protocolP 1 usesMi to reduce
the number of vector clock entries that have to be transmitted. The protocolP 1′
shows that this number can still be reduced if we allow a message to carry a few
boolean vectors. It follows that the protocolP 1′ exhibits a tradeoff in the control
information piggybacked by messages (integersvsboolean arrays).

4.1 ProtocolP1

This protocol relies on a very simple idea:Pi has not to transmit to a processPj an
entry ofVCi that is already known byPj . To implement it, each processPi has a
boolean matrixMi . Those matrices are managed in order to satisfy the following
property:

MVC ≡ (∀ (i, j,k) : ((Mi [ j,k] = 1)⇔ ( to Pi ’s knowledge:VCj [k]≥VCi [k])) )

Let us note that, from the definition of vector clocks and the previous property
on Mi , we can easily deduce the following invariant:∀ (i, j) : Mi [ j, j] = 1 and
Mi [i, j] = 1 (The diagonal and theith row ofMi remain always equal to1).

For a processPi , the protocol implementing vector clocks with such matrices
M is defined by the following set of rules:

[R0] Initialization:
- VCi [1..n] is initialized to[0, . . . ,0],
- ∀ ( j,k) : Mi [ j,k] is initialized to1.

[R1] Each time it produces a relevant evente:
- Pi increments its vector clock entryVCi [i] (VCi [i] := VCi [i]+1),
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- Pi associates withe the timestampe.VC= VCi ,
- Pi resets theith column of its boolean matrix:∀ j 6= i : Mi [ j, i] := 0 (2).

[R2] When it sends a messagem to Pj , Pi attaches tom the following set
(denotedm.VC) of event identifiers:{(k,VCi [k]) | Mi [ j,k] = 0}.

[R3] When it receives a messagem from Pj , Pi executes the following updates:

∀(k,VCj [k]) ∈m.VC do:
caseVCi [k] < m.VC[k] then VCi [k] := m.VC[k];

∀` 6= i, j,k : Mi [`,k] := 0; Mi [ j,k] := 1
VCi [k] = m.VC[k] then Mi [ j,k] := 1
VCi [k] > m.VC[k] then skip

endcase

The case ofFIFO channels. If communication channels areFIFO, when a pro-
cessPi sends a message, in addition to the statements defined in the rule R2, it can
immediately execute the updateMi [ j,k] := 1. TheFIFO property of channels can
actually reduce the number of pairs piggybacked by messages (ifMi [ j,k] = 1 at
the next sending toPj , VCi [k] will not be transmitted again toPj ).

4.2 Correctness Proof

Due to space limitations, the detail of this proof is omitted. The complete proof
can be found in [8]. It consists in proving, by induction on the posetĤ, the two
following invariants:

MVC≡ (∀e∈ Hi , ∀( j,k) : (e.Mi [ j,k] = 1)⇔
((↑(e)∩Rk = /0)∨ (∃m sent byPj to Pi s.t. send(m).VCj [k] = e.VCi [k]))

V C ≡ (∀i : ∀e∈ Hi : ∀k : | ↑(e)∩Rk|= e.VCi [k]).

4.3 ProtocolP1′

The protocolP 1′ aims to increase the number of entries ofMi that are set to1,
and consequently decrease the number of pairs(k,VCi [k]) that a message has to
piggyback. This is obtained without adding new control information, but requires
messages to piggyback boolean arrays. This shows that, for each message, there is
a tradeoff between the number of pairs(k,VCi [k]) that are saved and the number
of boolean vectors that have to be piggybacked.

2Actually, the value of this column remains constant after its first update. In fact,∀ j, Mi [ j, i] can
be set to 1 only upon the receipt of a message fromPj , including( j,VCj [i]). But, asM j [i, i] = 1, Pj

does not sendVCj [i] to Pi . So, it is possible to improve the protocolP 1 (and the protocolP2, Section
5.2), by executing this “reset” of the columnMi [∗, i] only whenPi produces its first relevant event.
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The rules R0 and R1 are the same as before. The rules R2 and R3 are modified
in the following way. LetMi [∗,k] denote thek-th column ofMi .

[R2’] When it sends a messagem to Pj , Pi attaches to it the following set
(m.VC) of triples (each made up of a process id, an integer and an-boolean array):
{(k,VCi [k],Mi [∗,k]) | Mi [ j,k] = 0}.

[R3’] When it receives a messagem from Pj , Pi executes the following up-
dates:

∀(k,VCj [k],M j [k][1..n]) ∈m.VC do:
caseVCi [k] < m.VC[k] then VCi [k] := m.VC[k];

∀` 6= i : Mi [`,k] := m.M[k, `]
VCi [k] = m.VC[k] then ∀ ` 6= i : Mi [`,k] := max(Mi [`,k],m.M[k, `])
VCi [k] > m.VC[k] then skip

endcase

This shows that, in the first case, valuesMi [`,k] (k, ` 6= i) are now updated with
actual values of the sender’s matrix, instead of systematically being reset to 0.
Similarly, in the second case, more values are updated (on the basis of a more
recent information) than in protocolP 1. The proof of protocolP 1′ (left to the
reader) is similar to the previous one. In the rest of the paper,T1→1′ denotes the
modification that transforms protocolP 1 into protocolP 1′.

5 Bounding the Size of Message Timestamps

5.1 The Problem

This section addresses the problem of associating a timestamp with each relevant
event under the following constraint (“b-bound” Constraint): a message can pig-
gyback at mostb relevant event identifiers (i.e., pairs of process id + seq number),
whereb is a predefined constant (1≤ b≤ n).

5.2 ProtocolP2

Additional test. A way to solve this problem consists in forcing a process to
generate a “null” relevant event when the timestamp it has to send is about to
have more thanb elements. This “null” relevant event acts as a reset that reduces
to 1 the size of the next timestamp. This can be easily realized by adding the
following test to the rule R2 of protocolP 1.

[Test] WhenPi has to send a messagem to Pj , it first computesd = Σk6= j |
{k : (Mi [ j,k] = 0)} |. If d > b, thenPi generates a “null” relevant event (so,
it executes R1, which resetsd to 1), and afterwards attaches tom its timestamp
before sending this message.
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Dependency vectors. As the numbers of entries that can be transmitted are now
bounded, each vector clock used in protocolP 1 can no longer be maintained and
has to be replaced by a data structure that “approximates” it, namely, adependency
vector. Similarly to a vector clockVCi , a dependency vectorDVi tracks causal
dependencies but in a “looser” way. More precisely,∀k 6= i: DVi [k]≤VCi [k], and
DVi [i] = VCi [i].

Protocol P 2. In addition to the previous points, an important difference be-
tween protocolP 1 and protocolP 2 lies in the update of the matrixMi whenPi

produces a relevant evente (Rule R1).Mi is reset in such a way thatPi “forgets all
the past”, except the evente. More precisely, all entries ofMi are set to1, except
theith column whose entries (butMi [i, i]) are reset to0. The resulting protocolP 2
is as follows.

[R0] Initialization:
- DVi [1..n] is initialized to[0, . . . ,0],
- ∀ ( j,k) : Mi [ j,k] is initialized to1.

[R1] Each time it produces a relevant evente:
- Pi increments its dependency vector entryDVi [i] (DVi [i] := DVi [i]+1),
- Pi associates withe the timestampe.DV = DVi ,
- Pi resets the boolean matrix as follows:

? ∀( j,k) such thatj,k 6= i : Mi [ j,k] := 1 (3).
? ∀ j 6= i : Mi [ j, i] := 0.

[R2] When it sends a messagem to Pj , Pi does the following:
- Pi first computesd = Σk6= j | {k : (Mi [ j,k] = 0)} |. If d > b, thenPi

generates a “null” relevant event (so, it executes R1, which resetsd to 1). Then,
before sendingm, Pi attaches to it the following set (denotedm.DV) of event
identifiers:{(k,DVi [k]) | Mi [ j,k] = 0}.

[R3] When it receives a messagem from Pj , Pi executes the following updates:

∀(k,DVj [k]) ∈m.DV do:
caseDVi [k] < m.DV[k] then DVi [k] := m.DV[k];

∀` 6= i, j,k : Mi [`,k] := 0; Mi [ j,k] := 1
DVi [k] = m.DV[k] then Mi [ j,k] := 1
DVi [k] > m.DV[k] then skip

endcase

So, protocolP 2 is incrementally obtained from protocolP 1 by (1) replacing
VCi by DVi , (2) extending the reset rule in R1, and (3) adding a test in R2. More-
over, let us note that, as before the transformationT1→1′ can be applied to protocol
P 2 to get a protocolP 2′.

3Note that theith row of Mi has not to be updated as it is always equal to(1, . . . ,1) (see Section
4.1).
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From a dependency vector timestamp to a vector clock timestamp.As we
have seen, for any evente, e.DV is not necessarily equal toe.VC (except for
the entry i, namely,DVi [i] = VCi [i]). It has been shown in [6] that the vector
clocksVCcan be rebuilt form the dependency vectorsDV by computing, for each
relevant evente, the following value:e.VC := max{ f | f→e}( f .DV). This compu-
tation is iteratively implemented by the following “fixed-point” procedure. The
function max(V1,V2) used in this procedure is defined in the following way:
∀` ∈ {1, . . . ,n} : max(V1,V2)[`] = max(V1[`],V2[`]).

procedureVector Timestamp(vare : relevant event)
(1) VC := e.DV; % VC is an auxiliary vector variable %
(2) repeat old VC := VC;
(3) ∀x∈ {1, . . . ,n} do let f be the event identified(x,old VC[x]);
(4) VC := max(VC, f .DV) enddo
(5) until (VC= old VC);
(6) return (VC) % the final value ofVC definese.VC %

5.3 Related Work

The particular case where each primitive event is a relevant event and whereb= 1
corresponds to thedirect dependencytechnique introduced in [6]. The problem is
easier to solve despiteb= 1, as all communication events are “visible” (this issue
is discussed at length in [4, 10]). Theincremental trackingtechnique introduced
in [10] has been designed to circumvent the limitations of the direct dependency
technique when the relevant events are only a subset of the primitive events. To
attain this goal, the proposed protocol tracks dependency incrementally and man-
ages lists of clock values. As it does not manage special data structures to reduce
timestamp sizes, messages can never carry less control information than in proto-
col P 2.

A principle similar to the generation of “null” events has been investigated in
communication-based checkpointingprotocols [9]. Independently from one an-
other, processes takebasiccheckpoints (which correspond to relevant events). In
order no basic checkpoint be useless (i.e., any local checkpoint has to belong to
at least one consistent global checkpoint), the checkpointing protocol can force
processes to take additional local checkpoints, namelyforcedcheckpoints (which
correspond to “null” events). The principle to add “null” events is actually very
general (mainly encountered in synchronization problems).
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6 Tracking the Immediate Predecessors

6.1 The Notion of Immediate Predecessor

Some applications (e.g., analysis of distributed executions [4], detection of dis-
tributed properties [5]) require to determine (on-the-fly and without the help of
an external observer) the transitive reduction of the relation→ (i.e., we must
not consider transitive causal dependency). This means that we have to asso-
ciate with each relevant evente, an attributee.TS that “points on” all its im-
mediate relevant predecessors and on no other event. As an example, let us con-
sider Figure 2.b). The evente identified(1,3) has a single immediate predecessor,
namely the event identified(2,2), hence,e.TS= {(2,2)}. Differently, the event
f =(2,2) has two immediate predecessors, namely, the events(2,1) and (1,2),
hencef .TS= {(2,1),(1,2)}.

To our knowledge, the distributed determination of immediate predecessors
has been addressed for the first time in [2]. Some of us have also addressed it
[4] to detect properties on the control flows of distributed computations. In both
previous papers, this determination is presented with examples and without a cor-
rectness proof. So, to our knowledge, the proof of Section 6.3 is the first proof of
an immediate predecessor tracking protocol.

The proposed protocol requires each application message to piggyback a com-
plete vector clock. An important issue consists in the design of a protocol that
should allow some messages to piggyback less information, in the same manner
as causality tracking protocols presented above. To our knowledge, this problem
has never been explicitly stated (and no solution has been proposed). This paper
leaves the open problem.

6.2 ProtocolP3

Data structures. Let us consider a relevant evente produced by a processPi .
The attributee.TS is actually another kind oftimestampassociated with events.
Such timestamps involve two data structures.

• When it producese, Pi has to decide, for everyj, whether the last relevant
event ofPj in the causal past ofe is an immediate predecessor ofe. This allows
Pi to compute which are the members of the timestampe.TS, i.e., the first part of
each pair( j,−) of e.TS.

To take a correct decision,Pi manages a boolean arrayIPi , whosejth entry has
the following meaning.IPi [ j] = 1 means that, if the eventecurrently produced by
Pi is relevant, then the last relevant event ofPj , known byPi , is an immediate
predecessor ofe.

• The second data structure is a vector clock, which allowsPi to determine the
second part of each pair(−,x) of e.TS.
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ProtocolP 3. The following protocol associates with each relevant event a times-
tamp made of the identifiers of its immediate predecessors [2, 4].

[R0] Initialization:
- BothVCi [1..n] andIPi [1..n] are initialized to[0, . . . ,0].

[R1] Each time it produces a relevant evente:
- Pi increments its vector clock entryVCi [i] (VCi [i] := VCi [i]+1),
- Pi associates withe the timestampe.TS= {(k,VCi [k]) | IPi [k] = 1},
- Pi resetsIPi : ∀ ` 6= i : IPi [`] := 0;IPi [i] := 1.

[R2] WhenPi sends a messagem to Pj , it attaches tom the current values of
VCi (denotedm.VC) and the boolean arrayIPi (denotedm.IP).

[R3] When it receives a messagem from Pj , Pi executes the following updates:

∀k : caseVCi [k] < m.VC[k] then VCi [k] := m.VC[k];
IPi [k] := m.IP[k]

VCi [k] = m.VC[k] then IPi [k] := min(IPi [k],m.IP[k])
VCi [k] > m.VC[k] then skip

endcase

6.3 Correctness Proof

Lemma 1 ∀i, ∀e∈ Hi , ∀k : e.VCi [k] =|↑(e)∩Rk |.

Proof. The proof follows directly from the fact that the management of the
vectorsVCi is the same as the traditional vector clock implementation (a formal
proof can be found in [7]). 2

Let e be an event produced byPi (e∈ Hi). In the rest of the proof,lastr(e,k)
denotes the(e.VCi [k])th relevant event ofPk. From Lemma 1, we deduce that
lastr(e,k) is the last relevant event ofPk that is known byPi . Whene∈ Ri we
havelastr(e, i) = e.

Lemma 2 Let I P (e,k)≡
(e.IPi [k] = 1)⇔ [(e.VCi [k] > 0)∧(e∈R⇒ k= i)∧(e 6∈R⇒ (6 ∃e′ ∈R: lastr(e,k)
hb→ e′ hb→ e))]. ∀i, ∀e∈ Hi , ∀k, we have:I P (e,k).

Proof. The proof is by induction on the posetĤ. Due to space limitations, some
parts of the proof are omitted here (see [8]).

Base case. I P (e,k) holds ife the first event of a processPi . Omitted.

Induction case. Lete∈Hi . The induction assumption is:∀k, ∀e′ ∈ (↑(e)−{e}),
the predicateI P (e′,k) holds. We have to prove that,∀k, the predicateI P (e,k)
holds. We proceed by case analysis.
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• e is an internal but not relevant event, ore is a send event. Omitted.
• e is a relevant event (e∈ Ri). Omitted.
• e is a receive event. Lete= receive(m) andPj be the sender ofm.
Due to rule R3, we consider three cases:

Case 1. VCi [k] < m.VC[k]. In that case, we have:e.VCi [k] = send(m).VCj [k] >
pred(e).VCi [k], from which we conclude thatlastr(e,k) = lastr(send(m),k).
Moreover, due to R3, we havee.IPi [k] = send(m).IPj [k].

From the previous relations, the induction assumptionI P (send(m),k) and
send(m) 6∈ R, we obtain:

(send(m).IPj [k] = 1)⇔ ((send(m).VCi [k] > 0)∧
(6 ∃e′ ∈ R : lastr(send(m),k) hb→ e′ hb→ send(m))), i.e.,

(e.IPi [k] = 1) ⇔ ((e.VCi [k] > 0) ∧ (6 ∃e′ ∈ R : lastr(send(m),k) hb→ e′ hb→
send(m))), i.e.,

(e.IPi [k] = 1)⇔ ((e.VCi [k] > 0)∧ (6 ∃e′ ∈ R : lastr(e,k) hb→ e′ hb→ send(m))).
More, by vector clock properties,(pred(e).VCi [k] < send(m).VCj [k]) ⇒

¬(send(m) hb→ pred(e))⇒ (6 ∃e′ ∈ R : send(m) hb→ e′ hb→ receive(m) = e). Hence,

(e.IPi [k] = 1) ⇔ ((e.VCi [k] > 0)∧ (6 ∃e′ ∈ R : lastr(e,k) hb→ e′ hb→ e)), from
which we conclude, ase is not a relevant event, thatI P (e,k) holds.
Case 2. VCi [k] = m.VCi [k]. In that case, we have the following equalities:

pred(e).VCi [k] = send(m).VCi [k] = e.VCi [k],
lastr(pred(e),k) = lastr(send(m),k) = lastr(e,k).
Moreover, due to the induction assumption, we haveI P (send(m),k) and

I P (pred(e),k). We consider two cases.
- send(m).IPj [k] = pred(e).IPi [k].

In that case, the second part of thecasestatement entails the same behavior as the
first part of rule R3, which has been proved in the previous item (1).

- send(m).IPj [k] 6= pred(e).IPi [k].
In that case, we necessarily havee.IPi [k] = 0 (second part of rule R3). Hence, the
left part of I P (e,k) is false. We have to prove that, in this case, its right part is
also false.

Whatever the values of the first sub-predicates of the right part, we concentrate
only on the third one (note thate 6∈ R). There are two sub-cases.

? send(m).IPj [k] = 0. Due to the induction assumptionI P (send(m),k)

holds, from which we get∃e′ ∈ R : lastr(send(m),k) hb→ e′ hb→ send(m). As

lastr(send(m),k) = last(e,k), we get:∃e′ ∈R : lastr(e,k) hb→ e′ hb→ send(m) hb→ e.
Hence, in that case, both sides ofI P (e,k) have the same values.

? pred(e).IPi [k] = 0. This case is actually similar to the previous one,
whereI P (pred(e),k) is used instead ofI P (send(m),k) andlastr(send(m),k) is
replaced bylastr(pred(e),k).

In both cases, both sides ofI P (e,k) have the same value. Consequently,
I P (e,k) holds.
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Case 3. VCi [k] > m.VCi [k]. Omitted.
Hence, ife is a receive event, we have∀k : I P (e,k). 2

Theorem 1 The protocolP 3 tracks immediate predecessors: for any relevant
evente, the timestampe.TScontains the identifiers of its immediate predecessors
and no other event identifier.

Proof. Let e∈Ri . As (rule R1)e.TSis defined before the update ofIPi , we have:
e.TS= {(k,e.VCi [k]) | pred(e).IPi [k] = 1}. We have to prove thate.TS includes
the identifiers of all the immediate predecessors ofe, and only them.

Let us consider a pair(k,x)∈ e.TS. We have first to show thatx is the sequence
number of the last relevant event ofPk that belongs to↑(e). This follows directly
from Lemma 1.

We have now to show thate.TSis made up of exactly the immediate predeces-
sors ofe. This can be shown by proving the following statement that characterizes
the property for the eventlastr(pred(e),k) to be an immediate predecessor ofe
(remind thate is an internal event):

(pred(e).IPi [k] = 1)⇔ (6 ∃e′ ∈ R : lastr(pred(e),k) hb→ e′ hb→ e).

Proof of “⇒” . By assumption,pred(e).IPi [k] = 1. There are two cases.
• If pred(e) ∈ R: In that case, due to Lemma 2 applied topred(e),

we conclude thatk = i. Moreover, aspred(e) is produced byPi , we have
lastr(pred(e), i) = pred(e). Finally, due to the definition ofpred(e), there is no

e′ such thatpred(e) hb→ e′ hb→ e. By combining these assertions, we get6 ∃e′ ∈
R : lastr(pred(e), i) = pred(e) hb→ e′ hb→ e.

• If pred(e) 6∈ R: In that case,lastr(pred(e),k) = lastr(e,k). From Lemma

2 applied topred(e), we conclude that6 ∃e′ ∈R : lastr(e,k) = last(pred(e),k) hb→
e′ hb→ pred(e) hb→ e.
Proof of “⇐” . By assumption,pred(e).IPi [k] = 0. There are two cases.

• If pred(e) ∈ R: So, bothpred(e) ande belong toRi . Moreover, due to the
rule R1, we havee.VCi [i] > pred(e).VCi [i] > 0, and:

- If k = i: Due to the update ofIPi [i] to 1 (rule R1) whenpred(e) is pro-
duced, we havepred(e).IPi [i] = 1, which contradicts the case assumption. Hence,
this case cannot occur.

- If k 6= i: In that case,∃e′ = pred(e) ∈ R : lastr(pred(e),k) hb→ e′ hb→ e.
• If pred(e) 6∈ R: From Lemma 2 applied topred(e) 6∈ R, we conclude∃e′ ∈

R : lastr(pred(e),k) hb→ e′ hb→ pred(e). Hence,∃e′ ∈R : lastr(pred(e),k) hb→ e′ hb→
e. 2
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