
Parallel de novo Assembly of Large Genomes from High-Throughput Short Reads

B.G. Jackson†, M. Regennitter†, X. Yang†, P.S. Schnable‡, and S. Aluru†

†Department of Electrical and Computer Engineering
‡Department of Agronomy

Iowa State University, Ames, IA, USA

Abstract—The advent of high-throughput short read technol-
ogy is revolutionizing life sciences by providing an inexpensive
way to sequence genomes at high coverage. Exploiting this
technology requires the development of a de novo short read
assembler, which is an important open problem that is garner-
ing significant research effort. Current methods are largely
limited to microbial organisms, whose genomes are two to
three orders of magnitude smaller than complex mammalian
and plant genomes. In this paper, we present the design and
development of a parallel de novo short read assembler that
can scale to large genomes with high coverage. Our approach is
based on the string graph formulation. Input reads are mapped
to short paths, and the genome is reconstructed as a superpath
anchored by distance constraints inferred from read pairs.
Our method can handle a mixture of multiple read sizes and
multiple paired read distances. We present parallel algorithms
for string graph construction, string graph compaction, graph
based error detection and removal, and computing aggregate
summarization of paired read links across graph edges. Using
this, we navigate the final graph structure to reproduce large
contiguous sequences from the underlying genome. We present
a validation of our framework on experimental and simulated
data from multiple known genomes and present scaling results
on IBM Blue Gene/L.

I. INTRODUCTION

Biologists have been sequencing genomes for the past
25 years using Sanger sequencing technology, a process
that enables sequencing a DNA molecule of length 700-
1000 base pairs (bp) in a single experiment. When applying
this technology to a genome that is millions to billions
of bases in length, many such Sanger reads are sampled,
with multiple sequencing machines operating concurrently to
shorten the sequencing timeline. These reads are then com-
bined to reconstruct the originating genome using software
known as a genome assembler. To accurately reconstruct the
genome using this technology, one requires at least a fivefold
to sevenfold coverage of the genome, where coverage is
defined as the ratio of the total length of all the reads to the
length of the genome. For organisms such as human, mouse,
and maize with genomes in the neighborhood of 3 billion
bases, this translates to about 30 million reads. Although the
cost of a single Sanger read is low, the large number of reads
drives the cost of large genome sequencing projects into the
tens of millions of dollars, which in turn has limited large
genome sequencing to a handful of species.

Recently developed, high-throughput, short read sequenc-

ing is proving a disruptive technology as it allows concurrent
generation of millions of reads at a significantly lower per
base cost, albeit with limitations on read length (35-75 bp
typically, with the exception of 454, which can produce up to
400 bp reads). Several short read platforms are now available
and seeing rapid adoption in the experimental biology com-
munity (454 Life Sciences system [13], Illumina Solexa [1],
Applied Biosystems SOLiD [16], and Helicos Biosciences
Heliscope [21]). To compensate for the short read length —
which makes it difficult to distinguish between overlaps due
to genomic co-location, overlaps due to genomic repeats,
and overlaps due to random chance — a much higher 100-
fold to 300-fold coverage is needed for accurate assembly.
Moreover, the number of short reads needed to reach a given
coverage level is about 20 times higher than the number of
corresponding Sanger reads. These factors contribute to a
300-fold to 1000-fold increase in the number of reads and
significantly complicate the assembly problem.

A major challenge in genome assembly is to resolve
repeats accurately; a repeat can cause overlaps between
reads derived from different parts of the genome, and these
must be differentiated from overlaps caused by genomic
co-location. To help with this, biologists sequence reads in
pairs, from both ends of a longer fragment whose approxi-
mate length is known (typically to ±10% accuracy). These
approximate distance constraints are an excellent source of
information for resolving ambiguity. While their use has
been limited to validating assembly in most conventional
assemblers, it is increasingly seen as important to use this
information to guide the assembly process itself for assem-
bling short reads. Intuitively, paired reads from multiple
lengths of fragments (fragment types) provide additional
useful information; we can associate a group of overlapping
reads with paired reads at multiple approximately known
distances in either direction along the genome. However, as
fragments are collectively prepared and too many fragment
sizes can increase the cost and complexity of both fragment
preparation and tracking fragment type through the course
of sequencing, it is prudent to create a few fragment types,
rather than indulge in different lengths for every fragment.

Recent large scale Sanger sequencing projects cost be-
tween $30 and $60 million. If we could perform accurate
de novo assembly from short reads, we could lower the
cost of sequencing new genomes of the same complexity to

around one million dollars, a significant financial savings.
This makes de novo short read assembly an important
open research problem, and there has been a flurry of
activity in response. Several short read assemblers have been
developed in the last few years, each using as a foundation
graph based formulations laid in landmark papers by Idury
and Waterman [8], and Myers [15]. The assemblers —
which include ALLPATHS [2], Euler-SR [3], SHARCGS
[4], Shorty [7], Edena [6], Medvedev et al.’s assembler [14],
SSAKE [20], Velvet [22], and ABySS [19] — differ in many
details, such as the types of graphs they construct, the way
they handle sequencing errors, and their ability to handle
different fragment lengths. With the exception of ABySS,
the assemblers are sequential, and this largely limits their
applicability to microbial organisms.

In this paper, we report the development of a parallel
de novo short read assembler which we named YAGA (for
Yet Another Genome Assembler). Our work is aimed at
using parallel computers to enable large-scale short read
assemblies and remove the scaling limitation posed by most
other programs. Our development is by and large concurrent
with ABySS [19], with our initial development somewhat
predating it [10], [12], [11]. Despite their similar focus on
parallelism, the methods have important differences. ABySS
uses graph reductions to produce contigs while YAGA uses a
path walking strategy. Rather than construct and manipulate
a directed graph, YAGA constructs and manipulates a bidi-
rected graph, which, while being slightly more complicated,
naturally represents paired DNA molecules. This allows us
to completely avoid the problem of strand selection, or
resolving the strand of DNA from which each read came.
Unlike ABySS, YAGA was designed to make use of multiple
fragment lengths. A comparison of the various short read
assemblers is provided in Table I.

In this paper, we present the parallel algorithms behind
the YAGA short read assembler. In Section II, We begin
with a brief description of our problem formulation and
the notation used subsequently. Sections III, IV, and V
contain our parallel algorithms for graph construction, graph
compaction, and error detection and removal (different from
error correction, which attempts to change erroneous reads
into their correct forms). In Section VI, we present a parallel
method for computing aggregate summaries of the distance
constraints, which will be subsequently used to direct graph
traversal. These steps cause a thousand-fold reduction in
the graph size and raw distance constraint information. The
resulting graph and aggregate information is then processed
sequentially to discover paths corresponding to contiguous
stretches of the genome, as outline in Section VII. We
present experimental results in Section VIII. Section IX
concludes the paper.

II. BIDIRECTED GRAPH FORMULATION

For a string α of length |α| = l, we denote the ith

character of α as α[i], 1 ≤ i ≤ l. We denote the substring
from α[i] to α[j], inclusive, as α[i, j], 1 ≤ i ≤ j ≤ l. A
DNA strand is a string with alphabet Σ = {a, g, c, t}. We
call the characters of a DNA strand bases. The complement
of a base α[i], denoted by α[i]′, is defined by the following
bijection of Σ onto Σ: {t → a, c → g, a → t, g → c}.
The reverse complement of a DNA strand α, denoted by α′,
is obtained by reversing α and complementing each base
(α′[i] = α[l − i + 1]′). Note that α[i] = α[i]′′ and α = α′′.

A DNA molecule is a pair of complementary DNA strands,
m = {αm, α′

m}. We denote the length of m as |m| = |αm|
= h and call m an h-molecule. We designate the lexico-
graphically larger of the two strands as the positive strand,
denoted m+, and the lexicographically smaller of the two
strands as the negative strand, denoted m−. We choose the
ordered tuple m = 〈m+,m−〉 as a canonical representation
of the molecule. Note that because we can find m− from
m+ by computing the reverse complement, we can represent
a molecule using only m+. For this reason we also call m+

the representative strand.
A sub-molecule m[i,j] of molecule m is the molecule
{m+[i, j],m−[|m| − j + 1, |m| − i + 1]}. We denote the
positive strand of the sub-molecule as m+

[i,j] and the negative
strand as m−

[i,j]. Note that either the substrand m+[i, j] or
the substrand m−[|m| − j + 1, |m| − i + 1] might be m+

[i,j].
We say that we extend a molecule by adding a base

to the end of one strand and the complementary base to
the beginning of the other strand. If we add a base to the
end of the positive strand, we call this operation a positive
extension. We denote a positive extension as mc, where c
is the base appended to the positive strand. If we at the
same time remove a base from the beginning of the positive
strand, this operation becomes a positive shift, denoted −→mc.
Correspondingly, we denote a negative extension as cm,
where c is the base appended to the negative strand. If we
at the same time remove from the beginning of the negative
strand, we call this operation a negative shift, denoted ←−cm.

The genomic DNA of an organism is a small set of
long molecules M = {M1,M2, ...Mc} (called chromo-
somes; for example, the human genome consists of 23
chromosomes of total length nearly 3.2 billion). A read is
a sub-molecule taken from this set, Mh[i,j], 1 ≤ h ≤ c,
rmin ≤ j − i + 1 ≤ rmax, where rmin and rmax are the
minimum and maximum possible read lengths determined
by the experimental process. A sequencing machine does
not always sequence the read accurately – approximately
1% error rate is expected with current technology. Short read
sequencing errors typically take the form of base miscalls,
although insertions and deletions are also possible.

A bidirected graph is a graph G = {V, E} where edges
are of the form (〈u, du〉, 〈v, dv〉), where du ∈ {out, in} is

Table I
A COMPARISON OF SHORT SEQUENCE ASSEMBLERS BY FUNCTIONALITY AS HAS BEEN DESCRIBED IN THE CITED PAPERS. 1BY PARALLEL, WE MEAN

LARGE SCALE PARALLELISM ACROSS MULTIPLE COMPUTING NODES. 2THE ALLPATHS ASSEMBLER REQUIRES EXACTLY THREE FRAGMENT
LENGTHS: SHORT (FOR EXAMPLE 250 BASES), MEDIUM (FOR EXAMPLE 2000 BASES), AND LONG (FOR EXAMPLE 10,000 BASES).

Whole Error Paired Single Multiple Bidirected
Genome Correction Reads Length Lengths Model Parallel 1

YAGA [9] X X X X X X
ABySS [19] X X X X
Medvedev [14] X X X X
Myers [15] X X
ALLPATHS [2] X X X X2

Euler-SR [3] X X X X
Velvet [22] X X X
Shorty [7] X X X X
SHARCGS [4] X
SSAKE [20] X
Edena[6] X

Figure 1. The four ways in which nodes are connected in the bidirected de Bruijn graph, with the edges labeled with the initial characters in the bidirected
k-string graph (before edge compaction).

the direction of the edge at node u. For sequence assembly,
we represent the reads as short paths in a bidirected graph
using the de Bruijn graph formulation. We create a graph
in which nodes correspond to length k sub-molecules of
reads, also called the k-spectrum of the reads. The edges
correspond to the length k + 1 sub-molecules of reads,
called the (k+1)-spectrum. An edge (〈u, du〉, 〈v, dv〉) exists
between nodes u and v only if there exists a shift that
transforms the molecule corresponding to u to the molecule
corresponding to v (and v to u). If u is transformed to v
by a positive shift, then du = out. If u is transformed to v
by a negative shift, then du = in. The arrow head at v is
defined similarly. The four possible edge types are depicted
in Figure 1. Note that the bidirected graph so constructed is
a subgraph of the bidirected de Bruijn graph, which would
contain all possible k-molecules as nodes, and the full set
of edges; i.e., the bidirected de Bruijn graph has |Σ|k nodes
and |Σ|k+1 edges.

A traversal of a bidirected graph must respect edge
directions at each node – if entering on an out direction, one
must exit on an in direction, and vice versa. Note that a read
of length r contains r− k + 1 constituent k-molecules, and
is represented by a path connecting them in a chain, obeying
the above traversal rule. We label each edge in the graph with
two characters (which will be generalized to strings later) to
create a bidirected string graph. Each label corresponds to
the first character of each strand of the (k + 1)-molecule
corresponding to the edge. Each character is associated

with a traversal direction, again corresponding to the strand
directions of the (k + 1)-molecule (see Figure 1).

Formally, let mu and mv denote the molecules labeling u
and v, respectively. We define characters labeling the edge
connecting them, cuv and cvu, as:

cuv =

{
m+

u [1] if du = out
m−

u [1] otherwise

cvu =

{
m+

v [1] if dv = out
m−

v [1] otherwise

The key property of the string graph is that each read
now can be recovered by traversing the corresponding path
in either direction, concatenating the edge labels on the path
and adding (k − 1)-molecule suffix of the last node on the
path. As all input reads are derived from chromosomes,
each chromosome can now be seen as a long path in this
graph containing the paths of the reads that came from
this chromosome. In real-life, one would not expect to see
continuity in sampling, and the goal is to recover the genome
as a large set of contigs, or contiguous sequences.

III. PARALLEL GRAPH CONSTRUCTION

Throughout the assembly process, we create and manip-
ulate a bidirected graph represented by a distributed list of
edges. We have developed our assembly algorithms on top
of a small set of common parallel primitives:

1) Parallel sorting - sorting is used to rearrange edge
tuples in various ways to discover and manipulate
graph structure [5].

2) Redistribution - redistributing an array of tuples based
on keys given in another array. This is equivalent to
the Random Access Read (RAR) operation and trans-
lates to a many-to-many communication on parallel
computers [17].

3) Prefix sums - used to assign unique ranks as needed.
These primitive operations are well studied, and efficient
algorithms that scale to large systems are readily available.
Our choice to build the assembler on top of these operations
decouples it from a specific implementation, environment,
or system. For example, one can substitute disk-bound
algorithms for these primitives and derive an out-of-core
implementation of the assembler.

We construct the graph by directly generating edges
corresponding to (k + 1)-length submolecules of the input
reads. Reads are initially distributed such that the total length
of short reads on each processor is approximately the same.
Each read is scanned to identify all constituent (k + 1)-
molecules and generate all corresponding edges. Note that
the same (k + 1)-molecule may be present in several short
reads, and in fact it is expected due to the high coverage. In
addition, if the (k + 1)-molecule is a repeat, its frequency
will increase with its multiplicity. Once all of the edges
are created, they are sorted to eliminate duplicates while
maintaining the frequency count. Thus, one parallel sort
accomplishes the task of graph construction.

In an earlier implementation of our method and in the
ABySS assembler, the assembly graph is constructed by
directly creating nodes in the graph from the observed k-
spectrum and then generating edges between pairs of nodes
whose corresponding k-molecules obey the shift property
described in the previous section. To this end, the four
(limited by alphabet size) potential edges corresponding to
the four possible shifts starting at a node are created, and
then the validity of each potential edge is confirmed by
checking the existence of the node at the other end of the
edge. Thus, at the cost of additional space requirements
(from generating hypothetical edges) and communication
time, node based construction might correctly infer a small
number of valid edges missed by edge based construction.

The primary problem with node based graph generation
is the creation of erroneous edges when length k−1 strings
are maximal repeats in the genome [9]. To illustrate how
erroneous edges are created, consider a (k − 1) length
molecule α that occurs exactly twice in the genome, as a part
of (k +1)-molecules AαT and GαA. Using the node-based
construction method described above, edges corresponding
to (k + 1)-molecules AαA and GαT would exist in the
graph, even though no such molecules exist in the genome.
Thus, all edges that node based construction generates are,
with low probability, suspect, and an assembler that relies

on node based construction must answer the challenge
of validating all edges in the graph at a later phase in
assembly. On the other hand, an assembler using edge based
construction can assume that, after correcting for sequencing
error, all edges are valid and the genome corresponds to a
tour of the graph that visits all edges at least once.

In order to further reduce the memory footprint per node,
we process the input in batches of reads. Each batch of reads
is converted to the corresponding edges, and sorted in con-
junction with the existing set of edges to eliminate duplicates
and maintain the frequency counts. By iteratively sorting
in multiple stages and eliminating duplicates frequently, the
storage required is limited to the size of the graph rather than
the input short reads. Note that, ignoring the accumulation
of errors, the graph size is bounded by the length of the
genome, irrespective of the choice of k and no matter what
the coverage of the genome is (even if it is infinite).

Due to sequencing errors, invalid edges will accumulate
as low frequency edges in our edge list. Ideally the parallel
system would have sufficient memory to store all edges
generated as we process reads, including edges generated
due to errors. However, in the case of very large genomes
and very high coverage, it might be necessary to cull these
errors after processing only a subset of reads. A simple
approach would be to periodically remove single occurrence
edges from the list as memory limits are reached, while a
more complicated approach would repeatedly employ the
compaction and error detection methods described in the
next two sections.

We represent an edge using one strand of the corre-
sponding (k+1)-molecule. We arbitrarily choose the lexico-
graphically larger of the two strands as the canonical repre-
sentation. The corresponding complementary strand can be
computed on demand. The k-molecules corresponding to the
two nodes incident to an edge can be easily derived from the
(k+1)-molecule for the edge. To further realize efficiencies,
we use a 2(k+1) bit integer to denote the edge as each base
can be represented using two bits.

IV. PARALLEL GRAPH COMPACTION

The first step in the assembly process is to identify chains
in the assembly graph with no further branching, and replace
them with single edges. The label of the newly created edge
is the concatenation of all the edge labels on the path. This is
expected to resolve all the unique regions of the genome and
the size of the resulting string graph is significantly reduced.

For convenience of understanding, view an edge connect-
ing nodes u and v in the graph as 〈u, v〉. For many phases
of the algorithm, we find it necessary to create for each
edge two entries, one labeled 〈u, v〉, and the other labeled
〈v, u〉. Both edges have the same edge identifier and other
information. For the purpose of graph compaction, we wish
to identify multiple chains in the graph simultaneously and
compact them simultaneously. First, we sort the edges by

using the first node as the key - i.e, the 〈u, v〉 representation
of the edge is bucketed based on u and the 〈v, u〉 represen-
tation of the same edge is bucketed based on v. This brings
together all edges incident to a node. If a node is incident
to one edge or more than two edges, it is treated as the
termination of a chain. If a node has two incident edges, the
directionality of the edges is checked to see if a traversal
through the node is possible. If so, the corresponding edges
are part of a chain. Thus, all edges that are part of a chain
can be identified.

For the purpose of compaction, we view edges in the
graph as nodes for the input to a variation of the classic
parallel list ranking problem, in which a linked list is
distributed on processors such that each node in the list has
a pointer to the next [18]. It is desired to find the distance of
each node to the end of the list. In our case, we are ranking
undirected lists and compute the distance from both ends of
the lists, operating on multiple lists simultaneously. These
generalizations are fairly straightforward and do not alter the
complexity of original list ranking algorithm. Hence, they
are not described in greater detail.

In order to compact chains using our list ranking gen-
eralization, we need a pointer from each edge in a chain
to two adjacent edges in the chain, each of which can be
found when the edges are sorted by their first node as above.
To bring these two adjacencies together, we sort the edge
entries a second time, using their smaller node labels as
primary key and the larger node labels as the secondary
key. This brings both representations 〈u, v〉 and 〈v, u〉 of
a graph edge together, at which point they can be merged
into a single node with adjacency pointers for list ranking.
After list ranking, each compacted chain is replaced by a
single edge with a longer edge label, along with the average
(k + 1)-molecule frequency of its constituent edges.

V. IDENTIFICATION AND REMOVAL OF ERRORS

It is commonly known that an assembler is not well
crafted unless it accounts for sequencing errors. To identify
errors, we make use of the common assumption that inci-
dence of errors is random, and therefore an error is unlikely
to occur repeatedly at the same base. At the same time,
each base in the genome is sampled on an average as many
times as the coverage number, which is high in case of short
read sequencing. The conjunction of these two ideas points
to identifying errors based on their comparatively lower
frequency compared to correct sampling.

With this idea in mind, we (and others [22]) have de-
veloped a method for identification and removal of errors
that relies on graph editing. We consider several cases of
potential errors in the reads and identify how these errors
would manifest in the graph topology. We then look for such
topological characteristics and remove them from the graph.
The three identifiable motifs are depicted in Figure 2.

To find these motifs, we store enriching information
with each edge entry 〈u, v〉 in the distributed edge list of
the compacted graph — the number of in edges and out
edges for both u and v. As was done in compaction, this
information is added to the edge entry using parallel sorts.
First, the entries are sorted by the first node, which brings
all edges adjacent to that node together. After this sort,
the number of in and out edges at the node is associated
with each of the edge entries. Then the edges are sorted
canonically to bring 〈u, v〉 and 〈v, u〉 together. At this point,
the two entries exchange the information generated about the
two nodes.

Tips: A commonly occurring error is the misreading of
one or more bases towards the end of the short read, such
that a misread base is no more than k distance from the end.
In this case, the error manifests itself as a tip in the graph.
A tip consists of a low frequency edge attached to a node
which is on a path with high frequency edges. Essentially,
the path with high frequency edges is part of the genomic
sequence, while the edge leading to the tip is due to the
erroneous base in one read or a small number of reads. A
special case of a tip occurs when a read contains errors such
that there is no error free portion of the read of length k+1.
In this case, the read becomes a singleton, unconnected edge
in the graph. We identify all tips and singletons in the graph
using the information gathered above and remove them.

Bubbles: A bubble in the graph occurs when the error
is the same as described above but occurs in the middle of a
short read. In this case, a sequence of (k+1)-molecules that
contain this erroneous base are corrupted and together form a
chain, while the correct sequence of (k + 1)-molecules that
come from the many error-free reads form another chain.
Due to chain compaction carried out previously, both chains
are now edges. Note that even though the two edges are
incident to the same pair of nodes, they are still different
edges due to differences in the strings labeling the edges. It
is important to differentiate bubbles that arise due to error
and bubbles that arise from nearly identical repeats, which
are regions of the genome that are nearly the same. Thus to
remove a bubble edge, we require that the edge have a very
low frequency. Bubbles can be identified by sorting edges
by the first endpoint, thus bringing low frequency and high
frequency edges together.

Spurious Links: A spurious link occurs when an er-
roneous (k + 1)-molecule happens to be identical to a
legitimate (k + 1)-molecule from elsewhere in the genome.
This is manifested as a low frequency link between two
nodes both of which are on a high frequency path. Removal
of spurious links is very important, as a path that traverses
them will erroneously jump from one part of the genome to
another. Once again, spurious links can be identified using
the information gathered above.

Because removing error motifs might expose additional
error motifs that had been previously masked, we perform

Figure 2. Motifs used to identify errors with frequency indicated by edge thickness. From left to right: a tip, a bubble, and a spurious link.

the error removal described above iteratively until no error
motifs are detected. After each round of error removal, the
graph is again compacted, as removing edges might create
new chains. We have found that in practice only a few such
iterations are sufficient before the method terminates.

After compaction and error removal, we are left with a
graph where each node is either an end node incident to one
edge or is incident to three or more edges (Figure 3). Ideally,
each edge in the graph is a maximal repeat or a unique
region and all that is left is to identify which traversal of the
graph reconstructs the genome, with edges corresponding to
a repeats traversed multiple times. The frequency of a repeat
edge should grow in accordance with the number of times
the repeat occurs in the genome, assuming the short reads
constitute a uniformly random sampling of the genome.
Thus, we can deduce the approximate traversal counts for
each edge. Myers pioneered this approach [15] where he
provides a fairly accurate traversal count for each edge by
transforming this problem to a min-cost network flow. In our
case, we assign upper bounds and lower bounds for traversal
count of an edge simply based on its frequency and rely upon
paired distances to guide us to accurate traversal.

VI. SUMMARIZING CLUSTERS OF PAIRED READS

In the sequencing process, the length of each fragment
is selected by a physical process that produces lengths that
lie within a predefined range (mean ±10%). We assign all
pairs coming from fragments sharing the same length range
a single pair type. For short read assembly projects, multiple
fragment libraries are created, sometimes with differing
ranges (with differing types in our nomenclature).

Each pair of reads thus gives us an approximate distance
constraint that we can use when traversing the assembly
graph; if the paired reads map to two edges in the graph, we
know that those two edges are separated by an �approximate
distance. For YAGA, we demonstrate that by considering
multiple observations concurrently, we create a much better
estimate of the distance between edges. To this end, we
group paired reads that carry complementary and redundant

information in a process we call (k + 1)-pair clustering,
summarizing each cluster as an interval. Each summary is
orders of magnitude smaller than its corresponding cluster;
thus this process greatly reduces the problem size. We
use these clusters, which provide reasonably tight distance
constraints between edges, to guide our traversal of the
assembly graph.

A. Generating summary distance constraints

We denote a position in the bidirected graph G as p =
〈e, f〉, where e is an edge identifier and f is a position within
the edge label in an arbitrarily assigned forward direction.
By construction of the string graph, there is a bijection
between valid (k + 1)-molecules in the input and the set of
all positions within all edge labels in the graph. We use p(m)
to denote the position corresponding to (k+1)-molecule m,
and p(m).e and p(m).f to denote the corresponding fields.

We denote a read pair as 〈R1, R2, z〉, where R1 and
R2 are the reads and z is the pair type. Each read pair
contains multiple (k+1)-pairs, of the form π = 〈m1,m2, z〉,
where m1 and m2 are molecules taken from R1 and R2

respectively. We denote the set of all (k + 1)-pairs in the
data as Π = {π1, π2, ..., πM}.

An edge traversal t = 〈e, d〉 is composed of an edge e
and a traversal direction d ∈ {F, R}, with F corresponding
to traversing the edge in the forward direction. A path is a
sequence of edge traversals: T = 〈t1, t2, ..., tl〉. In general,
edges in the graph can be traversed multiple times; there
could exist ti and tj , i 6= j and ei = ej . A path must also
be a valid traversal of the string graph.

Consider some πx = 〈m1x,m2x, zx〉 and traversal T . Let
Lx = {ti|ei = p(m1x).e} be the set of edge traversals in T
to which m1x maps. Let Rx = {tj |ej = p(m2x).e} be the
set of all edge traversals to which m2x maps.

Definition 1: For each (ti, tj) ∈ Lx × Rx, i < j, the

Figure 3. An example genome with repeats and the resulting bidirected k-string graph. The genome is given as a sequence of maximal repeat or unique
regions, each labeled with a letter from the English alphabet. We draw the graph nodes as gray circles and label the edges using the corresponding letters.

observed distance of πx is:

d(πx, ti, tj) =
j−1∑

h=i+1

‖eh‖+ σi + σj

σi =

{
p(m1x).f if di = R

‖p(m1x).e‖ − p(m1x).f if di = F

σj =

{
p(m2x).f if dj = F

‖p(m2x).e‖ − p(m2x).f if dj = R

We use dze to denote the largest possible distance between
observed (k + 1)-molecules when reading the ends of a
fragment of type z and bzc to denote the smallest possible
distance. We say that πx supports T using ti and tj if and
only if bzxc ≤ d(πx, ti, tj) ≤ dzxe, and call this support
weak because the true distance between ti and tj can differ
from the observed distance by as much as dzxe − bzxc.

In general, multiple (k + 1)-pairs with the same type can
support a pair of edge traversals on a path. We wish to
formalize this support expectation.

Definition 2: The maximum distance expectation for ti
and tj and some type z, denoted by d(ti, tj , z)e, is calculated
as min

(
dze,

∑j
h=i ‖eh‖

)
.

Definition 3: The minimum distance expectation for ti
and tj and some type z, denoted by b(ti, tj , z)c, is calculated
as max

(
bzc,

∑j−1
h=i+1 ‖eh‖

)
.

Definition 4: A (k + 1)-pair cluster is a set of ob-
served distances for ti, tj , and z that have been grouped
together via a clustering algorithm (which we shall de-
scribe shortly). We summarize a cluster using the interval
α(ti, tj , z) = [min,max], with min being the minimum
observed distance in the cluster and max the maximum
observed distance. We say that ti and tj are supported by a
(k + 1)-pair cluster α(ti, tj , z) if αmin < b(ti, tj , z)c + T
and αmax > d(ti, tj , z)e−T , with T a sensitivity parameter.

For efficiency reasons, we want to know if ti and tj are
supported without having to consider the entire set Π when

analyzing a particular path. To achieve this, we preprocess
the raw paired reads to extract all clusters without any a
priori knowledge of the nature of the eventual traversal
T . In other words, we know neither the distance between
pairs of edges nor their relative orientations at the time of
summarization.

We notice that any clustering algorithm that relies ex-
clusively on the difference between observed distances
d(π1, ti, tj) and d(π2, ti, tj) can produce a clustering with-
out such a priori knowledge. This is because any difference
remains invariant when changing the traversal direction of
both ti and tj concurrently, adding an edge between ti and
tj , removing and edge between ti and tj , or changing the
traversal direction of an edge between ti and tj . Proof of
these invariants comes easily by considering Def. 1. This
leaves only a single case, changing the traversal direction of
only one of ti and tj , that affects such a clustering algorithm.

Thus, for clustering, we can safely ignore the∑j−1
h=i+1 ‖eh‖ component from Def. 1, and must track

intervals of σi +σj for two of the four possible orientations.
We choose [ffmin, ffmax] and [rfmin, rfmax], where ff
denotes forward traversal on both edges rf denotes reverse
traversal on the first edge and forward on the second. The
value for rrmin is ‖ei‖+‖ej‖− ffmax, and we can compute
rrmax, frmin, and frmax similarly.

Definition 5: A partial (k +1)-pair cluster is a summa-
rization of a set of observed partial sums σi+σj for edges ei,
ej and type z, denoted as α̂(ei, ej , z) = 〈O, [min,max]〉,
with O ∈ {ff, rf} denoting the orientation of the two edges.

While many clustering methods could be conceived, we
describe a specific clustering method that can be incremen-
tally applied to the interval representation of the clusters.
We construct the (k + 1)-pair clusters starting from all
single element sets taken from Π and proceeding in two
phases of merging. In the first phase, we perform the
equivalent of single linkage clustering, merging two sets
αx(ti, tj , z) and αy(ti, tj , z) if and only if their orientations

are the same and their ranges overlap or nearly overlap,
specifically iff (maxx +R > miny)∧(minx−R < maxy),
for some parameter R. In the second stage, we order all
clusters αx(ti, tj , z) by 〈O, min〉, and then, considering
all consecutive pairs (αx(ti, tj , z), αy(ti, tj , z)) in this or-
dered set, merge if clusters share the same orientation and
maxy−minx < dze. This heuristic attempts to compensate
for incomplete data.

B. Summarizing clusters in parallel

We will now describe a parallel algorithm for computing
all partial (k + 1)-pair clusters from Π, using the parallel
computational primitives described in Section III. We have
as the result of the list ranking stage of the pipeline the
position of all (k+1)-molecules 〈m, p(m)〉, sorted according
to molecule representative. We create an array C of partial
(k + 1)-pair clusters of the form 〈ei, ej , z, O,min, max〉.
In this representation, a canonical ordering of each pair of
edges is chosen (by choosing as ei the edge with smaller
identifier) in order to eliminate duplicate entries.

As was the case in graph construction, we process the
reads in multiple rounds, in order to reduce the memory
consumption of the assembler. For each read pair 〈R1, R2, z〉
we construct all possible (k + 1)-pairs 〈mi,mj , z〉. These
pairs are distributed first by mi, and then by mj , in order
to find the position of each molecule in the graph, p(mi)
and p(mj). From these positions, we create for each pair a
(k+1)-pair cluster for each of the two orientations, correctly
recording ranges [ffmin, ffmax] and [rfmin, rfmax] for partial
clusters consisting of this single pair. We add these two
clusters to the array C.

After we have created all singleton clusters for this input
round, C is reduced by first sorting by 〈ei, ej , t, O,min〉
while forcing all tuples with the same 〈ei, ej , t, O〉 to the
same processor. Once this sort is complete, we merge all
clusters in a single local linear scan of the sorted array,
using the single linkage rule described above, updating all
minimums and maximums appropriately.

After all rounds of processing have completed, and we
have processed all reads, we merge partial (k + 1)-pair
clusters in accordance with the phase two merging rule
described above, updating all minimums and maximums.
This is accomplished by first sorting all clusters for a given
〈ei, ej , t, O〉 using min as the primary key and max as the
secondary key, and then merging with a greedy, linear-time
algorithm.

VII. GRAPH TRAVERSAL

The final stage of the algorithm is a graph traversal aided
by the partial (k+1)-pair clusters that produces a set of final
assembled contigs. At this stage, the size of the graph is
typically three orders of magnitude smaller than the original
graph and the reduction of paired read distance information
by aggregating it as partial (k + 1)-clusters brings about a

reduction of five to six orders of magnitude when compared
to the set of (k + 1)-pairs, Π. As a result of this reduction,
this phase can be carried out sequentially, even for large
mammalian and plant genomes. We briefly describe the
procedure here.

We begin contig construction at “long” edges in the graph,
where long is taken to be larger than the longest fragment
length. Such an edge serves as a starting (or restarting) point
in the traversal process because no distance constraint can
span it, provided it is correct. Starting from such an edge, the
contig is extended in both directions using path extension.

At any point in this process, we have a partially con-
structed path and there exist a number of possible candidate
edges that might be used to extend the path. We limit the
candidates by considering both the graph structure and the
traversal constraints described at the end of Section V. We
then consider each candidate in turn. We consider each pair
constructed by taking the candidate and each path edge
within a set distance from the end of the path. For each pair,
we calculate an expected cluster interval for each fragment
type. We convert the partial (k + 1) clusters into correct
observed lengths based on the knowledge of the path, and
check to see if a cluster exists that matches (supports) the
expectation. If a cluster supports the expectation (see Defs.
2, 3, and 4), it provides evidence that this edge is the correct
path extension.

For each edge, a score is produced by taking the ratio
of the score of all met expectations to all expectations. If,
for an extension candidate, this score is close to 1 and is
significantly higher than the score for other candidates, this
extension is considered good and unambiguous, and it is
chosen.

Note that there is some degree of inherent parallelism
in this procedure as contig construction can simultaneously
start from each long edge used as a seed. This can be the
basis for developing a parallel algorithm. However, this step
of the algorithm is neither compute nor memory intensive,
prompting us to settle for a sequential execution at present.

VIII. EXPERIMENTAL RESULTS

Using the method outlined earlier, we developed a parallel
short read assembler named YAGA (for Yet Another Genome
Assembler). Our software is written in C++ and MPI and
is about 12,000 lines of code. We make heavy use of C++
templates. A C++ template allows the specialization of a
particular class or function when combined with different
external components, as long as those components adhere
to an interface contract. We choose templates over other op-
tions such as base classes and inheritance for three primary
reasons. One, templates provide performance improvements
at the cost of executable size due to a specialized version
of the template class being created for each new component
with which it is used. Two, templates allow the choice of
either functors (objects acting and functions) or function

Table II
RUN-TIME OF THE PARALLEL ASSEMBLER IN SECONDS, BROKEN DOWN BY STAGE OF THE ALGORITHM. FROM LEFT TO RIGHT THE COLUMNS ARE: p:
THE NUMBER OF PROCESSORS, Init: INITIALIZATION TIME, FROM PROGRAM STARTUP TO INITIAL READ, Read: READ THE (k + 1)-MOLECULES FROM
THE DATA FILE, Con: CONSTRUCT GRAPH TUPLES AND COMPACT EDGES IN THE GRAPH, Wr: WRITE GRAPH INFORMATION, Clean: PERFORM ERROR

REMOVAL BY GRAPH EDITING, Wr: WRITE GRAPH INFORMATION, Pairs: READ PAIRED INFORMATION AND CREATE CLUSTERS, Wr: WRITE
CLUSTERS, Tot: TOTAL RUNNING TIME, -Wr: TOTAL RUNNING TIME WITHOUT WRITE PHASES, AND Per: PERFECT SPEEDUP.

p Init Read Con Wr Clean Wr Pairs Wr Tot -Wr Per

16 5 469 49 106 23 30 3369 3 4,054 3,915 4,054
32 11 294 26 155 22 45 1760 10 2,323 2,113 2,027
64 11 179 14 62 89 88 910 1 1,354 1,203 1,013

128 9 120 7 59 37 32 390 1 655 563 507
256 13 101 3 104 4 70 190 11 496 311 253

pointers. Three, templates allow seamless integration with
the C++ Standard Template Library (STL).

We evaluated the assembler using the E. coli Illumina
data set from short read archive at NCBI (Accession
SRX000429). The data consists of 20.8 million paired E.
coli reads of 36 bp length, all with a fragment length of
approximately 200 bases. The length of this genome is
approximately 4.64 million bases. Although our work is
primarily aimed at scaling to large genomes, we use this
microbial organism for two reasons - the data set is actual
short reads produced by the Illumina genome analyzer, as
opposed to synthetically generated data. Second, as our goal
is to demonstrate the scalability of our method and it is
harder to use a larger number of processors efficiently for a
relatively smaller data set, it allows us to better gauge the
scalability. Our assembly generated 217 contigs of length
at least 200, with an average contig size over 21 kbp. At
least 50% of the genome could be covered using contigs no
smaller than 45,592 bp, and the assembly spanned 98.47%
of the genome. In keeping with the scope of the conference,
our emphasis here will be on presenting parallel performance
results to demonstrate the efficiency and scalability of the
proposed approach.

The parallel run-time on the E. coli data is shown in
Table II. For further details, the run-time is split into several
components to provide the time for each phase of the
algorithm. The tests were run on a Blue Gene/L system
with 512 MB of memory per node. This demonstrates
that the software is highly parallel and can function with
small amounts of memory per node. As seen in the table,
reasonable scaling is achieved on all factors in the above
decomposition, save parallel file write, which seemed to
slow significantly as we increased the number of processors.
This is reflective of the lack of a parallel file system on
our experimental platform, rather than a weakness of the
algorithm. The stages of the algorithm not involved with file
writing achieved a respectable 12.6 speedup in our testing,
when the number of processors is increased by a factor of
16 from 16 to 256.

To demonstrate the applicability of our software to much
larger data sets, we generated synthetic short reads from

the genome of Drosophila Melanogaster, about 120 million
bases in length. We generated 900 million paired reads to
approximate 300X coverage of the genome. A 1% error
rate was used in generating the short reads, with 0.7%
substitution rate and 0.3% insertion/deletion rate. The data
was used to test parallel performance, as well as to test
assembly quality by aligning the produced contigs back to
the reference genome.

The assembler completed all the parallel phases of the
run in about an hour and 40 minutes on 512 nodes of
the Blue Gene/L. The last phase of the assembler which
does sequential path walking to produce contigs from the
reduced graph and summarization of paired read distance
constraints ran in about 20 minutes on a Pentium workstation
with 2GB memory. The largest contig size produced was
855 kb. There were 1,687 contigs of length greater than 10
kb, covering 91.2% of the genome with greater than 99.9%
match to the reference genome. A coverage of 50% of the
genome is achieved using contig lengths greater than 102 kb,
75% coverage is achieved using contigs of length greater
than 43 kb, and 90% coverage is achieved using contigs
of length greater than 12 kb. The assembly software made
1.5 misassemblies per million bases, where a misassembly is
defined as the production of a contig that does not align with
the reference genome in totality (i.e., it indicates a wrong
assembly consisting of reads that come from different parts
of the genome).

IX. CONCLUSIONS

In this paper, we presented a parallel method for de
novo assembly of unknown genomes from high coverage
short read sequencing. This is an important open problem
necessitated by advances in high-throughput sequencing and
a number of research groups are actively pursuing it. The
work presented here is focused on utilizing parallel com-
puters in order to scale to the largest genomes and highest
coverage data sets that would be generated in genome
sequencing projects. It can be further developed in a number
of directions, some of which we are currently pursuing. Of
high priority is developing more sophisticated models of
error correction, as this will most likely have the largest

impact on the quality of the assembler. Another direction is
to parallelize the final phase, the graph traversal algorithm,
such that the entire assembly runs in parallel. To augment
the traversal algorithm, it might be worthwhile to develop
a maximum likelihood formulation to accurately estimate
edge traversal counts, and use a combination of frequency
and edge traversal count information with paired read infor-
mation to improve the accuracy of assembly. An important
functionality that remains to be added is scaffolding – the
problem of ordering and orienting the assembled contigs
along the genome. The paired read links that connect the
contigs are useful in generating a scaffold, but a variety of
other types of data, when available, can also be useful. A
scaffolded assembly can guide finishing efforts and improve
the quality of the final draft genome.

ACKNOWLEDGEMENTS

This research is funded in part by the Iowa State Uni-
versity Plant Sciences Institute Innovation Research Grants
program.

REFERENCES

[1] S. Bennet. Solexa ltd. Pharmacogenomics, 5(4):433–438,
2004.

[2] J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K.
Belmonte, E.S. Lander, C.N. Nusbaum, and D.B. Jaffe.
ALLPATHS: De novo assembly of whole-genome shotgun
microreads. Genome Research, 18:810–820, 2008.

[3] M.J. Chaisson and P.A. Pevzner. Short fragment assembly
of bacterial genomes. Genome Research, pages 18:324–330,
2008.

[4] J.C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer.
SHARCGS, a fast and highly accurate short-read assembly al-
gorithm for de novo genomic sequencing. Genome Research,
17:1697–1706, 2007.

[5] D.R. Helman, J. Ja’Ja’, and D.A. Bader. A new deterministic
parallel sorting algorithm with an experimental evaluation.
Technical Report CS-TR-3670 and UMIACS-TR-96-54, Col-
lege Park, MD, 1996.

[6] D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and
J. Schrenzel. De novo bacterial genome sequencing: Millions
of very short reads assembled on a desktop computer. Genome
Research, 18:802–809, 2008.

[7] S. Hossain, N. Azimi, and S. Skiena. Crystallizing short-read
assemblies around lone Sanger reads. Bioinformatics, 2009.

[8] R.M. Idury and M.S. Waterman. A new algorithm for
DNA sequence assembly. Journal of Computational Biology,
2:291–306, 1995.

[9] B.G. Jackson. Parallel methods for short read assembly. PhD
thesis, Iowa State University, August 2009.

[10] B.G. Jackson and S. Aluru. Parallel construction of bidirected
string graphs for genome assembly. In Proc. 37th Interna-
tional Conf. on Parallel Processing, pages 346–353, 2008.

[11] B.G. Jackson, P.S. Schnable, and S. Aluru. Assembly of large
genomes from paired short reads. In Proc. 1st International
Conference on Bioinformatics and Computational Biology,
volume 5462, pages 30–43, 2009.

[12] B.G. Jackson, P.S. Schnable, and S. Aluru. Parallel short
sequence assembly of transcriptomes. BMC Bioinformatics,
10:S14, 2009.

[13] M. Margulies and M. Egholm. Genome sequencing in
open microfabricated high density picoliter reactors. Nature,
437(7054):376–380, 2005.

[14] P. Medvedev and M. Brudno. Ab initio whole genome
shotgun assembly with mated short reads. In Lecture Notes
in Computer Science, volume 4955, pages 50–64, 2008.

[15] E.W. Myers. The fragment assembly string graph. Bioinfor-
matics, 21:ii79–ii85, 2005.

[16] V. Pandey, R.C. Nutter, and E. Prediger. Applied Biosystems
SOLiD System: Ligation-Based Sequencing. Wiley, 2008.

[17] R.V. Shankar and S. Ranka. Random data accesses on a
coarse-grained parallel machine. II. one-to-many and many-
to-one mappings. Journal of Parallel and Distributed Com-
puting, 44(1):24–34, 1997.

[18] J.F. Sibeyn, F. Guillaume, and T. Seidel. Practical parallel
list ranking. Journal of Parallel and Distributed Computing,
56:156–180, 1999.

[19] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones,
and I. Birol. ABySS: a parallel assembler for short read
sequence data. Genome Research, Preprint, 2009.

[20] R.L. Warren, G.G. Sutton, S.J.M. Jones, and R.A. Holt.
Assembling millions of short DNA sequences using SSAKE.
Bioinformatics, 23:500–501, 2007.

[21] Business Wire. Helicos biosciences enters molecular di-
agnostics collaboration with renowned research center to
sequence cancer-associated genes. Genetic Engineering and
Biotechnology News, 2008.

[22] D. Zerbino and E. Birney. Velvet: Algorithms for de novo
short read assembly using de Bruijn graphs. Genome Re-
search, 18:821–829, 2008.

