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Abstract—Location-Based Service (LBS) has become a vital
part of our daily life. While enjoying the convenience provided
by LBS, users may lose privacy since the untrusted LBS server
has all the information about users in LBS and it may track
them in various ways or release their personal data to third
parties. To address the privacy issue, we propose a Dummy-
Location Selection (DLS) algorithm to achieve k-anonymity for
users in LBS. Different from existing approaches, the DLS

algorithm carefully selects dummy locations considering that
side information may be exploited by adversaries. We first
choose these dummy locations based on the entropy metric, and
then propose an enhanced-DLS algorithm, to make sure that
the selected dummy locations are spread as far as possible.
Evaluation results show that the proposed DLS algorithm can
significantly improve the privacy level in terms of entropy. The
enhanced-DLS algorithm can enlarge the cloaking region while
keeping similar privacy level as the DLS algorithm.

I. INTRODUCTION

With the rapid development of mobile devices and social

networks, Location-Based Service (LBS) has become a vital

part in our daily activities in recent years. With smartphones or

tablets, users can download location-based applications from

Apple Store or Google Play Store. With the help of these

applications, users can easily send queries to LBS servers and

obtain LBSs related to some point of interests. For example,

users can check the bus schedule, the price information of

nearby restaurants or gas stations, etc.

By submitting LBS queries, users can enjoy the convenience

provided by LBS. However, since the untrusted LBS server

has all the information about users such as where they are

at which time, what kind of queries they submit, what they

are doing, etc., he may track users in various ways or release

their personal data to third parties. Thus, we need to pay more

attention to user’s privacy.

To address the privacy issue, many approaches [1], [2]

have been proposed in the literature over the past few years.

Most of them are based on location perturbation and ob-

fuscation, which employ well-known privacy metrics such

as k-anonymity [3] and rely on a trusted third-party server.

To achieve k-anonymity, a LBS related query is submitted

to the LBS server via a centralized location anonymizer

[4], [5], which enlarges the queried location into a bigger

Cloaking Region (CR) covering many other users (e.g., k− 1)

geographically. As a result, it is hard for the untrusted LBS

server to distinguish the user’s real location from the other

k − 1 dummy locations. However, these approaches of using

k-anonymity have some limitations. First, it heavily relies on

the location anonymizer, which suffers from a single point of

failure. If the adversary gains control of it, the privacy of all

users will be compromised. There also exists a performance

bottleneck, since all the submitted queries have to go through

the location anonymizer. Second, although dummy locations

can be used to achieve k-anonymity, how to select these

locations is a challenge. Most of the existing approaches

[6], [7], [8], [4], [9] assume that the adversary has no side

information [10], [11], such as user’s query probability related

to location and time, and information related to the semantics

of the query such as the gender and social status of the

user, and then dummy locations are generated based on a

random walk model [7], [4], or virtual circle/grid model [9].

Since some adversary (e.g., the LBS server) may have such

side information, these dummy generation algorithms may not

work well. For example, some improperly selected dummy

locations may fall at some unlikely locations such as lakes,

swamps, and rugged mountains, and can be easily filtered out

by the adversary. Thus, it is hard to effectively guarantee the

desired k-anonymity.

In this paper, we design Dummy-Location Selection (DLS)

algorithms to achieve k-anonymity for users in LBS. Different

from existing approaches, DLS carefully selects dummy loca-

tions considering that side information may be exploited by

adversaries. We first choose these dummy locations based on

the entropy metric [12], and then enhance the algorithm, called

enhanced-DLS, by making sure that the selected dummy lo-

cations are spread far away. The major technical contributions

of this paper are as follows.

• To protect user’s location privacy against adversary with

side information, we design an entropy-based DLS algorithm

to achieve k-anonymity by carefully choosing dummy loca-

tions.

•We propose an enhanced-DLS algorithm, which considers

both entropy and CR to maintain the entropy while ensuring

that the selected dummy locations are spread as far as possible.

• We present a WiFi access point based solution to imple-

ment our idea. Analytical and simulation results show that our

algorithms can achieve our objectives efficiently.

The rest of the paper is organized as follows. We discuss

the related work in Section II. Section III presents some
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preliminaries of this paper. We present the DLS and the

enhanced-DLS algorithms in Section IV, together with some

security analysis and a practical solution to implement our

work. Section V shows the evaluation results. We conclude

the paper in Section VI.

II. RELATED WORK

Privacy issues in mobile social networks have been well

studied in the literature (e.g., privacy in LBSs [13], [14],

privacy in mobile sensing [15], [16], etc.). In this section,

we review some existing research on user’s privacy issues for

LBSs.

A. Metrics for Location Privacy

Since a location can always be specified as a single co-

ordinate, to quantify the location privacy, we should find out

how accurately an adversary might infer about this coordinate.

Based on this principle, several location privacy metrics have

been proposed. Most of the existing metrics are uncertainty-

based. Gruteser et al. [6] proposed to measure the ability

of the adversary to differentiate the real user from others

within the anonymity set. The ability of the adversary to

link two pseudonyms of a particular user or distinguish the

paths along which a user may travel has been investigated

in [2] and [17], respectively. Therefore, a straightforward

parameter to determine the privacy degree is the size of the

anonymity set, for example, k-anonymity [3] (or variations

like l-diversity [18] and t-closeness [19]), which tries to hide

the real information of a user into other k-1 users. Based on

this model, a number of follow-up works appear, such as [8],

[18]. Recently, as a good measurement for the uncertainty of

location privacy, entropy-based metrics have been adopted [2],

[17], [20], [21], [22], [23]. Some other metrics [24], [25] are

based on the estimation error of the adversary to quantify the

location privacy. However, in our work, we do not introduce

any location error on either the real location or the dummy

locations. Thus, we choose entropy-based metric to quantify

location privacy.

B. Protecting Location Privacy

Protecting user’s location privacy in LBSs has received

considerable attention over recent years. Among these Lo-

cation Privacy Protection Mechanisms, location perturbation

and obfuscation have been widely used. It protects loca-

tion privacy through pseudomyzation, perturbation, adding

dummies and reducing precision. In some early work [6],

Gruteser et al. introduced k-anonymity into location privacy,

which protects privacy by hiding user’s location from the

LBS server. More specifically, they design an adaptive interval

cloaking algorithm which generates spatio-temporal cloaking

boxes containing at least kmin users and use the boxes as

the location sent to the LBS server. Later, CliqueCloak [26]

was proposed as a personalized k-anonymity model in which

users can adjust their level of anonymity. Unfortunately, most

of these works still rely on a location anonymizer to enlarge

the queried location into a bigger cloaking region, and hence

the anonymizer becomes the central point of failure and the

performance bottleneck.

To address this problem, Kido et al. [7] proposed to use

dummy locations to achieve anonymity without employing

anonymizer. However, they only concentrate on reducing the

communication costs. Moreover, they employ a random walk

model to generate dummy locations and it cannot ensure

privacy when the server has some side information. Lu et al.

[9] designed two dummy location generating algorithms called

CirDummy and GridDummy, which achieve k-anonymity for

mobile users considering the privacy-area. CirDummy gener-

ates dummy locations based on a virtual circle that contains

user’s location, while GridDummy is based on a virtual grid

covering user’s location. In these algorithms, the dummy

generation is configurable and controllable, and the location

privacy of a user can be controlled. Aside from the aforemen-

tioned location privacy protection mechanisms, policy-based

approaches [27] and Cryptography primitive-based approaches

[28] have also been investigated.

Different from existing work, the proposed scheme achieves

k-anonymity by carefully generating dummy locations. It pro-

vides desired privacy level of k-anonymity for mobile users

without relying on any trusted entity and can deal with

adversaries with some side information.

III. PRELIMINARIES

In this section, we first introduce some basic concepts used

in this paper, and then introduce the adversary model. Finally,

we present the motivation and the basic idea of our solution.

A. Basic Concepts

In this paper, the side information is limited to user’s query

probability at a particular location. Users can obtain two kinds

of side information from our system: partial information and

global information. The partial information represents the

information collected by a user, and the global information

represents all the query information in the system, i.e., all

users’ query probabilities at all locations. For a particular user,

the ideal case is that he knows global information, and can take

an optimal strategy to select dummy locations. A more realistic

way is to retrieve the side information from his collection, even

though the retrieved side information may be partial.

In this paper, we use entropy to measure the degree of

anonymity. It can be seen as the uncertainty in determining

the current location of an individual [12] from all the candi-

dates. To compute the entropy, each possible location has a

probability of being queried in the past, denoted by pi, and

the sum of all probabilities pi is 1. Then, the entropy H of

identifying an individual in the candidate set is defined as

H = −
k∑

i=1

pi · log2 pi. (1)

Our aim is to achieve the maximum entropy, i.e., the highest

uncertainty to identify an individual from the candidate set.

The maximum entropy is achieved when all the k possible
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(a) Experiment setup
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(b) Experimental result - I
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(c) Experimental result - II

Fig. 1. The problem of random-based dummy selection

locations have the same probability 1
k

, where the maximum

entropy will be Hmax = log2 k.

B. Adversary Model

The goal of the adversary is to obtain sensitive information

about a particular user. We consider two types of adversaries:

passive adversary and active adversary. Any entity can be

a passive adversary if he can monitor and eavesdrop on the

wireless channels between entities or compromise users to

obtain other users’ sensitive information. A passive adversary

can perform eavesdropping attack to learn extra information

about a particular user. An active adversary can compromise

the LBS server and obtain all the information that the server

knows. In this work, we directly consider the LBS server as the

active adversary. Then, he is able to obtain global information

and monitor the current queries sending from the users. He

can also obtain the historic data of a particular user as well

as the current situation. Additionally, he knows the location

privacy protection mechanism used in the system. Based on

these information, he tries to infer and learn other sensitive

information about the user.

C. Motivation and Basic Idea

In existing LBS, a user submits a query to the LBS server,

including the identifier, exact location, the interest and the

query range, and then receives the corresponding reply from

the server. To protect user privacy, one method is to use

cloaking [4], [5], which has several weaknesses. The most

important weakness is the location anonymizer, which is the

bottleneck from both privacy and system performance points

of view. Also, even though the k-1 users can be found nearby,

it still reveals user’s location privacy with a high probability

since the chosen dummy users may be very close to the real

user. Generating dummy locations can address these problems,

but may lead to other problems, e.g., how to choose the dummy

locations? Most existing works [7], [4] rely on random-based

method or the random walk model. However, it is not a

good way to protect user privacy against adversaries with side

information, as shown in the following example.

Fig. 1(a) shows the setting of the experiment. The area

(location map) is divided into a grid of 10×10 cells. Different

shades of the cell represent different query probabilities, which

are generated based on the Borlange Data Set. This data set

was collected over two years (1999-2001) as part of an exper-

iment on traffic congestion that took place in Borlange (see

[29] for more details). We consider two dummy generation

schemes: the optimal scheme and the random scheme. The

optimal scheme represents the ideal case in theory. In the

random scheme, the dummy locations are chosen randomly. To

send a query, a user generates k-1 dummy locations randomly

and sends them together with its own location to the LBS

server. Then, the user believes the probability of exposing

the real location is 1
k

, which is the theoretical result of k-

anonymity. However, since the server has side information

about the query probabilities of locations in the map, the

achieved privacy level is much less. The server can guess that

the user is in a cell which has the highest query probability.

With such side information, the server can infer the real

location with a higher probability as 1
k−kd

, where kd represents

the number of dummy locations that the server will filter out

based on their low query probabilities. In the case shown in

Fig. 1(a), since the query probabilities in locations 1, 2 and 3

are bigger than others, the server believes that the real location

is between them, which means k − kd = 3. As a result, the

entropy drops significantly from log2 k to log2(k − kd).

Fig. 1(b) indicates the probability of finding the user’s

real location by the server. We can easily see the difference

between the random scheme and the optimal scheme. Fig. 1(c)

illustrates the evaluation results by showing the entropy of the

random scheme and the optimal scheme. The performance of

the optimal scheme is always better since all the candidates

have the same probability to be targeted as the real user’s

location. While in the random scheme, the entropy drops

significantly. For example, when k = 20, the entropy drops

from 4.32 to 1.65, that means, about 24.32−21.65 ≈ 17 dummy

locations may be filtered out from the submitted 20 locations.

The general idea of our solution is to optimize the selection

of dummy locations considering that the adversary may exploit

some side information. We enhance user privacy from two

aspects. First, we try to choose dummy locations with similar

query probabilities. Second, if there are several candidates, the

dummy locations should be spread as far as possible. This is
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(a) Existing k-anonymity based
approach

(b) Our DLS algorithm where
candidate cells are marked with

√

(c) Dummies with smaller CR (d) Dummies with bigger CR

Fig. 2. Our main idea

based on the intuition that people always want to hide their

real locations into a large area.

Fig. 2 further explains our basic idea. It is based on Fig. 1(a),

where different shades of the cell represent different query

probabilities. In this example, the user generates two dummy

locations to achieve k-anonymity where k = 3. In the random

scheme, as shown in Fig. 2(a), dummy locations are randomly

assigned, and it is possible that dummy location 1 is assigned

to a cell without any query in the past. As a result, the server

may filter out this dummy location since it does not look like

a real location. Then, 3-anonymity cannot be ensured.

In our Dummy-Location Selection (DLS) algorithm, dummy

locations are generated in cells which have similar query

probabilities with the real location of the user. Fig. 2(b) shows

all the candidate cells which are marked with
√

, and the two

candidates are chosen among them.

This approach can achieve as high entropy as the optimal

k-anonymity, but it has a problem. As shown in Fig. 2(c) and

Fig. 2(d), both cases choose dummy locations with similar

query probabilities, and hence both cases have similar entropy.

However, in the solution in Fig. 2(c) dummy locations are too

close to the real location. Certainly, we prefer the solution in

Fig. 2(d) where the dummy locations are spread out. Thus, we

need to design a scheme to carefully choose dummy locations

among the cells which have similar query probabilities.

IV. DUMMY-LOCATION SELECTION ALGORITHMS

In this section, we present our Dummy-Location Selection

(DLS) algorithm and the enhanced-DLS algorithm, as well

as their security analysis. Finally, we propose an AP-based

method to collect the side information and address some

implementation issues.

A. The DLS Algorithm

The main purpose of this algorithm is to generate a set

of realistic dummy locations. Suppose the location map is

divided into n × n cells with equal size. Each cell has a

query probability based on the previous query history, which

is denoted as

qi =
# of queries in cell i

# of queries in whole map
, i = 1, 2, · · · , n2, (2)

where
n2∑

i=1

qi = 1.

Generally speaking, our DLS algorithm needs to search a big

database to find an optimal set of dummy locations. Given a

degree of anonymity k, besides the real location, we need to

determine the other k-1 cells to assign the dummy locations.

The following shows how the DLS algorithm addresses this

problem.

(i) As the first step, a particular user needs to determine

a proper degree of anonymity k, which is closely

related to the user’s location privacy and the system

overhead. Specifically, a bigger k leads to higher degree

of anonymity but also higher overhead due to the cost

incurred by the selected dummy locations.

(ii) The maximum entropy is achieved when the submitted

k locations have the same probabilities to be treated as

the real location on the server side. At the beginning

of our DLS algorithm, the user needs to read all the

obtained query probabilities and then sorts all cells by

the order of the query probabilities. In the sorted list,

if there are multiple cells which have the same query

probability as the real location, we put half of them

before and the other half after the real location. In the

sorted list, the user chooses the k cells right before and

the k cells right after the real location as 2k candidates.

Then, the user derives m sets of cells, each with k

cells. For each set, one cell is the real location, and

the other k − 1 cells are randomly chosen from the 2k
candidates. The jth (j ∈ [1,m]) set can be denoted as

Cj = [cj1, cj2, · · · , cji, · · · , cjk]. Based on the original

query probabilities of the chosen cells, the normalized

query probabilities of the included cells can be denoted

as pj1, pj2, · · · , pji, · · · , pjk and computed by

pji =
qji∑k

l=1 qjl
, i = 1, 2, · · · , k, (3)

such that their sum is 1. The reason for choosing 2k
locations as candidates of dummies is to increase the

anonymity degree, and the size of this set can be changed

according to user’s requirement.

(iii) Now, we need to determine an optimal set to effectively

achieve k-anonymity for the user. The privacy degree of
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our solution is guaranteed by employing the entropy-

based metric, which is widely used in measuring user’s

privacy. Specifically, for a particular chosen set Cj , we

compute the entropy by

Hj = −
k∑

i=1

pji · log2 pji. (4)

At last, the DLS algorithm outputs the set with the highest

entropy:

C = argmaxHj . (5)

Algorithm 1: Dummy-Location Selection Algorithm

Input : query probabilities in history qi,

real location lreal, number of sets m, k

Output: an optimal set of dummy locations

1 sort cells based on their query probability;

2 choose 2k dummy candidates among which k candidates

are right before lreal and k candidates are right after

lreal in the sorted list;

3 for (j = 1; j ≤ m; j ++) do

4 construct set Cj which contains lreal and k − 1 other

cells randomly selected from the 2k candidates;

5 compute the normalized probability pji for each cell

cji in the set;

6 Hj ← −
∑k

i=1 pji · log2 pji;
7 end

8 output argmaxHj ;

Algorithm 1 shows the formal description of the DLS algo-

rithm. It can provide k-anonymity efficiently and effectively.

Although the DLS algorithm can achieve better degree of

privacy in terms of entropy, as explained in Section III-C,

when choosing dummy locations, it is better to spread these

dummy locations far away. As a result, DLS can be enhanced

so that dummy locations are spread into a larger area (i.e.,

bigger cloaking region (CR)).

B. The Enhanced-DLS Algorithm

To improve the privacy level, the DLS algorithm can be

enhanced by considering both entropy and CR. Since two

factors are considered, the dummy selection problem can be

formulated as a Multi-Objective Optimization Problem (MOP).

On the one hand, we want to maximize the required privacy

level based on the metric of entropy. On the other hand, we

want to maximize CR to spread the dummy locations as far

as possible.

One fundamental question is how to measure the CR.

Intuitively, the sum of the distances between pairs of dummy

locations can be used to measure the CR, which is
∑
i6=j

d(ci, cj)

where d(ci, cj) denotes the distance between cell ci and cj .

However, it may not be as good as the product of the distances

between pairs of dummy locations, which is
∏
i6=j

d(ci, cj). We

consider an example in Fig. 3. In this example, A is the

real location of the user. B is chosen as a dummy location

since it is the furthest location from A. Suppose we have two

choices to assign the third dummy location, C and D. If we

choose it based on the sum of the distances between pairs

of dummy locations, we can choose either of them, because

CA + CB = DA + DB. However, from the privacy point of

view, we prefer C rather than D since it spreads the dummy

locations further. As a result, instead of using the sum of

the distances between pairs of dummy locations, we use their

multiplications. In this case, CA · CB > DA · DB, and hence

we choose C as the dummy location.

Fig. 3. The enhanced-DLS scenario

Let C = [c1, c2, · · · , ck] denote the set of real and dummy

locations. The MOP can be described as

Max{−
k∑

i=1

pi · log2 pi,
∏

i6=j

d(ci, cj)}, (6)

where ci, cj ∈ C, pi and pj denote the query probabilities of

ci and cj , respectively.

It is hard to satisfy all objectives at the same time in MOP.

For us, the primary goal is to confuse the adversary to target

a particular location to a user. This objective is represented as

C = argmax(−
k∑

i=1

pi · log2 pi), (7)

which is the basic condition used to choose a set of dummy

locations to achieve a higher entropy. Then, we try to find the

optimal combination of the k candidates, which are far away

from each other. It can be denoted as

C = argmax
∏

i6=j

d(ci, cj). (8)

Based on the aforementioned analysis, we propose a heuris-

tic solution for the MOP which first selects a redundant set

of dummy locations to maximize entropy and then selects

the final k − 1 dummy locations out of the redundant set to

maximize the CR.

Algorithm 2 gives the formal description of the enhanced-

DLS algorithm. Following the approach in lines 1-2 of Al-

gorithm 1, we first choose 4k candidate dummy locations.

Then following the approach in lines 3-8 of Algorithm 1, we

construct a smaller set of 2k candidate dummy locations out of

the 4k candidates. This process aims to maximize the entropy.

Among these 2k candidates, our next goal is to select k − 1
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dummy locations (c1, c2, · · · , ck−1) which can maximize the

CR. Let creal denote the cell where the user is currently in. Our

heuristic solution chooses c1, c2, · · · , ck−1 in order through

k − 1 rounds. c1 is chosen in the first round, c2 is chosen in

the second round, and so on. In each round, each remaining

candidate is assigned a certain weight, and the dummy of this

round is chosen in such a way that each remaining candidate

is chosen with a probability proportional to its weight. More

formally, let x denote the number of remaining candidates

in a round, and wi denote the weight of candidate i. Then

candidate ci (i = 1, ..., x) is chosen as a dummy in this round

with probability wi∑
j=1,...,x

wj
. In the first round, x = 2k and

the weight of each candidate is its distance with creal. We can

see that cells far away from the real location have a higher

probability of being chosen. Here, we do not directly choose

the cell that is farthest from the real location because that

approach may make it easier to guess the real location in some

cases (e.g., the real location is in the central part of the area

but all dummy locations are around boundaries). In the second

round, x = 2k − 1 and the weight of each candidate is the

product of its distances with creal and the already-selected

dummy (which is c1 here). Other rounds proceed similarly.

Algorithm 2: The enhanced-DLS algorithm

Input : query probabilities in history qi,

current cell creal, number of sets m, and k

Output: an optimal set of dummy locations

1 follow lines 1-2 of Algorithm 1 to choose 4k candidate

dummy locations;

2 follow lines 3-8 of Algorithm 1 to choose 2k candidate

dummy locations Ĉ = {c1, c2, · · · , c2k};
3 C ← {creal};
4 for (i = 1; i ≤ k − 1; i++) do

5 choose c′ as one candidate cj ∈ Ĉ in such a way that

cj is chosen with probability

∏
cl∈C

d(cj,cl)
∑

cj∈Ĉ

∏
cl∈C

d(cj,cl)
;

6 C ← C ∪ {c′};
7 remove c′ from Ĉ;

8 end

9 output C;

C. Security Analysis

In our algorithm, cryptography techniques such as the public

key infrastructure (PKI) can be used to deal with eavesdrop-

ping attacks on the wireless channel between users and other

entities. Our schemes can also resist from some other attacks,

such as colluding attacks and inference attacks.

1) Resistance to Colluding Attacks: Passive adversary may

collude with some users to learn extra information of other

users, or collude with LBS server to predict sensitive infor-

mation of legitimate users.

Definition 1. A scheme is colluding attack resistant if the

probability of successfully guessing the real location of a user

among the k submitted locations does not increase with the

size of colluding group.

Theorem 1. Our scheme is colluding attack resistant.

Proof: We consider the case that colluding happens

between a group of users. They want to guess the real location

of user U out of the submitted k locations. In our schemes,

each user only knows partial information in the system. When

the colluding group contains only one user Ui, the obtained

information includes the query probabilities she has collected,

her current queries and the query history. Then she intercepts

the k locations that user U sends to the server. Since each

location in the intercepted set has the same query probability,

she has no clue about the real location, which means the

probability of successful guessing is 1
k

. Since she might

have sent queries in locations with similar query probabilities

before, she can get the intersection between her query history

and the intercepted queries. The best case for her is that her

query history can fully cover the intercepted set. However,

since Equation 4 and 5 guarantee high uncertainty for each

location, she cannot locate the real user even if she knows

how the DLS and enhanced-DLS algorithms work. Therefore,

she can only randomly guess the real location within the

intercepted k locations. Similarly, when the colluding group

has more members, they can still only randomly guess, which

means the probability of successful guessing is still 1
k

.

One extreme case for the passive adversary is that he can

get the global information by compromising the LBS server

as well as all users. In this case, he actually becomes an active

adversary and can perform inference attack as discussed in the

following.
2) Resistance to Inference Attack: In this part of analysis,

the LBS server is considered as an active adversary. He knows

the query probabilities of the whole map, history queries and

current queries which include the user’s identifier, the mix of

real and dummy locations, interest, query range, etc. Based on

such information, the adversary can perform inference attack

to gain the sensitive information about the user. More formally,

the information in the active adversary’s hand includes: query

probability qi of each individual cell, the interest I , all the

submitted k locations l1, l2, · · · , lc, · · · , lk. Let pG(event)
denote the probability that the adversary can successfully

guess if event is true.

Definition 2. A scheme is inference attack resistant if

pG{li ∈ U |U ∈ C} = pG{lj ∈ U |U ∈ C}}, (9)

∀(0 < i 6= j ≤ k).

Theorem 2. Our schemes are inference attack resistant.

Proof: For each submitted location li in the proposed DLS

and enhanced-DLS, the successful guessing probability can be

computed as

pG{li ∈ U |U ∈ C} =
pG{li ∈ U ∩ U ∈ C}

pG{U ∈ C}
=

qi

pG{U ∈ C} . (10)
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Similarly, for the submitted location lj , the successful guessing

probability is

pG{lj ∈ U |U ∈ C} =
qj

pG{U ∈ C} (11)

Then for the pair of submitted locations li and lj , Eq. 9 holds

if

qi = qj , ∀i 6= j. (12)

In our schemes, based on Eq. 4 and 5, the maximum entropy

appears when all the potential dummy locations have the same

probability, which guarantees Eq. 12.

For the active adversary, he knows the proposed algorithms

(DLS and enhanced-DLS) as well as all the history data of a

particular user. He may try to reverse the algorithms, but this

will fail as shown below. Let us recall the step (ii) of our DLS

mentioned in Section IV-A, in which we choose 2k candidates

to hide the query probability of the real location. Some of

the candidates may have a little higher query probabilities

while others may have a little lower probabilities. The chosen

dummy locations of the DLS are randomly selected from

the 2k candidates, which guarantees the uncertainty of the

selection result. In our enhanced-DLS, we also employ this

technique to guarantee the uncertainty. That is to say, different

sizes lead to different dummy selection results. As the result,

the LBS server cannot infer the real location by running our

algorithms several times with different submitted locations.

D. Implementation Issues

In the proposed DLS and the enhanced-DLS algorithms, side

information such as the user’s query probability should be

known so that the dummy locations can be carefully chosen

to achieve k-anonymity. In this subsection, we address some

implementation issues on how to obtain such side information.

One simple solution is to let the LBS server disseminate

the users’ query probabilities, so that users can get this

information from a well known place. Since the users’ query

probabilities do not change too much, the dissemination inter-

val can be very long, and thus the dissemination overhead is

not high.

Another solution is to use WiFi Access Points (APs) to

collect the query probabilities. The AP-based approaches [30],

[31] have been widely used for LBSs in mobile environ-

ments. In our approach, a user can send queries anytime

and anywhere, and the query is generated in the format of

〈(x, y), I, r, others〉, where (x, y) represents the exact location

of the user, I represents the queried interest, r is the queried

range and others include the user’s identity, etc. We implement

a query probability sharing scheme, this scheme starts when

the user comes into a communication range of an AP, then

the user can obtain the query probabilities from the AP and

merge these information with his own. Additionally, he also

needs to share the query probabilities in his hand, or part of

them to the AP, based on the user’s willingness. Through this

way, the query probabilities at each user can be enlarged. The

sharing phase happens when a user meets an AP, and the time

interval between sharing can also be changed.

(a) Map of New York city (b) APs in OPNET simulator

Fig. 4. Simulation scenario

For each interest I , the original query probabilities in area

within each AP are generated under normal distribution. The

AP collects the queries within its coverage, and records them

into different cells based on the location (x, y) in the query.

When a new user joins, the sharing scheme also runs at the

APs. After several times sharing with different users, the AP

will have query probabilities of other APs. This is good for

users since they can obtain more useful information from a

single AP.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed

DLS algorithm and the enhanced-DLS algorithm.

A. Simulation Setup

In the simulation, 10000 mobile users are deployed in a

8km × 8km area map of New York city, which is shown in

Fig. 4(a). The Levy walk model [32], which has been shown

to better describe the mobility patterns of human being [33],

is used to generate synthetic user contact events. All the users

move in the land area of the map. In this 64km2 map, about

23.5km2 is covered by sea. Red dashed circles in Fig. 4(a)

represent WiFi access points with their communication ranges.

Without loss of generality, we use the exact locations of several

popular places, such as downtowns of NYC, Brooklyn and

New Jersey, some shopping centers and bars since these areas

are always covered by APs and with more users. Fig. 4(b)

shows the distribution of the APs in our simulator.

There are several parameters used in our evaluation. k is

related to k-anonymity, and is commonly set from 2 to 30. r

is the radius of the queried area, which is set by the user.

We compare the proposed DLS and enhanced-DLS algo-

rithms with four other schemes. The baseline scheme repre-

sents the dummy selection algorithm in [7], which randomly

chooses dummy locations to protect privacy. The CirDummy

and GridDummy schemes are the dummy selection schemes

designed in [9], which achieve k-anonymity for mobile users.

The optimal scheme shows the optimal results of k-anonymity

in theory.

B. Evaluation Results

In our simulation, when a user issues a LBS query via

an AP, the user and the AP exchange their collected partial
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information. The simulation shows that, when the Levy walk

mobility model is used, it needs about 4 hours for all the

APs in the 8km× 8km map to collect 99% of all the partial

information for a single interest (i.e., to obtain roughly global

information).
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Fig. 5. Entropy vs. k

1) Privacy vs. k: We evaluate the relationship between k

and the privacy level. Fig. 5 shows the privacy level in terms of

entropy of different schemes. Generally, the entropy increases

with k. Among these schemes, the optimal scheme has the

highest entropy (log2 k) since all the submitted k locations

have the same probability to be treated as the real user. The

baseline scheme is the worst since it ignores that the adversary

may exploit some side information (e.g., query probabilities).

As a result, the chosen dummy locations may fall into some

cells with very low query probabilities, and are filtered out

by the adversary. The performance of GridDummy is close

to the baseline scheme, since GridDummy chooses dummy

locations as the vertices of a grid (
√
k×
√
k) which are fixed

once the map is chosen, and thus its entropy depends on the

current query probabilities in the map. The CirDummy scheme

performs a little better than the baseline scheme. The reason

is that all the chosen dummy locations are always within a

virtual circle, and the variations of the query probabilities

within a small region do not change too much. Compared with

the baseline scheme, GridDummy, and CirDummy, DLS and

enhanced-DLS can achieve much higher privacy levels which

are similar to the optimal scheme, because dummy locations

in our algorithms are selected from cells with similar query

probabilities to guarantee high entropy. Comparing our DLS

with enhanced-DLS, we can see that the entropy of DLS is a

little bit better than enhanced-DLS. This is because enhanced-

DLS sacrifices some entropy to maximize CR.

2) Product of Distances vs. k: We first show two snapshots

of two different dummy location selections. Fig. 6(a) shows

the result of the baseline scheme. Comparing with the result

of enhanced-DLS algorithm in Fig. 6(b), it is obvious that

locations in Fig. 6(a) are close to each other, and the CR

they covered is also small. Then, we evaluate the effect of

k on the distance product of each pair of users, as well as the

queried areas. The results are shown in Fig. 7. This validates

the effectiveness of our enhanced-DLS algorithm, since all the

submitted locations (including both real location and dummy

locations) can affect the distance product of each pair of users

(a) Result of the baseline scheme (b) Result of our scheme

Fig. 6. Snapshots of Dummy-Location Selection. Region in black represents
the location of real user, and red regions represent dummy locations.
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Fig. 7. Effect of our enhanced-DLS algorithm

and the size of the covered area. For simplicity, a user in a

particular cell is considered as the user in the center of the

cell. We note that the GridDummy algorithm has the largest

product of distances and queried area, since in this algorithm

dummy locations are generated to cover as much portion of

the map as possible. However, its overall privacy level is still

low as shown in Fig. 5. The CirDummy algorithm performs

much worse, since it depends on a randomly chosen radius

of the virtual circle. Generally, bigger radius leads to bigger

product of distances as well as the queried area, and vice versa.

We ignore the queried area of the baseline scheme in our

comparisons, since it just randomly chooses dummy locations

in the whole map, and does not consider the side information.

In Fig. 7(a), we measure the distance product of each pair

of the chosen dummy locations. Compared with DLS, the

enhanced-DLS algorithm performs much better. Fig. 7(b) indi-

cates the queried areas of different schemes. In the simulations,

we use the queried range r = 1km as an example. With the

increase of k, both of the DLS and enhanced-DLS algorithms

cover bigger areas. However, the enhanced-DLS algorithm has

better performance, since it uses a greedy method to spread the

dummy locations as far as possible. As a result, it can enlarge

the queried area by almost 20% or more when k > 12.

3) Privacy vs. σ: Since users can get query probabilities

from a single AP or several APs, we introduce a parameter

σ to describe the obtained partial information over the global

information. In our evaluation, we use 50 APs, and σ = 0.5
represents that the user knows query probabilities from 25

APs. We show the effect of σ on entropy and the product of
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Fig. 8. Effect of partial information

distances in Fig. 8. In the following simulations, for simplicity,

we let k = 10, r = 1km, and change σ from 0.1 to 1.0.

Fig. 8(a) shows the effect of σ on entropy. As can be seen,

the enhanced-DLS algorithm has similar entropy with the

optimal scheme, and both are better than the baseline scheme.

That is because we always choose cells with similar query

probabilities. Since the DLS algorithm has similar entropy with

the enhanced-DLS algorithm, it is not shown in Fig. 8(a). In

Fig. 8(b), different σ affects the distance product. When there

are only less number of cells, we have to choose candidates

from them even though they are close to each other. The

evaluation results indicate that the enhanced-DLS algorithm

outperforms the DLS algorithm.

VI. CONCLUSIONS

In this paper, we proposed a Dummy-Location Selection

(DLS) algorithm to protect user’s location privacy against

adversaries with side information. Based on the obtained side

information and the entropy metric, DLS carefully selects the

dummy locations to achieve the optimal level of k-anonymity.

We also proposed an enhanced-DLS algorithm which considers

both entropy and cloaking region (CR) to maintain entropy and

try to ensure that the selected dummy locations are spread as

far as possible. Finally, we presented an AP-based solution to

implement our idea. Evaluation results show that the proposed

DLS algorithm can significantly improve the privacy level in

terms of entropy. The enhanced-DLS algorithm can enlarge

the cloaking region while keeping similar privacy level as the

DLS algorithm.
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